Towards Utility-based Selection of
Architecture-Modelling Concepts

H.A. Proper!, A.A. Verrijn-Stuart? and S.J.B.A. Hoppenbrouwers'

! University of Nijmegen*, Sub-faculty of Informatics, IRIS Group, Toernooiveld 1, 6525 ED Nijmegen,
The Netherlands, EU e.proper@acm.org, stijnh@cs.kun.nl
2 Emeritus of the University of Leiden, Faculty of Mathematics and Science, LIACS, Scheltemakade 15
(home), 2012 TD Haarlem, The Netherlands, EU Alexander.VerrynStuart@wxs.nl

Abstract. In this paper we are concerned with the principles underlying the utility of
modelling concepts, in particular in the context of architecture-modelling. Firstly, some
basic concepts are discussed, in particular the relation between information, language, and
modelling. Our primary area of application is the modelling of enterprise architectures and
information system architectures, where the selection of concepts used to model different
aspects very much depends on the specific concerns that need to be addressed. The approach
is illustrated by a brief review of the relevant aspects of two existing frameworks for modelling
of (software intensive) information systems and their architectures.

1 Introduction

The importance of information systems to modern day society needs no argueing. Information
systems may range from small-scale systems geared towards a few users, via systems supporting
the tasks of a business unit, to enterprise-wide systems and even value-chain wide systems. The
ubiquity of information systems, combined with the high levels of integration with our daily lifes,
be it at work or during leisuretime, puts high demands on the development processes of these
systems.

Information systems, as their name suggests, primarily handle ‘information’. Based on the
definition provided in [FHLT98], we define information to be: the knowledge increment brought
about when an actor receives a message. A direct consequence of this definition is that we re-
gard messages that result from an information system as representations of knowledge. In line
with [FHLT98, BMS98] we consider an information system to be a system for collecting, pro-
cessing, storing, retrieving and distributing information within an organisation and between the
organisation and its environment. As such, an information system can be regarded as a subsystem
of the organisation (focussing on the informational aspects of an organisation), and may consist
of both human and computerised actors.

In the last decennium, several approaches to the development of larger (anything beyond small
scale systems geared towards a few specific users) information systems have emerged that depend
highly on the use of so-called ‘architectures’ [Zac87, Boa99, BMS98]. Some of these approaches
use the term ‘information architecture’, or ‘architecture of information systems’, while yet others
refer to the same concept as ‘enterprise (IT) architecture’.

In [IEE00], the concept of architecture is defined as: “The fundamental organization of a sys-
tem embodied in its components, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.”. Architectures are usually expressed in terms of
architectural descriptions, essentially design descriptions pertaining to the architecture of a sys-
tem. In general, the rationale behind the use of architecture in the context of information systems
is that it provides a number of important benefits [BCK98, IEE00Q], such as:

* This paper results from the ArchiMate project (http://archimate.telin.nl), a research consortium
that aims to provide concepts and techniques to support enterprise architects in the visualisation,
communication and analysis of integrated architectures.

— It is a vehicle for communication and negotiation among stakeholders. A software architecture,
often depicted graphically, can be communicated with different stakeholders involved in the
development, production, fielding, operation, and maintenance of a system.

— It captures essential design decisions, both functional aspects as well as quality aspects. In an
architecture, the global structure of the system has been decided upon, while responsibilities
(such as functionality) have been assigned to the (overall) components of the system.

In the conceptual framework for architecture, as defined in [IEE00], an architectural description
can be organised into one or more constituents called architectural views. Each view addresses one
or more of the concerns (interests) of the stakeholders of a system. The term ‘view’ is used to refer
to the expression of a system’s architecture with respect to a particular viewpoint. A viewpoint
establishes the conventions by which a view is created, depicted and analyzed. In other words, a
viewpoint determines the languages to be used to describe the view, and any associated modelling
methods or analysis techniques to be applied to these representations of the view. These languages
and techniques are used to yield results relevant to the concerns addressed by the viewpoint.

In the context of architectural descriptions, a plethora of frameworks of viewpoints is in
existance, leaving designers and architects with the burden of selecting the viewpoints to be
used in a specific situation. Some of these frameworks of viewpoints are: The Zachman frame-
work [Zac87], Kruchten’s 4+1 framework [Kru95], RM-ODP [ISO98b], ArchiMate [JBAT03] and
TOGAF [The04]. The aim of this paper is not to provide ‘yet another framework of viewpoints’,
but rather to lay a foundation to be able to reason about such frameworks at a meta-level. In
other words, a fundamental approach is proposed allowing designers and architects to consider
the relevance of specific viewpoints regarding their practical design/development tasks. Instead
of making superficial comparisons between the specific abilities of various techniques, we aim at
finding deeper motivations for the differences between them.

This paper is a product of an ongoing research activity which aims to gain a more fundamental
understanding of the act of modelling, in the context of system development, and the languages
that are used in the process. The view presented is developed via three complementary angles:

Modelling: This angle aims to provide a fundamental grounding of (architectural) modelling
and representation. We will focus primarily on the foundations of modelling, representation of
models and the role of languages.

Utility: The potential utility that specific modelling concepts may have when used to express
architectural descriptions, from the perspective of a given design/development task.

This angle, which builds on the previous one, aims to provide designers and architects with
the insights to reason about the relevance of modelling concepts to a specific task in the
design/development process.

Communication: The (interpersonal) communication about architectural descriptions as it oc-
curs during modelling and design.

This angle, further adding to the insights of the previous two, focuses on the role of architec-
tural descriptions as a means of communication between a system’s stakeholders, i.e. language
in action.

Our study was directed primarily at modelling of architectures. The results, however, may equally
well be applied to other areas of model-driven design, such as software design, business-process
(re)design, city planning, architecting of buildings, etc.

We have structured the remainder of this paper by providing a discussion of the above three
angles in separate sections (sections 2 to 4). To make our results more concrete, section 5 briefly
discusses two example frameworks of viewpoints (Kruchten’s 441 framework [Kru95] and RM-
ODP [ISO98b]), from the perspective of our meta-framework. This is followed by a brief discussion
on directions of further research and elaboration in section 7.

2 Modelling

The aim of this section is to investigate the process of modelling, as it occurs in e.g. architecture-
modelling, more closely. In defining more precisely what we mean by modelling a domain, we first

need to introduce a framework describing the essential processes that take place when a viewer
(such as a stakeholder) observes a domain (such as a system being developed).

Let us first consider what happens if some viewer observes ‘the universe’. It is our assumption,
based on the work of C.S. Peirce [Pei69a, Pei69b, Pei69c, Pei69d], that viewers perceive a universe
and then produce a conception of that part they deem relevant. The conceptions harboured by a
viewer are impossible to communicate and discuss with other viewers unless they are articulated
somehow (the need for this ability in the context of system development is evident). In other words,
a conception needs to be represented. Peirce argues that both the perception and conception of a
viewer are strongly influenced by their interest in the observed universe. This leads to the following
(necessarily cyclic, yet irreflexive) set of definitions:

Universe — the ‘world’ around the viewer.

Viewer — an actor perceiving and conceiving the universe, using their senses.

Conception — that which results, in the mind of a viewer, when they observe the universe, using
their senses, and interpret what they perceive.

Representation — the result of a viewer denoting a conception, using some language and medium
to express themselves.

The underlying relationships between viewers, universe, conceptions and representations can be
expressed in terms of the so-called FRISCO tetrahedron [FHL198], as depicted in figure 1.

Conception

Viewer

Universe Representation

Fig. 1. The FRISCO tetahedron.

As mentioned above, in conceiving a part of the universe, viewers will be influenced by their
particular interest in the observed universe. In the context of system development, this corresponds
to what tends to be referred to as a concern. For example:

— The current situation with regard to the computerised support of a business process.

— The requirements of a specific stakeholder with regard to the desired situation.

— The potential impact of a new system on the work of the system administrators that are to
maintain the new system.

Concerns are not the only factors that influence a viewers conception of a domain. Another im-
portant factor are the pre-conceptions a viewer may harbour as they are brought forward by their
social, cultural, educational and professional background. More specifically, in the context of archi-
tecture modelling, viewers will approach a domain with the aim of expressing the domain in terms
of some set of meta-concepts, such as classes, activities, constraints, etc. The set of meta-concepts
a viewer is used to using (or trained to use) when modelling a domain, will strongly influence
the conception of the viewer. This can be likened to the typical situation of having a ‘hammer’
and considering all pointy objects to be ‘nails’. We therefore presume that when viewers model
a domain, they do so from a certain perspective; their weltanschauung (German for “view of the
world”) [WAAB85]. The weltanschauung can essentially be equated to the notion of a viewpoint as
discussed in section 1. This perspective on the notion of viewpoints is compatible to the approach
taken in the Reference Model of Open Distributed Processing [ISO98b]:

“In order to represent an ODP system from a particular viewpoint it is necessary to define
a structured set of concepts [the meta-concepts] in terms of which that representation (or
specification) can be expressed. This set of concepts provides a language for writing speci-
fications of systems from that viewpoint, and such a specification constitutes a model of a
system in terms of the concepts.”

In general, people tend to think of the universe (the ‘world around us’) as consisting of related
elements. In our view, however, presuming that the universe consists of a set of elements already
constitutes a subjective choice, which essentially depends on the viewer observing the universe.
The choice being made is that ‘elements’ (or ‘things’) and ‘relations’ are the most basic concept
for modelling the universe; the most basic weltanschauung. In the remainder of this paper, we will
indeed make this assumption, and presume that a viewer’s conception of the universe consists of
elements. The identification of elements in the universe remains relative to viewers and their own
conception.

Viewers may decide to zoom in on a particular part of the universe they observe, or to state
it more precisely, they may zoom in on a particular part of their conception of the universe. This
allows us to define the notion of a domain as:

Domain — any subset of a conception (being a set of elements) of the universe, that is conceived
of as being some ‘part’ or ‘aspect’ of the universe.

In the context of (information) system development, we have a particular interest in unambiguous
abstractions from domains. This is what we refer to as a model:

Model — a purposely abstracted and unambiguous conception of a domain.

Note that both the domain and its model are conceptions harboured by the same viewer. We are
now also in a position to define more precisely what we mean by modelling:

Modelling — The act of purposely abstracting a model from (what is conceived to be) a part of
the universe.

For practical reasons, we will understand the act of modelling to also include the activities involved
in the representation of the model by means of some language and medium.

We presume a viewer not only to be able to represent (parts of) their conceptions of the uni-
verse, but also to be able to represent (parts of) the viewpoints they use in producing their concep-
tion of the universe. This does require viewers to be able to perform some kind of self-reflection.
When modelling some domain in terms of, say, UML class diagrams [BRJ99], the viewer/modeller
is presumed to be able to express the fact that they are using classes, aggregations, associations, etc,
to view the domain being modelled. In doing so, viewers essentially need to construct a conception
of their viewpoint on the world; i.e. a meta-model. This meta-model comprises the meta-concepts
and modelling approach used by the viewer when modelling a domain; it is a model of the viewers
viewpoint. Such a meta-model can in essence be regarded as a ‘high level ontology’ [KZR04] as
well.

In figure 2 we have depicted a situation where a viewer is confronted with a number of domains
(Wy,...,W,). Each of these domains may be modelled from the perspective of the viewer’s concern
C and meta-model M, leading to even so many domain-models (D;,...,D,). The concern, the
meta-model and the domain models can be represented using some language and medium, leading
to representations C, M, Dy, ..., D,.

A viewer may also consider a specific domain W from the perspective of some concern C, using
two different meta-models M; and M,. This situation is illustrated in figure 3, where a viewer
models a domain D from the perspective of meta-models M7 and Ms, leading to domain-models
Dy and D5 respectively. For example, when viewing a domain from the perspective of UML class
diagrams, this is bound to lead to a different domain-model than when the same domain is viewed
from the perspective of UML sequence diagrams.

W, <\ o 0 conceive

! perceive \

|

E represent Concern: €
|

I

Meta-model: M
Domain-models: D, ... D,

w v
Domains Viewer Representations

Fig. 2. A viewer viewing domains from a particular concern and meta-model.

Concern: C
Meta-model: M,
Domain-model: D,

Wet——— represent

perceive
Concern: C
Meta-model: M,

Domain-model: D,

Vv
Domain Viewer Representations

Fig. 3. A viewer viewing a domain from the perspective of two different meta-models.

If a viewer observes a domain D from the same meta-model M, but from the perspective of
different concerns C7 and Cs, it is also quite likely that the viewer will produce different domain-
models, each catering to the specificities of the two specific concerns. Consider for example, a
concern focussing on the functionality offered by a system to its users, versus a concern focussing
on the impact of the system on the efficiency of business processes.

Given two different concerns, it is also likely that questions underlying these concerns cannot
be met by using a one-size-fits-all meta-model. For example, the operators who will be required
to maintain a planned information system, will regard this system in terms of costs of keeping the
system up and running, costs and efforts involved in implementing the system, etc. Future users
of the same planned system, however, will be more interested in the impact/support the system
is likely to have on their work related tasks. This implies that when modelling a system (being
designed /developed), different meta-models need to be used to address different concerns.

The focus of the next section will be to gain insight into the potential utility of a meta-concepts
to a given modelling goal and viewer’s concern.

3 Utility of modelling concepts

A fundamental problem to be addressed is the ‘utility’ of modelling concepts relative to some
concern and modelling goal. Utility must be understood in the sense of its classical economic
context, such as “what benefit do I derive from using it?” or “what use is it to me?”. Our primary
concern is in the area of information systems, of which both the modelling and model usage aspects
must be considered. The former pertain to the expressiveness of modelling languages, the latter
to the effectiveness of the ultimate system.

3.1 Representational economics

Intuitively, information is linked to knowledge (knowing how to do something, how to do it better,
how to do it more timely, or how to avoid something). In other words, information is an important

ingredient of decision making. As mentioned above, a sensible definition is to equate ‘information’
with an increment in knowledge [FHLT98]. Value of information (or its ‘utility’) should then be
associated with the advantage of better decision making and more effective ‘goal-pursuit’ [FHL 98,
Section 2.5 and Chapter 3].

It is evident that the ‘economics of information’ are complex and cannot be derived from
— if at all associated with — some identifiable and coherent market. While everyone will agree
that something referred to as ‘information’ must have value, the contexts will vary so much that
any pretense to a straightforward theory should be rejected. One of the reasons is that what we
actually deal with are representations of domains in the real or imaginary world (i.e. ‘models’),
and of things, relationships and actions pertaining to those domains (i.e. ‘data’). The theme of
this paper is the utility of how and what one models. Regarding the link with the economics of
information we will merely assert three things:

— a computerised system capable of providing information is of value to its owner/user;
— the cost of building and maintaining such a system may exceed its value addition;
— any means of reducing cost and/or increasing value in this context are desirable.

Since the systems we wish to construct are dynamic representations of a domain of interest, a
key question is how best to describe such domains. What we look for is a meta-model which is
simultaneously simple and rich. For instance, it must be capable of describing anything requiring
modelling in our domain at all. On the other hand, it must be so restricted that the full range
of concepts may be grasped by any individual modeller while simultaneously usable in exchanges
between such a person and the many other interested parties concerned.

The solution to this problem lies in a judicious selection of ‘concepts’. These should be both
operationally effective and domain-encompassing. Effectiveness means having a high ‘utility’, that
is to say, they must be generally accepted and permit ‘economical’ application. Encompassing one
particular type of domain, but not necessarily all conceiveable ones, means that a ‘goal-bounded’
approach should be adopted whereby the modelling needs are restricted according to the modelling
goal at hand. The modelling goal may differ from situation to situation. The problem, therefore,
evolves to that of agreeing on and maintaining a large collection of concepts suitable to cover a
range of domains and a systematic means of bounding it to fit any selected occasion.

The best way of achieving this is to resort to a set of high-level ‘meta-concepts’, which are
capable of being specialised to fit contingencies. How general and large should that set be, what
should be in it and, most importantly, how do we effectively and economically restrict it to cope
with specific domains?

3.2 Meta-concepts and concept restrictions

One way of dealing with complexity is to abstract its features and describe a given situation in
general terms. For instance, if an extended set of concepts is required, then grouping them in
broad categories aids in better understanding them. Similarly, when in spite of all simplification
efforts a complex language remains necessary, discussing and describing it in a ‘meta-language’ is
often fruitful.

Thus, the problem of arriving at a ‘goal-boundable’ approach to modelling is to conceive an
extremely simple set of meta-concepts, each of which is capable of being specialised so as to be
used in a particular case. Now, information systems — which serve organizations — have two general
aspects, both of which need to be captured in any model:

— Informational aspect —i.e. ‘what to describe’, but also, ‘what to leave out’.
— System aspect — i.e. a cohesion-oriented ‘description format’.

While the first gives rise to the elements of the ultimate system, the latter provides the formal
basis for putting them together. An ‘information system’ is a special kind of ‘system’ and a
‘system’, in turn, is a specialisation of a ‘model’ [FHL'98]. Therefore, the concepts appropriate
for underpinning an information system description must, after all, derive from the most general

concepts for modelling. These also constitute our desired set of ‘meta-concepts’. The information
and system aspects characterise the special domain ‘information system’ and, hence, may be
covered under the umbrella ‘domain-concepts’ (covering all elementary and structural features of
information systems, as such).

To summarize, our aim must be to devise a complete — and ideally minimal — set of meta con-
cepts that are specific to the field of information systems and to develop a well founded procedure
for specialising this set, in a utility-driven and goal-bounded way, according to the requirements
of specific situations pertaining to the development and evolution of information systems.

4 Utility of Concepts in Communication and Computation

Let us now develop a functional or utilitarian view on concepts as they are integrated in some
language that is being used to communicate. This boils down to the question: ‘what is it that
concepts are for’?

4.1 A utilitarian view on concepts and meta-concepts

Roughly speaking, there are two main areas of use for concepts: communication and computation.
Though these uses are often heavily entwined — to the point where they can hardly be distinguished
— at a more fundamental level of analysis they are completely different [Hop03]. The distinction be-
tween communication- and computation-oriented concept use is related to the two general aspects
discussed in section 3: the ‘informational aspect’ and the ‘system aspect’.

Concepts for communication are bound up with languages in order to communicate: exchange
information, and thereby ultimately change the knowledge of some individual in line with some
intention of another individual to do so. Such concept use is very strongly tied up with communi-
cation between humans as studied in linguistics and communication theory. The utility of concepts
for communicative use is therefore related to principles of effective communication.

Concepts for computation form symbolic structures that are usually intended as part of an
engineered artefact. Even though their status is not primarily ‘physical’; there is essentially a clear
and unambiguous link between the symbols in the structure (for example, programming code)
and an underlying piece of hardware. This comes clearly to the fore in the case of assembly code,
microcode and hardware, in particular in the trade-off between the realisation of computational
functionality in hardware or microcode. The computational use of concepts is mostly tied up with
fields like electronic engineering, computer engineering and software engineering. The utility of
concepts for computational use is therefore related to principles of good engineering.

Ideally, a balance would need to be struck in each situation between the sorts of utility involved.
Architects are perhaps the most important group of people that carry the burden of bridging the
gaps between levels, layers, groups, and activities involved in information system development.

Both concepts for communication and concepts for computation are subject of discussion. Such
‘meta-conversations’ [Hop03] may concern the labelling of a concept (typically, the word form
associated with it in some language), or the meaning of a concept. However, the very idea of (how
to discuss and represent) ‘meaning’ is usually quite different in the two areas of use distinguished.

So as to avoid the discussion concerning “the meaning of meaning” [Put75], it is possible to
take a strictly functional (i.e. utilitarian) approach to conversation about concepts. In that case,
we look upon communication about concepts as striving for sharing knowledge about the meaning
of a concept (according to whatever view on ‘meaning’ is deemed relevant) so that parties involved
can, in their own opinion, effectively communicate.

The diversity of contexts for meta-conversation may differ quite substantially. In particular,
the difference between meta-conversation in context of ‘concept use for communication’” will often
be radically different from that in context of ‘concept use for computation’.

4.2 Conversations for conceptual mediation

There is a third type of utility for concepts. In the various disciplines and activities involved in
large-scale information system development, a multitude of terms, concepts, and languages is used,
combining the two main utilities in many different ways. Straightforward strategies to deal with
this are (assuming involvement of only two parties for sake of the argument):

— One party acquires/uses the vocabulary of the other.

Both parties acquire/use each other’s vocabulary.

Both parties acquire/use a third vocabulary, a lingua franca.
A third party steps in as a translator.

Note that these strategies apply to both types of utility in concept use, and also between them.
However, the ‘conceptual mediation utility of concepts’ is especially closely related to meta-
conversation. Strictly speaking, it may not only involve an active combination of various meta-
languages and meta-conversation strategies, but even a class of meta-language/strategies of its
own: meta-language specific to the task of bridging gaps between languages or (types of) meaning
description. (For example, consider conversations between translators).

Architects, more than any other professional group, should be able to be active conceptual
mediators. Modelling concepts, and the various meta-languages and conversation strategies that
may be used to discuss them and align their meaning between parties, are in the center of the utili-
tarian (meta-)discussion because they are particularly vulnerable to confusion and incompatibility
resulting from the communication-computation opposition, and related mix-ups.

5 Case studies

This section aims to illustrate the above discussed principles by briefly positioning two existing
frameworks of viewpoints. In the discussions above, we have argued how the combination of a
goal and a stakeholder concern should ideally dominate the choice of a specific meta-model when
modelling a domain. The motivation for specific choices of concepts in the meta-model should
be formulated in terms of the utility these concepts may bring towards the modelling goal and
stakeholder concern. This utility may pertain to the potential communicative, computational as
well as mediative use of the concepts.

In the case studies we will primarily focus on the viewpoints identified, the goals and concerns
they aim to serve, the concepts in the associated meta-model, and any motivations for the specific
concepts in the meta-model. The two case studies are not intended as criticism on the original
frameworks. They may, however, indicate that some important considerations (such as utility
based motivations) have been left out of the (original) publication of the frameworks. This does not
imply that the framework as such is at fault, but rather that interesting and important motivations
underlying the specific frameworks have been left implicit. Furthermore, the case studies are part
of ongoing research efforts. A more detailed elaboration of the cases presented is part of these
efforts.

5.1 The ‘441’ view model

In [Kru95], Kruchten introduces a framework of viewpoints (a view model) comprising five view-
points. The use of multiple viewpoints is motivated by the observation that it “allows to address
separately the concerns of the various stakeholders of the architecture: end-user, developers, sys-
tems engineers, project managers, etc., and to handle separately the functional and non-functional
requirements”. Kruchten does not explicitly document the motivation for these specific five view-
points. This also applies to the version of the framework as it appears in [Kru00, BRJ99].

The goals, stakeholders, concerns, and meta-model of the 441 framework can be presented, in
brief, as follows:

Viewpoint: |Logical Process Development Physical Scenarios
Goal: Capture the [Capture concurrency |Describe static Describe mapping|Provide a driver
services which |and sychronisation |organisation of the|of software onto |to discover key
the system aspects of the design|software and its hardware, and its |elements in design
should provide development distribution Validation and
illustration
Stakeholders: |Architect Architect Architect Architect Architect
End-users System designer Developer System designer |End-users
Integrator Manager Developer
Concerns: Functionality |Performance Organisation Scalability Understandability
Availability Re-use Performance
Fault tolerance Portability Availability
Meta-model: |Object-classes |[Event Module Processor Objects-classes
Associations |Message Subsystem Device Events
Inheritance Broadcast Layer Bandwidth Steps

Note: in [Kru00, BRJ99], the viewpoints have been re-named; physical viewpoint — deployment
viewpoint, development viewpoint — implementation viewpoint and scenario viewpoint — use-
case viewpoint, to better match the terminology of the UML.

The framework proposes modelling concepts (the meta-model) for each of the specific view-
points. It does so, however, without explicitly discussing how these modelling concepts indeed
contribute towards the goals of the specific viewponts. Are, for example, object-classes, associa-
tions, etc, the right concepts to communicate with end-users about the services they required from
the system? The 441 framework is based on experiences in practical settings by its author. This
makes it even more interesting to make explicit the motivations, in terms of utility, for selecting
the different modelling concepts. In [Kru00, BRJ99] this is also not documented. The viewpoints
are merely presented ‘as is’.

5.2 RM-ODP

The Reference Model of Open Distributed Processing (RM-ODP) [ISO98b, ISO96b, ISO96a,
ISO98a] was produced in a joint effort by the international standard bodies ISO and ITU-T
in order to develop a coordinating framework for the standardisation of open distributed pro-
cessing. The resulting framework defines five viewpoints: enterprise, information, computational,
engineering and technology. The modelling concepts used in each of these views are based on the
object-oriented paradigm.

The goals, concerns, and associated meta-models of the viewpoints identified by the RM-ODP
can be presented, in brief, as follows:

Viewpoint: |Enterprise Information Computational Engineering Technology
Goal: Capture purpose, |Capture semantics|Express distribution|Describe design [Describe
scope and of information of the system into |of distribution |choice of
policies of and processing interacting objects |oriented aspects |technology
the system performed by the of the system used in the
system system
Concerns: |Organisational |Information and |Distribution of Distribution of |[Hardware and
requirements and|processing system the system, and |software choices
structure required Functional mechanisms and |Compliancy to
decomposition functions needed|other views
Meta-model:|Objects Object classes Objects Objects Not stated
Communities Associations Interfaces Channels explicitly
Permissions Process Interaction Node
Obligations Activities Capsule
Contract Cluster

The RM-ODP provides a modelling language for each of the viewpoints identified. It furthermore
states:

“Fach language [for creating views/models conform a viewpoint] has sufficient expressive
power to specify an ODP function, application or policy from the corresponding viewpoint.”

A more detailed discussion regarding the utility of the concepts underlying each of these lan-
guages, from the perspective of the goals/concerns that are addressed by each of the viewpoints

is not provided. The RM-ODP also does not explicitly associated viewpoints to a specific class of
stakeholders. This is left implicit in the concerns which the viewpoints aim to address.

In particular in the case of an international standard, it would have been interesting to see
explicit motivations, in terms of utility to the different goals, for the modelling concepts selected
in each of the views.

6 Summary

Both of the discussed frameworks of viewpoints do not provide an explicit motivation for their
choices regarding the modelling concepts used in specific viewpoints. When using one of the two
frameworks, architects will not find it difficult to select a viewpoint for a given modelling task at
hand. However, this ‘ease of choice’ is more a result of the limitation of the selections of options
available (one is limited to the number of viewpoints provided by the framework) than the result of
a well motivated choice about the viewpoint’s utility towards the tasks at hand. Even more, making
a choice for one of the two frameworks (or rather, one of the many, many, other frameworks) will
be hard to make on rational grounds, without such utility based motivations.

7 Conclusion

The focus of this paper was on the principles underlying the utility of modelling concepts. We have
discussed these issues from three angles: modelling, utility and communication. The primary area
of application of the principles presented, has been the modelling of enterprise architectures and
information system architectures, where the selection of concepts used to model different aspects
very much depends on the specific concerns that need to be addressed. Rather than providing
‘yet another framework of viewpoints’, the aim of this paper was to lay a foundation that enables
architects to reason about the many frameworks of viewpoints that are already available. We have
illustrated our approach by a brief review of the relevant aspects of two existing frameworks for
modelling (software intensive) information systems and their architectures.

Currently, further research activities are structured along three interlinked lines of activities.
Firstly, the theoretical foundations touched upon in this paper are elaborated further. Results of
this effort are expected to become part of the FRISCO revised report [VSP04]. Secondly, more
frameworks of viewpoints will be studied and documented, and where possible, we will ‘excavate’
the underlying motivations for selecting modelling concepts in the viewpoints identified from the
documentation available. Thirdly, interviews and workshops® will be organised with practising ar-
chitects, with the aim of eliciting heuristics for deciding the potential utility of modelling concepts,
meta-models and viewpoints. These three lines of activities are expected to influence each other
in a synergistic fashion.

References

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison Wesley,
Reading, Massachusetts, USA, 1998.

[BMS98] P. Bernus, K. Mertins, and G. Schmidt, editors. Handbook on Architectures of Information
Systems. International Handbooks on Information Systems. Springer, Berlin, Germany, EU,
1998.

[Boa99] B.H. Boar. Constructing Blueprints for Enterprise IT architectures. Wiley, New York, New
York, USA, 1999.

3 These activities are part of the ArchiMate project (http://archimate.telin.nl), a research initiative
that aims to provide concepts and techniques to support enterprise architects in the visualisation,
communication and analysis of integrated architectures. The ArchiMate consortium consists of ABN
AMRO, Stichting Pensioenfonds ABP, the Dutch Tax and Customs Administration, Ordina, Telematica
Instituut, Centrum voor Wiskunde en Informatica, Katholieke Universiteit Nijmegen, and the Leiden
Institute of Advanced Computer Science.

[BRJ99)]

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.
Addison-Wesley, Reading, Massachusetts, USA, 1999.

[FHL 98] E.D. Falkenberg, W. Hesse, P. Lindgreen, B.E. Nilsson, J.L.H. Oei, C. Rolland, R.K. Stamper,

[Hop03]

[IEE00)]

[ISO96a]
[ISO96b]
[ISO98a]
[ISO98b)]

[JBA103]

[Kru9s]
[Kru00]

[KZR04]
[Pei69a]
[Pei69b]
[Pei69c]

[Pei69d]

[Put75]

[The04]
[VSP04]

[WAASS5]

[Zac8T]

F.J.M. Van Assche, A.A. Verrijn-Stuart, and K. Voss, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, 1998.

S.J.B.A. Hoppenbrouwers. Freezing Language; Conceptualisation processes in ICT supported
organisations. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 2003.
Recommended Practice for Architectural Description of Software Intensive Systems. Technical
Report IEEE P1471-2000, IEEE Standards Department, The Architecture Working Group of
the Software Engineering Committee, September 2000.

Information technology — Open Distributed Processing — Reference model: Architecture, 1996.
ISO/IEC 10746-3:1996(E).

Information technology — Open Distributed Processing — Reference model: Foundations, 1996.
ISO/IEC 10746-2:1996(E).

Information technology — Open Distributed Processing — Reference model: Architectural seman-
tics, 1998. ISO/IEC 10746-4:1998(E).

Information technology — Open Distributed Processing — Reference model: Overview, 1998.
ISO/IEC 10746-1:1998(E).

H. Jonkers, R. van Buuren, F. Arbab, F. de Boer, M. Bonsangue, H. Bosma, H. ter Doest,
L. Groenewegen, J. Guillen Scholten, S.J.B.A. Hoppenbrouwers, M.-E. Iacob, W. Janssen, M.M.
Lankhorst, D. van Leeuwen, H.A. Proper, A. Stam, L. van der Torre, and G.E. Veldhuijzen van
Zanten. Towards a Language for Coherent Enterprise Architecture Descriptions. In M. Steen
and B.R. Bryant, editors, 7th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2003), pages 28-39, Brisbane, Australia, September 2003. IEEE Computer
Society Press, Los Alamitos, California, USA.

P. Kruchten. The 441 view model of architecture. IEEFE Software, 12(6):42-50, November 1995.
P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley, Reading, Mas-
sachusetts, USA, 2nd edition, 2000.

R. Kishore, H. Zhang, and R. Ramesh. A helix-spindle model for ontological engineering.
Communications of the ACM, 47(2):69-75, 2004.

C.S. Peirce. Volumes I and II — Principles of Philosophy and Elements of Logic. Collected
Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969.

C.S. Peirce. Volumes III and IV — Ezxact Logic and The Simplest Mathematics. Collected Papers
of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969.

C.S. Peirce. Volumes V and VI — Pragmatism and Pragmaticism and Scientific Metaphysics.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969.
C.S. Peirce. Volumes VI and VIII — Science and Philosophy and Reviews, Correspondence and
Bibliography. Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts,
USA, 1969.

H. Putnam. The meaning of meaning. In Mind, Language, and Reality, Cambridge, Mas-
sachusetts, USA, 1975. Cambridge University Press.

The Open Group. TOGAF — The Open Group Architectural Framework, 2004.

A.A. Verrijn-Stuart and H.A. Proper, editors. Framework of Information Systems Concepts:
Revised Report. IFIP WG 8.1 Task Group FRISCO, 2004.

A.T. Wood-Harper, L. Antill, and D.E. Avison. Information Systems Definition: The Multiview
Approach. Blackwell Scientific Publications, Oxford, United Kingdom, EU, 1985.

J.A. Zachman. A framework for information systems architecture. IBM Systems Journal, 26(3),
1987.

