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PREFACE
Over the past dec ade, the in creas ing power and re li abil ity of mi cro-
 com put ers and the de vel op ment of so phis ti cated soft ware de signed
spe cifi cally for use with them has led to sig nifi cant changes in the way
that so cio eco nomic data are col lected and ana lyzed. The venue of
the com pu ta tions has shifted from off- site main frames, de pend ent on
highly trained op era tors and sig nifi cant capi tal in vest ment in sup port -
ing equip ment, to desk top and lap top com put ers, de pend ent only on the 
oc ca sional avail abil ity of elec tric ity. This means that it is now fea si ble
to quickly trans fer new sta tis ti cal tech niques be tween IFPRI and
IFPRI’s col labo ra tors in de vel op ing coun tries, that data ma nipu la tion
costs of pol icy analy sis have been sub stan tially re duced, and that a new 
level of com plex ity and ac cu racy is now pos si ble in the col lec tion and
analy sis of sur vey data in de vel op ing coun tries.

As with any new tech nol ogy, how ever, there are sub stan tial costs in 
time and money involved in learn ing the most effi cient ways of using
this new tech nol ogy and then trans mit ting these les sons to oth ers. This 
series, Micro com put ers in Pol icy Research, rep re sents IFPRI’s col lec -
tive ongo ing expe ri ence in adapt ing micro com puter tech nol ogy for use
in food pol icy analy sis in devel op ing coun tries. The papers in the series
are pri mar ily for the pur pose of shar ing these les sons with poten tial
users in devel op ing coun tries, although per sons and insti tu tions in
devel oped coun tries may also find them use ful. The series is designed
to pro vide hands- on meth ods for resolv ing sta tis ti cal and data-
 collection prob lems encoun tered in food pol icy research. In our opin ion,
exam ples pro vide the best and clear est form of instruc tion; there fore,
exam ples—includ ing actual soft ware codes wher ever rele vant—are
used exten sively through out this series.

This third book in the se ries, Clas si fi ca tion and Re gres sion Trees,
CART ™ : A User Man ual for Iden ti fy ing In di ca tors of Vul ner abil ity to
Fam ine and Chronic Food In se cu rity, by Yise hac Yo han nes and Pat rick 
Webb, is a man ual out lin ing how to use CART soft ware to con duct
 classification- and regression- tree analy sis. The man ual is based on
IFPRI’s ex pe ri ences from its fam ine re search pro gram, which was
 completed in 1998 with the pub li ca tion of the book by Joachim von
Braun, Tes faye Teklu, and Pat rick Webb, Fam ine in Af rica: Causes,
Re sponses, and Pre ven tion. The man ual shows how to use CART to
iden tify in di ca tors of a number of out comes, in clud ing food in se cu rity
and vul ner abil ity to fam ine. Ex am ples are pro vided through out us ing
pro grams from CART.™

How arth Bouis, Law rence Had dad,
and Ste phen Vosti, Edi tors
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INTRODUCTION
The Clas si fi ca tion and Regres sion Tree (CART) approach to clas si fy ing
sta tis ti cal data has been used in many fields. One of its first uses
involved the iden ti fi ca tion of ship struc tures from their radar- range
pro files. Hos pi tals have used it to iden tify indi ca tors of heart fail ure.
CART also has been used in finance by Fryd man, Alt man, and Kao
(1985) to clas sify dis tressed firms, and by Marais, Patell, and Wolf son
(1985) to clas sify com mer cial loans. The Inter na tional Food Pol icy
Research Insti tute (IFPRI) has used CART to iden tify indi ca tors of vul -
ner abil ity to fam ine at regional and house hold lev els (Webb et al.
1994). This man ual is a guide for set ting up CART- based infor ma tion
sys tems to iden tify indi ca tors of vul ner abil ity to fam ine, chronic food
inse cu rity, and other fail ures of enti tle ment.

CART is a non para met ric tech nique that can se lect those vari ables
and their in ter ac tions that are most im por tant in de ter min ing an out -
come or de pend ent vari able. If an out come vari able is con tinu ous,
CART pro duces re gres sion trees; if the vari able is cate gori cal, CART
pro duces clas si fi ca tion trees. The out come vari able used in this man ual 
to ap proxi mate vul ner abil ity to fam ine is the popu la tion in need of food
over time as es ti mated by the Ethio pian Re lief and Re ha bili ta tion
Com mis sion (the com mis sion has been re named re cently). CART pro -
duces re gres sion trees with this vari able.

This man ual is in tended to in tro duce the reader to the ba sic prin ci -
ples of CART meth od ol ogy. It pro vides ex am ples of CART analy sis from 
IFPRI’s ear lier fam ine vul ner abil ity stud ies (Webb et al. 1994; Sey oum
et al. 1995) and dis cusses when and why CART might be use ful for data 
analy sis. In ad di tion, the man ual pro vides ex am ples of com puter pro -
gram codes and dis cusses CART hard ware and soft ware re quire ments.

Ear lier IFPRI re search on fam ine in Af rica (see Webb, von Braun,
and Yo han nes 1992; Teklu, von Braun, and Zaki 1991) had con cluded
that the ba sis for geo graphi cal and so cio eco nomic tar get ing of re lief
and re ha bili ta tion in ter ven tions had to be im proved. This re quired a
re fine ment of ex ist ing meth od olo gies for se lect ing and weight ing in di -
ca tors of house hold dis tress. The most im por tant chal lenges en tailed
ad dress ing ex ist ing meth odo logi cal short com ings in de fin ing data
needs, weight ing the rela tive value of in di vid ual vari ables, and de fin -
ing the sig nifi cance of al ter nate (proxy) vari ables (Bor ton and Sho ham
1991; Hutchin son et al. 1992; Ri ely 1993).

Vul ner abil ity to food in se cu rity and fam ine can not be meas ured by
sin gle, dis crete vari ables. Given the close re la tion ship be tween re -
sources, food pro duc tion, prices, and con sump tion, it is cru cial that
 assessments of vul ner abil ity ex am ine the mul ti ple fac tors that con trib -
ute not only to food sup ply short falls, but also to the per form ance of
mar kets dur ing cri ses, the fail ure of pur chas ing power among the poor,
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and the de cline in con sump tion and nu tri tional status. This ap proach
calls for the in clu sion of other vari ables into the analy sis, such as
house hold as set base, iso la tion from ma jor mar kets, level of farm tech -
nol ogy, con straints to hu man capi tal, in come lev els and fluc tua tion,
health and sani ta tion en vi ron ments, and avail abil ity of non farm em -
ploy ment (Down ing 1990; Webb, von Braun, and Yo han nes 1992).

How ever, it is no easy mat ter to deter mine which addi tional vari -
ables have a role to play in the analy sis (either sin gly or in com bi na -
tion), or what the rela tive pre dic tive value is of con stitu ent fac tors.
These two prob lems have pro vided the start ing point for numer ous
recent endeav ors aimed at iden ti fy ing the best pre dic tive indi ca tors for
early warn ing and tar get ing pur poses.

Pro gress has been made in tar get ing in recent years. There is now
sub stan tial agree ment that indi ca tors should reflect the behav ior and
live li hood con di tions of tar get popu la tions—those that are most often,
and more severely, affected by acute food inse cu rity (Bor ton and
 Shoham 1991; FEWS 1993; FAO 1998). Such groups include the rural
poor, women- headed house holds, asset- poor pas tor al ists, recently
reset tled house holds, house holds con strained by a high depend ency
ratio, the landless, the urban poor and unem ployed, and retrenched
civil ser vants. Not all of the groups are equally or always affected, but
each is affected at a higher rate than more favored house holds inhab it -
ing the same envi ron ment. Simi larly, there is greater con sen sus today
on the need for a core of indi ca tors in addi tion to supply- side indexes in
order to achieve more com plete vul ner abil ity assess ments.

It re mains un clear, how ever, which vari ables are most im por tant,
and what the mini mum number of vari ables should be for the pur pose
of a valid analy sis. For ex am ple, Bor ton and Sho ham (1991) sug gest
20 core in di ca tors; Cut ler (1986), Frank en berger (1992), and Sea man,
Holt, and Al len (1993) each take be tween 20 and 30 in di ca tors as the
start ing point; Ri ely (1993) and Down ing (1993) both sug gest more
than 50 vari ables; while Cur rey (1978), one of the ear li est prac ti tio -
ners in the field, started with 60 vari ables for his analy sis of vul ner -
abil ity in Bang la desh.

Some inter ven tion pro grams are also con strained by data limi ta -
tions that are at the root of many highly ques tion able assump tions
(Max well 1989). Such limi ta tions can lead to crea tive (some times very
suc cess ful) approaches to com par ing and com bin ing data that are, in
fact, incom pa ra ble and incom pati ble (Down ing 1990; Hutchin son et al.
1992). Effec tive vul ner abil ity analy sis and early warn ing need to go
beyond the cata log ing and arbi trary index ing of avail able data.

In the past, the prob lems of deter min ing the rela tive sig nifi cance of
indi ca tors and sort ing out sta tis ti cal col line ar ity (data that may influ -
ence each other and not act as “inde pend ent” indi ca tors of vul ner abil ity) 
have been dealt with either through “del phic” tech niques or through
best- guess esti ma tions based on a per ceived “con ver gence of evi dence”
(Down ing 1990; Bor ton and Sho ham 1991). As a result, many ana lysts
have called for refine ments in meth od ol ogy (Down ing 1990; Bor ton and
Sho ham 1991; Hutchin son et al. 1992). So far, only two other meth ods
have been explored. The first is to work closely with local experts who
can help define indi ca tors of local sig nifi cance, thereby improv ing the
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reli abil ity of sub jec tive data manipu la tions (Cur rey 1978; Bor ton and
Sho ham 1991). The sec ond is to ana lyze pre dicted char ac ter is tics of vul -
ner abil ity (key vari ables and com bi na tions of vari ables) against
observed bench mark meas ures of cri ses, such as num bers of peo ple
actu ally affected by fam ine or receiv ing exter nal assis tance by region
(Hutchin son et al. 1992).

IFPRI’s re search on vul ner abil ity con trib utes to the lat ter ap -
proach. The analy sis seeks to un der stand which in di ca tors of vul ner -
abil ity best ex plain re ported num bers of “peo ple in need” in Ethio pia
across geo graphic re gions and years. It thereby tries to es tab lish a sta -
tis ti cal ba sis for un der stand ing the rela tive im por tance of vari ous
 indicators (with non sub jec tive weight ing), while sub stan tially re duc -
ing the prob lem of col line ar ity.

IFPRI used CART meth od ol ogy to iden tify pos si ble in di ca tors of
vul ner abil ity in the form of clas si fi ca tion and re gres sion trees and thus
over came the prob lem of ar bi trar ily se lect ing in di ca tors. IFPRI con -
ducted a CART analy sis of fam ine at two lev els: at the house hold level
and at the re gional level. The household- level analy sis used data from
the 1989/90 IFPRI sur vey of house holds in famine- affected ar eas of
Ethio pia. The re gional analy sis used regional- level, time- series data
sets that were ac quired and com piled by IFPRI. Brei man et al. (1984)
sug gest that CART meth od ol ogy should “not be used to the ex clu sion
of other meth ods,” even though em piri cal evi dence shows that CART
per forms much bet ter than other pro ce dures, such as dis crimi nant
analy sis. The re sults gen er ated by CART should be com pared with re -
sults ob tained by ap ply ing other meth ods to the same data set.

The main ref er ence ma te rial on CART is the book Clas si fi ca tion
and Re gres sion Trees by Brei man et al. (1984). It is the only book that
of fers both the ory and meth od ol ogy of CART and il lus trates a number
of ex am ples in many dis ci plines.

This man ual is or gan ized as fol lows. Chap ter 2 pro vides an over -
view of CART, in clud ing a de tailed ex am ple of a clas si fi ca tion tree.
CART ap pli ca tion ar eas and the strengths and weak nesses of CART
are also dis cussed. Chap ter 3 re views CART meth od olo gies for clas si fi -
ca tion trees and pro vides a de tailed de scrip tion of the tree- building
pro cess. Chap ter 4 pro vides a brief dis cus sion of regression- tree meth -
od ol ogy and an ex am ple from a re gional vul ner abil ity study. Chap ter 5
de scribes soft ware re quire ments as well as the ba sic pro gram ming
codes needed to run CART soft ware. Chap ter 6 dis cusses re fine ments
to the CART analy ses pre sented ear lier. The fi nal chap ter as sesses the
gains achieved by us ing CART and sug gests what re mains to be done.
Se lected re sults from CART pro grams are in Ap pen dixes 1 and 2 and
com plete out put ex am ples are pro vided on disk ette.
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OVERVIEW OF CART
CART is a non para met ric sta tis ti cal meth od ol ogy devel oped for ana lyz -
ing clas si fi ca tion issues either from cate gori cal or con tinu ous depend -
ent vari ables. If the depend ent vari able is cate gori cal, CART pro duces
a clas si fi ca tion tree. When the depend ent vari able is con tinu ous, it pro -
duces a regres sion tree. Detailed dis cus sion of a regres sion tree is pro -
vided in Chap ter 4. In both clas si fi ca tion and regres sion trees, CART’s
major goal is to pro duce an accu rate set of data clas si fi ers by uncov er -
ing the pre dic tive struc ture of the prob lem under con sid era tion (Brei -
man et al. 1984). That is, CART helps in under stand ing the vari ables or 
inter ac tion of vari ables that are respon si ble for a given phe nome non,
such as fam ine, and that best deter mine one out come rather than
another (Sey oum et al. 1995). The pur pose of such clas si fi ers or clas si fi -
ca tion rules is to enable one to pre dict the class (vul ner able or not vul -
ner able, in the case of fam ine house holds) of any future obser va tion(s)
from the pro file of char ac ter is tics sub mit ted for analy sis. That is, given
the char ac ter is tics of an obser va tion, the goal is to find out whether the
obser va tion falls into the vul ner able class or not. The exam ple in Fig -
ure 1 illus trates how CART meth od ol ogy works.

In brief, the con struc tion of a CART clas si fi ca tion rule cen ters on
the defi ni tion of three ma jor ele ments dis cussed in Chap ter 3. These
are (1) the sample- splitting rule, (2) the goodness- of- split cri te ria, and
(3) the cri te ria for choos ing an op ti mal or fi nal tree for analy sis. CART
builds trees by ap ply ing pre de fined split ting rules and goodness- of-
 split cri te ria at every step in the node- splitting pro cess. In a highly con -
densed form, the steps in the tree- building pro cess in volve (1) grow ing
a large tree (a tree with a large number of nodes), (2) com bin ing some of
the branches of this large tree to gen er ate a se ries of sub trees of dif fer -
ent sizes (vary ing num bers of nodes), and (3) se lect ing an op ti mal tree
via the ap pli ca tion of “meas ures of ac cu racy of the tree.” These will be
de scribed in full in Chap ter 3.

In Fig ure 1, the re sults of a CART analy sis based on re search on the
vul ner abil ity to fam ine (Webb et al. 1994) is sum ma rized graphi cally in
the form of an in verted tree. The CART analy sis has two ma jor ob jec -
tives: (1) to get a bet ter un der stand ing of the char ac ter is tics of house -
holds that were vul ner able to fam ine, and (2) to gen er ate tree- structured 
clas si fi ers or in di ca tors of vul ner abil ity and as sess the po ten tial of these
in di ca tors for ac cu rately pre dict ing the preva lence of vul ner abil ity
to fam ine in the fu ture.

The analy sis is based on a sam ple sur vey of 338 house holds that
was con ducted in 1989/90 in Ethio pia. The list of vari ables used in the
analy sis is given in Ta ble 1. The de pend ent vari able is CUTDUM2. It is 
an in di ca tor of vul ner abil ity de fined as a 0/1 bi nary vari able. A house -
hold is vul ner able to fam ine if CUTDUM2=1 and not vul ner able if it
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Fig ure 1—Clas si fi ca tion tree of a fam ine vul ner abil ity study

Notes: N stands for number of house holds at each node. TLU is tropical live stock unit, which con verts big and
small ani mals into a com mon unit.



equals 0. These two cate go ries of vul ner abil ity are re ferred to as class 1
and class 0, re spec tively. Dur ing the Ethio pian fam ine in the 1980s,
89 of the sam ple house holds were clas si fied as vul ner able to fam ine,
while 249 were not. The top cir cle in Fig ure 1 con tains this ba sic in for -
ma tion (N = 338, yes = 89, and no = 249).

With out going into tech ni cal details of the tree- building process
(see Chap ter 3), it should sim ply be noted here that CART splits a sam -
ple into binary subsam ples based on the response to a very sim ple ques -
tion requir ing only a yes/no answer. The ques tion used to cre ate splits
is given at the bot tom of each cir cle (Fig ure 1). Each ques tion is based
only on a sin gle vari able cho sen from the list of vari ables in Table 1.
Depend ing on the response (yes/no) to the ques tion, the sam ple is par ti -
tioned into left and right binary subsam ples. The issue of how CART
chooses a vari able and its split point is dis cussed in Chap ter 3. When a
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Name           Defi ni tion

PCAST80 Per cap ita value of house hold as sets (farm and non farm)
PCNFRAST Per cap ita value of non farm as sets (ex clud ing live stock)
PCLIVINC House hold in come per cap ita from live stock and prod ucts
PCFRMAST Value of farm as sets per cap ita
PCINC House hold in come per cap ita
PCAGINC House hold in come from crops and live stock per cap ita
PCLSU80 Tropi cal live stock units owned per cap ita
PCFRMINC Crop in come per cap ita
PCNNFINC Non farm in come per cap ita
LVSLSU80 To tal tropi cal live stock units owned per house hold
FRMASRAT Value of farm as sets in to tal value of as sets held
NFRMASRA Value of non farm as sets in to tal value of as sets held
CERLAR80 Ce real area cul ti vated (hec tares)
CERYLD80 Ce real yields (wheat equiva lents in kilo grams per hec tare)
HHEADSEX Gen der of house hold head
GINI In dex of crop di ver sity (larger number = lower di ver sity)
OXQ80 Num ber of oxen owned per house hold
NCERYL80 Non ce real yields (wheat equiva lents in kilo grams per hec tare)
NCERAR80 Non ce real area cul ti vated (hec tares)
AGINCRAT Share of crop and live stock in come in to tal in come
LIVSYRAT Share of in come from live stock and live stock prod ucts in to tal in come
FARMYRAT Share of crop in come in to tal in come
NFRMYRAT Share of non farm in come in to tal in come
PCDCALS Calo rie con sump tion per day per cap ita
HHSIZE House hold size
CUTDUM2 Dummy vari able (1 = vul ner able house hold; 0 = not vul ner able)     
CALDUM Per cap ita daily calo rie con sump tion group

Ta ble 1—House hold vari ables

Source: In ter na tional Food Pol icy Re search In sti tute/Of fice of Na tional Com mit tee for Cen tral Plan ning
(Ethio pia)/In ter na tional Live stock Cen ter for Af rica (now the In ter na tional Live stock Re search In -
sti tute) sur vey, 1989/90, re ported in Webb, von Braun, and Yo han nes 1992.



split occurs, the subsam ples, also called nodes, end up either in a cir cle
or in a rec tan gu lar box. The rec tan gu lar boxes are referred to as ter mi -
nal nodes and the cir cles are non ter mi nal nodes. Ter mi nal nodes do not 
split fur ther, while non ter mi nal nodes do. From here on, node will be
used instead of subsam ple.

The non ce real yield vari able pro duces the first split in the sam ple
(Fig ure 1). Non ce re als are com posed mostly of pulses and are given in
terms of wheat equiva lents. Non ce re als, es pe cially pulses, con sti tute
a ma jor com po nent in the diet of the poor in Ethio pia. The av er age non -
ce real yield across the sam ple is 247 quin tals per hec tare. The cut off
point is 4.7 quin tals per hec tare. House holds with low non ce real yield go 
to the left node and the re main ing to the right node. The right node is in
a rec tan gle and can not be split any fur ther. Un der neath this node are
the la bels “H” and “class 0 node.” These la bels iden tify, re spec tively, the
node and the class to which the node is as signed. This ter mi nal node is
clas si fied as class 0 be cause it con tains non vul ner able house holds. The
left node is non ter mi nal and is sub ject to a fur ther split.

The sec ond split is based on whether a house hold owns less than
two oxen. Be cause farm ers can cul ti vate only with a pair of oxen,
house holds with one ox or none go to the left node and the re main ing to
the right node. For house holds with no more than one ox, the next split
Is based on a crop di ver sity in dex. This in dex meas ures the mix of crops
planted by a house hold. The higher the di ver sity in dex, the more mixed 
or di ver si fied are the planted crops. House holds with a crop di ver sity
in dex of less than or equal to 0.34 are sent to the left node while those
with a higher di ver sity in dex are sent to the right node.

Con tinu ing with the split, house holds with a crop di ver sity in dex of
at most 0.34 are fur ther split based on the tropi cal live stock unit (TLU)
per cap ita vari able. TLU is an in dex that con verts big and small ani mals 
into a com mon unit. House holds with TLU less than or equal to 1.7 per
cap ita are sent to the left ter mi nal node while the oth ers go to the right
ter mi nal node. The two ter mi nal nodes are la beled A and B. Ter mi nal
node A is clas si fied as class 0 (non vul ner able house holds), while ter mi -
nal node B is clas si fied as class 1 (vul ner able house holds). The other ter -
mi nal nodes, la beled C through G, are gen er ated in a simi lar man ner.

Each ter mi nal node is the end point of a sepa rate path or struc ture,
and yet a group of them end up in the same class. This in di cates that
paths to vul ner abil ity or non vul ner abil ity to fam ine de pend on the
amount of re sources with which house holds are en dowed. House holds
in ter mi nal nodes A, D, F, and H, are clas si fied as non vul ner able to
fam ine, while house holds in ter mi nal nodes B, C, E, and G are clas si -
fied as vul ner able.

The se quen tial struc ture lead ing to ter mi nal node B in di cates
that this set of vul ner able house holds has ex tremely low non ce real
yield per hec tare, one ox or none, low crop di ver sity, and high TLU per 
cap ita. These are typi cally ex tremely poor house holds whose live li -
hoods ap pear to de pend mostly on live stock hold ings. In deed, ex ami -
na tion of the data set shows that 87.5 per cent of the vul ner able
house holds at this ter mi nal node come from a sur vey site where
70 per cent of the house holds re ported re duc tion in the number of
meals con sumed dur ing the Ethio pian fam ine of the 1980s. Fur ther -
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more, it is a pas toral site (Beke Pond) lo cated in a low land area where
live stock rather than farm ing sus tain well- being. Most of the char ac -
ter is tics of house holds in this ter mi nal are cap tured by the four vari -
ables used to ar rive at the node.

House holds in ter mi nal node C are iden ti fied by ex tremely low
non ce real yield per hec tare own er ship of one ox or none, at least av er -
age crop di ver sity, and a house hold size of at most 6.5. Ex ami na tion of 
the data set shows that 71 per cent of the vul ner able house holds at
this ter mi nal node come from the Dinki area, which was the sur vey
site most af fected by the fam ine of the 1980s (Webb et al. 1992).
Nearly 71 per cent of the house holds at this sur vey site re ported re duc -
ing the number of meals con sumed dur ing the fam ine. Clearly, the
four vari ables that lead to this ter mi nal node along with their cut off
points form the best in di ca tors of vul ner abil ity to fam ine for house -
holds at this lo ca tion.

Ter mi nal node E char ac ter izes vul ner able house holds as those
with ex tremely low non ce real yield per hec tare, less than two oxen, at
least av er age crop di ver sity, large house hold size, and al most all in -
come de rived from ag ri cul ture. Fifty per cent of the vul ner able house -
holds at this ter mi nal node come from the Dinki sur vey site.

Ter mi nal node G is a pure node. It con tains only house holds that
are vul ner able to fam ine. These are house holds with ex tremely low
non ce real yield per hec tare, at least two oxen, and a large per cap ita
live stock hold ing. The vul ner able house holds at this ter mi nal node
come from Beke Pond (a pas toral site).

The most in ter est ing as pect of this ex er cise is that the CART pro ce -
dure iden ti fied the char ac ter is tics of house holds most af fected by the
fam ine of the 1980s by us ing only 6 of the 27 vari ables. These 6 vari -
ables along with their cut off points carry most of the in for ma tion re -
quired for es tab lish ing tree- structured clas si fi ca tion rules that could
iden tify vul ner able house holds in the fu ture. Vul ner able house holds at
Dinki and Beke Pond ac count for 67 per cent of all vul ner able house -
holds in the 7 sur vey sites. CART has suc cess fully un tan gled the com -
plexi ties of a data set and iden ti fied the in di ca tors of house holds vul -
ner able to fam ine.

Be sides CART, a number of other meth ods and pro ce dures for clas -
si fy ing data ex ist. These meth ods fall into two groups.

The meth ods in Group 1 gen er ate clas si fi ca tion trees. AID is an ac -
ro nym for Auto matic In ter ac tion De tec tion. It is a clas si fi ca tion al go -
rithm de vel oped by J. N. Mor gan and J. A. Son quist in 1963 at the Uni -
ver sity of Michi gan. The AID al go rithm led to the de vel op ment of

8

HIGHLIGHTS
OF OTHER

CLASSIFICATION 
METHODS AND
PROCEDURES

Group 1      Group 2       

AID Dis crimi nant analy sis
THAID Ker nel den sity es ti ma tion
CHAID Kth near est neigh bor

Lo gis tic re gres sion
Pro bit mod els



THAID (a se quen tial search pro gram for analy sis of nomi nal scale de -
pend ent vari ables) by Mor gan and Mes sen ger at the Uni ver sity of
Michi gan in 1973, and Chi- squared Auto matic In ter ac tion De tec tion
(CHAID) by Kass in 1980. These three pro ce dures gen er ate mul ti level
splits in pro duc ing clas si fi ca tion trees. Un like CART, they are not
distribution- free and they all em ploy sig nifi cance tests on pre dic tor
vari ables to gen er ate node splits and de ter mine the size of a tree. These 
two meth ods dif fer from CART in the pro cess of tree grow ing and prun -
ing and es ti ma tion of pre dic tive er ror re sults.

The meth ods in Group 2 do not pro duce clas si fi ca tion trees. They all 
assume func tional rela tion ships between depend ent and pre dic tor
vari ables. Dis crimi nant analy sis, Ker nel den sity esti ma tion, and Kth
near est neigh bor are the most widely used clas si fi ca tion meth ods.
Breiman et al. (1984, 15–17) pro vide details on these meth ods and their 
weak nesses. Since dis crimi nant analy sis or its varia tion, lin ear dis -
crimi nant func tion, has been widely used as a clas si fi ca tion method,
espe cially in edu ca tion and in psy chol ogy, busi ness, and mar ket ing
research (for exam ple, in prod uct tar get ing and mar ket seg men ta tion),
a brief review of the meth od ol ogy fol lows.

In or der to use the lin ear dis crimi nant func tion method, the fol low -
ing dis tri bu tional as sump tions must hold (Mad dala 1983):

1. All of the pre dic tor vari ables should fol low mul ti vari ate nor mal
dis tri bu tion for each class of depend ent vari able, and

2. The variance- covariance matrixes of each class should be equal.

The pro ce dure first forms a lin ear com bi na tion of pre dic tor vari -
ables and then the co ef fi cients of the vari ables in the lin ear com bi na -
tion are es ti mated. This is fol lowed by com pu ta tion of a dis crimi nant
score for each case or ob ser va tion us ing the es ti mated co ef fi cients and
the cor re spond ing val ues of the pre dic tor vari ables. A clas si fi ca tion
rule is formed by ap ply ing Baye’s Rule to the dis crimi nant scores.

The dis tri bu tional as sump tion of nor mal ity is strong and the meth -
od ol ogy is used re gard less of whether the as sump tions hold for every
vari able used in the analy sis. The method is de signed to han dle only
con tinu ous pre dic tor vari ables. Cate gori cal pre dic tor vari ables need to
be trans formed into a se ries of dummy vari ables. This ad di tional task
leads to the prob lem of di men sion al ity (hav ing too many vari ables).
Fur ther more, all vari ables that en ter into lin ear com bi na tion have to
be com plete. That is, no case with miss ing val ues for a vari able can be
used in the analy sis. Ob ser va tions with miss ing val ues for a vari able
have to be dropped. This may re sult in bias due to re duced sam ple size.
Also, the pro ce dure is known to yield poor re sults if the pre dic tor vari -
ables are all bi nary or a mix ture of con tinu ous and bi nary.

Lo gis tic re gres sion and pro bit mod els are other para met ric meth -
ods used in clas si fi ca tion stud ies. The fi nal out come of these meth ods
yields the pro por tion of pre dicted cases that falls into dif fer ent cate go -
ries of the de pend ent vari able. As in lin ear dis crimi nant analy sis, these 
meth ods are not distribution- free, do not have any pro vi sion for ana lyz -
ing cases with miss ing val ues for a vari able, and deal only with cate -
gori cal de pend ent vari ables. As in all para met ric mod els, the vari ables
used in the analy sis are en tirely de ter mined by the ana lyst.
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CART meth od ol ogy fur ther de vel ops and en hances the work on
clas si fi ca tion meth od ol ogy of AID and THAID (Brei man et al. 1984).
But CART over comes the prob lems as so ci ated with these al go rithms
and some of the draw backs as so ci ated with the clas si fi ca tion meth ods
in Group 2.

Brei man et al. (1984) made sev eral com para tive analy ses of CART
and dis crimi nant analy sis re sults and found that CART per formed bet -
ter than dis crimi nant analy sis. Ma rais, Pa tell, and Wolf son (1985) also
noted simi lar find ings in their clas si fi ca tion study of com mer cial loans,
as did Srini vasan and Kim (1987) in their credit- granting study. But in
mod els where lin ear struc ture and the as sump tion of nor mal ity hold,
Brei man et al. (1984) found that re sults from dis crimi nant analy sis
were bet ter than those from CART. Re gard less of the prob lems with
other pro ce dures, Brei man et al. (1984) ad vise not to use CART “to the
ex clu sion of other meth ods.” When ever pos si ble, one of the other meth -
ods should be used for com para tive pur poses.

Brei man et al. (1984) and Ste in berg and Colla (1995) pro vide a number
of jus ti fi ca tions for us ing CART. A few of them are listed be low.

1. CART makes no dis tri bu tional assump tions of any kind for
depend ent and inde pend ent vari ables. No vari able in CART is
assumed to fol low any kind of sta tis ti cal dis tri bu tion.

2. The explana tory vari ables in CART can be a mix ture of cate gori -
cal and con tinu ous.

3. CART has a built- in algo rithm to deal with the miss ing val ues of 
a vari able for a case, except when a lin ear com bi na tion of vari -
ables is used as a split ting rule (see Chap ter 3).

4. CART is not at all affected by the out liers, col line ari ties, het ero -
ske das tic ity, or dis tri bu tional error struc tures that affect para -
met ric pro ce dures. Out liers are iso lated into a node and thus
have no effect on split ting. Con trary to situa tions in para met ric
mod el ing, CART makes use of col lin ear vari ables in “sur ro gate”
splits.

5. CART has the abil ity to detect and reveal vari able inter ac tions
in the data set.

6. CART does not vary under a mono tone trans for ma tion of inde -
pend ent vari ables; that is, the trans for ma tion of explana tory
vari ables to loga rithms or squares or square roots has no effect
on the tree pro duced.

7. In the absence of a the ory that could guide a researcher, in a
fam ine vul ner abil ity study, for exam ple, CART can be viewed as
an explora tory, ana lyti cal tool. The results can reveal many
impor tant clues about the under ly ing struc ture of fam ine vul -
ner abil ity.

8. CART’s major advan tage is that it deals effec tively with large
data sets and the issues of higher dimen sion al ity; that is, it can
pro duce use ful results from a large number of vari ables sub mit -
ted for analy sis by using only a few impor tant vari ables.

9. The inverted- tree- structure results gen er ated from CART
analy sis are easy for any one to under stand in any dis ci pline.
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CART analy sis does have some limi ta tions, how ever.1 CART is a
blunt in stru ment com pared to many other sta tis ti cal and ana lyti cal
tech niques. At each stage, the sub di vi sion of data into two groups is
based on only one value of only one of the po ten tial ex plana tory vari -
ables. If a sta tis ti cal model that ap pears to fit the data ex ists, and if its
ba sic as sump tions ap pear to be sat is fied, that model would be pref er -
able, in gen eral, to a CART tree.

A weak ness of the CART method and, hence, of the con clu sions it
may yield is that it is not based on a prob abil is tic model. There is no
prob abil ity level or con fi dence inter val asso ci ated with pre dic tions
derived from a CART tree that could help clas sify a new set of data. The 
con fi dence that an ana lyst can have in the accu racy of the results pro -
duced by a given CART tree is based purely on that tree’s his tori cal
accu racy—how well it has pre dicted the desired response in other,
simi lar cir cum stances. This is essen tially how the struc ture of the tree
is deter mined in the first place, through k-fold cross- validation, which
will be dis cussed in Chap ter 3.
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BASIC PRINCIPLES OF CART
METHODOLOGY

Ac cu racy is the most im por tant fea ture of a clas si fi ca tion tree. All clas -
si fi ca tion pro ce dures, how ever, in clud ing CART, can pro duce er rors.
The CART pro ce dure does not make any dis tri bu tional as sump tions on
co vari ates; hence, hy pothe sis test ing is not pos si ble. Con fi dence in
CART’s per form ance, there fore, has to be based pri mar ily on an as sess -
ment of the ex tent of mis clas si fi ca tion it gen er ates from data sets with
known class dis tri bu tions and on knowl edge of and ex pe ri ence with the
sub ject mat ter un der study.

The best way to test the pre dic tive ac cu racy of a tree is to take an
in de pend ent test data set with known class dis tri bu tions and run it
down the tree and de ter mine the pro por tion of cases miss clas si fied. In
em piri cal stud ies, the pos si bil ity of get ting such a data set is re mote. To 
over come this dif fi culty, Brei man et al. (1984) pro vide three pro ce dures 
for es ti mat ing the ac cu racy of tree- structured clas si fi ers.

First, let

c(X) or c = a tree- structured clas si fier, where X is a vec tor of
char ac ter is tics vari ables that de scribe an
ob ser va tion;

R*[c(X)] = the clas si fi er’s “true” mis clas si fi ca tion rate; and
L = the learn ing sam ple (the sam ple data from which to

con struct a clas si fi ca tion tree).

The three es ti ma tion pro ce dures be low have two ob jec tives: con -
struct ing a clas si fi ca tion tree, c(X), and then find ing an es ti mate of
R*[c(X)].

1. Resub sti tu tion Esti mate, R[c(X)]. This esti mates the accu racy of
the true mis clas si fi ca tion rate, R*[c(X)], as fol lows:

1a. Build a clas si fi ca tion tree, c(X), from the learn ing sam ple L,
and save it.

1b. Apply the tree, c(X), to the data set from which it is built.
That is, let the obser va tions in the sam ple run down the tree 
one at a time.

1c. Com pute the pro por tion of cases that are mis clas si fied. This
pro por tion is the resub sti tu tion esti mate, R[c(X)], of the
true mis clas si fi ca tion rate, R*[c(X)].

The resub sti tu tion esti mate tests the accu racy of a clas si fier by
apply ing it to obser va tions for which the classes are known. The major
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weak ness of this esti ma tor of the error rate is that it is derived from the 
same data set from which the tree is built; hence, it under es ti mates the
true mis clas si fi ca tion rate. The error rate is always low in such cases.

2. Test- sample esti mate. If the sam ple is large,

2a. Divide the obser va tions in the learn ing sam ple, L, into two
parts: L1 and L2. L1 and L2 need not be equal. For exam ple,
two- thirds of the cases in L can be cho sen ran domly to con -
sti tute L1, and the remain ing one- third can con sti tute cases
in L2.

2b. Use L1 to build the clas si fier, c(X), and save it.
2c. Run obser va tions in L2 down the tree, c(X), one at a time.
2d. Com pute the pro por tion of cases that are mis clas si fied. This 

pro por tion is the test- sample esti mate, R[c(X)], of the “true”
mis clas si fi ca tion rate, R*[c(X)]. In large sam ples, this esti -
mate pro vides an unbi ased esti mate of the true mis clas si fi -
ca tion rate.

3. K-fold cross- validation. This is the rec om mended pro ce dure for
small sam ples and it works as fol lows:

3a. Divide the learn ing sam ple, L, into K sub sets of an equal
number of obser va tions. Let L1, L2, ..., Lk be the subsam ples.

3b. Con struct a clas si fier, c(X), from the k–1 subsam ples by
leav ing out, say, the kth subsam ple, Lk.

3c. Save the result ing clas si fier, c(X).
3d. Apply the saved clas si fier, c(X), to the excluded subsam -

ple, Lk, and esti mate R[c(X)] as the pro por tion of mis clas -
si fied obser va tions. Denote this esti mate as Rts[ck(X)],
where k denotes k-fold cross- validation, and ts denotes
test sam ple.

3e. Repeat steps 3b, 3c, and 3d, using all subsam ples except the
subsam ple Lk–1. The subsam ple Lk–1 now becomes a test
sam ple. The process above is repeated until every subsam -
ple is used once in the con struc tion of c(X) and once as a test
sam ple. The result is a series of test sam ple resub sti tu tion
esti mates,

Rts[ck(X)], Rts[ck–1(X)],.., Rts[c1(X)].

3f. Add the series of Rts[ck(X)], Rts[ck–1(X)],..., Rts[c1(X)] gen er -
ated from the k-fold cross- validation and get an esti mate of
R[c(X)]; that is, the k-fold cross- validation esti mate Rck(c) of
R[c(X)] is given as

 R c k R cck ts

k

k( ) / [ ],( )=
=∑1
1

which is an av er age of the er ror rates from k cross- validation tests. For
ex am ple, if k =10, then the av er age is over the 10 test sam ples. Ten fold
cross- validation is rec om mended.
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In con struct ing a clas si fi ca tion tree, CART makes use of prior prob -
abili ties (pri ors). A brief re view of pri ors and their varia tions as used in
CART is pro vided.

Prior prob abili ties play a cru cial role in the tree- building pro cess.
Three types of pri ors are avail able in CART: pri ors data, pri ors equal,
and pri ors mixed. They are ei ther es ti mated from data or sup plied by
the ana lyst.

In the fol low ing dis cus sion, let

N = number of cases in the sam ple,
Nj = number of class j cases in the sam ple, and
πj = prior prob abili ties of class j cases.

•Pri ors data as sumes that dis tri bu tion of the classes of the de pend ent
vari able in the popu la tion is the same as the pro por tion of the classes 
in the sam ple. It is es ti mated as πj = Nj /N.

•Pri ors equal as sumes that each class of the de pend ent vari able is
equally likely to oc cur in the popu la tion. For ex am ple, if the de pend -
ent vari able in the sam ple has two classes, then prob(class 1) =
prob(class 2) = 1/2.

•Pri ors mixed is an av er age of pri ors equal and pri ors data for any
class at a node.

Three com po nents are re quired in the con struc tion of a clas si fi ca tion
tree: (1) a set of ques tions upon which to base a split; (2) split ting rules
and goodness- of- split cri te ria for judg ing how good a split is; and
(3) rules for as sign ing a class to each ter mi nal node. Each of these com -
po nents are dis cussed be low.

Two ques tion for mats are de fined in CART: (1) Is X ≤ d?, if X is a con -
tinu ous vari able and d is a con stant within the range of X val ues. For
ex am ple, is in come ≤ 2,000? Or (2) is Z = b?, if Z is a cate gori cal vari able 
and b is one of the in te ger val ues as sumed by Z. For ex am ple, is  sex = 1?

The number of pos si ble split points on each vari able is lim ited to
the number of dis tinct val ues each vari able as sumes in the sam ple. For
ex am ple, if a sam ple size equals N, and if X is a con tinu ous vari able and 
as sumes N dis tinct points in the sam ple, then the maxi mum number of
split points on X is equal to N. If Z is a cate gori cal vari able with m dis -
tinct points in a sam ple, then the number of pos si ble split points on Z
equals 2m–1 –1 (Brei man et al. 1984, 30). Un less oth er wise speci fied,
CART soft ware as sumes that each split will be based on only a sin gle
vari able.

This com po nent re quires defi ni tion of the im pu rity func tion and im pu -
rity meas ure. Let

j = 1,2,...,k be the number of classes of cate gori cal de pend ent vari ables;

then de fine p(j|t) as class prob abil ity dis tri bu tion of the de pend ent
vari able at node t, such that p(1|t) + p(2|t) + p(3|t) + ... + p(k|t) = 1, j =
1, 2, ... , k. Let i(t) be the im pu rity meas ure at node t. Then de fine i(t) as
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a func tion of class prob abili ties p (1|t), p(2|t), p (3|t), . . . . Mathe mati -
cally, i (t) = φ [p(1|t), p (2|t), . . . , p (j|t)]. The defi ni tion of im pu rity
meas ure is ge neric and al lows for flexi bil ity of func tional forms.

Split ting Rules. There are three major split ting rules in CART: the
Gini cri te rion, the twoing rule, and the lin ear com bi na tion splits. In
addi tion to these main split ting rules, CART users can define a number 
of other rules for their own ana lyti cal needs. CART uses the Gini cri te -
rion (also known as Gini diver sity index) as its default split ting rule.
The twoing rule is dis cussed in detail in Brei man et al. 1984 and will
not be cov ered here. A brief expo si tion of the lin ear com bi na tion splits
is pro vided later in this chap ter.

The Gini im pu rity meas ure at node t is de fined as i (t) = 1 – S, where
S (the im pu rity func tion) = ∑p2

 (j|t), for j =1,2, . . . , k (Ste in berg and
Colla 1995; Brei man et al. 1984).

The im pu rity func tion at tains its maxi mum if each class (vul ner -
able or not) in the popu la tion oc curs with equal prob abil ity. That is,
p (1|t) = p (2|t) =  . . .  = p (j|t). On the other hand, the im pu rity func tion
at tains its mini mum (= 0) if all cases at a node be long to only one class.
That is, if node t is a pure node with a zero mis clas si fi ca tion rate, then
i(t) = 0.

Goodness- of- Split Cri te ria. Let s be a split at node t. Then, the good -
ness of split “s” is de fined as the de crease in im pu rity meas ured by

∆i s t i t p i t p i tL L R R( , ) ( ) [ ( )] [ ( )].= − −

where

s = a par ticu lar split,
pL = the pro por tion of the cases at node t that go

into the left child node, tL ,
pR = the pro por tion of cases at node t that go into

the right child node, tR ,
i tL( ) = im pu rity of the left child node, and
i tR( ) = im pu rity of the right child node.

There are two rules for as sign ing classes to nodes. Each rule is based on 
one of two types of mis clas si fi ca tion costs.

1. The Plu ral ity Rule: Assign ter mi nal node t to a class for which
p(j|t) is the high est. If the major ity of the cases in a ter mi nal
node belong to a spe cific class, then that node is assigned to that
class. The rule assumes equal mis clas si fi ca tion costs for each
class. It does not take into account the sever ity of the cost of
mak ing a mis take. This rule is a spe cial case of rule 2.

2. Assign ter mi nal node t to a class for which the expected mis clas -
si fi ca tion cost is at a mini mum. The appli ca tion of this rule takes 
into account the sever ity of the costs of mis clas si fy ing cases or
obser va tions in a cer tain class, and incor po rates cost vari abil ity
into a Gini split ting rule.
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When deal ing with fam ine vul ner abil ity, for ex am ple, mis clas si fy -
ing a vul ner able house hold as non vul ner able has more se vere con se -
quences than mis clas si fy ing a non vul ner able house hold as vul ner able.
Vari able costs can be ac counted for by de fin ing a ma trix of vari able
mis clas si fi ca tion costs that can be in cor po rated into the split ting rules.

Let c(i|j) = the cost of clas si fy ing a class j case as a class i case:

c(i|j) ≥ 0 if i ≠j, c(i|j) = 0 if i = j.

Now, as sume that there are two classes in a prob lem. Let

πt (1) = prior prob abil ity of class 1 at node t,
πt (2) = prior prob abil ity of class 2 at node t,
r1 (t) = the cost of as sign ing node t to class 1, and
r2 (t) = the cost of as sign ing node t to class 2.

Given pri ors and vari able mis clas si fi ca tion costs, r1(t) and r2(t) are
es ti mated as fol lows:

r1(t) = π(1) ⋅ c(2|1),
and

r2(t) = π(2) ⋅ c(1|2).

Ac cord ing to rule 2, if at node t, r1(t) < r2(t), node t is as signed to
class 1. If c(2|1) = c(1|2), then rule (1) ap plies and a node is as signed to
a class for which the prior prob abil ity is the high est.

The tree- building pro cess starts by par ti tion ing a sam ple or the root
node into bi nary nodes based upon a very sim ple ques tion of the form

is X ≤ d?,

where X is a vari able in the data set and d is a real number. Ini tially, all 
ob ser va tions are placed in the root node. This node is im pure or het -
eroge nous be cause it con tains ob ser va tions of mixed classes. The goal is 
to de vise a rule that will break up these ob ser va tions and cre ate groups
or bi nary nodes that are in ter nally more ho moge nous than the root
node. CART uses a computer- intensive al go rithm that searches for the
best split at all pos si ble split points for each vari able. The meth od ol ogy
that CART uses for grow ing trees is tech ni cally known as bi nary re cur -
sive par ti tion ing (Ste in berg and Colla 1995). Start ing from the root
node, and us ing, for ex am ple, the Gini di ver sity in dex as a split ting
rule, the tree build ing pro cess is as fol lows:

1. CART splits the first vari able at all of its pos si ble split points (at
all of the val ues the vari able assumes in the sam ple). At each
pos si ble split point of a vari able, the sam ple splits into binary or
two child nodes. Cases with a “yes” response to the ques tion
posed are sent to the left node and those with “no” responses are
sent to the right node.
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2. CART then applies its goodness- of- split cri te ria to each split
point and evalu ates the reduc tion in impu rity that is achieved
using the for mula

∆i s t i t p i t p i tL L R R( , ) ( ) [ ( )] [ ( )],= − −

which was de scribed ear lier.
3. CART selects the best split of the vari able as that split for which

the reduc tion in impu rity is high est.
4. Steps 1–3 are repeated for each of the remain ing vari ables at the

root node.
5. CART then ranks all of the best splits on each vari able accord ing

to the reduc tion in impu rity achieved by each split.
6. It selects the vari able and its split point that most reduced the

impu rity of the root or par ent node.
7. CART then assigns classes to these nodes accord ing to the rule

that mini mizes mis clas si fi ca tion costs. CART has a built- in
algo rithm that takes into account user- defined vari able mis clas -
si fi ca tion costs dur ing the split ting process. The default is unit
or equal mis clas si fi ca tion costs.

8. Because the CART pro ce dure is recur sive, steps 1–7 are repeat -
edly applied to each non ter mi nal child node at each suc ces sive
stage.

9. CART con tin ues the split ting process and builds a large tree.
The larg est tree is built if the split ting process con tin ues until
every obser va tion con sti tutes a ter mi nal node. Obvi ously, such
a tree will have a large number of ter mi nal nodes, which will be 
either pure or have very few cases (less than 10; Ste in berg and
Colla 1995).

This split ting rule is an al ter na tive to CART’s use of a sin gle vari able
for split ting. It is de signed for situa tions where the class struc ture of
the data ap pears to de pend on lin ear com bi na tions of vari ables. In
lin ear com bi na tion splits, the ques tion posed for a node split takes the
fol low ing form:

Is  α α1 1 2 2 40⋅ + ⋅ ≤X X ?
For ex am ple,

is .55 ⋅ con sump tion + .05 ⋅ age ≤ 40?

If the re sponse to the ques tion is “yes,” then the case is sent to the
left node, and if the re sponse is “no,” then the case is sent to the right
node.

This rule is valid only for cases with no miss ing val ues on pre dic -
tor vari ables. Fur ther more, if cate gori cal vari ables have to be in -
cluded in the model, they should be con verted to sets of dummy vari -
ables. If this op tion is cho sen as a split ting method, it should be
speci fied on the com mand line. The syn tax for the com mand line is
pro vided in Chap ter 5.
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In com plete ness of data may be a prob lem for con ven tional sta tis ti cal
analy sis, but not for CART. It makes use of a “sur ro gate” vari able split -
ting rule. A sur ro gate vari able in CART is that vari able that mim ics or
pre dicts the split of the pri mary vari able. If a split ting vari able used for 
tree con struc tion has miss ing val ues for some cases, those cases are not 
thrown out. In stead, CART clas si fies such cases on the ba sis of the best
sur ro gate vari able (the vari able with a close re sem blance to the pri -
mary split vari able). The sur ro gate may have a dif fer ent cut off point
from the pri mary split, but the number of cases the sur ro gate split
sends into left and right nodes should be very close to that with the pri -
mary split. By de fault, CART analy sis pro duces five sur ro gate vari -
ables as part of its stan dard out put. Sur ro gate splits are avail able only
for splits based on a sin gle vari able. They are not avail able if the lin ear
com bi na tion split ting rule is se lected.

Apart from han dling the miss ing data points of a case, sur ro gate
vari ables can also be used for de tect ing the mask ing of vari ables and de -
ter min ing the rank of vari ables im por tant ei ther in ac tual or po ten tial
tree con struc tion. Ap pen dix 1, Ex am ple 1 pro vides a list of sur ro gates
pro duced with the Ethio pian data and a col umn of vari able im por tance
(the rela tive im por tance of vari ables).

Out liers among the in de pend ent vari ables rarely af fect CART analy sis, 
be cause splits are gen er ally de ter mined at non- outlier val ues. If out -
liers ex ist in the de pend ent vari able, they are iso lated in small nodes,
where they do not af fect the rest of the tree (Webb et al. 1994).

Large trees can have two prob lems: (1) Al though they are highly ac cu -
rate, with low or zero mis clas si fi ca tion rates, large trees pro vide poor
re sults when ap plied to new data sets (Ste in berg and Colla 1995). And
(2) un der stand ing and in ter pret ing trees with a large number of ter mi -
nal nodes is a com pli cated pro cess. Hence, large trees are re ferred to as
com plex trees. The com plex ity of a tree is meas ured by the number of
its ter mi nal nodes.

De par tures from the ideal situa tion of low or zero mis clas si fi ca tion
en tails a trade- off be tween ac cu racy and tree com plex ity. The re la tion -
ship be tween tree com plex ity and ac cu racy can be un der stood with the
cost com plex ity meas ure, which is de fined as

Cost Com plex ity = Re sub sti tu tion Mis clas si fi ca tion Cost

 + β ⋅ Num ber of ter mi nal nodes,

where β is pen alty per ad di tional ter mi nal node. If β = 0, then cost com -
plex ity at tains its mini mum for the larg est pos si ble tree. On the other
hand, as β in creases and is suf fi ciently large (say, in fin ity), a tree with
one ter mi nal node (the root node) will have the low est cost com plex ity.
As val ues of β de crease and ap proach zero, trees that mini mize cost
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com plex ity be come larger. The “right- sized” tree 
with “cor rect” com plex ity should lie be tween
these two ex tremes. Brei man et al. 1984 dis cuss
how to es ti mate β and of fer a de tailed ac count of
the prun ing pro cess.

The search for the “right- sized” tree starts
by prun ing or col laps ing some of the branches of 
the larg est tree (Tmax) from the bot tom up, using 
the cost com plex ity parame ter and cross-
 validation or an inde pend ent test sam ple to
meas ure the pre dic tive accu racy of the pruned
tree. Hypo theti cal exam ples of the larg est pos -
si ble tree (Tmax), the pruned branch, and the
pruned tree are given in Fig ures 2, 3, and 4,
respec tively. These exam ples illus trate only
one of the many pos si bili ties in the tree- growing 
and tree- pruning process.

The prun ing process pro duces a series of
sequen tially nested sub trees along with two
types of mis clas si fi ca tion costs and cost-
 complexity- parameter val ues. These are the
cross- validated relative- error cost from apply -
ing ten fold cross- validation and the resub sti tu -
tion rela tive cost gen er ated from the learn ing
sam ple. The trade- off between cost com plex ity
and tree size can be seen in the last col umn of
Table 2. Using the resub sti tu tion cost, CART
ranks the sub trees and gen er ates a tree
sequence table ordered from the most com plex
tree at the top to a less com plex tree with one
ter mi nal node at the bot tom (Table 2). It is a
real exam ple, taken from the com puter out put
that pro duced Fig ure 1.

In other words, the tree- sequence ta ble pro -
vides sub trees with a de creas ing com plex ity (a
de creas ing number of ter mi nal nodes) and an
in creas ing cost (re sub sti tu tion rela tive cost).
CART fi nally iden ti fies the minimum- cost tree,
and picks an op ti mal tree as the tree within one
stan dard er ror of the minimum- cost tree. The
op tion of a one- standard- error rule can be
changed by the data ana lyst. But the rea son for
us ing a one- standard- error rule is that there
may be other trees with cross- validated er ror
rates close to those of the minimum- cost tree.
Brei man et al. (1984) sug gest that an op ti mal
tree should be the one with the small est ter-
 minal nodes among those that lie within one
stan dard er ror of the minimum- cost tree. The
minimum- cost tree it self could be come the
“right- sized” or the optimal- cost tree.
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Figure 2—An example of the largest CART
tree (Tmax)

Figure 3—Branch 3 of the largest CART tree 

Figure 4—Pruned tree



In Table 2, the cross- validated relative- cost col umn shows that
cross- validation error ini tially decreases as com plex ity decreases,
reaches a mini mum, and then increases. CART picks the tree with the
mini mum cross- validated cost as the minimum- cost tree, which is
marked by an aster isk. The minimal- cost tree has 11 ter mi nal nodes
and a cross- validated cost of 0.603 +/– 0.057. The opti mal tree is
obtained by apply ing the one- standard- error rule to the minimum- cost
tree. Tree number 12 with 8 ter mi nal nodes meets the cri te ria of an
optimal- cost tree and it is iden ti fied by two aster isks. Tree number
10 with 12 ter mi nal nodes is another can di date for an opti mal tree.
How ever, it is more com plex than tree number 12.
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Table 2—Example of sequence of trees produced by pruning

Dependent variable: CUTDUM2

Tree
Num ber of

ter mi nal nodes
Cross- validated

rela tive cost
Re sub sti tu tion

rela tive cost
Com plex ity
parameter

 1 32 0.704 +/– 0.060 0.145 0.000
 8 16 0.639 +/– 0.058 0.244 0.008
 9 14 0.635 +/– 0.058 0.276 0.008
10 12 0.632 +/– 0.058 0.310 0.008
11* 11 0.603 +/– 0.057 0.332 0.011
12**  8 0.634 +/– 0.058 0.430 0.016
13  7 0.668 +/– 0.059 0.464 0.017
14  5 0.687 +/– 0.059 0.540 0.019
15  3 0.700 +/– 0.058 0.619 0.020
16  2 0.729 +/– 0.048 0.696 0.038
17  1 1.000 +/– 0.000 1.000 0.152

Ini tial mis clas si fi ca tion cost = 0.500
Ini tial class as sign ment = 0

 * in di cates minimum- cost tree.
** in di cates optimum- cost tree.



REGRESSION TREES:
AN OVERVIEW

Recall from Chap ter 1 that CART pro duces a clas si fi ca tion tree when
the depend ent vari able is cate gori cal and a regres sion tree when the
depend ent vari able is con tinu ous. The process of con struct ing a regres -
sion tree is simi lar to that for a clas si fi ca tion tree. But in build ing a
regres sion tree, there is no need to use pri ors and class assign ment
rules. Split ting rules, goodness- of- fit cri te ria, as well as meas ures of
accu racy of a tree in regres sion tree dif fer from those for a clas si fi ca tion 
tree. These issues will all be dis cussed in detail in the two sub sec tions
that fol low the regres sion tree exam ple below.

As with clas si fi ca tion, regression- tree build ing cen ters on three
ma jor com po nents: (1) a set of ques tions of the form, Is X ≤ d?, where X
is a vari able and d is a con stant; the re ponse to such ques tions is yes or
no; (2) goodness- of- split cri te ria for choos ing the best split on a vari -
able; and (3) gen era tion of sum mary sta tis tics for ter mi nal nodes. The
lat ter com po nent is unique to a re gres sion tree. In clas si fi ca tion trees,
the ter mi nal nodes are as signed to a spe cific class ac cord ing to the class 
as sign ment rule. In re gres sion trees, how ever, there are no classes to
which ter mi nal nodes are as signed. In stead, for each of the ter mi nal
nodes pro duced by CART re gres sion, sum mary sta tis tics of the de pend -
ent vari able are com puted.

The main pur pose of CART re gres sion is to pro duce a tree-
 structured pre dic tor or pre dic tion rule (Brei man et al. 1984). This pre -
dic tor serves two ma jor goals: (1) to pre dict ac cu rately the de pend ent
vari able from the fu ture or new val ues of the pre dic tor vari ables; and
(2) to ex plain the re la tion ships that ex ist be tween the de pend ent and
pre dic tor vari ables. The CART re gres sion pre dic tor is con structed by
de tect ing the het ero ge ne ity (in terms of vari ance of the de pend ent
vari able) that ex ists in the data set and then pu ri fyng the data set.
CART does this by re cur sively par ti tion ing a data set into groups or
ter mi nal nodes that are in ter nally more ho moge nous than their an -
ces tor nodes. At each ter mi nal node, the mean value of the de pend ent
vari able is taken as the pre dicted value. If the ob jec tive of a re gres sion 
tree is ex pla na tion, then this is achieved by track ing the paths of a
tree to a spe cific ter mi nal node.

An ex am ple of a re gres sion tree is given in Fig ure 5, and the list of
vari ables sup plied for gen er at ing the tree is given in Ta ble 3.
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Ta ble 3—Vari ables for awraja-level analy sis

Vari able             Defi ni tion

MZSHTTRD Re tail price of maize/pro ducer price of sheep terms of trade
MZSHTTMN Av er age of MZSHTTRD dur ing 1981–87
MZSHTTDV Stan dard De via tions of __RD from __MN
MZSHTTCV Co ef fi cient of varia tion of __RD dur ing 1981–87
CERLPROD Gross pro duc tion of all ce re als in tons
CERLMN Mean of CERLPROD dur ing 1981–87
CERLDV Stan dard De via tions of CERLPROD from CERLMN
CERLCV Co ef fi cient of varia tion of CERLPROD dur ing 1981–87
PCTBELG Per cent of an nual ce real pro duc tion from Belg sea son
PCTBLGMN Av er age of PCTBELG dur ing 1981–87
PCTBLGDV Stan dard De via tions of PCTBELG from PCTBLGMN
PCTBLGCV Co ef fi cient of varia tion of PCTBLG dur ing 1981–87
CERLPP Gross pro duc tion of all ce re als per cap ita ru ral popu la tion
AVGFAMSZ Av er age size of ru ral house hold
DEPRATIO De pend ency ra tio ( and 60 years old /to tal popu la tion 15–59 years old)
LITERATE Lit er acy ra tio of males 15 years old /to tal popu la tion 15 years old
TOTFERTR To tal fer til ity rate
GENFERTR Gen eral fer til ity rate
PAR4549R Av er age par ity (45–49 years)
ASDRRURL Age- specific death rates in ru ral ar eas
IMRRURAL In fant mor tal ity rate in ru ral ar eas
NPERRMRU Av er age peo ple shar ing bed room in ru ral ar eas
LIFEEXPR Life ex pec tancy in ru ral ar eas
CRDBRTHR Crude birth rate in ru ral ar eas
GRRERRUR Gross re pro duc tive rate
MLUPSLRM Soil loss rate es ti mates from Mas ter Land Use Plan
POPUME Ur ban male popu la tion
POPUFE Ur ban fe male popu la tion
POPURME Ru ral male popu la tion
POPRFE Ru ral fe male popu la tion
ALLKMKM2 All- weather road/square kilo me ter
AVGEP84R Av er age land ele va tion weighted by ru ral popu la tion
HLTHFIND In dex of health in fra struc ture based on need
PRPRFHHD Share of fe male heads in to tal number of house hold heads
PERENNLO Per cent farm ers with no per en nial crops
PERENNL1-5 Per cent farm ers with 1–5 per en nial crops
ANNUAL0 Per cent farm ers with no an nual crops
ANNUAL1-8 Per cent farm ers with 1–8 an nual crops
DISTBGMK Dis tance to large mar ket (kilo me ters)
DISTSMMK Dis tance to small mar ket (kilo me ters)
AVGHHINC Av er age house hold in come
GINIHINC Gini co ef fi cient of av er age house hold in come by awraja
PCTFRMRS Per cent ru ral popu la tion who are farm ers
AVGPCINC Av er age farm in come per cap ita

(con tin ued)
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Ta ble 3—(con tin ued)

Vari able            Defi ni tion

GINIPINC Gini co ef fi cient of AVGPCINC by woreda weighted by popu la tion
PCTFRALW Share farm ers that al ways or some times plant belg crop
PCTFRSOM Share farm ers that never plant belg crop
AVGNOXEN Av er age number of oxen owned
PCT0OXEN Per cent house holds with no oxen
ANNLPCHA Av er age area cul ti vated with an nual crops per cap ita
PRNLPCHA Av er age area cul ti vated with per en nial crops per cap ita
ANLAVG Av er age area cul ti vated with an nual crops by house hold
PERLAVG Av er age area cul ti vated with per en nial crops by house hold
FALAVGHA Av er age area fal lowed by house hold
AVGARAHA Av er age ar able land owned
PCTIRRIG Per cent of farm ers us ing ir ri ga tion
IRRIGHA To tal ir ri gated area
GINITLU Gini co ef fi cient of TLU own er ship (all spe cies)
GINIPCMK Gini co ef fi cient of per cent crop mar keted
PRIM0014 Per cent chil dren  years old with any school ing
BELGMN Av er age NDVI for Belg sea son by year
BELGMX Maxi mum NDVI for the sea son, av er age for all pix els by awraja
BELGMNMN __MN av er age for 1982–90
BELGMXMN __MX av er age for 1982–90
BELGMNCV __MN co ef fi cient of varia tion for 1982–90
BELGMXCV __MX co ef fi cient of varia tion for 1982–90
BELGMNDV Stan dard de via tions of __MN from __MNMN
BELGMXDV Stan dard de via tions of __MX from __MXMN
BELGSDMN Stan dard de via tions of sea son av er age dur ing 1982–90
BELGSXMN Stan dard de via tions of sea son maxi mum dur ing 1982–90
KIREMMN Av er age NDVI for Kirempt sea son by year
KIREMMX Maxi mum NDVI for the sea son, av er age for all pix els by awraja
KIRMNMN __MN av er age for 1982–90
KIRMXMN __MX av er age for 1982–90
KIRMNCV __MN co ef fi cient of varia tion for 1982–90
KIRMXCV __MX co ef fi cient of varia tion for 1982–90
KIRMNDV Stan dard de via tions of __MN from __MNMN
KIRMXDV Stan dard de via tions of __MX from __MXMN
KIRMSDMN Stan dard de via tions of sea son av er age dur ing 1982–90
KIRMSXMN Stan dard de via tions of sea son maxi mum dur ing 1982–90
BEGAMN Av er age NDVI for Bega sea son by year
BEGAMX Maxi mum NDVI for the sea son, av er age for all pix els by awraja
BEGAMNMN __MN av er age for 1982–90
BEGAMXMN __MX av er age for 1982–90
BEGAMNCV __MN co ef fi cient of varia tion for 1982–90
BEGAMXCV __MX co ef fi cient of varia tion for 1982–90
BEGAMNDV Stan dard de via tions of __MN from __MNMN
BEGAMXDV Stan dard de via tions of __MX from __MXMN

(con tin ued)



The pro cess of con struct ing a re gres sion tree is simi lar to that for build -
ing a clas si fi ca tion tree. Regression- tree build ing cen ters on three ma -
jor com po nents: (1) a set of ques tions of the form,

Is X ≤ d?,

where X is a vari able and d is a con stant. As with clas si fi ca tion, the re -
sponse to such ques tions is yes or no; (2) goodness- of- split cri te ria for
choos ing the best split on a vari able; and (3) the gen era tion of sum mary 
sta tis tics for ter mi nal nodes (unique to a re gres sion tree).

An ex am ple of a re gres sion tree is given in Fig ure 5, and the list of
vari ables sup plied for gen er at ing the tree is given in Ta ble 3.

The re gres sion tree in Fig ure 5 is based on analy sis from a re gional vul -
ner abil ity study in Ethio pia (Sey oum et al. 1995) that uses six years
(1982–87) of time- series data col lected from 77 ad min is tra tive re gions
(awra jas) of Ethio pia. The data con tain 92 vari ables, all listed in Ta ble 3.
This study of fam ine (Sey oum et al. 1995) had two spe cific goals: (1) to
de ter mine whether it is pos si ble to es ti mate or pre dict the per cent of
sed en tary popu la tion in need of food as sis tance, and (2) to un der stand
the vari abil ity in per cent ages of peo ple in need (PPND) across awra jas
and years. The de pend ent vari able in the study is PPND.

The top rec tan gle in Fig ure 5 con tains a to tal number of 462 ob ser -
va tions (N = 462) with an av er age PPND of 11 per cent. (Dur ing the
six- year pe riod of the study, an av er age of 11 per cent of the popu la tion 
was in need of food as sis tance.) The re gres sion tree pro duces 10 ter mi -
nal nodes or ho moge nous groups or awraja strata. Each group is iden -
ti fied by a number from 1 to 10. The spe cific path lead ing from the root 
node to the ter mi nal node for each group char ac ter izes that group. In
Fig ure 5, NDVI (nor mal ized dif fer ence vege ta tion in dex) is a crude es -
ti mate of vege ta tion health, and is used as an in dex of green ness. The
pos si ble range of val ues for NDVI is be tween –1 and 1. How ever, its
typi cal range is be tween – 0.1 (for not a green area) and 0.6 (for a very
green area). The higher the in dex, the greener the vege ta tion.

The first split of the root node is based on the long- term av er age
NDVI vari able. This split suc cess fully sepa rates awra jas with less green
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Ta ble 3—(con tin ued)

Vari able            Defi ni tion

BEGASDMN Stan dard de via tions of sea son av er age dur ing 1982–90
BEGASXMN Stan dard de via tions of sea son maxi mum dur ing 1982–90
NDVIMNMX Maxi mum of mean NDVIs for 3 sea sons av er aged for 1982–90
NDVIMXMX Maxi mum of sea son NDVI maxima av er aged for 1982–90
URBPOPSR Per cent ur ban popu la tion by awraja

Note: An awraja is an ad min is tra tive dis trict in Ethio pia be low the prov ince level; a woreda is an ad min is -
tra tive dis trict be low the awraja level.
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vege ta tion from awra jas with very green vege ta tion. The long- term av er -
age NDVI is in deed a pow er fully dis crimi nat ing vari able for study ing re -
gional vul ner abil ity. In awra jas with very green vege ta tion, av er age
PPND is 3 per cent, which is much lower than awra jas with less green
vege ta tion. Awra jas with greener vege ta tion are fur ther sepa rated us ing
the vari able for the long- term av er age maxi mum NDVI of the main rainy
sea son. This split re sults in two ter mi nal nodes: Group 9 and Group 10.
Pre dicted PPND is 9 per cent in Group 9 and 2 per cent in Group 10. The
low PPND for these two groups should not be sur pris ing. It can be ar gued
that these re gions have bet ter sup plies of food and, hence, food ac ces si bil -
ity, than awra jas with less green vege ta tion. In deed, it turns out that
these awra jas ex tend west, south, south west, and north west from cen tral 
Ethio pia (Webb et al. 1994, Map 6.0). These awra jas also pro duce sur plus 
grain in the coun try. Some awra jas in Group 9 do rep re sent pock ets of
vul ner abil ity in this surplus- producing re gion.

Awra jas in Groups 1 through 8 have at least one char ac ter is tic in
com mon. They all de scend from awra jas with a less green vege ta tion
in dex (long- term av er age NDVI ≤ 0.335). Group 1 awra jas are char ac -
ter ized by low long- term av er age NDVI, low sheep- to- maize terms of
trade, and low co ef fi cient of varia tion of dry sea son NDVI. There are
13 awra jas at this ter mi nal node with a pre dicted PPND of 14 per cent.
The fact that the long- term av er age NDVI is low sug gests that the
long- term an nual av er age rain fall in these awra jas is very low and crop 
pro duc tion is lim ited. This ob ser va tion is jus ti fied by the low sheep- to-
 maize terms of trade. A house hold can only buy 31.4 kilo grams or less
of maize with one sheep, in di cat ing that maize is scarce in these ar eas.
These awra jas are in south Gam gofa, north east Shoa, north east Bale,
and west Ha rarge re gions of Ethio pia. Gen er ally, rain fall in these re -
gions is far be low the na tional av er age.

Awra jas in Group 2 and Group 3 are both char ac ter ized by low long-
 term av er age NDVI, low sheep- to- maize terms of trade, a high co ef fi -
cient of varia tion of dry sea son NDVI, and low den sity of all- weather
roads per square kilo me ter. They are dis tinct from each other only be -
cause of house hold size. Group 2 awra jas have a lower house hold size
than those in Group 3. For the three awra jas in Group 2, pre dicted
PPND equals 74 per cent. For the 21 awra jas in Group 3, pre dicted
PPND equals 23 per cent. The awra jas in these two groups are lo cated in 
south ern Bale, south ern Si damo, east ern Gon dar, west ern Wollo, north -
east Wollo, and north Har erge re gions of Ethio pia. The trans por ta tion
net work in these re gions is lim ited due to land to pog ra phy. Not sur pris -
ingly, CART char ac ter izes these two groups as low in the den sity of all-
 weather roads per square kilo me ter. The re gions in these two groups
are also known for be ing among the most vul ner able to fam ine in Ethio -
pia. The re main ing ter mi nal nodes can be ana lyzed in a simi lar way.

Fig ure 5 dis plays the power of CART analy sis as did Fig ure 1. It
shows that CART has suc cess fully iden ti fied 10 groups of awra jas by
us ing only 9 out of the 92 vari ables sub mit ted for analy sis (Ta ble 3).
Each group is iden ti fied by the path that be gins at the root node and
ends at its ter mi nal node. The 9 vari ables along with their split points
carry all the in for ma tion that is needed to dif fer en ti ate groups of awra -
jas from each other.
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The mecha nism for build ing a re gres sion tree is simi lar to that for a
clas si fi ca tion tree. But with a re gres sion tree there is no need to spec ify
pri ors and mis clas si fi ca tion costs. Fur ther more, the de pend ent vari -
able in a re gres sion tree is nu meric or con tinu ous. The split ting cri te -
rion em ployed is the within- node sum of squares of the de pend ent vari -
able and the good ness of a split is meas ured by the de crease achieved in 
the weighted sum of squares. De tailed dis cus sion on split ting cri te ria
will be pro vided fur ther be low. The fol low ing list high lights the key
steps in con struct ing a re gres sion tree.

1. Start ing with the root node, CART per forms all pos si ble splits
on each of the pre dic tor vari ables, applies a pre de fined node
impu rity meas ure to each split, and deter mines the reduc tion in
impu rity that is achieved.

2. CART then selects the “best” split by apply ing the goodness- of- split 
cri te ria and par ti tions the data set into left- and right- child nodes.

3. Because CART is recur sive, it repeats steps 1 and 2 for each of
the non ter mi nal nodes and pro duces the larg est pos si ble tree.

4. Finally, CART applies its prun ing algo rithm to the larg est tree
and pro duces a sequence of sub trees of dif fer ent sizes from
which an opti mal tree is selected.

There are two split ting rules or im pu rity func tions for a re gres sion
tree. These are (1) the Least Squares (LS) func tion and (2) the Least
Ab so lute De via tion (LAD) func tion. Since the mecha nism for both rules 
is the same, only the LS im pu rity meas ure will be de scribed. Un der the
LS cri te rion, node im pu rity is meas ured by within- node sum of
squares, SS(t), which is de fined as

SS t y yi t t
( ) ( ) ,( ) ( )

= −∑ 2   for i = 1, 2, . . . , Nt ,

where yi t( ) = in di vid ual val ues of the de pend ent vari able at node t, and 
y t( ) = the mean of the de pend ent vari able at node t. Given the im pu rity
func tion, SS(t), and split s that sends cases to left (tL) and right (tR)
nodes, the good ness of a split is meas ured by the func tion

φ( , ) ( ) ( ) ( ),s t SS t SS t SS tR L= − −

where SS(tR) is the sum of squares of the right child node, and SS(tL) is
the sum of squares of the left child node.

The best split is that split for which φ(s,t) is the high est. From the
se ries of splits gen er ated by a vari able at a node, the rule is to choose
that split that re sults in the maxi mum re duc tion in the im pu rity of the
par ent node.

An al ter na tive to SS(t) is to use the weighted vari ance of left and
right nodes, where the weights are pro por tions of cases at nodes tL and
tR: let p(t) = Nt /N be the pro por tion of cases at node t, and let s2(t) be the
vari ance of the de pend ent vari able at node t. The vari ance is de fined as

s t
N

y y
t

i t
i

N t

2 2

1

1
( ) [ ] .

( )
( )= −

=
∑
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The good ness of a split is now meas ured by

φ( , ) ( ) [ ( ) ( )].s t s t p s t p s tL L R R= − +2 2 2

The best split is the one for which φ( , )s t  is the high est or for which the
weighted sum of the vari ances [ ( ) ( )]p s t p s tL L R R

2 2+   is the small est. The
pro ce dure suc cess fully sepa rates high val ues of the de pend ent vari able 
from its low val ues and re sults in left and right nodes that are now in -
ter nally more ho moge nous than the par ent node. It should be noted
that as each split sends ob ser va tions to the left and right nodes, the
mean of the de pend ent vari able in one of the re sult ing nodes is lower
than the mean at the par ent node (see the ex am ple in Fig ure 5).

After build ing the larg est pos si ble tree, CART applies its prun ing algo -
rithm by using either cross- validation or an inde pend ent test sam ple to 
meas ure the good ness of fit of the tree. LS uses Mean Squared Error
(MSE) to meas ure the accu racy of the pre dic tor in order to rank the
sequence of trees gen er ated by prun ing. LAD employs Mean Abso lute
Devia tion (MAD). Once a minimal- cost tree (the tree with the low est
MSE OR MAD) is iden ti fied, an opti mal tree is cho sen by apply ing the
one- standard- error rule to the minimal- cost tree. The one- standard-
 error rule is optional and can be changed by the ana lyst.

Af ter choos ing an op ti mal tree or, for that mat ter, any sub tree from
the se quence of sub trees gen er ated in the prun ing pro cess, CART com -
putes sum mary sta tis tics for each of the ter mi nal nodes. If LS is cho sen
as a split ting rule, CART com putes mean and stan dard de via tions of the 
de pend ent vari able. The mean of the ter mi nal node be comes the pre -
dicted value of the de pend ent vari able for cases in that ter mi nal node. If
LAD is se lected, CART gen er ates me dian and av er age ab so lute mean
de via tions of the de pend ent vari able. As with LS, the me dian be comes
the pre dicted value of the de pend ent vari able for that ter mi nal node.

This form of gen er at ing pre dic tions may sound crude to those who
are famil iar with pre dic tions from para met ric mod els. But it should be
noted that CART regres sion pre dic tions are arrived at by recur sively
split ting the sam ple and cre at ing groups or clus ters that are pro gres -
sively more homoge nous than their ances tor nodes. Brei man et al.
(1984) sug gest run ning OLS mod els in each group cre ated by the
regres sion tree and com par ing the OLS pre dic tions against each other.
A con sid er able dif fer ence between the pre dicted val ues of OLS mod els
for each group is an indi ca tion that CART has suc ceeded in uncov er ing
the com plex struc ture exist ing in the data set.
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CART SOFTWARE AND
PROGRAM CODES

CART soft ware is cur rently avail able for dif fer ent plat forms, as shown
in Ta ble 4. De tails on the cur rent ver sions of CART soft ware that are
com pati ble with dif fer ent plat forms may be ob tained from the ven dor
listed in Ta ble 4.

The soft ware comes with two com pletely docu mented manu als
that are easy to fol low. The first man ual (Ste in berg and Colla 1995)
pro vides a com pre hen sive back ground and con cep tual basis for
under stand ing CART. It also dis cusses the art of tree- structured data
analy sis, pro vides detailed list ings and expla na tions of CART com -
mands in SYSTAT syn tax, and explains how to use CART tech niques
and inter pret results. Even though CART com mands are in SYSTAT
syn tax, CART soft ware is a stand- alone appli ca tion that does not need 
SYSTAT soft ware. The sec ond man ual (Ste in berg, Colla, and Mar tin
1998) is for the Win dows oper at ing sys tems (Win dows 3.x and Win -
dows 95/NT). A detailed tuto rial cov ers the use of menus, the mouse,
the graphic inter face, and many other fea tures that are spe cific to the
Win dows ver sion.

The graphic inter face fea ture of Win dows is an extremely use ful
tool for CART data ana lysts. Win dows enables CART simul ta ne ously
to show tree topol ogy and the qual ity of an opti mal tree through a
graphic dis play of rela tive costs of trees ver sus the number of ter mi -
nal nodes. CART’s node navi ga tor fea ture enables the ana lyst to
imme di ately per form explora tory work on trees of dif fer ent sizes and
deter mine node sum mary infor ma tion for each exam ined tree. Thus
the ana lyst can inspect dif fer ent trees imme di ately in case the opti -
mal tree becomes unsat is fac tory. Any tree can be inspected by click -
ing on a tree from the series dis played graphi cally at the lower panel
of the node navi ga tor. Node sum mary infor ma tion for each tree can be
gen er ated for the level of detail desired. The results are dis played
graphi cally in the form of an inverted tree. This is an improve ment
over ear lier ver sions of CART, in which tree- structured graphs had
to be pro duced manu ally. In the Win dows ver sion the ana lyst is not
lim ited to using only menus. He/she can write CART com mands in
batch mode and sub mit them for analy sis while mak ing use of all
other fea tures avail able in Win dows.

The rest of this chap ter in tro duces ba sic CART com mands and
batch mode pro grams writ ten in SYSTAT syn tax. A few ba sic CART
com mands are pro vided in Ta ble 5. For greater de tail about CART com -
mands, the reader should re fer to Ste in berg and Colla (1995) or con tact
the ven dor listed in Ta ble 4.

5



CART can only read and pro cess data files that are in SYSTAT for mat.
There fore, the data for analy sis should be pre pared in SYSTAT. If data
are in other for mats, they should be con verted to a SYSTAT for mat us -
ing ei ther DBMSCOPY or the trans la tion util ity that comes with CART 
soft ware.

CART can be in voked in two ways. The DOS ver sion can be ac cessed by
typ ing CART at the prompt of the op er at ing sys tem and press ing the
en ter key. In the Win dows ver sion, CART is in voked by double- clicking
on the CART icon.

CART com mands should be writ ten in SYSTAT syn tax us ing any avail -
able edi tor. The fol low ing com mands pro duce a clas si fi ca tion tree.

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2
MODEL CUTDUM2
BUILD
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Hard ware and soft ware 

Hard ware require ments: In tel PCs, SUN, SGI, HP, Digi tal Al pha and VAX, IBMRS600

Op er at ing sys tems sup ported: Win dows 3.X, Win dows 95, Win dows NT, Ma cOS, UNIX, IBM
MVS and CMS

Mem ory require ments: May vary with ver sions of CART soft ware. CART for Win dows is
com piled for ma chines with at least 32 mega bytes of RAM. For
op ti mal per form ance, Pen tium ma chines with at least 32 mega -
bytes of RAM are rec om mended.

Hard disk space: At least 10 mega bytes for soft ware stor age

Com pany name: Sal ford Sys tems

Ad dress: 8888 Rio San Di ego Dr., Suite 1045
San Di ego, Cali for nia 92108  U.S.A.

Web ad dress: http://www.salford- systems.com

Tele phone: (619) 543–8880

Fax: (619) 543–8888

Tech ni cal sup port: Avail able ei ther by tele phone, fax, or let ter.

Num ber of vari ables
and obser va tions:

Com put ing re quires a mini mum of 16 mega bytes of free mem ory. 
Num ber of ob ser va tions and vari ables sup ported de pend on the
avail able mem ory.

Ta ble 4—Hard ware and soft ware re quire ments of CART for per sonal com put ers

Source: Fax mes sage re ceived from Sal ford Sys tems, Feb ru ary 1998, and
http://www.salford- systems.com/technical- CART.html, July 9, 1998.
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Com mand Syntax   Func tion (pur pose)    Examples 

USE USE file name Speci fies a file to read USE c:\CART\test1.sys 

EX CLUDE EX CLUDE vari able list Ex cludes from file the vari ables
not needed in the analy sis

EX CLUDE hhid code

KEEP KEEP vari able list Reads from the file only the
vari ables needed in the analy sis

KEEP age sex in come

CATE GORY Cate gory vari able list Speci fies list of cate gori cal
vari ables in the data set,
in clud ing the de pend ent
vari able—this is com pul sory in
a clas si fi ca tion tree

CATE GORY sex 

DEL MODEL vari able name Speci fies de pend ent vari able MODEL vul ner10

BUILD BUILD Tells CART to pro duce a tree BUILD

QUIT QUIT If sub mit ted while in BUILD, it
tells CART to quit the ses sion; if 
sub mit ted af ter CART ses sion,
it tells CART to go to DOS.

SE LECT SE LECT vari able name
re la tion op era tor or
con stant/char ac ter

Se lects a sub set of the data set
for analy sis

SE LECT age > 15
SE LECT sex=1
SE LECT X≥20
SELECT x1=  ’M’

or

SE LECT SE LECT vari able name
re la tion op era tor or
con stant/char ac ter, vari able
name re la tion op era tor or
con stant/char ac ter

Se lects a sub set of the data set
for analy sis

SE LECT age > 15,
Wage > 300

PRI ORS PRI ORS op tion (Choose 1
op tion only)

Speci fies which PRI ORS to use PRI ORS data
PRI ORS equal
PRI ORS mixed
PRI ORS=n1, n2,,..,na
(n’s are real num bers)

MIS CLASS
COST

MIS CLASS COST=n
clas sify I as k1,k2,k3/,
Cost=m clas sify I as k1/,
Cost=l clas sify k1,k2,..,kn
as x

As signs non unit
mis clas si fi ca tion costs

Mis class cost=2
clas sify 1 as 2,3,4/,
Cost=5 clas sify 3 as 1
Cost=3 clas sify 1,2,3
as 4

METHOD METHOD=op tions
(choose 1 op tion only)

Speci fies split ting rule Method=gini (de fault)
or
Method=twoing or
Method=LS or LAD
Method=LIN EAR

OUT PUT OUT PUT file name Sends out put to a named file OUT PUT=LMS

TREE TREE tree file name Speci fies a file name of a tree to
save

TREE vul ner1

SAVE SAVE file name op tions Speci fies file name of a data set
with pre dicted class(es), se lect
op tions to save

SAVE predct1

CASE CASE op tions Runs data one  by  one down a
tree, se lect op tion(s) to use

CASE

Ta ble 5—Ba sic CART soft ware com mands in SYSTAT



These four lines are man da tory. They are the only com mands needed to 
pro duce a clas si fi ca tion tree. For a re gres sion tree, the CATEGORY
com mand line is not needed at all, and the de pend ent vari able that fol -
lows the MODEL com mand should be a con tinu ous vari able. To pro -
duce a re gres sion tree, the only three com mands needed are USE,
MODEL, and BUILD. Ex am ples of regression- tree com mand lines are
pro vided to ward the end of this chap ter.

The data ana lyst has many options to mod ify this pro gram. All
optional com mand lines are addi tions to this basic pro gram. Any
optional com mand line(s) should be entered before the BUILD com -
mand. For exam ple, if the ana lyst wants to save the out put to a file, the
OUTPUT com mand should be inserted as fol lows:

Syn tax: OUTPUT 'd:\cart1989\any name'

With the ad di tion of the OUTPUT com mand, the en tire pro gram would
read:

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2
MODEL CUTDUM2
OUTPUT 'D:\CART1989\VPDAT.DAT'
BUILD

The OUTPUT com mand sends the out put re sults to a file named
VPDAT.DAT.

Some times the ini tial pro gram may not pro duce a sat is fac tory tree. In
such cases, the pro gram can be modi fied in a number of ways. The easi -
est way is to change ei ther pri ors or mis clas si fi ca tion costs or both. If
pri ors are not speci fied by the ana lyst, the de fault is pri ors equal. The
ana lyst can also change the de fault split ting rules, the one- standard-
 error rule, the com plex ity pa rame ter, and so on. This man ual cov ers
only the sim plest op tions.

The de fault pri ors can be changed by choos ing ei ther PRIORS DATA or
PRIORS MIXED and add ing it into the batch pro gram. For ex am ple, if
PRIORS DATA is cho sen, the modi fied pro gram will look like this:

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2
MODEL CUTDUM2
PRIORS DATA
OUTPUT 'D:\CART1989\VPDAT.DAT'
BUILD

In ad di tion to chang ing pri ors to “data” or “mixed,” the ana lyst can also
in cor po rate ex ter nal in for ma tion into the pro gram by as sign ing ex plicit
val ues to pri ors. In such cases, the un der ly ing as sump tion is that the
dis tri bu tion of ob ser va tions into classes of the de pend ent vari able may
oc cur in pro por tions other than pri ors equal, pri ors data, or pri ors mixed.
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For ex am ple, in a two- class prob lem, the ana lyst may as sign

PRIORS = .2, .8, or
PRIORS = 1, 5, or
PRIORS = 1.2, 1, and so on.

The lat ter pri ors says that the pro por tion of Class 0 cases in the popu la -
tion from which the sam ple is drawn is 20 per cent higher than the pro -
por tion of Class 1 cases.

With these changes, the pro gram looks like this:

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2
MODEL CUTDUM2
PRIORS = 1, 5
OUTPUT 'D:\CART1989\VPDAT.DAT'
BUILD

So far, the analy sis is based on equal or unit mis clas si fi ca tion costs,
which is the default set ting. This set ting can be changed by impos ing
severe costs for mis clas si fy ing cer tain seri ous cases. If a heart- attack
patient is mis clas si fied as a healthy indi vid ual dur ing medi cal diag no -
sis, the cost is far more seri ous than the cost of clas si fy ing a healthy
indi vid ual as a heart- attack patient. In vul ner abil ity stud ies, clas si fy -
ing food- insecure house holds as food- secure is more costly than clas si -
fy ing food- secure house holds as food- insecure. Two options are avail -
able for reduc ing the mis clas si fi ca tion of such seri ous cases.

1. Change the mis clas si fi ca tion costs via altered pri ors. For exam -
ple, sup pose clas si fy ing Class 1 cases as Class 0 is three times
more costly than clas si fy ing Class 0 cases as Class 1. This situa -
tion can be treated as if the dis tri bu tion of Class 1 cases in the
popu la tion is three times as large as that of Class 0. This infor -
ma tion is entered in the PRIORS com mand line, and the entire
batch pro gram now reads as fol lows:

USE 'D:\CART1989\POOLSUB5.SYS'
CATEGORY CUTDUM2
MODEL CUTDUM2
PRIORS = 1, 3
OUTPUT 'D:\CART1989\VPDAT.DAT'
BUILD

2. Intro duce mis clas si fi ca tion costs explic itly into the com mand line.

Ex am ple:  MISCLASS COST = 5 CLASSIFY 0 AS 1,
COST = 2 CLASSIFY 1 AS 0.

This means that the cost of clas si fy ing a Class 0 case as Class 1 = 5,
while the cost of clas si fy ing a Class 1 case as Class 0 is 2. The ex am ple
as so ci ates dif fer ent pen al ties or costs with each mis clas si fi ca tion er ror.
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With these ad di tions, the pro gram looks like the fol low ing:

USE 'D:\CARAT\POOLSUB5.SYS'
EXCLUDE SITE HHID
CATEGORY CUTDUM2
MODEL CUTDUM2
PRIORS DATA
MISCLASS COST = 5 clas sify 0 as 1,
COST = 2 clas sify 1 as 0
OUTPUT 'D:\CARAT\VPDAT.DAT'
BUILD

This re fine ment in volves the MODEL com mand. The ana lyst may limit 
the number of vari ables in the analy sis by ex plic itly speci fy ing the
model as in a para met ric model. This op tion is help ful es pe cially in
cases where it may not be pos si ble to ac cess a com puter with a large
mem ory.

Exam ple: MODEL CUTDUM2 = NCERYL80 + PCLSU80
+ GINI + PCDCALS + FARMINC + HHSIZE.

One can also use the EXCLUDE com mand to ex clude vari ables that are 
not needed in the analy sis.

The data ana lyst may change the de fault split ting rule (Gini cri te ria)
by us ing the METHOD com mand. For ex am ple, METHOD = LINEAR
changes the de fault split ting cri te ria to lin ear com bi na tion splits. In
this case, the METHOD com mand should fol low the MODEL com mand.
Un der this split ting cri te ria, CART as sumes that all of the vari ables
in the lin ear com bi na tion are nu meric. There fore, un less cate gori cal
vari ables are trans formed into sets of dummy vari ables, they will be
treated as nu meric vari ables.

The com mands needed for pro duc ing a re gres sion tree are ba si cally the
same as that for a clas si fi ca tion tree. There is no need to spec ify the
CATEGORY and MISCLASS COST com mands in re gres sion tree pro -
grams. As pointed out ear lier, the three ba sic com mands that are
needed for pro duc ing a re gres sion tree are the USE, MODEL, and
BUILD com mands.

Con sider the fol low ing typi cal regression- tree pro grams:

(A)
USE 'D:\CARAT\YEAR8187.SYS'
MODEL PPND = NDVIMNMX KRMTMNMN NDVIMXMX

KRMTMXMN BEGAMNMN BEGAMXMN
MZSHTTRD MZSHTTDV BEGAMNDV
BELGMNDV KRMTMXDV

OUTPUT 'D:\CARAT\YEAR8187.OUT'
BUILD

34

REGRESSION
TREE

PROGRAM
CODES

Re fine ment 5

Re fine ment 4



    (B)
USE 'D:\CARAT\YEAR8187.SYS'
MODEL PPND
OUTPUT 'D:\CARAT\YR01.OUT'
BUILD

As with clas si fi ca tion trees, the OUPUT com mand is optional. The ana -
lyst can mod ify this basic pro gram by add ing any of the avail able
optional com mand lines into the pro gram. In exam ple (A), the depend -
ent and inde pend ent vari ables are speci fied in the MODEL com mand.
This option is use ful in situa tions where access to a com puter with
large mem ory is lim ited. Option (B) uses all of the avail able vari ables in 
the data set and pro duces a regres sion tree. This option is espe cially
use ful if the ana lyst does not have any prior infor ma tion about which
pre dic tors or poten tial pre dic tors to use in the model.

It maybe use ful to re call that the main ob jec tive of run ning ei ther clas -
si fi ca tion or re gres sion trees is to use the re sult ing tree for clas si fy ing
data or pre dict ing the class of a new ob ser va tion. CART does this by
drop ping the data down the tree case by case, be gin ning from the root
node. At each stage the split ting cri te ria are ap plied un til the ob ser va -
tions end up in any one of the ter mi nal nodes. This task is ac com plished 
by us ing only the USE, TREE, SAVE, and CASE com mands. It should
be noted that the ex ten sion of the file name cre ated by the TREE com -
mand is al ways TR1 and can not be changed. The com plete pro gram for
build ing and sav ing a tree is as fol lows:

USE 'D:\CARAT\POOLSUB5.SYS'
CATEGORY CUTDUM2
MODEL CUTDUM2
TREE SECUR1
BUILD

The TREE com mand pro duces a file called SECUR1.TR1.
Sup pose the ana lyst has a new data set called DATANEW.SYS,

which con tains the char ac ter is tics of new cases with an un known
class dis tri bu tion. The ana lyst now wants to run this data down the
saved tree (SECUR1.TR1) to find out the classes into which the new
cases fall, and to save the case- by- case re sults in a data file called
PREDCT.SYS. Us ing the CASE com mand line, this is writ ten as
fol lows:

USE 'D:\DATANEW.SYS'
TREE SECUR1
SAVE PREDCT / SINGLE
IDVAR HHID
CASE
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The IDVAR com mand line adds the iden ti fi ca tion vari able (HHID) to
the file PREDCT.SYS, which is cre ated by the CASE com mand. The
con tents of the PREDCT.SYS file in clude the origi nal vari ables used in
the model and a few new vari ables cre ated by CART. The RESPONSE
and CORRECT vari ables are the most use ful of the new vari ables. The
RESPONSE vari able con tains the class as signed to an ob ser va tion by
CART. The CORRECT vari able is an in di ca tor vari able. It equals 1 for
cor rect pre dic tion and 0 for in cor rect pre dic tion.
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REFINING CART ANALYSES
At times, it may not be pos si ble to get the de sired re sults from the first 
CART ses sion. CART may not even pro duce any tree at all. To over -
come these prob lems, some of the al ter na tive re fine ments in tro duced
in Chap ter 5 may need to be ap plied. The struc ture of the trees pro -
duced may dif fer with each al ter na tive. That is, the vari ables upon
which the splits are made and the number of ter mi nal nodes may
change. Even the re moval of a sin gle vari able from analy sis pro duces
a tree with a dif fer ent struc ture. For these rea sons, CART re ports the
cross- validated relative- error costs for a tree along with the stan dard
er rors (Brei man et al. 1984). The con tin gent struc ture of the trees
raises the is sue of which clas si fi ca tion tree to choose and how to
choose it. CART does a good job of pro duc ing a number of use ful clas si -
fi ca tion ta bles for each al ter na tive based on the learn ing sam ple and
cross- validation tests (see Ap pen dix 1, Ex am ple 1). Since the goal of a
clas si fi ca tion tree is to en able the ana lyst to pre dict the class of fu ture
ob ser va tions, more at ten tion should be paid to the analy sis of cross-
 validation clas si fi ca tion and cross- validation clas si fi ca tion prob abil -
ity ta bles. Of course, the choice of the tree ul ti mately de pends on what 
the ana lyst in tends to do with the tree.

To il lus trate the is sue of choice, sev eral al ter na tives to the CART
re sults dis cussed in Fig ure 1 in Chap ter 2 are pro duced. The com plete
CART out put is pro vided in Ex am ples 1, 2, and 3 of Ap pen dix 1 on the
disk ette. Con densed ver sions are pro vided in Ex am ples 1, 2, and 3 of
the hard copy of Ap pen dix 1. For com para tive analy sis, the cross-
 validation clas si fi ca tion prob abil ity is ex tracted from the out put of the
three al ter na tive mod els and given be low in Ta ble 6.

Exam ple 1 in Table 6 is based on the assump tion of PRIORS
EQUAL, Exam ple 2 is based on PRIORS DATA, and Exam ple 3 on
PRIORS MIXED. For the tree in Exam ple 1, the cross- validated error
rate equals 0.634 +/– 0.058, the resub sti tu tion esti mate is 0.430, and
the total cor rect clas si fi ca tion is 69.2 per cent (see Appen dix 1, Exam ple 
1). For the tree in Exam ple 2, the cross- validated error rate is
0.921 +/– 0.077, the resub sti tu tion esti mate is 0.663, and the total cor -
rect clas si fi ca tion is 75.7 per cent (see Appen dix 1, Exam ple 2). And
finally, for the tree in Exam ple 3, the cross- validated error rate is
0.782 +/– 0.066, the resub sti tu tion esti mate is 0.537, and the total cor -
rect clas si fi ca tion is 73.7 per cent (see Appen dix 1, Exam ple 3).

In Ta ble 6, a ma trix of pre dicted class prob abili ties is pro vided for
each ex am ple. Un der Ex am ple 1, the clas si fi ca tion tree pre dicted
70.3 per cent of the non vul ner able house holds as non vul ner able and
66.3 per cent of the vul ner able house holds as vul ner able. These are very
en cour ag ing re sults. But can the pre dic tions be im proved? Un der ex am -
ple 2, 88.4 per cent of the non vul ner able house holds were pre dicted to be
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non vul ner able, but only 40.4 per cent of the vul ner able house holds were
pre dicted as vul ner able. This is not a de sir able out come be cause of the
high er ror rate in pre dict ing vul ner able house holds. The ana lyst has to
think of which er ror rate is more costly in terms of mis clas si fi ca tion. The
re sults for Ex am ple 3 fall be tween the re sults of Ex am ples 1 and 2.

The clas si fi ca tion tree pro duced un der the as sump tion of PRIORS
DATA pro vides a bet ter over all cor rect clas si fi ca tion rate (75.7 per cent) 
than the other trees (see Ap pen dix 1, Ex am ples 1, 2, and 3). But the
tree in Ex am ple 1 per forms best when it comes to clas si fy ing the vul -
ner able group. This tree cor rectly clas si fies 66.3 per cent of the vul ner -
able house holds. Fur ther more, com para tive analy sis of the pre dic tive
er ror rates of the three ex am ples clearly shows that the tree of Ex am ple 
1 has the small est er ror rates. Thus, the clas si fi ca tion tree in Ex am ple
1 pro vides the best clas si fi ers or in di ca tors of vul ner abil ity. How ever,
the fi nal choice de pends on the ana lyst.

There are still many other options avail able to the ana lyst. The
results for some of these options are given in Exam ples 1, 2, and 3 on
the disk ette (Appen dix 3, which only appears on the disk ette). In these
optional runs, alter na tive mis clas si fi ca tion costs were added to the pro -
gram to see if there were any improve ments in the over all mis clas si fi -
ca tion rate. No improve ments resulted.
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Pre dicted Class

Ex am ple Ac tual Class 0 1 Ac tual total

  1 Pri ors equal
0 0.703 0.297 1.00
1 0.337 0.663 1.00

  2 Pri ors data
0 0.884 0.116 1.00
1 0.596 0.404 1.00

  3 Pri ors mixed
0 0.815 0.185 1.00
1 0.483 0.517 1.00

Ta ble 6—Cross- validation clas si fi ca tion prob abil ity comparisons



CONCLUSIONS
This man ual has laid out the fun da men tal the ory under ly ing Clas si fi -
ca tion and Regres sion Tree (CART) ana lyti cal tech niques, and also
explained how such tech niques can be applied in prac tice. Con crete
exam ples were pre sented from research at IFPRI. This research has
explored the poten tial of CART to pro vide a less sub jec tive frame work
for the selec tion of fam ine risk indi ca tors and deter mine the rela tive
impor tance of such indi ca tors in explain ing vul ner abil ity across years
and regions in Ethio pia.

The theo reti cal expo si tion and the results from applied CART
analy sis sug gest that this meth od ol ogy offers con sid er able poten tial for 
assist ing in the analy sis of large and com plex data sets. CART also
offers a trans par ent, “objec tive” meth od ol ogy upon which plan ners can
base their deci sions.

That said, CART should be seen as one tool that can be used, in con -
junc tion with oth ers, for ana lyz ing data, as sess ing risk, and plan ning
de vel op ment. The tech nique is ex tremely data- intensive and, hence,
labor- intensive (in terms of the time an ana lyst spends col lat ing, pre -
par ing, and ana lyz ing the data). What is more, there re mains a need for 
fur ther re search into the defi ni tion of ap pro pri ate bench mark in di ca -
tors (such as the “popu la tion in need” fig ures used here), against which
mul ti ple vari ables can be tested. In the short run, the choice of in di ca -
tors will most likely be driven by data avail abil ity. But in the longer
run, such choices should be made as a re sult of as sess ments of the re li -
abil ity and sen si tiv ity of al ter na tives.

Fur ther ex plo ra tion of the gains and draw backs in her ent in CART
are there fore en cour aged, and not just in re la tion to re search on food
se cu rity. As IFPRI and oth ers have dem on strated, CART can be use -
fully ap plied to a wide range of uses.

7



APPENDIX 1:
CONDENSED EXAMPLES OF
CLASSIFICATION-TREE OUTPUT
(Full out put on disk ette)

Tree se quence and cross- validation ta bles are ex tracted from Ap pen -
dix 1, Ex am ple 1 on the disk ette. Par tial CART out put is based on pri ors 
equal (for de tails, see at tached disk ette).

EXAMPLE 1:
CLASSIFICATION-

TREE OUTPUT
BASED ON

PRIORS EQUAL

Tree

Num ber of
ter mi nal

nodes
Cross- validated

rela tive cost
Re sub sti tu tion 

rela tive cost
 Com plex ity
 parameter

 1 32 0.704 +/– 0.060 0.145 0.000
 8 16 0.639 +/– 0.058 0.244 0.008
 9 14 0.635 +/– 0.058 0.276 0.008
10 12 0.632 +/– 0.058 0.310 0.008
11* 11 0.603 +/– 0.057 0.332 0.011
12**  8 0.634 +/– 0.058 0.430 0.016
13  7 0.668 +/– 0.059 0.464 0.017
14  5 0.687 +/– 0.059 0.540 0.019
15  3 0.700 +/– 0.058 0.619 0.020
16  2 0.729 +/– 0.048 0.696 0.038
17  1 1.000 +/– 0.000 1.000 0.152

Ini tial mis clas si fi ca tion cost = 0.500
Ini tial class as sign ment = 0

Tree sequence

 * in di cates minimum- cost tree.
** in di cates optimum- cost tree.
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Node 1 was split on vari able NCERYL80.
A case goes left if vari able NCERYL80 ≤ 4.714.
Im prove ment = 0.061       C. T. = 0.152

Node in for ma tion

Num ber of cases Within- node prob abil ity

Class Top Left Right Top Left Right

  0 249 148 101 0.500 0.398 0.800
  1  89  80   9 0.500 0.602 0.200

Node Cases Class Cost

 1 338 0 0.500
 2 228 1 0.398
– 8 110 0 0.200

Sur ro gate    Split Association Improvement

1 NCERAR80 s 0.026 0.777 0.058
2 PCAG INC s 400.220 0.051 0.002
3 PCDCALS s 5757.189 0.032 0.000
4 CER LAR80 s 3.486 0.030 0.001
5 PCFRMINC s 345.744 0.030 0.006

Com peti tor    Split Improvement

1 NCERAR80 0.026 0.058
2 FARMY RAT 87.298 0.041
3 HHSIZE 5.500 0.033
4 LVSLSU80 0.600 0.030
5 PCLSU80 2.893 0.027

Note:  C.T. stands for Com plex ity Thresh old (the com plex ity pa rame ter used in tree prun ing).
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Node N Probability Class Cost Class N Probability
Com plex ity
threshold

 1 88 0.242 0 0.418 0 70 0.582 0.039
1 18 0.418

 2 24 0.106 1 0.152 0  8 0.152 0.039
1 16 0.848

 3 50 0.227 1 0.133 0 15 0.133 0.019
1 35 0.867

 4 19 0.038 0 0.000 0 19 1.000 0.028
1  0 0.000

 5  9 0.040 1 0.152 0  3 0.152 0.028
1  6 0.848

 6 35 0.078 0 0.145 0 33 0.855 0.017
1  2 0.145

 7  3 0.017 1 0.000 0  0 0.000 0.017
1  3 1.000

 8 110 0.253 0 0.200 0 101 0.800 0.152
1  9 0.200

Cross-validation Learn ing sample

Class
Prior

probability N
Num ber

misclassified Cost N
Num ber

misclassified Cost

 0   0.500 249  74 0.297 249 26 0.104
 1   0.500  89  30 0.337  89 29 0.326

  To tal 1.000 338 104 338 55

Mis clas si fi ca tion by class

Terminal node information
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Pre dicted class

Ac tual class 0 1 Ac tual total

   0 0.703 0.297 1.000
   1 0.337 0.663 1.000

Cross- validation clas si fi ca tion probability

Pre dicted class

Ac tual class 0 1 Ac tual total

0 223.000 26.000 249.000
1  29.000 60.000  89.000

Pre dicted to tal 252.000 86.000 338.000
Cor rect   0.896  0.674
Suc cess in di ca tor   0.159  0.411
To tal cor rect   0.837

Sen si tiv ity 0.896
Speci fic ity 0.674
False ref er ence 0.115
False re sponse 0.302
Ref er ence = Class 0
Re sponse = Class 1

Learning- sample classification

Pre dicted class

Ac tual class 0 1 Ac tual total

   0 0.896 0.104 1.000
   1 0.326 0.674 1.000

Learning- sample clas si fi ca tion probability

Pre dicted class

Ac tual Class 0 1 Ac tual total

0 175.000  74.000 249.000
1  30.000  59.000  89.000

Pre dicted to tal 205.000 133.000 338.000
Cor rect   0.703   0.663
Suc cess in di ca tor  – 0.034   0.400
To tal cor rect  0.692

Sen si tiv ity 0.703
Speci fic ity 0.663
False ref er ence 0.146
False re sponse 0.556
Ref er ence = Class 0
Re sponse = Class 1

Cross- validation classification
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Rela tive
Vari able im por tance

NCERYL80 100.000
NCERAR80   94.086
PCLSU80   78.891
PCFRMINC 68.257
LVSLSU80 66.941
OXQ80 65.267
PCAGINC 55.699
PCFRMAST 54.965
FARMYRAT 47.661
Gini 44.670
PCINC 44.368
AGINCRAT 37.161
HHSIZE 35.707
NFRMYRAT 33.440
FRMASRAT 27.147
NFRMASRA 25.433
PCNNFINC 24.009
PCNFRAST 21.933
PCLIVINC 16.946
CERYLD80 12.768
PCDCALS 9.451
PCAST80 6.156
CERLAR80 1.405
LIVSYRAT 0.842
HHEADSEX 0.000
CALDUM 0.000

Rela tive im por tance of variables
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Pre dicted class
Ac tual
totalAc tual class 0 1

0 220.000 29.000 249.000
1  53.000 36.000  89.000

Pre dicted to tal 273.000 65.000 338.000
Cor rect   0.884  0.404
Suc cess in di ca tor   0.147  0.141
To tal cor rect   0.757

Sen si tiv ity 0.884
Speci fic ity 0.404
False ref er ence 0.194
False re sponse 0.446
Ref er ence = Class 0
Re sponse = Class 1

Cross- validation classification

Pre dicted class

Ac tual class 0 1 Ac tual to tal

0 0.815 0.185 1.000
1 0.483 0.517 1.000

Cross- validation clas si fi ca tion probability

Tree se quence and cross- validation ta bles are ex tracted from Ap pen -
dix 1, Ex am ple 2 on the disk ette. Par tial CART out put is based on
 priors data (for de tails, see at tached disk ette).

EXAMPLE 2:
CLASSIFICATION-

TREE OUTPUT
BASED ON

PRIORS DATA

Tree

Num ber of
ter mi nal

nodes
Cross- validated

rela tive cost
Re substi tu tion

rela tive cost
 Complex ity
 parameter

 1 34 1.011 +/– 0.089 0.180 0.000
 2 31 1.000 +/– 0.088 0.180 0.000
 3 26 0.955 +/– 0.086 0.225 0.002
 4 19 0.933 +/– 0.084 0.303 0.003
 5 17 0.910 +/– 0.082 0.337 0.004
 6* 12 0.865 +/– 0.078 0.449 0.006
 7  8 0.888 +/– 0.077 0.584 0.009
 8**  6 0.921 +/– 0.077 0.663 0.010
 9  5 1.000 +/– 0.069 0.719 0.015
10  1 1.000 +/– 0.000 1.000 0.019

Ini tial mis clas si fi ca tion cost = 0.263
Ini tial class as sign ment = 0

Tree sequence

 * in di cates minimum- cost tree.
** in di cates optimum- cost tree.
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EXAMPLE 3:
CLASSIFICATION-

TREE OUTPUT
BASED ON

PRIORS MIXED

Tree se quence and cross- validation ta bles are ex tracted from Ap pen -
dix 1, Ex am ple 3 on the disk ette. Par tial CART out put is based on
 priors mixed (for de tails, see at tached disk ette).

Tree

Num ber of
ter mi nal

nodes
Cross- validated

rela tive cost
Re substi tu tion

rela tive cost
 Com plex ity
 pa rame ter

 1 30 0.757 +/– 0.067 0.190 0.000
 6 22 0.764 +/– 0.067 0.250 0.006
 7* 20 0.748 +/– 0.067 0.284 0.006
 8 18 0.761 +/– 0.067 0.318 0.007
 9 16 0.757 +/– 0.067 0.359 0.008
10 10 0.764 +/– 0.067 0.490 0.008
11**  8 0.782 +/– 0.066 0.537 0.009
12  6 0.820 +/– 0.067 0.593 0.011
13  4 0.830 +/– 0.065 0.654 0.012
14  3 0.910 +/– 0.062 0.764 0.042
15  1 1.000 +/– 0.000 1.000 0.045

Ini tial mis clas si fi ca tion cost = 0.382
Ini tial class as sign ment = 0

Tree sequence

 * in di cates minimum- cost tree.
** in di cates optimum- cost tree.

Pre dicted class
Ac tual
totalAc tual class 0 1

0 203.000 46.000 249.000
1  43.000 46.000  89.000

Pre dicted to tal 246.000 92.000 338.000
Cor rect   0.815  0.517
Suc cess in di ca tor   0.079  0.254
To tal cor rect   0.737

Sen si tiv ity 0.815
Speci fic ity 0.517
False ref er ence 0.175
False re sponse 0.500
Ref er ence = Class 0
Re sponse = Class 1

Cross- validation classification

Pre dicted class

Ac tual class 0 1 Ac tual total

   0 0.815 0.185 1.000
   1 0.483 0.517 1.000

Cross- validation clas si fi ca tion probability



APPENDIX 2:
A CONDENSED EXAMPLE OF
REGRESSION-TREE OUTPUT (Full output on diskette)

Node 1 was split on vari able NDVIMNMX
A case goes left if vari able NDVIMNMX ≤ 0.335000
Im prove ment = 95.212097   C. T. = 0.439885E + 0.05

Node Cases Average Stan dard Deviation

1  462 10.902165 19.447115
2  174 23.455744 25.835199

–3   288  3.317708  7.119483

Sur ro gate Split Association Improvement

1 KRMTMNMN s 0.335000 0.931034 88.178185
2 NDVIMXMX s 0.475000 0.827586 84.152443
3 BE GAMXMN s 0.365000 0.793103 62.045887
4 BE GAMNMN s 0.300000 0.793103 68.704895
5 KRMTMXMN s 0.475000 0.793103 79.163147

Com peti tor Split Improvement

1 KRMTMNMN 0.335000 88.177315
2 NDVIMXMX 0.475000 84.151741
3 KRMTMX 0.435000 81.044876
4 KRMTMXMN 0.475000 79.162216
5 KRMTMN  0.285000 78.268150

Node 2 was split on vari able MZSHTTRD
A case goes left if vari able MZSHTTRD ≤ 31.389999
Im prove ment = 58.391998   C. T. = 0.269771E + 0.05

Node Cases Average Stan dard Deviation

2  174 23.455744 25.835199
–1    65 39.580002 28.492435
–2   109 13.840366 18.272223

Sur ro gate Split Association Improvement

1 MZSHTTDV s –0.780000 0.861539 38.172043
2 CERLPPDV s –0.085000 0.492308 26.714172
3 BELGMNDV s –0.855000 0.492308 39.251301
4 BE GAMNDV s –0.620000 0.369231 18.076315
5 KRMTMXDV s –1.150000 0.323077 27.505999

Com peti tor Split Improvement

1 BELGMNDV –0.905000 43.058678
2 BE GAMNDV –1.055000 40.379753
3 MZSHTTDV –1.185000 39.435616
4 KRMTMXDV –1.905000 37.680218
5 KRMTMNDV –0.090000 32.776260

Note:  C.T. stands for Com plex ity Thresh old (the com plex ity pa rame ter used in tree prun ing).
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