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PREFACE

Over the past decade, the increasing power and reliability of micro-
computers and the development of sophisticated software designed
specifically for use with them has led to significant changes in the way
that socioeconomic data are collected and analyzed. The venue of
the computations has shifted from off-site mainframes, dependent on
highly trained operators and significant capital investment in support-
ing equipment, to desktop and laptop computers, dependent only on the
occasional availability of electricity. This means that it is now feasible
to quickly transfer new statistical techniques between IFPRI and
IFPRI's collaborators in developing countries, that data manipulation
costs of policy analysis have been substantially reduced, and that a new
level of complexity and accuracy is now possible in the collection and
analysis of survey data in developing countries.

As with any new technology, however, there are substantial costs in
time and money involved in learning the most efficient ways of using
this new technology and then transmitting these lessons to others. This
series, Microcomputers in Policy Research, represents IFPRI’s collec-
tive ongoing experience in adapting microcomputer technology for use
in food policy analysis in developing countries. The papers in the series
are primarily for the purpose of sharing these lessons with potential
users in developing countries, although persons and institutions in
developed countries may also find them useful. The series is designed
to provide hands-on methods for resolving statistical and data-
collection problems encountered in food policy research. In our opinion,
examples provide the best and clearest form of instruction; therefore,
examples—including actual software codes wherever relevant—are
used extensively throughout this series.

This third book in the series, Classification and Regression Trees,
CART ™: A User Manual for Identifying Indicators of Vulnerability to
Famine and Chronic Food Insecurity, by Yisehac Yohannes and Patrick
Webb, is a manual outlining how to use CART software to conduct
classification- and regression-tree analysis. The manual is based on
IFPRI's experiences from its famine research program, which was
completed in 1998 with the publication of the book by Joachim von
Braun, Tesfaye Teklu, and Patrick Webb, Famine in Africa: Causes,
Responses, and Prevention. The manual shows how to use CART to
identify indicators of a number of outcomes, including food insecurity
and vulnerability to famine. Examples are provided throughout using
programs from CART.™

Howarth Bouis, Lawrence Haddad,
and Stephen Vosti, Editors
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1 INTRODUCTION

The Classification and Regression Tree (CART) approach to classifying
statistical data has been used in many fields. One of its first uses
involved the identification of ship structures from their radar-range
profiles. Hospitals have used it to identify indicators of heart failure.
CART also has been used in finance by Frydman, Altman, and Kao
(1985) to classify distressed firms, and by Marais, Patell, and Wolfson
(1985) to classify commercial loans. The International Food Policy
Research Institute (IFPRI) has used CART to identify indicators of vul-
nerability to famine at regional and household levels (Webb et al.
1994). This manual is a guide for setting up CART-based information
systems to identify indicators of vulnerability to famine, chronic food
insecurity, and other failures of entitlement.

CART is a nonparametric technique that can select those variables
and their interactions that are most important in determining an out-
come or dependent variable. If an outcome variable is continuous,
CART produces regression trees; if the variable is categorical, CART
produces classification trees. The outcome variable used in this manual
to approximate vulnerability to famine is the population in need of food
over time as estimated by the Ethiopian Relief and Rehabilitation
Commission (the commission has been renamed recently). CART pro-
duces regression trees with this variable.

This manual is intended to introduce the reader to the basic princi-
ples of CART methodology. It provides examples of CART analysis from
IFPRI's earlier famine vulnerability studies (Webb et al. 1994; Seyoum
etal. 1995) and discusses when and why CART might be useful for data
analysis. In addition, the manual provides examples of computer pro-
gram codes and discusses CART hardware and software requirements.

Earlier IFPRI research on famine in Africa (see Webb, von Braun,
and Yohannes 1992; Teklu, von Braun, and Zaki 1991) had concluded
that the basis for geographical and socioeconomic targeting of relief
and rehabilitation interventions had to be improved. This required a
refinement of existing methodologies for selecting and weighting indi-
cators of household distress. The most important challenges entailed
addressing existing methodological shortcomings in defining data
needs, weighting the relative value of individual variables, and defin-
ing the significance of alternate (proxy) variables (Borton and Shoham
1991; Hutchinson et al. 1992; Riely 1993).

Vulnerability to food insecurity and famine cannot be measured by
single, discrete variables. Given the close relationship between re-
sources, food production, prices, and consumption, it is crucial that
assessments of vulnerability examine the multiple factors that contrib-
ute not only to food supply shortfalls, but also to the performance of
markets during crises, the failure of purchasing power among the poor,



and the decline in consumption and nutritional status. This approach
calls for the inclusion of other variables into the analysis, such as
household asset base, isolation from major markets, level of farm tech-
nology, constraints to human capital, income levels and fluctuation,
health and sanitation environments, and availability of nonfarm em-
ployment (Downing 1990; Webb, von Braun, and Yohannes 1992).

However, it is no easy matter to determine which additional vari-
ables have a role to play in the analysis (either singly or in combina-
tion), or what the relative predictive value is of constituent factors.
These two problems have provided the starting point for numerous
recent endeavors aimed at identifying the best predictive indicators for
early warning and targeting purposes.

Progress has been made in targeting in recent years. There is now
substantial agreement that indicators should reflect the behavior and
livelihood conditions of target populations—those that are most often,
and more severely, affected by acute food insecurity (Borton and
Shoham 1991; FEWS 1993; FAO 1998). Such groups include the rural
poor, women-headed households, asset-poor pastoralists, recently
resettled households, households constrained by a high dependency
ratio, the landless, the urban poor and unemployed, and retrenched
civil servants. Not all of the groups are equally or always affected, but
each is affected at a higher rate than more favored households inhabit-
ing the same environment. Similarly, there is greater consensus today
on the need for a core of indicators in addition to supply-side indexes in
order to achieve more complete vulnerability assessments.

It remains unclear, however, which variables are most important,
and what the minimum number of variables should be for the purpose
of a valid analysis. For example, Borton and Shoham (1991) suggest
20 core indicators; Cutler (1986), Frankenberger (1992), and Seaman,
Holt, and Allen (1993) each take between 20 and 30 indicators as the
starting point; Riely (1993) and Downing (1993) both suggest more
than 50 variables; while Currey (1978), one of the earliest practitio-
ners in the field, started with 60 variables for his analysis of vulner-
ability in Bangladesh.

Some intervention programs are also constrained by data limita-
tions that are at the root of many highly questionable assumptions
(Maxwell 1989). Such limitations can lead to creative (sometimes very
successful) approaches to comparing and combining data that are, in
fact, incomparable and incompatible (Downing 1990; Hutchinson et al.
1992). Effective vulnerability analysis and early warning need to go
beyond the cataloging and arbitrary indexing of available data.

In the past, the problems of determining the relative significance of
indicators and sorting out statistical collinearity (data that may influ-
ence each other and not act as “independent” indicators of vulnerability)
have been dealt with either through “delphic” techniques or through
best-guess estimations based on a perceived “convergence of evidence”
(Downing 1990; Borton and Shoham 1991). As a result, many analysts
have called for refinements in methodology (Downing 1990; Borton and
Shoham 1991; Hutchinson et al. 1992). So far, only two other methods
have been explored. The first is to work closely with local experts who
can help define indicators of local significance, thereby improving the



reliability of subjective data manipulations (Currey 1978; Borton and
Shoham 1991). The second is to analyze predicted characteristics of vul-
nerability (key variables and combinations of variables) against
observed benchmark measures of crises, such as numbers of people
actually affected by famine or receiving external assistance by region
(Hutchinson et al. 1992).

IFPRI's research on vulnerability contributes to the latter ap-
proach. The analysis seeks to understand which indicators of vulner-
ability best explain reported numbers of “people in need” in Ethiopia
across geographic regions and years. It thereby tries to establish a sta-
tistical basis for understanding the relative importance of various
indicators (with nonsubjective weighting), while substantially reduc-
ing the problem of collinearity.

IFPRI used CART methodology to identify possible indicators of
vulnerability in the form of classification and regression trees and thus
overcame the problem of arbitrarily selecting indicators. IFPRI con-
ducted a CART analysis of famine at two levels: at the household level
and at the regional level. The household-level analysis used data from
the 1989/90 IFPRI survey of households in famine-affected areas of
Ethiopia. The regional analysis used regional-level, time-series data
sets that were acquired and compiled by IFPRI. Breiman et al. (1984)
suggest that CART methodology should “not be used to the exclusion
of other methods,” even though empirical evidence shows that CART
performs much better than other procedures, such as discriminant
analysis. The results generated by CART should be compared with re-
sults obtained by applying other methods to the same data set.

The main reference material on CART is the book Classification
and Regression Trees by Breiman et al. (1984). It is the only book that
offers both theory and methodology of CART and illustrates a number
of examples in many disciplines.

This manual is organized as follows. Chapter 2 provides an over-
view of CART, including a detailed example of a classification tree.
CART application areas and the strengths and weaknesses of CART
are also discussed. Chapter 3 reviews CART methodologies for classifi-
cation trees and provides a detailed description of the tree-building
process. Chapter 4 provides a brief discussion of regression-tree meth-
odology and an example from a regional vulnerability study. Chapter 5
describes software requirements as well as the basic programming
codes needed to run CART software. Chapter 6 discusses refinements
to the CART analyses presented earlier. The final chapter assesses the
gains achieved by using CART and suggests what remains to be done.
Selected results from CART programs are in Appendixes 1 and 2 and
complete output examples are provided on diskette.



OVERVIEW OF CART

CART is a nonparametric statistical methodology developed for analyz-
ing classification issues either from categorical or continuous depend-
ent variables. If the dependent variable is categorical, CART produces
a classification tree. When the dependent variable is continuous, it pro-
duces a regression tree. Detailed discussion of a regression tree is pro-
vided in Chapter 4. In both classification and regression trees, CART'’s
major goal is to produce an accurate set of data classifiers by uncover-
ing the predictive structure of the problem under consideration (Brei-
man et al. 1984). That is, CART helps in understanding the variables or
interaction of variables that are responsible for a given phenomenon,
such as famine, and that best determine one outcome rather than
another (Seyoum et al. 1995). The purpose of such classifiers or classifi-
cation rules is to enable one to predict the class (vulnerable or not vul-
nerable, in the case of famine households) of any future observation(s)
from the profile of characteristics submitted for analysis. That is, given
the characteristics of an observation, the goal is to find out whether the
observation falls into the vulnerable class or not. The example in Fig-
ure 1 illustrates how CART methodology works.

In brief, the construction of a CART classification rule centers on
the definition of three major elements discussed in Chapter 3. These
are (1) the sample-splitting rule, (2) the goodness-of-split criteria, and
(3) the criteria for choosing an optimal or final tree for analysis. CART
builds trees by applying predefined splitting rules and goodness-of-
split criteria at every step in the node-splitting process. In a highly con-
densed form, the steps in the tree-building process involve (1) growing
a large tree (a tree with a large number of nodes), (2) combining some of
the branches of this large tree to generate a series of subtrees of differ-
ent sizes (varying numbers of nodes), and (3) selecting an optimal tree
via the application of “measures of accuracy of the tree.” These will be
described in full in Chapter 3.

In Figure 1, the results of a CART analysis based on research on the
vulnerability to famine (Webb et al. 1994) is summarized graphically in
the form of an inverted tree. The CART analysis has two major objec-
tives: (1) to get a better understanding of the characteristics of house-
holds that were vulnerable to famine, and (2) to generate tree-structured
classifiers or indicators of vulnerability and assess the potential of these
indicators for accurately predicting the prevalence of vulnerability
to famine in the future.

The analysis is based on a sample survey of 338 households that
was conducted in 1989/90 in Ethiopia. The list of variables used in the
analysis is given in Table 1. The dependent variable is CUTDUMZ2. Itis
an indicator of vulnerability defined as a 0/1 binary variable. A house-
hold is vulnerable to famine if CUTDUM2=1 and not vulnerable if it



Figure 1—Classification tree of a famine vulnerability study

Total Sample
N =338
Yes = 89
No = 249

Is noncereal yield < 4.7 quintals/hectare?

Yes

No
N=110
Yes =9
No =101
Are oxen owned < 1.5 oxen/household? H. Class 0 node
Yes
Is crop diversity index < 0.34? Is TLU/capita < 5.7?
Y.
<L Yes No
N =356 N=3
Yes =2 Yes =3
No =33 No=0
Is TLU/capita < 1.7? Is household size < 6.5? F. Class 0 node G. Class 1 node
Yes No Yes
N =88 N=24 N =50
Yes =18 Yes =16 Yes =35
No =70 No =8 No =15
A. Class 0 node B. Class 1 node C. Class 1 node . .
Is agricultural income
<95 percent of total income
Yes / I\h
N=19 N=9
Yes =0 Yes =6
No =19 No=3
D. Class 0 node E. Class 1 node

Notes: N stands for number of households at each node. TLU is tropical livestock unit, which converts big and
small animals into a common unit.



Table 1—Household variables

Name Definition

PCAST80 Per capita value of household assets (farm and nonfarm)
PCNFRAST Per capita value of nonfarm assets (excluding livestock)
PCLIVINC Household income per capita from livestock and products
PCFRMAST Value of farm assets per capita

PCINC Household income per capita

PCAGINC Household income from crops and livestock per capita
PCLSU80 Tropical livestock units owned per capita

PCFRMINC Crop income per capita

PCNNFINC Nonfarm income per capita

LVSLSU80 Total tropical livestock units owned per household
FRMASRAT Value of farm assets in total value of assets held

NFRMASRA Value of nonfarm assets in total value of assets held
CERLARS80 Cereal area cultivated (hectares)

CERYLDS80 Cereal yields (wheat equivalents in kilograms per hectare)
HHEADSEX Gender of household head

GINI Index of crop diversity (larger number = lower diversity)
0OXQ80 Number of oxen owned per household

NCERYLS80 Noncereal yields (wheat equivalents in kilograms per hectare)
NCERARS80 Noncereal area cultivated (hectares)

AGINCRAT Share of crop and livestock income in total income
LIVSYRAT Share of income from livestock and livestock products in total income
FARMYRAT Share of crop income in total income

NFRMYRAT Share of nonfarm income in total income

PCDCALS Calorie consumption per day per capita

HHSIZE Household size

CUTDUM2 Dummy variable (1 = vulnerable household; 0 = not vulnerable)
CALDUM Per capita daily calorie consumption group

Source: International Food Policy Research Institute/Office of National Committee for Central Planning

(Ethiopia)/International Livestock Center for Africa (now the International Livestock Research In-
stitute) survey, 1989/90, reported in Webb, von Braun, and Yohannes 1992.

equals 0. These two categories of vulnerability are referred to as class 1
and class 0, respectively. During the Ethiopian famine in the 1980s,
89 of the sample households were classified as vulnerable to famine,
while 249 were not. The top circle in Figure 1 contains this basic infor-
mation (N=338, yes=89, and no=249).

Without going into technical details of the tree-building process
(see Chapter 3), it should simply be noted here that CART splits a sam-
ple into binary subsamples based on the response to a very simple ques-
tion requiring only a yes/no answer. The question used to create splits
is given at the bottom of each circle (Figure 1). Each question is based
only on a single variable chosen from the list of variables in Table 1.
Depending on the response (yes/no) to the question, the sample is parti-
tioned into left and right binary subsamples. The issue of how CART
chooses a variable and its split point is discussed in Chapter 3. When a



split occurs, the subsamples, also called nodes, end up either in a circle
or in a rectangular box. The rectangular boxes are referred to as termi-
nal nodes and the circles are nonterminal nodes. Terminal nodes do not
split further, while nonterminal nodes do. From here on, node will be
used instead of subsample.

The noncereal yield variable produces the first split in the sample
(Figure 1). Noncereals are composed mostly of pulses and are given in
terms of wheat equivalents. Noncereals, especially pulses, constitute
a major component in the diet of the poor in Ethiopia. The average non-
cereal yield across the sample is 247 quintals per hectare. The cutoff
pointis 4.7 quintals per hectare. Households with low noncereal yield go
to the left node and the remaining to the right node. The right node is in
a rectangle and cannot be split any further. Underneath this node are
the labels “H” and “class 0 node.” These labels identify, respectively, the
node and the class to which the node is assigned. This terminal node is
classified as class 0 because it contains nonvulnerable households. The
left node is nonterminal and is subject to a further split.

The second split is based on whether a household owns less than
two oxen. Because farmers can cultivate only with a pair of oxen,
households with one ox or none go to the left node and the remaining to
the right node. For households with no more than one ox, the next split
Is based on a crop diversity index. This index measures the mix of crops
planted by a household. The higher the diversity index, the more mixed
or diversified are the planted crops. Households with a crop diversity
index of less than or equal to 0.34 are sent to the left node while those
with a higher diversity index are sent to the right node.

Continuing with the split, households with a crop diversity index of
at most 0.34 are further split based on the tropical livestock unit (TLU)
per capita variable. TLU is an index that converts big and small animals
into a common unit. Households with TLU less than or equal to 1.7 per
capita are sent to the left terminal node while the others go to the right
terminal node. The two terminal nodes are labeled A and B. Terminal
node A is classified as class 0 (nonvulnerable households), while termi-
nal node B is classified as class 1 (vulnerable households). The other ter-
minal nodes, labeled C through G, are generated in a similar manner.

Each terminal node is the endpoint of a separate path or structure,
and yet a group of them end up in the same class. This indicates that
paths to vulnerability or nonvulnerability to famine depend on the
amount of resources with which households are endowed. Households
in terminal nodes A, D, F, and H, are classified as nonvulnerable to
famine, while households in terminal nodes B, C, E, and G are classi-
fied as vulnerable.

The sequential structure leading to terminal node B indicates
that this set of vulnerable households has extremely low noncereal
yield per hectare, one ox or none, low crop diversity, and high TLU per
capita. These are typically extremely poor households whose liveli-
hoods appear to depend mostly on livestock holdings. Indeed, exami-
nation of the data set shows that 87.5 percent of the vulnerable
households at this terminal node come from a survey site where
70 percent of the households reported reduction in the number of
meals consumed during the Ethiopian famine of the 1980s. Further-



HIGHLIGHTS

OF OTHER
CLASSIFICATION
METHODS AND
PROCEDURES

more, it is a pastoral site (Beke Pond) located in a lowland area where
livestock rather than farming sustain well-being. Most of the charac-
teristics of households in this terminal are captured by the four vari-
ables used to arrive at the node.

Households in terminal node C are identified by extremely low
noncereal yield per hectare ownership of one ox or none, at least aver-
age crop diversity, and a household size of at most 6.5. Examination of
the data set shows that 71 percent of the vulnerable households at
this terminal node come from the Dinki area, which was the survey
site most affected by the famine of the 1980s (Webb et al. 1992).
Nearly 71 percent of the households at this survey site reported reduc-
ing the number of meals consumed during the famine. Clearly, the
four variables that lead to this terminal node along with their cutoff
points form the best indicators of vulnerability to famine for house-
holds at this location.

Terminal node E characterizes vulnerable households as those
with extremely low noncereal yield per hectare, less than two oxen, at
least average crop diversity, large household size, and almost all in-
come derived from agriculture. Fifty percent of the vulnerable house-
holds at this terminal node come from the Dinki survey site.

Terminal node G is a pure node. It contains only households that
are vulnerable to famine. These are households with extremely low
noncereal yield per hectare, at least two oxen, and a large per capita
livestock holding. The vulnerable households at this terminal node
come from Beke Pond (a pastoral site).

The most interesting aspect of this exercise is that the CART proce-
dure identified the characteristics of households most affected by the
famine of the 1980s by using only 6 of the 27 variables. These 6 vari-
ables along with their cutoff points carry most of the information re-
quired for establishing tree-structured classification rules that could
identify vulnerable households in the future. Vulnerable households at
Dinki and Beke Pond account for 67 percent of all vulnerable house-
holds in the 7 survey sites. CART has successfully untangled the com-
plexities of a data set and identified the indicators of households vul-
nerable to famine.

Besides CART, a number of other methods and procedures for clas-
sifying data exist. These methods fall into two groups.

Group 1 Group 2
AID Discriminant analysis
THAID Kernel density estimation
CHAID Kth nearest neighbor

Logistic regression
Probit models

The methods in Group 1 generate classification trees. AID is an ac-
ronym for Automatic Interaction Detection. It is a classification algo-
rithm developed by J. N. Morgan and J. A. Sonquist in 1963 at the Uni-
versity of Michigan. The AID algorithm led to the development of



THAID (a sequential search program for analysis of nominal scale de-
pendent variables) by Morgan and Messenger at the University of
Michigan in 1973, and Chi-squared Automatic Interaction Detection
(CHAID) by Kass in 1980. These three procedures generate multilevel
splits in producing classification trees. Unlike CART, they are not
distribution-free and they all employ significance tests on predictor
variables to generate node splits and determine the size of a tree. These
two methods differ from CART in the process of tree growing and prun-
ing and estimation of predictive error results.

The methods in Group 2 do not produce classification trees. They all
assume functional relationships between dependent and predictor
variables. Discriminant analysis, Kernel density estimation, and Kth
nearest neighbor are the most widely used classification methods.
Breiman et al. (1984, 15-17) provide details on these methods and their
weaknesses. Since discriminant analysis or its variation, linear dis-
criminant function, has been widely used as a classification method,
especially in education and in psychology, business, and marketing
research (for example, in product targeting and market segmentation),
a brief review of the methodology follows.

In order to use the linear discriminant function method, the follow-
ing distributional assumptions must hold (Maddala 1983):

1. All of the predictor variables should follow multivariate normal
distribution for each class of dependent variable, and
2. Thevariance-covariance matrixes of each class should be equal.

The procedure first forms a linear combination of predictor vari-
ables and then the coefficients of the variables in the linear combina-
tion are estimated. This is followed by computation of a discriminant
score for each case or observation using the estimated coefficients and
the corresponding values of the predictor variables. A classification
rule is formed by applying Baye’s Rule to the discriminant scores.

The distributional assumption of normality is strong and the meth-
odology is used regardless of whether the assumptions hold for every
variable used in the analysis. The method is designed to handle only
continuous predictor variables. Categorical predictor variables need to
be transformed into a series of dummy variables. This additional task
leads to the problem of dimensionality (having too many variables).
Furthermore, all variables that enter into linear combination have to
be complete. That is, no case with missing values for a variable can be
used in the analysis. Observations with missing values for a variable
have to be dropped. This may result in bias due to reduced sample size.
Also, the procedure is known to yield poor results if the predictor vari-
ables are all binary or a mixture of continuous and binary.

Logistic regression and probit models are other parametric meth-
ods used in classification studies. The final outcome of these methods
yields the proportion of predicted cases that falls into different catego-
ries of the dependent variable. As in linear discriminant analysis, these
methods are not distribution-free, do not have any provision for analyz-
ing cases with missing values for a variable, and deal only with cate-
gorical dependent variables. As in all parametric models, the variables
used in the analysis are entirely determined by the analyst.
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SUMMING UP
CART’S
STRENGTHS
AND
WEAKNESSES

CART methodology further develops and enhances the work on
classification methodology of AID and THAID (Breiman et al. 1984).
But CART overcomes the problems associated with these algorithms
and some of the drawbacks associated with the classification methods
in Group 2.

Breiman et al. (1984) made several comparative analyses of CART
and discriminant analysis results and found that CART performed bet-
ter than discriminant analysis. Marais, Patell, and Wolfson (1985) also
noted similar findings in their classification study of commercial loans,
as did Srinivasan and Kim (1987) in their credit-granting study. But in
models where linear structure and the assumption of normality hold,
Breiman et al. (1984) found that results from discriminant analysis
were better than those from CART. Regardless of the problems with
other procedures, Breiman et al. (1984) advise not to use CART “to the
exclusion of other methods.” Whenever possible, one of the other meth-
ods should be used for comparative purposes.

Breiman et al. (1984) and Steinberg and Colla (1995) provide a number
of justifications for using CART. A few of them are listed below.

1. CART makes no distributional assumptions of any kind for
dependent and independent variables. No variable in CART is
assumed to follow any kind of statistical distribution.

2. The explanatory variables in CART can be a mixture of categori-
cal and continuous.

3. CART has a built-in algorithm to deal with the missing values of
a variable for a case, except when a linear combination of vari-
ables is used as a splitting rule (see Chapter 3).

4. CART is not at all affected by the outliers, collinearities, hetero-
skedasticity, or distributional error structures that affect para-
metric procedures. Outliers are isolated into a node and thus
have no effect on splitting. Contrary to situations in parametric
modeling, CART makes use of collinear variables in “surrogate”
splits.

5. CART has the ability to detect and reveal variable interactions
in the data set.

6. CART does not vary under a monotone transformation of inde-
pendent variables; that is, the transformation of explanatory
variables to logarithms or squares or square roots has no effect
on the tree produced.

7. In the absence of a theory that could guide a researcher, in a
famine vulnerability study, for example, CART can be viewed as
an exploratory, analytical tool. The results can reveal many
important clues about the underlying structure of famine vul-
nerability.

8. CART's major advantage is that it deals effectively with large
data sets and the issues of higher dimensionality; that is, it can
produce useful results from a large number of variables submit-
ted for analysis by using only a few important variables.

9. The inverted-tree-structure results generated from CART
analysis are easy for anyone to understand in any discipline.
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CART analysis does have some limitations, however.! CART is a
blunt instrument compared to many other statistical and analytical
techniques. At each stage, the subdivision of data into two groups is
based on only one value of only one of the potential explanatory vari-
ables. If a statistical model that appears to fit the data exists, and if its
basic assumptions appear to be satisfied, that model would be prefer-
able, in general, to a CART tree.

A weakness of the CART method and, hence, of the conclusions it
may vyield is that it is not based on a probabilistic model. There is no
probability level or confidence interval associated with predictions
derived from a CART tree that could help classify a new set of data. The
confidence that an analyst can have in the accuracy of the results pro-
duced by a given CART tree is based purely on that tree’s historical
accuracy—how well it has predicted the desired response in other,
similar circumstances. This is essentially how the structure of the tree
is determined in the first place, through k-fold cross-validation, which
will be discussed in Chapter 3.

1 The following is adapted from Seyoum et al. 1995.
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THE
PREDICTIVE
ACCURACY
OF CART

BASIC PRINCIPLES OF CART
METHODOLOGY

Accuracy is the most important feature of a classification tree. All clas-
sification procedures, however, including CART, can produce errors.
The CART procedure does not make any distributional assumptions on
covariates; hence, hypothesis testing is not possible. Confidence in
CART’s performance, therefore, has to be based primarily on an assess-
ment of the extent of misclassification it generates from data sets with
known class distributions and on knowledge of and experience with the
subject matter under study.

The best way to test the predictive accuracy of a tree is to take an
independent test data set with known class distributions and run it
down the tree and determine the proportion of cases missclassified. In
empirical studies, the possibility of getting such a data set is remote. To
overcome this difficulty, Breiman et al. (1984) provide three procedures
for estimating the accuracy of tree-structured classifiers.

First, let

c(X) or ¢ = atree-structured classifier, where X is a vector of
characteristics variables that describe an
observation;

R*[c(X)] = the classifier's “true” misclassification rate; and

L = the learning sample (the sample data from which to

construct a classification tree).

The three estimation procedures below have two objectives: con-
structing a classification tree, c(X), and then finding an estimate of
R*[c(X)].

1. Resubstitution Estimate, R[c(X)]. This estimates the accuracy of
the true misclassification rate, R*[c(X)], as follows:

la. Build a classification tree, c(X), from the learning sample L,
and save it.

1b. Apply the tree, c(X), to the data set from which it is built.
Thatis, let the observations in the sample run down the tree
one at a time.

1c. Compute the proportion of cases that are misclassified. This
proportion is the resubstitution estimate, R[c(X)], of the
true misclassification rate, R*[c(X)].

The resubstitution estimate tests the accuracy of a classifier by
applying it to observations for which the classes are known. The major
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weakness of this estimator of the error rate is that it is derived from the
same data set from which the tree is built; hence, it underestimates the
true misclassification rate. The error rate is always low in such cases.

2. Test-sample estimate. If the sample is large,

2a.

2b.
2c.
2d.

Divide the observations in the learning sample, L, into two
parts: L, and L,. L, and L, need not be equal. For example,
two-thirds of the cases in L can be chosen randomly to con-
stitute L,, and the remaining one-third can constitute cases
inL,.

Use L, to build the classifier, c(X), and save it.

Run observations in L, down the tree, c(X), one at a time.
Compute the proportion of cases that are misclassified. This
proportion is the test-sample estimate, R[c(X)], of the “true”
misclassification rate, R*[c(X)]. In large samples, this esti-
mate provides an unbiased estimate of the true misclassifi-
cation rate.

3. K-fold cross-validation. This is the recommended procedure for
small samples and it works as follows:

3a.

3b.

3c.

3d.

3e.

Divide the learning sample, L, into K subsets of an equal
number of observations. LetL,, L,, ..., L, be the subsamples.
Construct a classifier, ¢(X), from the k-1 subsamples by
leaving out, say, the kth subsample, L,.

Save the resulting classifier, c¢(X).

Apply the saved classifier, c(X), to the excluded subsam-
ple, L,, and estimate R[c(X)] as the proportion of misclas-
sified observations. Denote this estimate as R®[cK(X)],
where k denotes k-fold cross-validation, and ts denotes
test sample.

Repeat steps 3b, 3c, and 3d, using all subsamples except the
subsample L, ,. The subsample L,_; now becomes a test
sample. The process above is repeated until every subsam-
ple is used once in the construction of ¢(X) and once as a test
sample. The result is a series of test sample resubstitution
estimates,

RE[C(X)], R®[S“(X)]..., R¥[CH(X)].

3f. Add the series of R®[cX(X)], R®[c*}(X)],..., R®[c}(X)] gener-

ated from the k-fold cross-validation and get an estimate of
R[c(X)]; that is, the k-fold cross-validation estimate R(c) of
R[c(X)] is given as

R*(c)=1/ka,_ R®[c¥],

which is an average of the error rates from k cross-validation tests. For
example, if k =10, then the average is over the 10 test samples. Tenfold
cross-validation is recommended.
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METHODOLOGY
FOR BUILDING A
CLASSIFICATION

TREE

COMPONENTS
FOR BUILDING A
CLASSIFICATION

TREE

Type and Format
of Questions

Splitting Rules and
Goodness-of-Split
Criteria

In constructing a classification tree, CART makes use of prior prob-
abilities (priors). A brief review of priors and their variations as used in
CART is provided.

Prior probabilities play a crucial role in the tree-building process.
Three types of priors are available in CART: priors data, priors equal,
and priors mixed. They are either estimated from data or supplied by
the analyst.

In the following discussion, let

N = number of cases in the sample,
N; = number of class j cases in the sample, and
m; = prior probabilities of class j cases.

J

e®Priors data assumes that distribution of the classes of the dependent
variable in the population is the same as the proportion of the classes
in the sample. It is estimated as 7; = N;/N.

e@Priors equal assumes that each class of the dependent variable is
equally likely to occur in the population. For example, if the depend-
ent variable in the sample has two classes, then prob(class 1) =
prob(class 2) = 1/2.

e®@Priors mixed is an average of priors equal and priors data for any
class at a node.

Three components are required in the construction of a classification
tree: (1) a set of questions upon which to base a split; (2) splitting rules
and goodness-of-split criteria for judging how good a split is; and
(3) rules for assigning a class to each terminal node. Each of these com-
ponents are discussed below.

Two question formats are defined in CART: (1) Is X = d?, if X isa con-
tinuous variable and d is a constant within the range of X values. For
example, isincome < 2,000? Or (2) isZ =b?, if Z is a categorical variable
and b is one of the integer values assumed by Z. For example, is sex =1?

The number of possible split points on each variable is limited to
the number of distinct values each variable assumes in the sample. For
example, if asample size equals N, and if X is a continuous variable and
assumes N distinct points in the sample, then the maximum number of
split points on X is equal to N. If Z is a categorical variable with m dis-
tinct points in a sample, then the number of possible split points on Z
equals 2™1 —1 (Breiman et al. 1984, 30). Unless otherwise specified,
CART software assumes that each split will be based on only a single
variable.

This component requires definition of the impurity function and impu-
rity measure. Let

j=1,2,....k be the number of classes of categorical dependent variables;
then define p(j]t) as class probability distribution of the dependent

variable at node t, such that p(1]t) + p2]t) + pB]t) +... +pkk]t) =1,j=
1,2, ..., k. Leti(t) be the impurity measure at node t. Then define i(t) as
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a function of class probabilities p(1]t), p(2]t), p(3]t), .... Mathemati-
cally, i(t) = ¢ [p(1]t), p(2]t), ..., p(ilt)]. The definition of impurity
measure is generic and allows for flexibility of functional forms.

Splitting Rules. There are three major splitting rules in CART: the
Gini criterion, the twoing rule, and the linear combination splits. In
addition to these main splitting rules, CART users can define a number
of other rules for their own analytical needs. CART uses the Gini crite-
rion (also known as Gini diversity index) as its default splitting rule.
The twoing rule is discussed in detail in Breiman et al. 1984 and will
not be covered here. A brief exposition of the linear combination splits
is provided later in this chapter.

The Gini impurity measure at node tis definedasi(t)=1- S, where
S (the impurity function) = Yp?(j|t), for j =1,2,...,k (Steinberg and
Colla 1995; Breiman et al. 1984).

The impurity function attains its maximum if each class (vulner-
able or not) in the population occurs with equal probability. That is,
pa]t)=p2]t) =... =p(jIt). On the other hand, the impurity function
attains its minimum (= 0) if all cases at a node belong to only one class.
That is, if node t is a pure node with a zero misclassification rate, then
i(t) =0.

Goodness-of-Split Criteria. Let s be a split at node t. Then, the good-
ness of split “s” is defined as the decrease in impurity measured by

Di(s,t) =i(t) - p.[i(t,)]- peli(ts)].

where
S = a particular split,
p, = the proportion of the cases at node t that go
into the left child node, t_,
p. = the proportion of cases at node t that go into

the right child node, t_,
i(t,_) = impurity of the left child node, and
i(t;) = impurity of the right child node.

Class Assignment There are two rules for assigning classes to nodes. Each rule is based on
Rule one of two types of misclassification costs.

1. The Plurality Rule: Assign terminal node t to a class for which
p(jlt) is the highest. If the majority of the cases in a terminal
node belong to a specific class, then that node is assigned to that
class. The rule assumes equal misclassification costs for each
class. It does not take into account the severity of the cost of
making a mistake. This rule is a special case of rule 2.

2. Assign terminal node t to a class for which the expected misclas-
sification cost is at a minimum. The application of this rule takes
into account the severity of the costs of misclassifying cases or
observations in a certain class, and incorporates cost variability
into a Gini splitting rule.
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STEPS IN
BUILDING A
CLASSIFICATION
TREE

When dealing with famine vulnerability, for example, misclassify-
ing a vulnerable household as nonvulnerable has more severe conse-
guences than misclassifying a nonvulnerable household as vulnerable.
Variable costs can be accounted for by defining a matrix of variable
misclassification costs that can be incorporated into the splitting rules.

Let c(i]j) = the cost of classifying a class j case as a class i case:

c(ilj) = 0ifi #j, c(ilj) =0ifi=j.
Now, assume that there are two classes in a problem. Let

7, (1) = prior probability of class 1 at node t,

m,(2) = prior probability of class 2 at node t,
r,(t) = the cost of assigning node t to class 1, and
r,(t) = the cost of assigning node t to class 2.

Given priors and variable misclassification costs, r,(t) and r,(t) are
estimated as follows:

ry(t) ==(1) - c(2]1),
and
ry(t) =7(2) - c(1]2).

According to rule 2, if at node t, r (t) < r,(t), node t is assigned to
class 1. Ifc(2]1) =c(1]2), then rule (1) applies and a node is assigned to
a class for which the prior probability is the highest.

The tree-building process starts by partitioning a sample or the root
node into binary nodes based upon a very simple question of the form

is X <d?,

where X is avariable in the data set and d is a real number. Initially, all
observations are placed in the root node. This node is impure or het-
erogenous because it contains observations of mixed classes. The goal is
to devise a rule that will break up these observations and create groups
or binary nodes that are internally more homogenous than the root
node. CART uses a computer-intensive algorithm that searches for the
best split at all possible split points for each variable. The methodology
that CART uses for growing trees is technically known as binary recur-
sive partitioning (Steinberg and Colla 1995). Starting from the root
node, and using, for example, the Gini diversity index as a splitting
rule, the tree building process is as follows:

1. CART splits the first variable at all of its possible split points (at
all of the values the variable assumes in the sample). At each
possible split point of a variable, the sample splits into binary or
two child nodes. Cases with a “yes” response to the question
posed are sent to the left node and those with “no” responses are
sent to the right node.
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2. CART then applies its goodness-of-split criteria to each split
point and evaluates the reduction in impurity that is achieved
using the formula

Di(s,t) =i(t) - p.[i(t,)]- peli(ts)],

which was described earlier.

3. CART selects the best split of the variable as that split for which
the reduction in impurity is highest.

4. Steps 1-3 are repeated for each of the remaining variables at the
root node.

5. CART then ranks all of the best splits on each variable according
to the reduction in impurity achieved by each split.

6. It selects the variable and its split point that most reduced the
impurity of the root or parent node.

7. CART then assigns classes to these nodes according to the rule
that minimizes misclassification costs. CART has a built-in
algorithm that takes into account user-defined variable misclas-
sification costs during the splitting process. The default is unit
or equal misclassification costs.

8. Because the CART procedure is recursive, steps 1-7 are repeat-
edly applied to each nonterminal child node at each successive
stage.

9. CART continues the splitting process and builds a large tree.
The largest tree is built if the splitting process continues until
every observation constitutes a terminal node. Obviously, such
a tree will have a large number of terminal nodes, which will be
either pure or have very few cases (less than 10; Steinberg and
Colla 1995).

Linear This splitting rule is an alternative to CART’s use of a single variable
Combination for splitting. It is designed for situations where the class structure of
Splits the data appears to depend on linear combinations of variables. In
linear combination splits, the question posed for a node split takes the

following form:

Is a, xX, +a, xX, £407?
For example,

is .55 - consumption + .05 - age < 407?

If the response to the question is “yes,” then the case is sent to the
left node, and if the response is “no,” then the case is sent to the right
node.

This rule is valid only for cases with no missing values on predic-
tor variables. Furthermore, if categorical variables have to be in-
cluded in the model, they should be converted to sets of dummy vari-
ables. If this option is chosen as a splitting method, it should be
specified on the command line. The syntax for the command line is
provided in Chapter 5.
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Missing Values
and Splitting
Points?

Outliers and
Splitting Points

TREE PRUNING

Incompleteness of data may be a problem for conventional statistical
analysis, but not for CART. It makes use of a “surrogate” variable split-
ting rule. A surrogate variable in CART is that variable that mimics or
predicts the split of the primary variable. If a splitting variable used for
tree construction has missing values for some cases, those cases are not
thrown out. Instead, CART classifies such cases on the basis of the best
surrogate variable (the variable with a close resemblance to the pri-
mary split variable). The surrogate may have a different cutoff point
from the primary split, but the number of cases the surrogate split
sends into left and right nodes should be very close to that with the pri-
mary split. By default, CART analysis produces five surrogate vari-
ables as part of its standard output. Surrogate splits are available only
for splits based on a single variable. They are not available if the linear
combination splitting rule is selected.

Apart from handling the missing data points of a case, surrogate
variables can also be used for detecting the masking of variables and de-
termining the rank of variables important either in actual or potential
tree construction. Appendix 1, Example 1 provides a list of surrogates
produced with the Ethiopian data and a column of variable importance
(the relative importance of variables).

Outliers among the independent variables rarely affect CART analysis,
because splits are generally determined at non-outlier values. If out-
liers exist in the dependent variable, they are isolated in small nodes,
where they do not affect the rest of the tree (Webb et al. 1994).

Large trees can have two problems: (1) Although they are highly accu-
rate, with low or zero misclassification rates, large trees provide poor
results when applied to new data sets (Steinberg and Colla 1995). And
(2) understanding and interpreting trees with a large number of termi-
nal nodes is a complicated process. Hence, large trees are referred to as
complex trees. The complexity of a tree is measured by the number of
its terminal nodes.

Departures from the ideal situation of low or zero misclassification
entails a trade-off between accuracy and tree complexity. The relation-
ship between tree complexity and accuracy can be understood with the
cost complexity measure, which is defined as

Cost Complexity = Resubstitution Misclassification Cost

+ B - Number of terminal nodes,

where  is penalty per additional terminal node. If 8 = 0, then cost com-
plexity attains its minimum for the largest possible tree. On the other
hand, as 8 increases and is sufficiently large (say, infinity), a tree with
one terminal node (the root node) will have the lowest cost complexity.
As values of 3 decrease and approach zero, trees that minimize cost

2This section and the following one on outliers and split points come from Sey-
oum et al. 1995.



complexity become larger. The “right-sized” tree
with “correct” complexity should lie between
these two extremes. Breiman et al. 1984 discuss
how to estimate 8 and offer a detailed account of
the pruning process.

The search for the “right-sized” tree starts
by pruning or collapsing some of the branches of
the largest tree (Tmax) from the bottom up, using
the cost complexity parameter and cross-
validation or an independent test sample to
measure the predictive accuracy of the pruned
tree. Hypothetical examples of the largest pos-
sible tree (Tmax), the pruned branch, and the
pruned tree are given in Figures 2, 3, and 4,
respectively. These examples illustrate only
one of the many possibilities in the tree-growing
and tree-pruning process.

The pruning process produces a series of
sequentially nested subtrees along with two
types of misclassification costs and cost-
complexity-parameter values. These are the
cross-validated relative-error cost from apply-
ing tenfold cross-validation and the resubstitu-
tion relative cost generated from the learning
sample. The trade-off between cost complexity
and tree size can be seen in the last column of
Table 2. Using the resubstitution cost, CART
ranks the subtrees and generates a tree
sequence table ordered from the most complex
tree at the top to a less complex tree with one
terminal node at the bottom (Table 2). It is a
real example, taken from the computer output
that produced Figure 1.

In other words, the tree-sequence table pro-
vides subtrees with a decreasing complexity (a
decreasing number of terminal nodes) and an
increasing cost (resubstitution relative cost).
CART finally identifies the minimum-cost tree,
and picks an optimal tree as the tree within one
standard error of the minimum-cost tree. The
option of a one-standard-error rule can be
changed by the data analyst. But the reason for
using a one-standard-error rule is that there
may be other trees with cross-validated error
rates close to those of the minimum-cost tree.
Breiman et al. (1984) suggest that an optimal
tree should be the one with the smallest ter-
minal nodes among those that lie within one
standard error of the minimum-cost tree. The
minimum-cost tree itself could become the
“right-sized” or the optimal-cost tree.
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Figure 2—An example of the largest CART
tree (Tmax)

Figure 3—Branch 3 of the largest CART tree
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Table 2—Example of sequence of trees produced by pruning
Dependent variable: CUTDUM?2

Number of Cross-validated Resubstitution Complexity

Tree terminal nodes relative cost relative cost parameter

1 32 0.704 +/— 0.060 0.145 0.000

8 16 0.639 +/— 0.058 0.244 0.008

9 14 0.635 +/— 0.058 0.276 0.008
10 12 0.632 +/— 0.058 0.310 0.008
11* 11 0.603 +/— 0.057 0.332 0.011
12** 8 0.634 +/— 0.058 0.430 0.016
13 7 0.668 +/— 0.059 0.464 0.017
14 5 0.687 +/— 0.059 0.540 0.019
15 3 0.700 +/— 0.058 0.619 0.020
16 2 0.729 +/- 0.048 0.696 0.038
17 1 1.000 +/— 0.000 1.000 0.152
Initial misclassification cost = 0.500
Initial class assignment = 0

* indicates minimum-cost tree.
** indicates optimum-cost tree.

In Table 2, the cross-validated relative-cost column shows that
cross-validation error initially decreases as complexity decreases,
reaches a minimum, and then increases. CART picks the tree with the
minimum cross-validated cost as the minimum-cost tree, which is
marked by an asterisk. The minimal-cost tree has 11 terminal nodes
and a cross-validated cost of 0.603 +/— 0.057. The optimal tree is
obtained by applying the one-standard-error rule to the minimum-cost
tree. Tree number 12 with 8 terminal nodes meets the criteria of an
optimal-cost tree and it is identified by two asterisks. Tree number
10 with 12 terminal nodes is another candidate for an optimal tree.
However, it is more complex than tree number 12.



4 REGRESSION TREES:
AN OVERVIEW

Recall from Chapter 1 that CART produces a classification tree when
the dependent variable is categorical and a regression tree when the
dependent variable is continuous. The process of constructing a regres-
sion tree is similar to that for a classification tree. But in building a
regression tree, there is no need to use priors and class assignment
rules. Splitting rules, goodness-of-fit criteria, as well as measures of
accuracy of a tree in regression tree differ from those for a classification
tree. These issues will all be discussed in detail in the two subsections
that follow the regression tree example below.

As with classification, regression-tree building centers on three
major components: (1) a set of questions of the form, Is X < d?, where X
is a variable and d is a constant; the reponse to such questions is yes or
no; (2) goodness-of-split criteria for choosing the best split on a vari-
able; and (3) generation of summary statistics for terminal nodes. The
latter component is unique to a regression tree. In classification trees,
the terminal nodes are assigned to a specific class according to the class
assignment rule. In regression trees, however, there are no classes to
which terminal nodes are assigned. Instead, for each of the terminal
nodes produced by CART regression, summary statistics of the depend-
ent variable are computed.

The main purpose of CART regression is to produce a tree-
structured predictor or prediction rule (Breiman et al. 1984). This pre-
dictor serves two major goals: (1) to predict accurately the dependent
variable from the future or new values of the predictor variables; and
(2) to explain the relationships that exist between the dependent and
predictor variables. The CART regression predictor is constructed by
detecting the heterogeneity (in terms of variance of the dependent
variable) that exists in the data set and then purifyng the data set.
CART does this by recursively partitioning a data set into groups or
terminal nodes that are internally more homogenous than their an-
cestor nodes. At each terminal node, the mean value of the dependent
variable is taken as the predicted value. If the objective of a regression
tree is explanation, then this is achieved by tracking the paths of a
tree to a specific terminal node.

An example of a regression tree is given in Figure 5, and the list of
variables supplied for generating the tree is given in Table 3.
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Variable Definition

MZSHTTRD Retail price of maize/producer price of sheep terms of trade
MZSHTTMN Average of MZSHTTRD during 1981-87

MZSHTTDV Standard Deviations of __ RD from __ MN

MZSHTTCV Coefficient of variation of __ RD during 1981-87
CERLPROD Gross production of all cereals in tons

CERLMN Mean of CERLPROD during 1981-87

CERLDV Standard Deviations of CERLPROD from CERLMN
CERLCV Coefficient of variation of CERLPROD during 1981-87
PCTBELG Percent of annual cereal production from Belg season
PCTBLGMN Average of PCTBELG during 1981-87

PCTBLGDV Standard Deviations of PCTBELG from PCTBLGMN
PCTBLGCV Coefficient of variation of PCTBLG during 1981-87
CERLPP Gross production of all cereals per capita rural population
AVGFAMSZ Average size of rural household

DEPRATIO Dependency ratio ( and 60 years old /total population 15-59 years old)
LITERATE Literacy ratio of males 15 years old /total population 15 years old
TOTFERTR Total fertility rate

GENFERTR General fertility rate

PAR4549R Average parity (45-49 years)

ASDRRURL Age-specific death rates in rural areas

IMRRURAL Infant mortality rate in rural areas

NPERRMRU Average people sharing bedroom in rural areas
LIFEEXPR Life expectancy in rural areas

CRDBRTHR Crude birth rate in rural areas

GRRERRUR Gross reproductive rate

MLUPSLRM Soil loss rate estimates from Master Land Use Plan
POPUME Urban male population

POPUFE Urban female population

POPURME Rural male population

POPRFE Rural female population

ALLKMKM2 All-weather road/square kilometer

AVGEP84R Average land elevation weighted by rural population
HLTHFIND Index of health infrastructure based on need
PRPRFHHD Share of female heads in total number of household heads
PERENNLO Percent farmers with no perennial crops

PERENNL1-5 Percent farmers with 1-5 perennial crops

ANNUALO Percent farmers with no annual crops

ANNUAL1-8 Percent farmers with 1-8 annual crops

DISTBGMK Distance to large market (kilometers)

DISTSMMK Distance to small market (kilometers)

AVGHHINC Average household income

GINIHINC Gini coefficient of average household income by awraja
PCTFRMRS Percent rural population who are farmers

AVGPCINC Average farm income per capita

(continued)
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Table 3—(continued)

Variable Definition

GINIPINC Gini coefficient of AVGPCINC by woreda weighted by population
PCTFRALW Share farmers that always or sometimes plant belg crop
PCTFRSOM Share farmers that never plant belg crop

AVGNOXEN Average number of oxen owned

PCTOOXEN Percent households with no oxen

ANNLPCHA Average area cultivated with annual crops per capita
PRNLPCHA Average area cultivated with perennial crops per capita
ANLAVG Average area cultivated with annual crops by household
PERLAVG Average area cultivated with perennial crops by household
FALAVGHA Average area fallowed by household

AVGARAHA Average arable land owned

PCTIRRIG Percent of farmers using irrigation

IRRIGHA Total irrigated area

GINITLU Gini coefficient of TLU ownership (all species)

GINIPCMK Gini coefficient of percent crop marketed

PRIMO0014 Percent children years old with any schooling

BELGMN Average NDVI for Belg season by year

BELGMX Maximum NDVI for the season, average for all pixels by awraja
BELGMNMN __MN average for 1982—90

BELGMXMN __MX average for 198290

BELGMNCV __MN coefficient of variation for 1982-90

BELGMXCV __MX coefficient of variation for 1982—90

BELGMNDV Standard deviations of _ MN from __ MNMN

BELGMXDV Standard deviations of __ MX from __ MXMN

BELGSDMN Standard deviations of season average during 1982-90
BELGSXMN Standard deviations of season maximum during 1982-90
KIREMMN Average NDVI for Kirempt season by year

KIREMMX Maximum NDVI for the season, average for all pixels by awraja
KIRMNMN __MN average for 1982—90

KIRMXMN __MX average for 1982—-90

KIRMNCV __MN coefficient of variation for 1982-90

KIRMXCV __MX coefficient of variation for 1982—90

KIRMNDV Standard deviations of _ MN from __ MNMN

KIRMXDV Standard deviations of __ MX from __ MXMN

KIRMSDMN Standard deviations of season average during 1982—-90
KIRMSXMN Standard deviations of season maximum during 1982-90
BEGAMN Average NDVI for Bega season by year

BEGAMX Maximum NDVI for the season, average for all pixels by awraja
BEGAMNMN __MN average for 1982—90

BEGAMXMN __MX average for 1982—-90

BEGAMNCV __MN coefficient of variation for 1982-90

BEGAMXCV __MX coefficient of variation for 1982—90

BEGAMNDV Standard deviations of _ MN from __ MNMN

BEGAMXDV Standard deviations of __ MX from __ MXMN

(continued)
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Variable Definition

BEGASDMN Standard deviations of season average during 1982—-90
BEGASXMN Standard deviations of season maximum during 1982-90
NDVIMNMX Maximum of mean NDVIs for 3 seasons averaged for 1982—90
NDVIMXMX Maximum of season NDVI maxima averaged for 1982—90
URBPOPSR Percent urban population by awraja

Note: An awraja is an administrative district in Ethiopia below the province level; a woreda is an adminis-
trative district below the awraja level.

BUILDING A
REGRESSION
TREE

REGRESSION
TREE:
EXAMPLE

The process of constructing a regression tree is similar to that for build-
ing a classification tree. Regression-tree building centers on three ma-
jor components: (1) a set of questions of the form,

Is X < d?,

where X is a variable and d is a constant. As with classification, the re-
sponse to such questions is yes or no; (2) goodness-of-split criteria for
choosing the best split on a variable; and (3) the generation of summary
statistics for terminal nodes (unique to a regression tree).

An example of a regression tree is given in Figure 5, and the list of
variables supplied for generating the tree is given in Table 3.

The regression tree in Figure 5 is based on analysis from a regional vul-
nerability study in Ethiopia (Seyoum et al. 1995) that uses six years
(1982-87) of time-series data collected from 77 administrative regions
(awrajas) of Ethiopia. The data contain 92 variables, all listed in Table 3.
This study of famine (Seyoum et al. 1995) had two specific goals: (1) to
determine whether it is possible to estimate or predict the percent of
sedentary population in need of food assistance, and (2) to understand
the variability in percentages of people in need (PPND) across awrajas
and years. The dependent variable in the study is PPND.

The top rectangle in Figure 5 contains a total number of 462 obser-
vations (N=462) with an average PPND of 11 percent. (During the
six-year period of the study, an average of 11 percent of the population
was in need of food assistance.) The regression tree produces 10 termi-
nal nodes or homogenous groups or awraja strata. Each group is iden-
tified by a number from 1 to 10. The specific path leading from the root
node to the terminal node for each group characterizes that group. In
Figure 5, NDVI (normalized difference vegetation index) is a crude es-
timate of vegetation health, and is used as an index of greenness. The
possible range of values for NDVI is between —1 and 1. However, its
typical range is between —0.1 (for not a green area) and 0.6 (for a very
green area). The higher the index, the greener the vegetation.

The first split of the root node is based on the long-term average
NDVI variable. This split successfully separates awrajas with less green
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vegetation from awrajas with very green vegetation. The long-term aver-
age NDVI is indeed a powerfully discriminating variable for studying re-
gional vulnerability. In awrajas with very green vegetation, average
PPND is 3 percent, which is much lower than awrajas with less green
vegetation. Awrajas with greener vegetation are further separated using
the variable for the long-term average maximum NDVI of the main rainy
season. This split results in two terminal nodes: Group 9 and Group 10.
Predicted PPND is 9 percent in Group 9 and 2 percent in Group 10. The
low PPND for these two groups should not be surprising. It can be argued
that these regions have better supplies of food and, hence, food accessibil-
ity, than awrajas with less green vegetation. Indeed, it turns out that
these awrajas extend west, south, southwest, and northwest from central
Ethiopia (Webb et al. 1994, Map 6.0). These awrajas also produce surplus
grain in the country. Some awrajas in Group 9 do represent pockets of
vulnerability in this surplus-producing region.

Awrajas in Groups 1 through 8 have at least one characteristic in
common. They all descend from awrajas with a less green vegetation
index (long-term average NDVI =< 0.335). Group 1 awrajas are charac-
terized by low long-term average NDVI, low sheep-to-maize terms of
trade, and low coefficient of variation of dry season NDVI. There are
13 awrajas at this terminal node with a predicted PPND of 14 percent.
The fact that the long-term average NDVI is low suggests that the
long-term annual average rainfall in these awrajasis very low and crop
production is limited. This observation is justified by the low sheep-to-
maize terms of trade. A household can only buy 31.4 kilograms or less
of maize with one sheep, indicating that maize is scarce in these areas.
These awrajas are in south Gamgofa, northeast Shoa, northeast Bale,
and west Hararge regions of Ethiopia. Generally, rainfall in these re-
gions is far below the national average.

Awrajas in Group 2 and Group 3 are both characterized by low long-
term average NDVI, low sheep-to-maize terms of trade, a high coeffi-
cient of variation of dry season NDVI, and low density of all-weather
roads per square kilometer. They are distinct from each other only be-
cause of household size. Group 2 awrajas have a lower household size
than those in Group 3. For the three awrajas in Group 2, predicted
PPND equals 74 percent. For the 21 awrajas in Group 3, predicted
PPND equals 23 percent. The awrajas in these two groups are located in
southern Bale, southern Sidamo, eastern Gondar, western Wollo, north-
east Wollo, and north Harerge regions of Ethiopia. The transportation
network in these regions is limited due to land topography. Not surpris-
ingly, CART characterizes these two groups as low in the density of all-
weather roads per square kilometer. The regions in these two groups
are also known for being among the most vulnerable to famine in Ethio-
pia. The remaining terminal nodes can be analyzed in a similar way.

Figure 5 displays the power of CART analysis as did Figure 1. It
shows that CART has successfully identified 10 groups of awrajas by
using only 9 out of the 92 variables submitted for analysis (Table 3).
Each group is identified by the path that begins at the root node and
ends at its terminal node. The 9 variables along with their split points
carry all the information that is needed to differentiate groups of awra-
jas from each other.
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The mechanism for building a regression tree is similar to that for a
classification tree. But with a regression tree there is no need to specify
priors and misclassification costs. Furthermore, the dependent vari-
able in a regression tree is numeric or continuous. The splitting crite-
rion employed is the within-node sum of squares of the dependent vari-
able and the goodness of a split is measured by the decrease achieved in
the weighted sum of squares. Detailed discussion on splitting criteria
will be provided further below. The following list highlights the key
steps in constructing a regression tree.

1. Starting with the root node, CART performs all possible splits
on each of the predictor variables, applies a predefined node
impurity measure to each split, and determines the reduction in
impurity that is achieved.

2. CART then selects the “best” split by applying the goodness-of-split
criteria and partitions the data set into left- and right-child nodes.

3. Because CART is recursive, it repeats steps 1 and 2 for each of
the nonterminal nodes and produces the largest possible tree.

4. Finally, CART applies its pruning algorithm to the largest tree
and produces a sequence of subtrees of different sizes from
which an optimal tree is selected.

There are two splitting rules or impurity functions for a regression
tree. These are (1) the Least Squares (LS) function and (2) the Least
Absolute Deviation (LAD) function. Since the mechanism for both rules
is the same, only the LS impurity measure will be described. Under the
LS criterion, node impurity is measured by within-node sum of
squares, SS(t), which is defined as

SS(M) = A (Vi - V) fri=1,2,...,N,,

where y; ,= individual values of the dependent variable at node t, and
Y, = the mean of the dependent variable at node t. Given the impurity
function, SS(t), and split s that sends cases to left (t,) and right (t)
nodes, the goodness of a split is measured by the function

f(s,t) = SS(t) - SS(ty)- SS(t, ),

where SS(ty) is the sum of squares of the right child node, and SS(t,) is
the sum of squares of the left child node.

The best split is that split for which ¢(s,t) is the highest. From the
series of splits generated by a variable at a node, the rule is to choose
that split that results in the maximum reduction in the impurity of the
parent node.

An alternative to SS(t) is to use the weighted variance of left and
right nodes, where the weights are proportions of cases at nodes t, and
t,: let p(t) = N,/N be the proportion of cases at node t, and let s%(t) be the
variance of the dependent variable at node t. The variance is defined as

1 9
Sz(t) =N—a[yi - y(t)]z'

(t) i=1
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TREE PRUNING

The goodness of a split is now measured by

f (S,t) = Sz(t) - [pLSZ(tL ) + pRSZ(tR )]

The best split is the one for which f (s,t) is the highest or for which the
weighted sum of the variances[p, s*(t_ ) + p,s°(tg )] is the smallest. The
procedure successfully separates high values of the dependent variable
from its low values and results in left and right nodes that are now in-
ternally more homogenous than the parent node. It should be noted
that as each split sends observations to the left and right nodes, the
mean of the dependent variable in one of the resulting nodes is lower
than the mean at the parent node (see the example in Figure 5).

After building the largest possible tree, CART applies its pruning algo-
rithm by using either cross-validation or an independent test sample to
measure the goodness of fit of the tree. LS uses Mean Squared Error
(MSE) to measure the accuracy of the predictor in order to rank the
sequence of trees generated by pruning. LAD employs Mean Absolute
Deviation (MAD). Once a minimal-cost tree (the tree with the lowest
MSE OR MAD) is identified, an optimal tree is chosen by applying the
one-standard-error rule to the minimal-cost tree. The one-standard-
error rule is optional and can be changed by the analyst.

After choosing an optimal tree or, for that matter, any subtree from
the sequence of subtrees generated in the pruning process, CART com-
putes summary statistics for each of the terminal nodes. If LS is chosen
as a splitting rule, CART computes mean and standard deviations of the
dependent variable. The mean of the terminal node becomes the pre-
dicted value of the dependent variable for cases in that terminal node. If
LAD is selected, CART generates median and average absolute mean
deviations of the dependent variable. As with LS, the median becomes
the predicted value of the dependent variable for that terminal node.

This form of generating predictions may sound crude to those who
are familiar with predictions from parametric models. But it should be
noted that CART regression predictions are arrived at by recursively
splitting the sample and creating groups or clusters that are progres-
sively more homogenous than their ancestor nodes. Breiman et al.
(1984) suggest running OLS models in each group created by the
regression tree and comparing the OLS predictions against each other.
A considerable difference between the predicted values of OLS models
for each group is an indication that CART has succeeded in uncovering
the complex structure existing in the data set.



5 CART SOFTWARE AND
PROGRAM CODES

CART software is currently available for different platforms, as shown
in Table 4. Details on the current versions of CART software that are
compatible with different platforms may be obtained from the vendor
listed in Table 4.

The software comes with two completely documented manuals
that are easy to follow. The first manual (Steinberg and Colla 1995)
provides a comprehensive background and conceptual basis for
understanding CART. It also discusses the art of tree-structured data
analysis, provides detailed listings and explanations of CART com-
mands in SYSTAT syntax, and explains how to use CART techniques
and interpret results. Even though CART commands are in SYSTAT
syntax, CART software is a stand-alone application that does not need
SYSTAT software. The second manual (Steinberg, Colla, and Martin
1998) is for the Windows operating systems (Windows 3.x and Win-
dows 95/NT). A detailed tutorial covers the use of menus, the mouse,
the graphic interface, and many other features that are specific to the
Windows version.

The graphic interface feature of Windows is an extremely useful
tool for CART data analysts. Windows enables CART simultaneously
to show tree topology and the quality of an optimal tree through a
graphic display of relative costs of trees versus the number of termi-
nal nodes. CART’s node navigator feature enables the analyst to
immediately perform exploratory work on trees of different sizes and
determine node summary information for each examined tree. Thus
the analyst can inspect different trees immediately in case the opti-
mal tree becomes unsatisfactory. Any tree can be inspected by click-
ing on a tree from the series displayed graphically at the lower panel
of the node navigator. Node summary information for each tree can be
generated for the level of detail desired. The results are displayed
graphically in the form of an inverted tree. This is an improvement
over earlier versions of CART, in which tree-structured graphs had
to be produced manually. In the Windows version the analyst is not
limited to using only menus. He/she can write CART commands in
batch mode and submit them for analysis while making use of all
other features available in Windows.

The rest of this chapter introduces basic CART commands and
batch mode programs written in SYSTAT syntax. A few basic CART
commands are provided in Table 5. For greater detail about CART com-
mands, the reader should refer to Steinberg and Colla (1995) or contact
the vendor listed in Table 4.
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Table 4—Hardware and software requirements of CART for personal computers

Hardware and software

Hardware requirements:

Operating systems supported:

Memory requirements:

Hard disk space:
Company name:

Address:

Web address:
Telephone:

Fax:

Technical support:

Number of variables
and observations:

Intel PCs, SUN, SGI, HP, Digital Alpha and VAX, IBMRS600

Windows 3.X, Windows 95, Windows NT, MacOS, UNIX, IBM
MVS and CMS

May vary with versions of CART software. CART for Windows is
compiled for machines with at least 32 megabytes of RAM. For
optimal performance, Pentium machines with at least 32 mega-
bytes of RAM are recommended.

At least 10 megabytes for software storage
Salford Systems

8888 Rio San Diego Dr., Suite 1045
San Diego, California 92108 U.S.A.

http://www.salford-systems.com

(619) 543-8880

(619) 543-8888

Available either by telephone, fax, or letter.

Computing requires a minimum of 16 megabytes of free memory.
Number of observations and variables supported depend on the
available memory.

Source: Fax message received from Salford Systems, February 1998, and
http://www.salford-systems.com/technical-CART.html, July 9, 1998.

PREPARATION CART can only read and process data files that are in SYSTAT format.
OF CART DATA Therefore, the data for analysis should be prepared in SYSTAT. If data
FILES are in other formats, they should be converted to a SYSTAT format us-

ing either DBMSCOPY or the translation utility that comes with CART

software.

ACCESSING CART can be invoked in two ways. The DOS version can be accessed by
CART typing CART at the prompt of the operating system and pressing the
enter key. In the Windows version, CART is invoked by double-clicking

on the CART icon.

CART CART commands should be written in SYSTAT syntax using any avail-

COMMANDS able editor. The following commands produce a classification tree.

IN BATCH
MODE

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2

MODEL CUTDUM?2

BUILD
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Command Syntax Function (purpose) Examples

USE USE filename Specifies a file to read USE c:\CART \testl.sys

EXCLUDE EXCLUDE variable list Excludes from file the variables EXCLUDE hhid code

not needed in the analysis

KEEP KEEP variable list Reads from the file only the KEEP age sex income

variables needed in the analysis

CATEGORY Category variable list Specifies list of categorical CATEGORY sex

variables in the data set,
including the dependent
variable—this is compulsory in
a classification tree

DEL MODEL variable name Specifies dependent variable MODEL vulner10

BUILD BUILD Tells CART to produce a tree BUILD

QUIT QUIT If submitted while in BUILD, it

tells CART to quit the session; if
submitted after CART session,
it tells CART to go to DOS.

SELECT SELECT variable name Selects a subset of the data set SELECT age > 15
relation operator or for analysis SELECT sex=1
constant/character SELECT X=20

SELECT x1="M’
or

SELECT SELECT variable name Selects a subset of the data set SELECT age > 15,
relation operator or for analysis Wage > 300
constant/character, variable
name relation operator or
constant/character

PRIORS PRIORS option (Choose 1 Specifies which PRIORS to use PRIORS data
option only) PRIORS equal

PRIORS mixed

PRIORS=n1, n2,,..,na

(n’s are real numbers)

MISCLASS MISCLASS COST=n Assigns nonunit Misclass cost=2
COST classify I as k1,k2,k3/, misclassification costs classify 1 as 2,3,4/,

Cost=m classify | as k1/, Cost=5 classify 3 as 1
Cost=l classify k1,k2,..,.kn Cost=3 classify 1,2,3
as x as 4

METHOD METHOD=options Specifies splitting rule Method=gini (default)

(choose 1 option only) or
Method=twoing or
Method=LS or LAD
Method=LINEAR

OUTPUT OUTPUT filename Sends output to a named file OUTPUT=LMS

TREE TREE tree file name Specifies a file name of a tree to TREE vulnerl

save
SAVE SAVE filename options Specifies file name of a data set SAVE predctl
with predicted class(es), select
options to save

CASE CASE options Runs data one by one down a CASE
tree, select option(s) to use
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PROGRAM
REFINEMENTS

Refinement 1

Refinement 2

These four lines are mandatory. They are the only commands needed to
produce a classification tree. For a regression tree, the CATEGORY
command line is not needed at all, and the dependent variable that fol-
lows the MODEL command should be a continuous variable. To pro-
duce a regression tree, the only three commands needed are USE,
MODEL, and BUILD. Examples of regression-tree command lines are
provided toward the end of this chapter.

The data analyst has many options to modify this program. All
optional command lines are additions to this basic program. Any
optional command line(s) should be entered before the BUILD com-
mand. For example, if the analyst wants to save the output to a file, the
OUTPUT command should be inserted as follows:

Syntax: OUTPUT 'd:\cart1989\any name'

With the addition of the OUTPUT command, the entire program would
read:

USE 'D:\CART1989\POOLSUBS5.SYS'

CATEGORY CUTDUM2

MODEL CUTDUM?2

OUTPUT 'D:\CART1989\VPDAT.DAT'

BUILD

The OUTPUT command sends the output results to a file named
VPDAT.DAT.

Sometimes the initial program may not produce a satisfactory tree. In
such cases, the program can be modified in a number of ways. The easi-
est way is to change either priors or misclassification costs or both. If
priors are not specified by the analyst, the default is priors equal. The
analyst can also change the default splitting rules, the one-standard-
error rule, the complexity parameter, and so on. This manual covers
only the simplest options.

The default priors can be changed by choosing either PRIORS DATA or
PRIORS MIXED and adding it into the batch program. For example, if
PRIORS DATA is chosen, the modified program will look like this:

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2

MODEL CUTDUM?2

PRIORS DATA

OUTPUT 'D:\CART1989\VPDAT.DAT'
BUILD

In addition to changing priors to “data” or “mixed,” the analyst can also
incorporate external information into the program by assigning explicit
values to priors. In such cases, the underlying assumption is that the
distribution of observations into classes of the dependent variable may
occur in proportions other than priors equal, priors data, or priors mixed.
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For example, in a two-class problem, the analyst may assign

PRIORS = .2, .8, or
PRIORS =1, 5, or
PRIORS =1.2, 1, and so on.

The latter priors says that the proportion of Class 0 cases in the popula-
tion from which the sample is drawn is 20 percent higher than the pro-
portion of Class 1 cases.

With these changes, the program looks like this:

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2

MODEL CUTDUM?2

PRIORS =1,5

OUTPUT 'D:\CART1989\VPDAT.DAT'
BUILD

Refinement 3 So far, the analysis is based on equal or unit misclassification costs,
which is the default setting. This setting can be changed by imposing
severe costs for misclassifying certain serious cases. If a heart-attack
patient is misclassified as a healthy individual during medical diagno-
sis, the cost is far more serious than the cost of classifying a healthy
individual as a heart-attack patient. In vulnerability studies, classify-
ing food-insecure households as food-secure is more costly than classi-
fying food-secure households as food-insecure. Two options are avail-
able for reducing the misclassification of such serious cases.

1. Change the misclassification costs via altered priors. For exam-
ple, suppose classifying Class 1 cases as Class 0 is three times
more costly than classifying Class 0 cases as Class 1. This situa-
tion can be treated as if the distribution of Class 1 cases in the
population is three times as large as that of Class 0. This infor-
mation is entered in the PRIORS command line, and the entire
batch program now reads as follows:

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2
MODEL CUTDUM?2

PRIORS =1, 3
OUTPUT 'D:\CART1989\VPDAT.DAT'
BUILD

2. Introduce misclassification costs explicitly into the command line.

Example: MISCLASS COST = 5 CLASSIFYO0AS 1,
COST = 2 CLASSIFY 1 AS 0.

This means that the cost of classifying a Class 0 case as Class 1 = 5,
while the cost of classifying a Class 1 case as Class 0 is 2. The example
associates different penalties or costs with each misclassification error.
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Refinement 4

Refinement 5

REGRESSION
TREE
PROGRAM
CODES

With these additions, the program looks like the following:

USE 'D:\CARAT\POOLSUB5.SYS'
EXCLUDE SITE HHID
CATEGORY CUTDUM2

MODEL CUTDUM2

PRIORS DATA

MISCLASS COST =5 classify 0 as 1,
COST =2classify 1 as 0

OUTPUT 'D:\CARAT\VPDAT.DAT'
BUILD

This refinement involves the MODEL command. The analyst may limit
the number of variables in the analysis by explicitly specifying the
model as in a parametric model. This option is helpful especially in
cases where it may not be possible to access a computer with a large
memory.

Example: MODEL CUTDUM2 = NCERYLS80 + PCLSU80
+ GINI + PCDCALS + FARMINC + HHSIZE.

One can also use the EXCLUDE command to exclude variables that are
not needed in the analysis.

The data analyst may change the default splitting rule (Gini criteria)
by using the METHOD command. For example, METHOD = LINEAR
changes the default splitting criteria to linear combination splits. In
this case, the METHOD command should follow the MODEL command.
Under this splitting criteria, CART assumes that all of the variables
in the linear combination are numeric. Therefore, unless categorical
variables are transformed into sets of dummy variables, they will be
treated as numeric variables.

The commands needed for producing a regression tree are basically the
same as that for a classification tree. There is no need to specify the
CATEGORY and MISCLASS COST commands in regression tree pro-
grams. As pointed out earlier, the three basic commands that are
needed for producing a regression tree are the USE, MODEL, and
BUILD commands.

Consider the following typical regression-tree programs:

(A)

USE 'D:\CARAT\YEARS8187.SYS'

MODEL PPND = NDVIMNMX KRMTMNMN NDVIMXMX
KRMTMXMN BEGAMNMN BEGAMXMN
MZSHTTRD MZSHTTDV BEGAMNDV
BELGMNDV KRMTMXDV

OUTPUT 'D:\CARAT\YEAR8187.0UT"

BUILD
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(B)
USE 'D:\CARAT\YEARS8187.SYS'
MODEL PPND
OUTPUT 'D:\CARAT\YRO1.0UT'
BUILD

As with classification trees, the OUPUT command is optional. The ana-
lyst can modify this basic program by adding any of the available
optional command lines into the program. In example (A), the depend-
ent and independent variables are specified in the MODEL command.
This option is useful in situations where access to a computer with
large memory is limited. Option (B) uses all of the available variables in
the data set and produces a regression tree. This option is especially
useful if the analyst does not have any prior information about which
predictors or potential predictors to use in the model.

It maybe useful to recall that the main objective of running either clas-
sification or regression trees is to use the resulting tree for classifying
data or predicting the class of a new observation. CART does this by
dropping the data down the tree case by case, beginning from the root
node. At each stage the splitting criteria are applied until the observa-
tions end up in any one of the terminal nodes. This task is accomplished
by using only the USE, TREE, SAVE, and CASE commands. It should
be noted that the extension of the filename created by the TREE com-
mand is always TR1 and cannot be changed. The complete program for
building and saving a tree is as follows:

USE 'D:\CARAT\POOLSUB5.SYS'
CATEGORY CUTDUM2

MODEL CUTDUM?2

TREE SECUR1

BUILD

The TREE command produces a file called SECURL.TR1.

Suppose the analyst has a new data set called DATANEW.SYS,
which contains the characteristics of new cases with an unknown
class distribution. The analyst now wants to run this data down the
saved tree (SECUR1.TR1) to find out the classes into which the new
cases fall, and to save the case-by-case results in a data file called
PREDCT.SYS. Using the CASE command line, this is written as
follows:

USE 'D:\DATANEW.SYS'
TREE SECUR1

SAVE PREDCT / SINGLE
IDVAR HHID

CASE
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The IDVAR command line adds the identification variable (HHID) to
the file PREDCT.SYS, which is created by the CASE command. The
contents of the PREDCT.SYS file include the original variables used in
the model and a few new variables created by CART. The RESPONSE
and CORRECT variables are the most useful of the new variables. The
RESPONSE variable contains the class assigned to an observation by
CART. The CORRECT variable is an indicator variable. It equals 1 for
correct prediction and O for incorrect prediction.



REFINING CART ANALYSES

At times, it may not be possible to get the desired results from the first
CART session. CART may not even produce any tree at all. To over-
come these problems, some of the alternative refinements introduced
in Chapter 5 may need to be applied. The structure of the trees pro-
duced may differ with each alternative. That is, the variables upon
which the splits are made and the number of terminal nodes may
change. Even the removal of a single variable from analysis produces
a tree with a different structure. For these reasons, CART reports the
cross-validated relative-error costs for a tree along with the standard
errors (Breiman et al. 1984). The contingent structure of the trees
raises the issue of which classification tree to choose and how to
choose it. CART does a good job of producing a number of useful classi-
fication tables for each alternative based on the learning sample and
cross-validation tests (see Appendix 1, Example 1). Since the goal of a
classification tree is to enable the analyst to predict the class of future
observations, more attention should be paid to the analysis of cross-
validation classification and cross-validation classification probabil-
ity tables. Of course, the choice of the tree ultimately depends on what
the analyst intends to do with the tree.

To illustrate the issue of choice, several alternatives to the CART
results discussed in Figure 1 in Chapter 2 are produced. The complete
CART output is provided in Examples 1, 2, and 3 of Appendix 1 on the
diskette. Condensed versions are provided in Examples 1, 2, and 3 of
the hard copy of Appendix 1. For comparative analysis, the cross-
validation classification probability is extracted from the output of the
three alternative models and given below in Table 6.

Example 1 in Table 6 is based on the assumption of PRIORS
EQUAL, Example 2 is based on PRIORS DATA, and Example 3 on
PRIORS MIXED. For the tree in Example 1, the cross-validated error
rate equals 0.634 +/— 0.058, the resubstitution estimate is 0.430, and
the total correct classification is 69.2 percent (see Appendix 1, Example
1). For the tree in Example 2, the cross-validated error rate is
0.921 +/-0.077, the resubstitution estimate is 0.663, and the total cor-
rect classification is 75.7 percent (see Appendix 1, Example 2). And
finally, for the tree in Example 3, the cross-validated error rate is
0.782 +/-0.066, the resubstitution estimate is 0.537, and the total cor-
rect classification is 73.7 percent (see Appendix 1, Example 3).

In Table 6, a matrix of predicted class probabilities is provided for
each example. Under Example 1, the classification tree predicted
70.3 percent of the nonvulnerable households as nonvulnerable and
66.3 percent of the vulnerable households as vulnerable. These are very
encouraging results. But can the predictions be improved? Under exam-
ple 2, 88.4 percent of the nonvulnerable households were predicted to be
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Table 6—Cross-validation classification probability comparisons

Predicted Class
Example Actual Class 0 1 Actual total

1 Priors equal

0 0.703 0.297 1.00

1 0.337 0.663 1.00
2 Priors data

0 0.884 0.116 1.00

1 0.596 0.404 1.00
3 Priors mixed

0 0.815 0.185 1.00

1 0.483 0.517 1.00

nonvulnerable, but only 40.4 percent of the vulnerable households were
predicted as vulnerable. This is not a desirable outcome because of the
high error rate in predicting vulnerable households. The analyst has to
think of which error rate is more costly in terms of misclassification. The
results for Example 3 fall between the results of Examples 1 and 2.

The classification tree produced under the assumption of PRIORS
DATA provides a better overall correct classification rate (75.7 percent)
than the other trees (see Appendix 1, Examples 1, 2, and 3). But the
tree in Example 1 performs best when it comes to classifying the vul-
nerable group. This tree correctly classifies 66.3 percent of the vulner-
able households. Furthermore, comparative analysis of the predictive
error rates of the three examples clearly shows that the tree of Example
1 has the smallest error rates. Thus, the classification tree in Example
1 provides the best classifiers or indicators of vulnerability. However,
the final choice depends on the analyst.

There are still many other options available to the analyst. The
results for some of these options are given in Examples 1, 2, and 3 on
the diskette (Appendix 3, which only appears on the diskette). In these
optional runs, alternative misclassification costs were added to the pro-
gram to see if there were any improvements in the overall misclassifi-
cation rate. No improvements resulted.



CONCLUSIONS

This manual has laid out the fundamental theory underlying Classifi-
cation and Regression Tree (CART) analytical techniques, and also
explained how such techniques can be applied in practice. Concrete
examples were presented from research at IFPRI. This research has
explored the potential of CART to provide a less subjective framework
for the selection of famine risk indicators and determine the relative
importance of such indicators in explaining vulnerability across years
and regions in Ethiopia.

The theoretical exposition and the results from applied CART
analysis suggest that this methodology offers considerable potential for
assisting in the analysis of large and complex data sets. CART also
offers a transparent, “objective” methodology upon which planners can
base their decisions.

That said, CART should be seen as one tool that can be used, in con-
junction with others, for analyzing data, assessing risk, and planning
development. The technique is extremely data-intensive and, hence,
labor-intensive (in terms of the time an analyst spends collating, pre-
paring, and analyzing the data). What is more, there remains a need for
further research into the definition of appropriate benchmark indica-
tors (such as the “population in need” figures used here), against which
multiple variables can be tested. In the short run, the choice of indica-
tors will most likely be driven by data availability. But in the longer
run, such choices should be made as a result of assessments of the reli-
ability and sensitivity of alternatives.

Further exploration of the gains and drawbacks inherent in CART
are therefore encouraged, and not just in relation to research on food
security. As IFPRI and others have demonstrated, CART can be use-
fully applied to a wide range of uses.



EXAMPLE 1:
CLASSIFICATION-
TREE OUTPUT
BASED ON
PRIORS EQUAL

APPENDIX 1:
CONDENSED EXAMPLES OF

CLASSIFICATION-TREE OUTPUT
(Full output on diskette)

Tree sequence and cross-validation tables are extracted from Appen-
dix 1, Example 1 on the diskette. Partial CART output is based on priors
equal (for details, see attached diskette).

Tree sequence

Number of
terminal Cross-validated Resubstitution Complexity

Tree nodes relative cost relative cost parameter

1 32 0.704 +/— 0.060 0.145 0.000

8 16 0.639 +/— 0.058 0.244 0.008

9 14 0.635 +/— 0.058 0.276 0.008
10 12 0.632 +/— 0.058 0.310 0.008
11* 11 0.603 +/— 0.057 0.332 0.011
12** 8 0.634 +/— 0.058 0.430 0.016
13 7 0.668 +/— 0.059 0.464 0.017
14 5 0.687 +/— 0.059 0.540 0.019
15 3 0.700 +/— 0.058 0.619 0.020
16 2 0.729 +/— 0.048 0.696 0.038
17 1 1.000 +/- 0.000 1.000 0.152
Initial misclassification cost = 0.500
Initial class assignment = 0

* indicates minimume-cost tree.

** indicates optimum-cost tree.




Node information

Node 1 was split on variable NCERYL 80.
A case goes left if variable NCERYLS80 £ 4.714.

* Improvement = 0.061 C.T.=0.152
* %
* *
x* 1 * Node Cases Class Cost
* *
. x 1 338 0 0.500
. 2 228 1 0.398
. -8 110 0 0.200
* *
298 110 Number of cases Within-node probability
** ** Class Top Left Right Top Left Right
* * 0 249 148 101 0.500 0.398 0.800
=z @ 1 89 80 9 0.500 0.602 0.200
* *
* 2 * . L
* * 8 Surrogate Split Association Improvement
* o 1 NCERARS80 S 0.026 0.777 0.058
* 2 PCAGINC S 400.220 0.051 0.002
3 PCDCALS S 5757.189 0.032 0.000
4 CERLARS80 S 3.486 0.030 0.001
5 PCFRMINC S 345.744 0.030 0.006
Competitor Split Improvement
1 NCERARS80 0.026 0.058
2 FARMYRAT 87.298 0.041
3 HHSIZE 5.500 0.033
4 LVSLSUS80 0.600 0.030
5 PCLSUS80 2.893 0.027

Note: C.T. stands for Complexity Threshold (the complexity parameter used in tree pruning).
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Terminal node information

Complexity
Node N Probability Class Cost Class N Probability threshold
1 88 0.242 0 0.418 0 70 0.582 0.039
1 18 0.418
2 24 0.106 1 0.152 0 8 0.152 0.039
1 16 0.848
3 50 0.227 1 0.133 0 15 0.133 0.019
1 35 0.867
4 19 0.038 0 0.000 0 19 1.000 0.028
1 0 0.000
5 9 0.040 1 0.152 0 3 0.152 0.028
1 6 0.848
6 35 0.078 0 0.145 0 33 0.855 0.017
1 2 0.145
7 3 0.017 1 0.000 0 0 0.000 0.017
1 3 1.000
8 110 0.253 0 0.200 0 101 0.800 0.152
1 9 0.200
Misclassification by class
Cross-validation Learning sample
Prior Number Number
Class probability N misclassified Cost N misclassified Cost
0 0.500 249 74 0.297 249 26 0.104
1 0.500 89 30 0.337 89 29 0.326
Total 1.000 338 104 338 55




Cross-validation classification

Predicted class
Actual Class 0 1 Actual total
0 175.000 74.000 249.000
1 30.000 59.000 89.000
Predicted total 205.000 133.000 338.000
Correct 0.703 0.663
Success indicator -0.034 0.400
Total correct 0.692
Sensitivity 0.703
Specificity 0.663
False reference 0.146
False response 0.556
Reference = Class 0
Response = Class 1

Cross-validation classification probability

Predicted class

Actual class 0 1 Actual total
0 0.703 0.297 1.000
1 0.337 0.663 1.000

Learning-sample classification

Predicted class

Actual class 0 1 Actual total
0 223.000 26.000 249.000
1 29.000 60.000 89.000
Predicted total 252.000 86.000 338.000
Correct 0.896 0.674

Success indicator 0.159 0.411

Total correct 0.837

Sensitivity 0.896

Specificity 0.674

False reference 0.115

False response 0.302

Reference = Class 0
Response = Class 1

Learning-sample classification probability

Predicted class

Actual class 0 1 Actual total

0 0.896 0.104 1.000
1 0.326 0.674 1.000
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Relative importance of variables

Relative
Variable importance
NCERYLS80 100.000
NCERARS80 94.086
PCLSU80 78.891
PCFRMINC 68.257
LVSLSU80 66.941
OXQ80 65.267
PCAGINC 55.699
PCFRMAST 54.965
FARMYRAT 47.661
Gini 44.670
PCINC 44.368
AGINCRAT 37.161
HHSIZE 35.707
NFRMYRAT 33.440
FRMASRAT 27.147
NFRMASRA 25.433
PCNNFINC 24.009
PCNFRAST 21.933
PCLIVINC 16.946
CERYLD80 12.768
PCDCALS 9.451
PCAST80 6.156
CERLARS80 1.405
LIVSYRAT 0.842
HHEADSEX 0.000
CALDUM 0.000
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EXAMPLE 2: Tree sequence and cross-validation tables are extracted from Appen-
CLASSIFICATION- dix 1, Example 2 on the diskette. Partial CART output is based on
TREE OUTPUT priors data (for details, see attached diskette).

BASED ON

PRIORS DATA Tree sequence

Number of
terminal Cross-validated Resubstitution Complexity

Tree nodes relative cost relative cost parameter

1 34 1.011 +/- 0.089 0.180 0.000

2 31 1.000 +/- 0.088 0.180 0.000

3 26 0.955 +/— 0.086 0.225 0.002

4 19 0.933 +/— 0.084 0.303 0.003

5 17 0.910 +/— 0.082 0.337 0.004

6* 12 0.865 +/— 0.078 0.449 0.006

7 8 0.888 +/— 0.077 0.584 0.009

8** 6 0.921 +/- 0.077 0.663 0.010

9 5 1.000 +/- 0.069 0.719 0.015
10 1 1.000 +/- 0.000 1.000 0.019
Initial misclassification cost = 0.263
Initial class assignment = 0

* indicates minimum-cost tree.
** indicates optimum-cost tree.

Cross-validation classification

Predicted class
Actual
Actual class 0 1 total
0 220.000 29.000 249.000
1 53.000 36.000 89.000
Predicted total 273.000 65.000 338.000
Correct 0.884 0.404
Success indicator 0.147 0.141
Total correct 0.757
Sensitivity 0.884
Specificity 0.404
False reference 0.194
False response 0.446
Reference = Class 0
Response = Class 1
Cross-validation classification probability
Predicted class

Actual class 0 1 Actual total
0 0.815 0.185 1.000
1 0.483 0.517 1.000
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EXAMPLE 3: Tree sequence and cross-validation tables are extracted from Appen-
CLASSIFICATION- dix 1, Example 3 on the diskette. Partial CART output is based on
TREE OUTPUT priors mixed (for details, see attached diskette).

BASED ON
PRIORS MIXED Tree sequence
Number of
terminal Cross-validated Resubstitution Complexity

Tree nodes relative cost relative cost parameter

1 30 0.757 +/- 0.067 0.190 0.000

6 22 0.764 +/— 0.067 0.250 0.006

7* 20 0.748 +/- 0.067 0.284 0.006

8 18 0.761 +/— 0.067 0.318 0.007

9 16 0.757 +/- 0.067 0.359 0.008
10 10 0.764 +/— 0.067 0.490 0.008
11** 8 0.782 +/- 0.066 0.537 0.009
12 6 0.820 +/- 0.067 0.593 0.011
13 4 0.830 +/— 0.065 0.654 0.012
14 3 0.910 +/- 0.062 0.764 0.042
15 1 1.000 +/- 0.000 1.000 0.045
Initial misclassification cost = 0.382
Initial class assignment = 0

* indicates minimum-cost tree.
** indicates optimum-cost tree.

Cross-validation classification

Predicted class
Actual
Actual class 0 1 total
0 203.000 46.000 249.000
1 43.000 46.000 89.000
Predicted total 246.000 92.000 338.000
Correct 0.815 0.517
Success indicator 0.079 0.254
Total correct 0.737
Sensitivity 0.815
Specificity 0.517
False reference 0.175
False response 0.500
Reference = Class 0
Response = Class 1
Cross-validation classification probability
Predicted class
Actual class 0 1 Actual total
0 0.815 0.185 1.000
1 0.483 0.517 1.000




APPENDIX 2:
A CONDENSED EXAMPLE OF
REGRESSION-TREE OUTPUT (Full output on diskette)

Node 1 was split on variable NDVIMNMX
A case goes left if variable NDVIMNMX £ 0.335000

Node 2 was split on variable MZSHTTRD
A case goes left if variable MZSHTTRD £ 31.389999

* Improvement = 95.212097 C. T.=0.439885E + 0.05
* %
* * Node Cases Average Standard Deviation
* *
! 1 462 10.902165 19.447115
2 174 23.455744 25.835199
-3 288 3.317708 7.119483
Surrogate Split Association Improvement
1 KRMTMNMN S 0.335000 0.931034 88.178185
2 NDVIMXMX S 0.475000 0.827586 84.152443
3 BEGAMXMN S 0.365000 0.793103 62.045887
4 BEGAMNMN S 0.300000 0.793103 68.704895
5 KRMTMXMN S 0.475000 0.793103 79.163147
Competitor Split Improvement
1 KRMTMNMN 0.335000 88.177315
2 NDVIMXMX 0.475000 84.151741
3 KRMTMX 0.435000 81.044876
4 KRMTMXMN 0.475000 79.162216
5 KRMTMN 0.285000 78.268150

Improvement = 58.391998 C.T.=0.269771E + 0.05

Node Cases Average Standard Deviation
2 174 23.455744 25.835199
-1 65 39.580002 28.492435
-2 109 13.840366 18.272223
Surrogate Split Association Improvement
1 MZSHTTDV S —0.780000 0.861539 38.172043
2 CERLPPDV S —0.085000 0.492308 26.714172
3 BELGMNDV S —0.855000 0.492308 39.251301
4 BEGAMNDV S —0.620000 0.369231 18.076315
5 KRMTMXDV S —1.150000 0.323077 27.505999
Competitor Split Improvement
1 BELGMNDV —0.905000 43.058678
2 BEGAMNDV —1.055000 40.379753
3 MZSHTTDV —1.185000 39.435616
4 KRMTMXDV —1.905000 37.680218
5 KRMTMNDV —0.090000 32.776260

Note: C.T. stands for Complexity Threshold (the complexity parameter used in tree pruning).
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