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1. Introduction

Clustering is an unsupervised, data driven learning paradigm that aims at discov-
ering natural groups in data [8, 9]. This type of learning has found many useful
applications in domains with large amount of data where labeling of a training set
for supervised learning is cost prohibitive or where autonomy is essential [1, 10,
11, 12]. However, clustering algorithms generally rely on some prior knowledge
of the structure present in a data set. For instance, one needs to know whether or
not clusters actually exist in data prior to applying a clustering procedure. Indeed,
clustering applied to a data set with no naturally occurring clusters would merely
impose meaningless structure. The procedure that consists in examining a data set
to determine if structure is actually present and thus determine if clustering is a
worthwhile operation is a poorly investigated problem known as cluster tendency
determination [8].

Research in the area of cluster tendency has mainly focussed on the somewhat
related problem of establishing the true number of clusters present in the data [6],
often as part of cluster validity, the evaluation of clustering output quality [8]. Of
course, should it be ascertained that the best clustering contains only one group,
then null tendency must be concluded. The main problem with these approaches is
that they either rely on yet other optimization procedures and similarity metrics
(just as the clustering procedure itself), or depend on some parameter estimation.
We show how to avoid these problems by using Adaptive Resonance Theory
(ART) neural networks [3, 7] to determine clustering tendency of binary data. The
binary version of ART (ART1) is used.

2. Adaptive Resonance Theory

ART neural networks are known for their ability to perform plastic yet stable on-
line [14] clustering of dynamic data sets [4]. ART detects similarities among data
objects, typically data points in an N-dimensional metric space. When novelty is
detected, ART adaptively and autonomously creates a new category. Another ad-
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vantageous and distinguishing feature of ART is its ability to discover concepts in
data at various levels of abstraction [12, 16]. This is achieved with the vigilance
parameter ρ ∈ (0,1]. First, a similarity measure S (Eq. 1) is computed to deter-
mine if an existing cluster prototype Tj appropriately represents the critical fea-
tures of an input pattern Xk.

S = ||Xk ∧  Tj|| / ||Xk|| (1)

Then, the vigilance test compares S with the vigilance parameter (Eq. 2):

S ≥  ρ (2)

Eq. 2 determines whether the current input pattern Xk will be recognized as a
known concept or as a novel one. Indeed, if the vigilance test fails for all existing
prototypes during the network search phase, Xk is deemed to be novel and new
concept formation is triggered. At high vigilance (ρ→1), a large number of spe-
cific (low generality) clusters will be detected in the data. Conversely, at low
vigilance (ρ→0), objects will be assigned to fewer, more general categories.
Given a data set X = {Xk |  k = 1, 2, …, R}, one then intuitively expects a function
relating the number of clusters M to the vigilance ρ.  This function is expected to
have a minimum value of M=1 for ρ → 0 and a maximum of M=R for ρ=1.

3. Minimal and Maximal Vigilance

Of interest is Smin, the minimal non-zero value for S. The minimum non-zero value
for the numerator of Eq. 1 is 1, that is one common bit between the prototype and
the input data. The theoretical1 maximal value for the denominator is N. Hence,
we obtain:

Smin = 1/N. (3)

Similarly, we develop a non-unit maximal value for S:

Smax = (N-1)/N. (4)

Based on Eqs. 2, 3 and 4, one can establish the corresponding minimal and
maximal useful values for vigilance.  This is illustrated as follows. Lets suppose
M0 clusters are obtained with ρ0. However, the application requires M1<M0 clus-
ters, so the input set is re-submitted to the ART1 neural network with ρ1<ρ0.  The
expectation is that with a lower vigilance, fewer and more general groups will be
formed: this is normal ART1 behavior. Under certain conditions, this will not oc-
cur. Indeed, if ρ1< Smin, then any further reduction of the vigilance will not result in
less clusters2.  The last vigilance value for which a reduction in the number of
clusters was achieved is the minimal useful vigilance, ρmin. A similar reasoning ap-

                                                          
1 In practice ||Xk|| is expected to be a small fraction of N, so the actual Smin (Eq. 3) will always be

larger or equal to the theorical value, but this is inconsequent for the use we make of it.
2 Under certain circumstances, the number of clusters may decrease slightly [15].
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plies for the maximal useful vigilance ρmax in which case a maximum number of
clusters M ≤ R is reached. Hence, in reality, the intuition that varying the vigilance
within its whole range of permissible value can give rise to an arbitrary number of
clusters M ∈ [1,R] is incorrect.

Minimal and maximal useful vigilance may be problematic for applications that
require concept granularities beyond or below possible limits. However, they are
also useful structure detector. Indeed, the phenomenon just described can be inter-
preted as an inherent ability of ART1 to detect natural similarities in the data. For
instance, less clusters cannot be discovered in the data below minimal vigilance
simply because the data is naturally not susceptible to assemble into less groups.

4. Tendency Determination

By setting vigilance to a value below minimum useful vigilance, one obtains an
indication of the natural tendency of the data to cluster. This is deduced from the
number of clusters formed. The following situations can occur for ρ<ρmin:

1. If M>1: it can be concluded that the data has a natural tendency to cluster.
2. If M=1: from the most general point of view3, the data does not have a ten-

dency to form clusters.
3. If M→R: this means weak tendency, with the extreme case of M=R clusters

(trivial clustering) corresponding to no tendency.

For situation 2, one must progressively increment the vigilance parameter from
its minimal useful value to determine if eventually M>1 clusters form. Hence, one
must consider the notion of generality when computing clustering tendency. This
can be illustrated by considering fauna classification: at the highest level of the hi-
erarchy (the more general cluster), all animals are clustered into category “animal”
(i.e. M=1). However, this does not mean that there is no structure in the data. By
lowering the generality, M>1 potentially useful clusters may be found (for exam-
ple, corresponding to animal classes or families).

We have described a method to establish if natural groups occur in the data.
The residual question is whether those groups are the result of mere coincidence.
Indeed, it can easily be demonstrated [13] both analytically and empirically that
clusters do occur in a random data set. Evidently, such clusters are meaningless
and clustering tendency of such origin must be appropriately detected. We now
show how maximal vigilance is used for that purpose.

Increasing vigilance means that the ART network will form more and smaller
clusters since it is being more demanding about features matching, as per the
vigilance test (Eq. 2). Random data should therefore have a natural predisposition
to split into many small clusters more rapidly than data that contains actual struc-
ture because it is less likely to have the required number of bit matching to pass
the more stringent vigilance test. Maximal vigilance for random data, which we

                                                          
3 Recall that ρmin implies the more general clustering possible.
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denote by ρr
max, will thus be smaller than for non-random. This idea can be used to

establish non-random tendency as shown by the following inequality:

ρr

max < ρmax (5)

Maximal vigilance can be approached incrementally for a given data set and the
relation between M and ρ plotted. Observing how fast M tends towards R com-
pared to a baseline random data set allows for the detection of clustering tendency
of a random origin. Such a graphic and qualitative approach may not be ideal, but
it suits our current objective by giving an idea of whether or not clusters may be
due to mere chance. Elements of a quantitative approach are given in [13].

5. Empirical Validation

Patterns are bit strings of length N. In the first experiment, we consider the case
where tendency is determined by failing to reach M=1 at ρ< ρmin. The data set with
R=10 patterns and N=50 (Fig. 1a) is submitted to ART at ρ < ρmin (ρ = 0.01), then
re-submitted at progressively incremented vigilance. The effect of minimal vigi-
lance is visible in Fig. 1b. M=3 clusters are detected at below minimum vigilance,
which allows one to conclude that there is clustering tendency for the data set.
Visual inspection of figure 1a confirms this finding. Applying a clustering proce-
dure to the data is therefore a meaningful operation.

In the second experiment, any data set in which not a single feature overlap ex-
ists can be used. This kind of data has no inherent clustering tendency due to an
absolute lack of similarity between objects. By clustering this data at below mini-
mum vigilance, we obtain M=R, hence confirming null tendency. Applying a
clustering procedure to this data set would impose artificial structure and would
therefore be a meaningless operation.

In the third experiment, we verify that the rate at which M grows when ρ is
progressively incremented to ρmax detects tendency caused by chance as per Eq. 5.
Three random4 data sets are processed with ART at vigilance varying from below
ρmin  to 1. The number of clusters formed is averaged for each vigilance value.
Other data sets will be compared with this baseline to determine if their clustering

                                                          
4 The random bit patterns are actually pseudo-random data generated with java.util.Random.

10111110110000000001000000000000000000000000000000
11011011010000000000000000000000000000000000000000
11101101110000000000000000000000000000000000000000
11110111100000000000000000000000000000000000000000
00000000000000000000000000000000000000001101011110
00000000000000000000000000000000000000001110011101
00000000000000000000000000000000000000000111011011
00000000000000000000000000000000000000001011010111
00000000000000000111010000000000000000000000000000
00000000000000000011110000000000000000000000000000
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Fig. 1a. Dataset for experiment 1. Fig. 1b. Clustering tendency is established by ob-
serving that 3 clusters are formed at vigilance below minimum useful vigilance. The num-
ber of clusters formed at various levels of generality is also visible.
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tendency is caused by chance. The random data must possess the same character-
istics (N, R and P(1), the bit set probability) as the dataset to be compared against.
Here we used N=50, R=10 and P(1)=0.2.  In Fig. 2a, the number of clusters is
plotted for the random baseline and for the data used in experiment 1. It can be
observed that ρr

max for the random baseline is smaller than ρmax for the tested data.
As per Eq. 5, this is an indication that cluster tendency is not caused by random
structure in the data. In Fig. 2b, two other data sets are compared to the random
baseline. For these data sets, ρr

max > ρmax, which means that clustering tendency is
caused by mere chance clustering. Indeed, these two data sets were obtained from
known random sources (random 1 comes from radio atmospheric noise and was
obtained at random.org. Random 2 comes from radioactive source decays and was
obtained from HotBits (http://www.fourmilab.ch/hotbits/) ). Other similar experi-
ments have been conducted with several real-life or benchmark data sets.  One of
these experiments is documented in [12].

6. Conclusion and Future Work

We have shown how the vigilance parameter of a binary ART neural network can
be used to determine the clustering tendency of a data set. The idea is based on the
fact that at the highest level of generality, that is for vigilance set below its mini-
mal theoretical level, ART should collapse all clusters into a single group. How-
ever, if the data possesses inherent structure, it will not. It was furthermore argued
that clustering tendency can be achieved at various levels of generality. We also
described the use of maximal vigilance to detect cluster tendency caused by
chance. Hence, tendency is determined in two simple steps: first, verify that the
data does not contain a trivial number of clusters (M=1 or M=R) at minimal vigi-
lance; and second, verify that non-trivial clustering are not caused by chance by
considering the rate at which maximum vigilance is reached compared to baseline
random data. The method to determine clustering tendency as described in this
paper is applicable to binary data inputs only; investigation of the non-binary ART
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Fig. 2a. Baseline pseudo-random data reaches maximal vigilance faster than non-
random data. This indicates that clustering tendency is not caused by chance clustering Fig.
2b. True random data reach maximal vigilance faster than the baseline, which is an indica-
tion that their clustering tendency is caused by mere chance.
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versions, such as ART2 [2] and fuzzyART [5] on real-valued continuous data
would be an interesting area of future research.
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