
Reducing the Computational Load of Energy Evaluations for

Protein Folding

Eunice E. Santos

Department of Computer Science

Virginia Polytechnic Institute & State University

santos@cs.vt.edu

Phone: +1 (540) 231 5368

Eugene Santos, Jr.

Department of Computer Science and Engineering

University of Connecticut, Storrs

eugene@cse.uconn.edu

Abstract

Predicting the native conformation using computational protein models requires a large num-

ber of energy evaluations even with simplified models such as hydrophobic-hydrophilic (HP)

models. Clearly, energy evaluations constitute a significant portion of computational time. We

hypothesize that given the structured nature of algorithms that search for candidate conforma-

tions such as stochastic methods, energy evaluation computations can be cached and reused,

thus saving computational time and effort. In this paper, we present a caching approach and

apply it to 2D triangular HP lattice model. We provide theoretical analysis and prediction of

the expected savings from caching as applied this model. We conduct experiments using a so-

phisticated evolutionary algorithm that contains elements of local search, memetic algorithms,

diversity replacement, etc. in order to verify our hypothesis and demonstrate a significant level

1

of savings in computational effort and time that caching can provide.

Keywords: protein folding, triangular lattice, HP energy model, caching, reuse, evolutionary

algorithms

1 Introduction

In predicting the native conformation of proteins using various computational protein models, even

the simplified models suffer from computational intractability in the worst case. For example, op-

timizing the simple 2-D square lattice hydrophobic-hydrophilic (HP) [6] has been shown to be NP-

Complete [2]. In the past several years, numerous algorithms and techniques have been proposed

and explored for quickly determining native conformations based on models such as the HP models.

Methods such as genetic and memetic algorithms [8], tabu search [9], and ant colony optimization

[11] use approximation and randomized search in an effort to find good solutions in a reasonable

amount of time. The fundamental nature of such approaches relies on heuristics and/or random-

ization to quickly search large numbers of candidate solutions in order to achieve better solutions

over time. Hence, the more computational resources (time) that are provided to these methods, the

more likely a good solution can be found. Clearly, these methods rely on large numbers of evalua-

tions of the candidate solutions generated. As such, a significant component of the computational

effort rests in the evaluations (often called fitness evaluations).

Instead of exploring new algorithms for determining good protein conformations, we take ex-

isting algorithms and ask the question: Where can we save on computational effort in order to

increase the total number of candidates considered while fixing total time? Our hypothesis is that

there is significant redundancy among the large numbers of fitness evaluations of which re-use of

computations can drastically reduce computational effort. Intuitively, when we examine the various

methods that generate candidate solutions, new solutions are derived from earlier solutions already

explored, thus new solutions share attributes with those earlier solutions.

2

Recently, Santos and Santos [10] proposed a method for caching and re- using partial fitness

evaluation results. They applied their approach to 2D and 3D square lattice HP models and formally

predicted a 50% savings in fitness evaluations using their caching approach. Empirical tests using

a simple genetic algorithm (single point crossover and multipoint mutation) for optimization on 2D

and 3D square HP lattice validated the prediction.

In this paper, we further explore the effectiveness of partial fitness evaluation caching. In partic-

ular, we consider triangular lattices (also called Honeybee lattices) [3] which are much harder protein

conformation optimization problems even in the 2D case. The degrees of freedom (6 directions for

2D) impose more computational requirements given the larger conformational space. Because of

the extra difficulty, simple genetic algorithms (GA) and evolutionary approaches have a difficult

time solving 2D triangular lattice HP problems. As researchers have empirically demonstrated

[8], more sophisticated optimization techniques such as hybrid local/global search, multi- meme

GAs, scatter/gather searching, etc. must be employed in a variety of ways to improve diversity

of the searching space, faster convergence, and better identification of promising conformations.

As it turns out, each of the methods mentioned here require further additional fitness function

computations. Thus, the need for caching to reduce the overall computational effort becomes even

more critical. We focus on providing predictive performance analysis on the caching approach and

validate our predictions for solving 2D triangular lattice HP problems. In order to demonstrate the

validity and utility of our analysis and caching approach, we implement an evolutionary algorithm

for effectively solving 2D triangular HP lattice that incorporates aspects of memetic algorithms and

local search, two-point crossover, random replacement for diversity, and single point mutation with

replacement of bad conformations with good conformations, i.e., bad conformations (non-self avoid-

ing walks) resulting from mutation are replaced by a randomly generated good conformation which

further promotes diversity. As we can easily see, we have unified elements from various effective

optimization algorithms for determining a good conformation. When combined with benchmark

3

HP problems, this will allows us to study a fairly realistic testbed to demonstrate the feasibility of

partial fitness evaluation caching.

2 The 2D Triangular HP Lattice Protein Folding Problem

Currently, a primary concern in biochemistry is the problem of protein native structure prediction.

It is commonly assumed that the sequence of amino acids in the protein molecule corresponds to

the equilibrium minimum free energy state (the thermodynamic hypothesis) which might help to

solve a large number of pharmaceutical and biotechnological problems. Therefore, several models

have been presented for the protein folding problem. One of these is the well-known 2D-HP model

[6]. The algorithms we presented here are all based on 2D-HP model, that is:

(1) all the type of amino acids are represented by a set A={H,P},

(2) protein instances are represented by a binary sequence,

(3) an energy formula specifying how the conformational energy is computed by

E =
∑

(e(a, b)),

if a=b=H, then e(a,b)=-1, otherwise e(a,b)=0, and

(4) the conformation structure is presented as a self-avoiding walk on a 2D-lattice.

The standard assumption has been that the lattice is square in structure. Under this assumption,

it has been proven that protein folding on the two- dimensional HP model is NP-complete [2,

5]. Several methods have been presented to try to solve this problem, such as the chain growth

algorithm[4], fast protein folding approximating algorithms [7], and genetic algorithm(s) [12].

However, it has been noted that square or 90-degree angles have serious issues and drawbacks

[1], including the particularly serious parity constraint, i.e. any pair of amino acids which are an

odd-distance apart from each other can never lie on adjacent square lattice points.

4

Due to this, triangular lattice structures is a focus of attention [1]. In this paper, we will focus on

2D triangular lattices. These lattices are structures in which any point in the interior of the lattices

has 6 neighbors and are typically denoted by their direction (NW, NE, SE, SW, EE - straight east,

WW - straight west) from the point in consideration. As such, for any amino sequences of H’s

and P’s, there are a variety of confirmations represented by a string of directions mapped to the

appropriate amino acid. The goal is to determine the string of directions that minimizes the energy

formula given above.

The computational issues are the same regardless of which lattice structure is utilized. The

overhead in time due to repetitive fitness/energy computation provides a significant bottleneck to

obtaining a solution in a timely fashion. As stated previously, if one can cache partial results, it

may be possible to reduce overall computation time. However, in order for this to be applicable

to 2D Triangular HP lattice protein folding, this domain must be shown to be decomposable to

the point where partial results are easily substituted in the process of computing overall energy

formulae.

To show that this is in fact the case, we first discuss Divide and Conquer approaches, which

clearly are subproblem decomposable and discuss how our energy formula can be shown to be a

divide and conquer method.

We begin with a brief discussion on divide and conquer design and definition.

3 Divide and Conquer and Application to Fitness Evaluations in

Genetic Algorithms

The triangular HP lattice problem has as part of its main components, fitness evaluation using

the neighbor energy formula. This evaluation can be viewed as a divide and conquer method

in its fitness value computation. Methods of this type are defined by their subproblem/instance

decomposition. In cases where same or similar subinstances appear with high regularity, it may be

5

possible to store or cache partial fitness calculations in order to reduce overall computation time.

In [10], the approach of caching partial results was introduced. Divide and conquer is a classic

algorithm design paradigm. Below is the skeletal structure of a divide and conquer algorithm:

Algorithm 3.1. DC (I, n,O)

/*I = current problem instance, n = problem size of I, O = output (solution) */

if n < c then

solve directly

else

Divide I into smaller instances I1, I2, · · · Ik

with problem sizes n1, n2, · · · nk, resp.

For j = 1 to k do

Call DC(Ij, nj, Oj)

Combine O1, O2, · · ·Ok to compute O.

Denote the running time of DC for problem size n by RDC(n). Denote the divide time of DC for

problem size n by DDC(n). Denote the combine time of DC for problem size n by CDC(n).

Therefore, if n < c then RDC(n)=time to solve directly for size n. Else,

RDC(n) = DDC(n) + CDC(n) +
n∑

j=1

RDC(nj)

Fitness computations that can be decomposed into partial results from subinstances can inher-

ently be solved using divide and conquer methods. Thus, caching partial results from the gene

fitness computations can reduce future fitness computation time. In particular, in GAs, much of a

gene is preserved through the various operations.

We denote AT (k) to be the time to access the cache table to determine whether a particular

substring of size k resides in the cache, and if so, to access its partial fitness value. We denote

6

ST (k) to be the time to store into the cache table a substring of size k. The notation T refers to

the cache table.

Let us assume that the fitness function evaluation can be represented by a divide and conquer

strategy. By taking into account caching, we modify the divide and conquer scheme for the fitness

function evaluation.

Algorithm 3.2. F (I, n,O)

if n < c then

solve directly

else

if I is cached then

output O directly

else

Divide I into smaller instances I1, I2, · · · Ik with problem sizes n1, n2, · · ·nk, resp.

For j = 1 to k do

if Ij is not fully cached then

Call F (Ij , nj, Oj)

else

Oj ← access(T, Ij)

Combine O1, O2, · · ·Ok to compute O

Analyzing the running time of F , we see that if a partial result is stored in a cache, we can

truncate the amount of recursion occurring in a divide and conquer method, thereby reducing

overall fitness computational time.

Once each function is fully specified then a closed form for RF (n) can be derived.

The original (non-caching) run-time is obviously:

7

Rorig
F (n) = DF (n) + CF (n) +

k∑

j=1

Rorig
F (nj)

If RF (n) < Rorig
F (n) then caching will produce results more efficiently than non-caching.

Precise comparison/results can be done only after the various functions in the equations are

fully specified. However, it is quite clear that in general, when the access and storage time are

comparable or less than the divide and combine times, caching should be more efficient than non-

caching.

4 Triangular HP Lattice: A Cached Divide and Conquer Ap-

proach

In order to design a divide and conquer approach, we must first discuss how a fitness value is

computed from the storage string of directions.

Once a conformation is laid out on the lattice, then all pairs of non-adjacent amino acids (H’s

and P’s) are considered such that each H-H pair decreases the energy value by 1. This being the

case, we can also compute the energy value as each amino acid is considered linearly. By doing so,

each non-neighbor pair is computed exactly once in order to obtain the correct final value. Either

end of the directional string can be used as the header. Thus energy pairs can be computed going

either left to right or right to left in the directional string.

Regardless of the lattice structure used, the fitness value computation can be presented as a

divide and conquer method due to the linearity of computation. In other words, the problem

decomposes into one subinstance with a decrease in size of 1. The divide time is negligible and the

combined time relies on merger of the subinstance result with the main result. Clearly, caching the

partial results can severely truncate the amount of recursion that has to be performed in fitness

8

value computation and can thus be a major computational time saver.

While conceptually, this is the case, this hinges on the fact that it is important to determine how

best to denote lattice points in such a way that neighbor lattice points can be quickly identified.

We will do this by mapping a 2-D triangular lattice into a 2-D square lattice. We perform our

construction on a lattice with no boundary conditions (i.e. a wrap-around lattice) however it is

easy to see how it can be adapted to lattices with boundary conditions.

First, we note that the size of a 2-D triangular lattice denoted by n × n will refer to the fact

that no walk can traverse more than n as a max number of steps either north-south or east-west.

For example, a walk consisting of just two neighbor points with one point NW in direction from

the other would be 1 step north and 1 step west, while a neighbor point WW would denote 0 steps

north and 1 steps west.

Our mapping works as follows:

Given a triangular n×n lattice LT , we construct a square lattice LS of size 2n×n such

that the set of lattice points in LT are mapped to LS such that given a point p in LT ,

if it is mapped to point (x, y) in LS then the neighbors of p are mapped to:

• North-West(NW) Neighbor: (x− 1, y + 1)

• North-East(NE) Neighbor: (x + 1, y + 1)

• Straight-West(WW) Neighbor: (x− 2, y)

• Straight-East(EE) Neighbor: (x + 2, y)

• South-West(SW) Neighbor: (x− 1, y − 1)

• South-East(SE) Neighbor: (x + 1, y − 1)

Clearly, it will take O(n2) time to construct and initialize the lattice. However, we need not re-

initialize the whole lattice every time we begin a fitness evaluation. In fact, instead of a re-occurring

O(n2) initialization time, we incur a O(n2) once and then for every time we lay out lattice points,

we erase only those points laid on the grid (i.e. n points) allowing us to incur a repetitive O(n) time

9

rather than the quadratic function. Now, we can compute the amount of time a divide and conquer

approach to fitness value computation would take. However, in order to determine the effect of

caching in running time, we must first discuss an appropriate caching policy, which is discussed in

the next subsection.

4.1 A Caching Policy

We now describe a caching policy that can be appropriately used for the Triangular 2D-HP prob-

lem. This is a modification of the one for square lattices in [10]. However, since for this paper,

implementation utilizes 2-point crossover and the amount of potential neighbors increases to 6, new

insights were gained.

Our approach is to use a tree structure to maintain our necessary gene caching. Given that the

length of our genes is n, our tree will be of height n where level i in the tree will correspond to the

ith index of the gene. We call this tree the left-cache since the root of the tree corresponds to the

leftmost entry in each gene. Each node in the tree has either n children ordered left-to-right from

1 to n or is a leaf. Also, each node has a key corresponding to the partial value computed for the

substring formed from indices 1 to h of the gene where h is the level of the node starting at 1. The

right-cache is similarly constructed.

The primary properties of the left/right-cache are:

• Size of cache is linear with respect to number of genes stored.

• No collisions ever occur in the cache.

• Worst-case access and storage are O(n) for genes as well as any prefix or suffix of these genes.

For this caching policy: AT (n) = 5n and ST (n) = 9n. In our analysis, we assume that accessing

an item from a memory cell (whether in the cache, directional string, etc.) requires 1 time unit.

Creating or storing an item to a memory cell is double that time.

10

4.2 Theoretical Analysis

To recap the design discussion in this section, we can design a divide and conquer approach to energy

computations for Triangular 2D HP protein folding. In this scheme, there was one subinstance

decomposition of one size smaller, a negligible divide time, and a simple combine procedure which

merges the subinstance result with the neighbor H-H pairs of the current directional string item.

Moreover, the protein conformation on the triangular lattice can be mapped and layout out on

a square grid for easier neighbor determination. Furthermore, we laid out a caching scheme for

partial results that saves linearly a left and right substring (prefix or suffix) of each gene. Using

such a caching scheme, we can develop a divide and conquer algorithm that relies on the potential

of truncated recursion by cache lookup.

Performing a theoretical analysis, the fitness computation time for one conformation for the

Triangular 2D Lattice Protein Folding problem (TPF) for non-caching has an expected run time

of

Rorig
TPF (n) = 78n.

If caching is used, the fitness evaluation time will be determined by how large a part of the

amino acid string to be computed is found to be cached. If a substring of length z is cached, then

the expected run time is

RTPF (n, z) = 18n + 69(n − z) + 5z.

Comparing caching to non-caching, if z is quite small then the overhead needed to write to and

access the cache will force caching to take more time. Therefore, caching is worthwhile only when

z is sufficiently large.

Clearly, while fitness computation is an important part of GA run-time, it is just one of many

11

components. Below is the pseudocode for one iteration of our evolutionary algorithm, i.e., the

construction of the new generation of genes from the previous generation, consists of the following

sequence:

Algorithm 4.1. Iteration(Gold, Gnew, k, n, crate, mrate, drate)

/* Gold = array of individuals in the current generation

Gnew = output of new array of individuals

k = length of array Gold

n = problem size (length of gene)

crate = rate of 2-point crossover

mrate= rate of 1-point mutation

drate= rate of diversity replacement */

/* Selection */

Construct Gnew from Gold with roulette wheel selection

/* Crossover */

for i = 1 to k do

if (Rnd() < crate then

Mark ith individual as crossable

For all consecutive pairs (I1, I2) of crossable individuals in Gnew do

Do 2-point crossover on I1 and I2 and replace in Gnew

Compute fitness for I1 and I2

Mark I1 and I2 as modified

/* Local Search */

For each modified I in Gnew do

for i = 1 to n do

for j = EE, WW, NE, NW, SE, SW} do

12

Construct Ij from I by replace ith element in I with j

Compute fitness for Ij

Replace I with Ij that has best fitness

/* Mutation */

for i = 1 to k do

if (Rnd() < mrate then do

Do 1-point mutation on Ii in Gnew and replace

Compute fitness of Ii

if Ii is invalid walk then

replace with new randomly generate individual

compute fitness of Ii

/* Diversity Replacement */

Randomly replace up to drate individuals in Gnew with new randomly generated individuals

Compute fitness for new individual

Analyzing each component of the algorithm, we see that for one generation of our GA, the

expected running time is:

• 3k2

2
+ 4k is the time for selection

• k(2 + crate(8 + 82n)) is the time for crossover using non-caching fitness evaluation, and

k(2+ crate(4n+8+RTPF (n, 2n
3

)) = k(4+ crate(8+44.33n)) is the expected time for crossover

using caching for fitness evaluation

• cratek(36n + 468n2 + 4) is the time for local search using non- caching fitness evaluation, and

cratek(6n(6+RTPF (n, 3n
4

))+4) = cratek(36n+234n2 +4) is the expected time for local search

using caching in fitness evaluation

• k(2 + mrate(12 + 78n)) is the time for mutation using non-caching fitness evaluation, and

13

k(2 + mrate(12 + RTPF (n, 3n
4

)) = k(2 + mrate(12 + 39n)) is the expected time for mutation

using caching fitness evaluation

• k(4+ drate(78n)) is the time for diversity replacement using non- caching, and this is also the

worst case possibility if using caching.

The theoretical run-time for one generation using non-caching is:

T (k, n) =
3

2
k2 + 14k + cratek(12 + 118n + 468n2) + mratek(12 + 78n) + drate78kn.

The expected running time with caching is:

Tc(k, n) =
3

2
k2 + 14k + cratek(12 + 80.33n + 234n2) + mratek(12 + 39n) + drate74kn.

Comparing the ratio of Tc(k, n)/T (k, n), we see that the dominating factor is crate234kn2/crate468n
2 =

50%. Hence we expect a 50% savings in computational time.

5 Experimental Results

Given our theoretical predictions, we now compare them against actual runs. We implemented our

evolutionary algorithm according to Algorithm 4.1 with two versions: (1) without caching of fitness

computations, and (2) with left and right caching. Our goal is to compute the computational effort

saved through caching.

We implemented both versions in C++ on a Pentium IV 2GHz machine with 1G RAM running

Linux. The testbed proteins we employ are drawn from [8] for triangular 2D-HP and from [10]

which have yet to be computed in triangular 2D-HP. Table 5.1 contains the HPs used in our

experiments. We note again that our goal in this experiment is to determine savings from cache

re-use. Hence, we limited our number of generations applied to our evolutionary algorithms to 100.

Clearly, as can be seen from Table 5.1, 100 generations is sufficient for short proteins but not for

14

0.10

1.00

10.00

100.00

P
ro

te
in

Id
#

Protein Id #

C
P

U
T

im
e

(s
e
c
s
)

w/o caching

w/ caching

Predicted w/ caching

Fig. 5.1. Average CPU Time (in seconds) of w/o caching vs w/caching over 10 runs per
protein at 100 generations. Predicted CPU Time also plotted.

longer proteins. However, this will allow us to demonstrate the utility of caching by allowing us

to extend the number of generations that can be computed using the same amount of time needed

without caching. Our theoretical prediction results in a 50% savings. As such, for our caching runs,

we allow the algorithm to continue for another 100 generations.

To determine reasonable parameters for our evolutionary algorithm, we conducted some pre-

trial runs. For our experiment, we used a crossover rate of 0.7, a mutation rate of 0.05, and a

diversity replace rate of 10%. For our evolutionary algorithms with caching, we gathered results

after 100 generations and then again after 200 generations. Each protein was run 10 times with

each evolutionary algorithm.

We computed the average CPU time (in seconds) over 10 runs per protein on each evolutionary

15

HP Sequence Length
Optimal

Soln

100 Generations

Best Soln

1 HHPHPHPHPHPH 12 -11 -11

2 HHPPHPHPHPHPHP 14 -11 -11

3 HHPPHPPHPHPHPH 14 -11 -11

4 HHPHPPHPPHPPHPPH 16 -11 -11

5 HHPPHPPHPHPHPPHP 16 -11 -11

6 HHPPHPPHPPHPPHPPH 17 -11 -11

7 HHPHPHPHPHPHPHPHH 17 -17 -17

8 HHPPHPPHPHPHPPHPHPHH 20 -17 -16

9 HHPHPHPHPHPPHPPHPPHH 20 -17 -15

10 HHPPHPPHPHPPHPHPPHPHH 21 -17 -15

11 HHPHPPHPPHPHPHPPHPPHH 21 -17 -15

12 HHPPHPHPHPPHPHPPHPPHH 21 -17 -16

13 HHPPHPPHPHPHPPHPPHPPHH 22 -17 -16

14 HHHPHPHPHPHPHPHPHPHPHHH 23 -25 -24

15 HHPPHPPHPPHPPHPPHPPHPPHH 24 -17 -15

16 HHHPHPHPPHPHPHPHPHPHPHHH 24 -25 -21

17 HHHPHPHPHPPHPHPHPHPHPHHH 24 -25 -24

18 HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 30 -25 -18

19 HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 30 -25 -20

20 HHHPPHPPHPPHPHPHPPHPPHPPHPPPPPHPHPHHH 37 -29 -21

21 HPHPPHHPHPPHPHHPPHPH 20 n/a -15

22 HHPPHPPHPPHPPHPPHPPHPPHH 24 n/a -14

23 PPHPPHHPPPPHHPPPPHHPPPPHH 25 n/a -16

24 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP 36 n/a -23

25
PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHP

PHPPHHHHH
48 n/a -37

26
HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHH

HHPHPHPHPHH
50 n/a -32

27
PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHH

HHHHHHPPPPHHHHHHPHHPHP
60 n/a -62

28
HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPH

PPHHPPHHPPHPHPHHHHHHHHHHHH
64 n/a -54

29 HHHPPHPHPHPPHPHPHPPH 20 n/a -17

30
PHHHPHHHPPPHPHHPHHPPHPHHHHPHPPHHHHHPHP

HHPPHHP
45 n/a -36

31
HPHHHPHHHPPHHPHPHHPHHHPHPHPHHPPHHHPPHP

HPPPPHPPHPPHHPPHPPH
57 n/a -38

Table 5.1. HP Testbed Proteins. Protein ID 1-20 are from [8]. Protein ID21-31 are from
[10].

16

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Protein Id #

A
b

s
o

lu
te

E
n

e
rg

y
Im

p
ro

v
e
m

e
n

t

Average Solution Improvement

Fig. 5.2. Average absolute energy value improvement.

algorithm. Figure 5.1 shows the comparison of times with the predicted time in a logarithmic plot.

Our predicted runtimes are very close to our actual runtimes. For predicted runtime, we simply

factored our predicted savings with the actual runtime w/o caching.

Next, we allowed our algorithm with caching to 200 generations. In 9 out of the 31 proteins, the

algorithm was able to find a better solution out of its 10 runs. Furthermore, the average solution

found were better when given the additional time (see Figure 5.2). We note that this is especially

significant since our energy values are simply negative integers.

Finally, we examine that average hit rate in our caching technique in Figure 5.3. In general, we

find that we are achieving on average an 80% hit rate which translates to reusing nearly 80% of

fitness computations. One primary factor that resulted in such a high rate is the local search that

has been employed.

17

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

1
0

11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Protein Id #

R
a
ti

o
to

T
o

ta
l

L
e
n

g
th

Average Hit Length Remainder

}

Fig. 5.3. Ratio of cache hit to total length.

18

6 Conclusion

Determining the native conformation using computational protein models requires a large number

of energy evaluations especially with stochastic search algorithms that rely on diversity of the

search in order to find a good solution. Such evaluations clearly consume a significant amount

of available computational resources. In this paper, we have examined a caching approach that

exploits divide and conquer to re-use past energy evaluations for partially recomputing the quality

of new candidate solutions. We have provided theoretical analysis and prediction on the savings

that can be gained through our caching approach. We then compared our theoretical analysis

against a real-world testbed of 2D triangular lattice HP proteins using a sophisticated evolutionary

algorithm that consists of local search, memetic elements, and diversity factors. Our comparisons

demonstrated the promising savings through our caching approach and matches our predicted

analysis. Furthermore, we applied the savings gained from caching towards more search which

resulted in better solutions.

In conclusion, caching is a promising approach for better utilizing computational time and

resource. Given that the search for candidate solutions are relatively structured by nature, caching

should have a tremendous impact in a variety of domains. One future direction would be to

examine more general decomposition approaches towards caching in order to handle even more

specific energy models.

References

[1] R. Agarwala, S. Batzoglou, V. Dancik, S. Decatur, M. Farach, S. Hannenhali, S. Muthukr-

ishnan, and S. Skiena. Local rules for protein folding on a triangular lattice and generalized

hydrophobicity in the HP model. Journal of Computational Biology, 4(2):275-296, 1997.

[2] B. Berger, T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model is NP-

19

complete. Journal of Computational Biology, 5(1), 27-40, 1998.

[3] B.P. Blackburne and J.D. Hirst. Evolution of Functional model Proteins. Journal of Chemical

Physics, 115(4), 1934-1942, 2001.

[4] E. Bornberg-Bauer. Simple folding model for hp lattice proteins. In Proceedings of Bioinfor-

matics German Conference on Bioinformatics GCB ’96, 125-36, 1997.

[5] P. Crescenzi, D. Goldman, C. Piccolboni, M. Yannakanis. On the complexity of protein folding.

Journal of Computational Biology 5(3):423-465, 1998.

[6] K.A. Dill, S. Bomberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas, H.S. Chan. Principles of

protein folding: A perspective from simple exact models. Protein Sci 4, 561-602. 1995.

[7] Hart, W. E., and Istrail, S. Fast protein folding in the hydrophobic-bydrophilic model within

three-eighths of optimal. In Proceedings of Twenty-seventh Annual ACM Symposium on Theory

of Computing(STOC95), 157-68, 1995.

[8] N. Krasnogor, B. Blackburnem, J.D. Hirst, E.K. Burke. Multimeme Algorithms for Protein

Structure Prediction in Proceedings of Parallel Problem Solving From Nature, 2002, Lecture

Notes in Computer Science.

[9] M. Milostan, P. Lukasiak, K. Dill, J. Blazewicz. A tabu search strategy for finding low energy

structures of proteins in HP-model. RECOMB Poster Proceedings, 2003.

[10] E.E. Santos, E Santos Jr. Effective and Efficient Caching in Genetic Algorithms. International

Journal on Artificial Intelligence Tools 10(1-2): 273-301, 2001.

[11] A. Shmygelska, R. Aguirre-Hernndez, H.H. Hoos. An Ant Colony Optimization Algorithm for

the 2D HP Protein Folding Problem. Proceedings of the Third International Workshop, ANTS

2002, Proceedings, Springer’s Lecture Notes in Computer Science (LNCS) series, Vol. 2463.

[12] R. Unger, and J. Moult. Genetic algorithms for protein folding simulations. Journal of Molecule

Biology 231:75-81, 1993.

20

