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ABSTRACT

We introduce an automated and accurate system for reg-
istering pre-operative 3D MR and CT images with intra-
operative 3D ultrasound images based on the vessels visible
in both. The clinical goal is to guide the radio-frequency ab-
lation (RFA) of liver lesions using percutaneous ultrasound
even when the lesions are not directly visible using ultra-
sound. The lesions locations and desired RFA sites are indi-
cated on pre-operative images, and those markings are made
to appear within the intra-operative 3D ultrasound images.
We present our current implementation, provide analy-
ses of its components, and demonstrate its performance.

1. INTRODUCTION

We have developed an automated method for registering im-
ages based on the vasculature visible in them. This “vascu-
lar registration” method is extremely general. It is a multi-
scale method, driven by the geometry of tubes, that can be
applied across imaging modalities, to 2D and 3D images,
and to any vascular organ. Vessels are generally densely dis-
tributed and move as their surrounding tissues move; there-
fore, vessels may provide better correspondence than land-
marks or surfaces for tracking an organ’s internal deforma-
tions. Our vascular registration method is fast and very ac-
curate. Not only can this method be used, for example, to
detect and track cancers by comparing lung CT scans over
time; it can also be used to register pre-operative liver CT or
MR images with intra-operative 3D ultrasound scans. The
latter is the technical focus of this paper.

The goal of the work presented herein is to demonstrate
an intra-operative vascular registration system that enables
liver lesions, visible on pre-operative CT and yet not visible
on intra-operative ultrasound, to be treated using percuta-
neous, ultrasound-guided, radio-frequency ablation (RFA).
Traditionally, 40-50% of liver lesions seen on CT or MR
cannot be treated using ultrasound guidance since they are
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Fig. 1. Pre- and Intra-operative phases of the system.

not visible using ultrasound [3]. Via our 3D ultrasound aug-
mentation system, pre-operative CT image markings such
as lesion locations and desired RFA sites are automatically,
quickly, and accurately transcribed into intra-operative 3D
ultrasound images. Using this augmented intra-operative
data, an interventional radiologist is able to accurately guide
an RFA needle to any predefined site and thereby treat le-
sions that would otherwise require attempting RFA with la-
paroscopic guidance, performing an open surgical resection,
or waiting until the lesion enlarges.

The ultrasound augmentation system has pre- and intra-
operative components (Fig. 1). In this paper we review
related works and discuss our methods for pre-operatively
modeling a liver’s parenchyma, lesions, and vessels. Eval-
uations of the accuracies of these methods are interspersed.
We then highlight the intra-operative components of our
system: ultrasound tracking and image registration. We
conclude with results that illustrate the operation and ac-
curacy of the entire system.

2. BACKGROUND

Percutaneous RFA of hepatic lesions is performed by ini-
tially localizing the lesion, usually using ultrasound. An
RFA needle is then advanced through the skin, into the le-
sion, and to a desired site. An electrical current is then sent
through the needle and into the tumor. Needles can pro-
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duce up to a 7 cm burn which (with 1 cm margins for ef-
fectiveness) enables the treatment of a 5 cm spherical lesion
with a single burn. For larger lesions, multiple overlapping
burns are required. Pre-operative planning and ultimate nee-
dle positioning is of the utmost importance. If burns are
poorly placed, then residual tumor will require repeat in-
tervention. Our radiologists report seeking to position RFA
needles within 5 mm of the intended treatment site. Other
groups have stated similar tolerances [3].

The key technologies of intra-operative ultrasound aug-
mentation are vascular modeling and vascular registration.
There are three basic approaches to vessel modeling: cen-
terline modeling and radii estimation, spatial filtering, and
voxel labeling. Our philosophy is that centerline modeling
should be the basis of vessel modeling. Centerlines of tubu-
lar objects such as vessels can be estimated by integrating
over a larger image extent than is used by most spatial fil-
tering, voxel labeling, and edge detection methods. Using a
larger extent provides insenitivity to noise, stabilizes subse-
quent radii estimation, and enables the extraction of small,
faint vessels. A centerline and radii representation is re-
quired by our vessel-model-to-image registration method.

The three general approaches to image registration are:
image-image, feature-feature, and feature-image matching.
Image-image methods are exemplified by the mutual infor-
mation metric. Feature-feature methods include iterative
closest point and landmark methods. Feature-image meth-
ods are the focus of Petra van den Elsen’s work and our own
work [1]. For ultrasound to MR/CT registration, a feature-
feature image registration method is proposed in [4]. Vessel
voxels are identified in both images and the distance be-
tween those sets of voxels is minimized. In [3] a deformable
surface method is used to align ultrasound images and quan-
tify liver motion due to breathing.

Feature-image registration methods have great potential
for intra-operative guidance. Time can be spent to develop
accurate models that can be repeatedly and rapidly matched
with intra-operative images to account for patient move-
ment, e.g., respiration. The details of our system’s pre- and
intra-operative phases are presented next.

3. PRE-OPERATIVE MODELING

The pre-operative phase produces models of the liver, its
lesions, and its vessels. These segmentations are only per-
formed on the pre-operative data. Emphasis is placed on
accurate vessel modeling since those models drive the intra-
operative registration process.

To demonstrate and quantify these methods for this pa-
per, we use CT scans from potential donors for living related
liver transplantation and from a home-made phantom. The
phantom is a gallon tub of gelatine in which Soba noodles
are suspended to simulate vessels and small dough balls are

used to represent lesions. The donors and the phantom are
imaged using a Siemens Somatom Plus CT scanner to create
volumes having 1x1x3 mm voxels. We use B-spline inter-
polation across the slices to construct isotropic voxels. For
the potential donors, a scan is acquired 30 seconds after a
contrast bolus to highlight the portal venous system in the
liver. A second scan is acquired 30 seconds after the first to
image the hepatic venous system in the liver.

Livers and lesions are modeled using a semi-automated
method. In CT data, the parameters of the following pro-
cesses are fixed for all patients. (1) Voxels spatially con-
nected to a specified starting point and having intensities
within specified thresholds are identified. Simple heuris-
tics are used for automated seed-point selection. (2) The
connected component is eroded and then dilated to remove
pertrusions. (3) The main component is then dilated and
then eroded to fill-in small holes. The result is smoothed
mask of the main component.

To determine the speed and accuracy of our segmenta-
tion system we CT scanned three surgical gloves and three
balloons that contained known amounts of water. The semi-
automated system required approximately one minute per
item and estimated volumes within 6% of ideal. Hand con-
touring required 10 minutes per item and estimated vol-
umes within 11% of ideal. Additionally, we have used this
method to model the livers of over 70 potential donors. For
some data it is necessary to edit the segmentations; however,
the time required and the inter- and intra-user variability for
such editing is minimal.

Our vessel segmentation method operates by perform-
ing a multi-scale extraction of the centerline of a vessel and
then estimating the radius of the vessel about that centerline.
See [2]. In summary, the method extracts the representation
of a vessel in three steps:

1. Seed points for initiating the vessel extraction pro-
cess are specified automatically. We use the liver model
(defined above) to delineate a region of interest. The 0.1%
brightest voxels in that region are used as seed points. An
initial scale/radius of 3 mm is used to initiate the multi-scale
centerline traveral process at these seeds. The method’s per-
formance is not statistically significantly dependent on the
seed location along a vessel or the initial scale.

2. From the seed, a conjugate gradient ascent is used to
reach the local intensity/height ridge that is the centerline of
the tube. The automated traversal of the ridge progresses as
follows: (a) The plane normal to the ridge is approximated
by the eigenvectors of the scaled Hessian and that plane is
shifted one-fifth of a voxel along the ridge’s approximate
tanget direction. Assuming the centerline varies smoothly,
the ridge will pass through that shifted normal plane. (b)
The local maximum in intensity in that plan is located. This
is the next ridge/centerline point. (c) At fixed intervals dur-
ing this traversal, the radius of the tube is estimated by find-



Fig. 2. Models formed pre-operatively. Portal and hepatic
veins and left lobe of liver are shown.

ing the maximum through scale of a medialness function
(see the next step).

3. Radius estimation is stabilized by the centerline. Me-
dialness functions respond maximally when applied at the
center of an object and at a scale proportional to the object’s
width. Centered at each point along a centerline, we search
for the local maximum of medialness through scale with re-
spect to the maximal scale at the previous centerline point.

We have conducted extensive tests to quantify the accu-
racy, speed, and automation (reliance on initial parameters)
of the centerline and radii modeling methods [2]. For 200
randomized simulated vessel extractions in a simulated im-
age with noise characteristics similar to those of CT, average
time to extract 20 voxels of centerline was about 0.3 sec-
onds, centerline representation average error was less than
one voxel, maximum error was less than two voxel, 90%
of the centerline points were within one voxel of ideal, and
an optimally difficult branch point was passed nearly 70%
of the time. Regarding automation, the centerline extrac-
tions accuracy was not statistically significantly affected by
its starting parameter values (seed scale and seed location).
For the radii estimations, for 200 random extractions of a
small, tortuous vessel from an MRA image, no two corre-
sponding radius estimates differed by more than one-fifth of
a voxel. lllustrations of typical results from liver and ves-
sel modeling are provided in Fig. 2. These liver and vessel
models were generated as part of our living related donor
liver transplant planning research.

4. INTRA-OPERATIVE PROCESSING

The proposed clincal setup of the system is illustrated in
Fig. 3. The intra-operative methods seek to balance speed

Fig. 3. The clinical setup being deployed.

and accuracy. Additionally, the vascular registration method
inherently provides a quantification of the quality of its re-
sults so that registration failures can be automatically de-
tected, reported to the clinician, and retried; thereby mini-
mizing risk to the patient.

The ultrasound system is a Voluson 530D by Medison,
Inc. Volumes are recorded by holding the probe stationary
for 7 seconds while the transducer internal to the probe is
automatically swept. The volumes are resampled to carte-
sian 0.5x0.5x0.5 mm voxels. Standard mode (non-doppler)
scans are acquired. Our goal is to process these data in un-
der 7 seconds - registration initialization is critical.

To initialize the vascular registration method we use a
calibrated magnetic tracker to record the ultrasound posi-
tion in the operating room. Vascular image registration is
required to account for the 10+ mm of respiration-induced
liver movement [3].

Our vascular registration method must account for vas-
cular network changes and non-rigid deformations between
pre- and post-operative data: (1) The number, lengths, and
radii of vessels visible in the images may differ and hence
the vascular network will appear to change between images.
(2) Images may only partially overlap. (3) Because of pa-
tient movement and surgical procedures, groups of vessels
within and across organs may undergo non-rigid deforma-
tions with respect to location, path, and radius.

Our method is a rigid registration technique. It is for-
mulated as a transformation of point = in a source image
into the coordinate space y of a target image. A rigid trans-
formation occurs as a rotation matrix multiplication plus a
translation y = xR + o where R is a Euler matrix parame-
terized by o, 3, and -y as rotations about the z, y, and x-axes
respectively and where offsets o = [0, 0y, 0;]. Extensive



analyses and visualizations of the parameter space of our
registration metric are in [1].

The registration metric quantifies how well a rotation
matrix and offset vector align two vascular images. The
metric is based on the fact that vessel centerlines are scaled
intensity ridges in the image; therefore, when two vascular
images are aligned, the centerline points in one will map to
bright points in the other, thereby maximizing our metric, a
weighted sum of the scaled intensities of the target image at
the transformed points:
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This metric is controlled by the sampling (n) of the cen-
terline points (x;), the scaling (kr; = the scale of measures
is proportional to the radius of the sample) of the image data
(I), and the weighting (w;) of the centerline points. When
these values are fixed, failed registrations are clearly indi-
cated by a poor final metric value. [1] In summary:

Sampling: We use a coarse-to-fine optimization strategy
that progresses from n. =one-twentieth to n =one-tenth of
the centerline points extracted during height-ridge traversal.
Any points whose medialness (vessel extraction step 3) is
less than 0.2 is rejected for use in the metric.

Scaling: By default, the local scaling of the image is
equal to the radius of the tube (v = 1). A coarse-to-fine
strategy could be implemented using « so that an initially
large, smooth capture region is associated with each sample.

Weighting: Sample points are weighted based on their
radius. Points with a small radius are affected by image
noise and therefore are demoted. This weighting can be
modified during coarse-to-fine registration.

Because of intensity irregularities along a centerline, the
derivatives of this metric may induce shifts along a vessel,
ideally shifts are only produced normal to a vessel, e.g., hor-
izontal tubes should be limited to inducing vertical shifts.
To implement this, at each centerline point, the gradients
influence is limited to the direction normal to the tube in
the original data. Additionally, we adjust for the principal
orientation of the tubes in a network so that the transforma-
tion parameters gradients do not have an orientation bias,
i.e., if most tubes are horizontal, the system should not be
unduly biased towards vertical transformations. Lastly, we
explicitly solve for do, da, d3, and d~ during optimization.

To test registration accuracy, we generated 100 random
transformations that mis-aligned a set of portal-phase vas-
cular models and their associated hepatic-phase images up
to £10 voxels (£1.25 cm) and +0.1 radians (£5.73 de-
grees). We then applied our optimization strategy and com-
pared each of the final registration parameters” values with
the mean final registration parameters” values. Mean offset
error was < 0.3 mm, max offset error was < 1.3 mm in any

Fig. 4. CT-base noodle models registered with ultrasound
data. Balls from CT and ultrasound data overlap - centers
differ by less than 2.3 mm.

direction, mean rotation error was < 0.01 radians, and max
rotation error was < 0.05 radians in any direction.

We tested the full augmentation system using the home-
made phantom. The pre- and intra-operative methods were
applied as presented. We then calculated the centers of
mass of three 5x5x5 mm dough balls in the CT and ul-
trasound data. We then transformed the CT dough balls
into the ultrasound data using the transformation defined
via tracked ultrasound and vascular registration. Fig. 4 il-
lustrates the results. The mean distance between any two
corresponding centers of mass was 2.3 mm and the max-
imum distance was < 2.9 mm. This error is well within
our desired 5 mm margin of accuracy. Our work is now
focusing on integrating this system using ITK (the NLM’s
Insight toolkit), conducting performance studies in the lab,
and then transitioned the system to the clinical for research.
See http://caddlab.rad.unc.edu.
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