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Abstract—The emerging MPEG-4 standard supports the trans-
mission and composition of facial animation with natural video.
The new standard will include a facial animation parameter
(FAP) set that is defined based on the study of minimal fa-
cial actions and is closely related to muscle actions. The FAP
set enables model-based representation of natural or synthetic
talking-head sequences and allows intelligible visual reproduction
of facial expressions, emotions, and speech pronunciations at
the receiver. This paper addresses the data-compression issue of
talking heads and presents three methods for bit-rate reduction
of FAP’s. Compression efficiency is achieved by way of transform
coding, principal component analysis, and FAP interpolation.
These methods are independent of each other in nature and thus
can be applied in combination to lower the bit-rate demand of
FAP’s, making possible the transmission of multiple talking heads
over band-limited channels. The basic methods described here
have been adopted into the MPEG-4 Visual Committee Draft
[1] and are readily applicable to other articulation data such
as body animation parameters. The efficacy of the methods is
demonstrated by both subjective and objective results.

Index Terms—Face animation, MPEG-4, synthetic and natural
hybrid coding.

I. INTRODUCTION

M ANY applications in human–computer interface, three-
dimensional (3-D) video games, model-based video

coding [2], [3], talking agents [4], and distance learning
demand rendering of realistic human faces [5]–[7]. In re-
cent years, computer speed boosted by dramatic hardware
improvement has made real-time rendering of face models
possible. Recognizing the technology evolution in this field
and its potential market value, MPEG is developing a new
standard for animation and communication of talking heads. It
is envisioned that this standardization will greatly accelerate
the deployment of talking-head technology to a wide range of
applications.

There are two possible approaches to communication of
talking-head video. The pixel-based approach renders the
facial images and transmits the resulting images as arrays of
pixels, whereas the model-based approach transmits the facial
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animation parameters (FAP’s) that describe the face motions
and renders the images at the receiver. The latter approach is
more appealing because it requires much less bandwidth and
allows video editing and manipulation at the bitstream level.
The model-based approach divides the task into geometric
and articulation modeling. They are described by the MPEG-4
Synthetic/Natural Hybrid Coding (SNHC) group as the facial
definition parameters (FDP’s) and the FAP’s, respectively. The
geometric model defines the polygonal mesh of face and the
associated skin texture from which visually realistic facial
images from different view angles can be synthesized, and
the articulation model deals with the deformation of static
geometric models to generate various dynamic effects for
intelligible reproduction of facial expressions. In an MPEG-4
talking-head transmission session, FDP data (if available) are
transmitted at the setup stage to initialize the geometric model.
Later, only FAP data are transmitted to deform the facial model
[8]–[10] (Fig. 1).

Animation parameters, which have to be updated contin-
uously to drive a face model, play a key role in model-
based talking-head systems. The well-known facial action
coding system (FACS) developed by Ekman and Friesen
[11] describes the action of a group of muscles by an ac-
tion unit. In their system, an articulation model converts
the perceptually meaningful animation parameters to 3-D
displacements of mesh vertices. Because the conversion is
generally nonlinear and complicated, several approximation
methods have been proposed and can be classified into four
major categories: parameterized model [12]–[16], physical
muscle model [17]–[20], free-form deformation model [21],
and performance-driven animation model [22], [23].

The MPEG-4 standard will include a set of 68 FAP’s that are
defined based on the study of minimal facial actions and that
are closely related to muscle movements [1]. The FAP set is a
compromise solution that allows intelligible visual reproduc-
tion of facial expressions, emotions, and speech pronunciations
at the receiver end but does not require the standardization of a
geometric face model. Therefore, a manufacturer of MPEG-4
receivers can design its own proprietary face model to repre-
sent, for example, a company’s identity while being able to
communicate with any MPEG-4 face encoder. Depending on
the applications, the FAP’s can be obtained by analyzing the
video sequence of a person [24]–[27], or by converting a text
or phoneme stream to visual speech parameters [4].

The goal of this paper is to address the compression issue
of FAP’s. The FAP data must be compressed to a sufficiently
low bit rate because after the setup stage, they dominate the
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Fig. 1. An FAP-driven talking-head system.

usage of the channel and because most applications envisaged
have a low bandwidth constraint. As an illustration, assuming
that ten bits are used for each parameter and the frame rate
is 30 Hz, the raw FAP data rate without compression can
reach as high as 20 kbit/s for a single talking head if all
68 FAP’s are sent. Handling more than two talking heads
is beyond the capability of an ordinary computer modem
(56 kbit/s). Thus, the FAP data have to be compressed. The
FAP compression methods described here employ techniques
such as transform coding, principle component analysis, and
interpolation to remove temporal or spatial data redundancy.
These methods are independent of each other and hence can
be applied together to achieve very high data compression for
talking-head video.

The remaining sections are organized as follows. A brief
description of the MPEG-4 FAP’s and the associated group-
ing for efficiency purposes is given in Section II. The sub-
ject of FAP interpolation for data reduction and a general
scheme for representation of FAP interpolation are discussed
in Section III. Compression methods that remove spatial or
temporal data redundancy are described in Sections IV–VI.
The performance of the proposed methods, including both
objective and subjective experimental results, is described in
Section VII, followed by concluding remarks in Section VIII.

II. MPEG-4 FACIAL ANIMATION PARAMETERS

As described earlier, MPEG-4 adopts a model-based ap-
proach that allows user-defined face models to communicate
with each other without requiring the standardization of a
common face model. The result of this approach is the
definition of 68 facial animation parameters as the basic data
set that must be supported by all MPEG-4 face decoders.
Among the 68 FAP’s, two are high-level parameters [visual
phoneme (viseme) and expression] and the others are low-

level parameters that describe the movements of facial features
defined over jaw, lips, eyes, mouth, nose, cheek, ears, etc.
Unlike the low-level parameters, the viseme and expression
parameters describe facial movements at an abstract level,
and each is a compound parameter consisting of multiple
subparameters [1].

The movement represented by each FAP is defined with
respect to a neutral face and expressed in terms of the
facial animation parameter units (FAPU’s); see Fig. 2. The
FAPU’s correspond to fractions of the distances between
some salient facial features, such as eye separation (ES0),
mouth-nose separation (MNS0), etc. These units are defined
in order to allow a consistent interpretation of FAP’s on
any face model. Each FAP represents a one-dimensional
measurement. For example, the third FAP defines
the vertical displacement of the jaw and is unidirectional,
with an FAPU MNS equal to MNS0/1024. A positive value
represents downward motion. Details of these definitions are
described in [1].

The FAP’s specified by MPEG-4 are intended to be exhaus-
tive. Typically, not all the FAP’s are active in a face animation
session. Furthermore, some FAP’s tend to appear more often or
to require more precision than the others. For the purpose of bit
savings, therefore, it is advantageous to divide the FAP’s into
groups, each with its own quantization step size and FAPU.
A talking-head encoder will then have to update only the
active groups of FAP’s. The complete FAP’s and groupings
adopted by MPEG-4 are listed in Table I. By the same token,
not all FAP’s within a group are active. Therefore, further
data reduction can be accomplished by employing a mask to
indicate which FAP’s are active, and only the active FAP’s
within each group are transmitted or updated. By applying the
masking to the test sequenceAleta, for example, the number
of FAP’s required for transmission decreases to 19, and the
resulting bit rate drops by a factor of 3.5 with respect to the
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TABLE I
THE TEN GROUPS OFMPEG-4 FACIAL ANIMATION PARAMETERS

Fig. 2. The FAP units.

raw data rate. Grouping and masking are simple but effective
methods for reducing the amount of FAP data to be transmitted
without introducing much computational cost. However, the
spatial-temporal redundancy among FAP’s is not exploited. As
can be seen later, the methods presented in this paper compress
the FAP data by an additional factor of ten or even more.

The four major components in an MPEG-4 facial animation
system are an analyzer that generates FAP’s, an encoder that
compresses FAP’s and the FDP’s, a decoder that decodes the
bitstream, and an image synthesizer that renders the face based
on the reconstructed FAP data. The FDP’s allow the definition
of a precise facial shape, skin texture, and animation rule in the

setup stage when so desired. Details of the FDP’s are specified
in the MPEG-4 systems committee draft [28] and are beyond
the scope of this paper.

III. FAP INTERPOLATION

One way to achieve data reduction for talking heads is to
send only a subset of active FAP’s. This subset is then used to
determine the values of other FAP’s. Such FAP interpolation
exploits the symmetry of a human face or thea priori knowl-
edge of articulation functions. For example, the top-inner-lip
FAP’s can be sent and then used to determine the top-outer-lip
FAP’s. The inner-lip FAP’s would be mapped to the outer-lip
FAP’s by interpolation. Those two contours are not identical,
but one can be approximately derived from the other while
still achieving reasonable visual quality. FAP interpolation is
a desirable tool to overcome channel bandwidth limitation. It
is also useful for data recovery where a face decoder needs to
determine the values of missing FAP’s caused by, for example,
imperfect face feature extraction at the encoder or by packet
loss during data transmission.

In practice, it is critical that the decoder interpolate FAP’s
the same way as the encoder does. Otherwise, unpredictable
results may be generated. A seemingly convenient solution
is to predefine interpolation rules in a standard with which
all FAP coders must comply. However, the relations among
FAP’s vary from person to person. It is generally difficult
to decide a set of fixed interpolation rules that fits all faces.
Further, there are so many possible ways of interpolating
FAP’s, depending on which FAP needs interpolation and which
FAP’s are available. It is virtually impossible to exhaustively
define all of them. A more plausible approach using FAP
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Fig. 3. Data transmitted in a face animation session.

interpolation table (FIT) is proposed in [29]. The basic idea
is to allow users to define interpolation methods and send
this information at the setup stage of each FAP transmission
session. FIT specifies both interpolation syntax and interpola-
tion functions. The interpolation syntax describes from which
other FAP’s an FAP can be interpolated. The interpolation
functions describe the mathematical relations. The two major
elements of FIT are an FAP interpolation graph (FIG), which
describes the interpolation syntax, and rational polynomials,
which specify the interpolation functions. FIG is an efficient
scheme capable of describing complicated relations between
FAP’s, while the multivariable rational polynomial is capable
of representing both linear and nonlinear interpolations and is
general enough to describe FAP-to-mesh interpolation as well.
The FAP interpolation table is also downloaded in the setup
stage when FAP interpolation is required in the face animation
session, as shown in Fig. 3.

A. FAP Interpolation Graph

To make the scheme general, sets of FAP’s are specified,
along with a graph between the sets that specifies which sets
are used to determine which other sets. In some situations, a
set of FAP’s can be determined from more than one other set of
FAP’s, in which case the links that determine the relationship
between sets of FAP’s also have a priority.

The FIG is a graph with directed links. Each node con-
tains a set of FAP’s. Each link from a parent node to a
child node indicates that the FAP’s in a child node can
be interpolated from a parent node provided that all the
required FAP’s in the parent node are available. An FAP
may appear in several nodes, and a node may have multiple
parents. For a node that has multiple parent nodes, the latter
are ordered as first parent node, second parent node, etc.
During the interpolation process, if this child node needs
to be interpolated, it is interpolated from its first parent
node if all required FAP’s in that parent node are available.
Otherwise, it is interpolated from its second parent node, and
so on.

An example of FIG for representing the interpolation of
inner- and outer-lip contours is shown in Fig. 4. Each node
has an ID. The numerical label on each incoming link in-
dicates the order of these links. For example, consider the

FAP’s in node 3 (ID 3). These FAP’s can
be interpolated from either node 1 or node 4. Since the priority
of the link from node 4 is one, higher than that of the link from
node 1, interpolation from node 4 is performed first. Once an
FAP is interpolated, it is considered available and can be used
to interpolate other FAP’s.

Fig. 4. An FAP interpolation graph.

In general, an FAP interpolation process based on the FIG
can be described using pseudo C code as follows:

Both encoder and decoder must follow the same interpolation
process in order to guarantee identical results.

B. Interpolation Functions

Each directed link in FIG represents a set of interpolation
functions that determine the values of child FAP’s. Suppose

, are the FAP’s in a parent node and,
are the FAP’s in a child set. Then, there are

interpolation functions denoted as

(1)

Each interpolation function is in a rational polynomial
form if the parent node does not contain viseme FAP or
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Fig. 5. An example of FAP interpolation using FIT.

expression FAP

(2)

Otherwise, an impulse function is added to the numerator to
allow selection of expression or viseme

(3)

where and are the numbers of polynomial products,
and are the coefficient of theth product, and and are
the power of in the th product. An impulse function equals
one when ; otherwise, the function equals zero. The
variable can only be , ,

, and . The vari-
able is an integer that ranges from zero to six when

is or , and
ranges from zero to 14 when is or

. The encoder should send an interpolation
function table that contains all , , , , , , , and

to the decoder for each child FAP. Because rational
polynomials form a complete functional space, any possible
finite interpolation function can be represented in this form to
any given precision.

C. Examples of FIT

Two more examples of FIT are given below for illustra-
tion purposes. The first example describes the interpolation
between left and right FAP’s and the interpolation between
inner- and outer-lip contours. The FIG of this example is
shown in Fig. 5. There are four nodes with ID’s from zero
to three. Nodes 0 and 1 each have ten FAP’s representing
inner (FAP –FAP ) and outer (FAP –FAP ) lip contours,
respectively. Similarly, there are 23 FAP’s in both nodes 2
and 3 representing right-side and left-side faces, respectively.

The interpolation functions between nodes 2 and 3 are sim-
ply duplications. Thus, we have ,
where – denote right-side or left-side FAP’s and–
denote FAP’s of the other side. Interpolation functions be-
tween inner-lip and outer-lip FAP’s are more complicated
and vary significantly from the individual face. An inter-
polation function from (denoted as ) to

Fig. 6. Interpolation of from .

Fig. 7. An FIT for describing an expression.

(denoted as ) in the form of
, where is the maximum range

of , simply emulates the effect of upper-lip thinning when
it is raised (Fig. 6).

The second example illustrates the usage of FIT for defining
a high-level expression FAP in terms of other low-level FAP’s.
Fig. 7 shows a FIG that accomplishes this task. There are two
nodes. Node 0 contains four subparameters of the expression
FAP, the two expression identities FAPand FAP (denoted
as and ), and their intensities FAP and FAP (denoted
as and ). Variables and range from one to six, rep-
resenting one of the six expressions: joy, sadness, anger, fear,
disgust, and surprise. Variables and range from zero to
63, indicating the intensities of these two expressions. Node 1
contains 27 low-level FAP’s for this specific implementation.
Thus, a total of 27 interpolation functions need to be defined.
Each function is in the form

, where is
an impulse function that equals one when and equals
zero otherwise. For a particular expression, or equivalently, a
particular , are low-level FAP values
that achieve that expression. These values are either extracted
from real data using the principal component analysis (PCA)
technique, which will be discussed in the next section, or
obtained from interactive animation tools.

IV. REDUCTION OF FAP SPATIAL REDUNDANCY

A more general tool for exploiting both deterministic and
statistical correlation among FAP’s is PCA [30], which con-
verts the original FAP data to a new compact form. Application
of this technique is motivated by the observation that different
parts of a human face are articulated harmoniously and, though
fixed relations may be absent or difficult to deduce, statistically
a strong correlation exists.
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To apply the PCA technique, major axes are computed as
the eigenvectors of the covariance matrix computed from FAP
vectors. Each FAP vector is formed by FAP’s at a particular
frame. The eigenvalues of the covariance matrix indicate
the energy distribution. The major axes corresponding to
significant eigenvalues form a new low-dimensional subspace
in which most portions of FAP data are reserved. Compact
representation is obtained by projecting the original FAP
vector into this subspace, and then the new representation
is transmitted through the channel. Projecting the transmitted
data back to the FAP space produces good approximations of
the original FAP vectors. The projection process is also called
the Karhunen–Loeve transform (KLT) [31].

To formalize the above process, suppose the original FAP
vectors are , , and each is a column vector
that contains FAP’s in a particular frame. Then, the
covariance matrix is computed as

(4)

where is the mean of . Since for most FAP’s the average
positions are at neutral expression, or zero, the covariance
matrix is simply written as

(5)

Since is a nonnegative definite matrix, all eigenvalues
are nonnegative real values. We denote them in descending
order as , and their corresponding normalized
eigenvectors as , . Suppose that the first
eigenvalues are significantly large, or that the percentage of
energy exceeds a certain threshold;
these eigenvectors then form a subspace that preserves most
of the information in . Each is transformed into this new
subspace by performing a linear transformation

...
(6)

The derived -dimensional vector is encoded and transmit-
ted. To approximate from , the following linear transfor-
mation is executed at the decoder side:

(7)

PCA reduces dimension dramatically for FAP data with
strong spatial correlation. Although some new components
of may possess larger data ranges and need more bits for
coding, overall, significant bit savings are achieved. Also (in
addition to ), , for each FAP sequence needs
to be sent in the setup stage to ensure that the decoder correctly
recovers . For a low-bandwidth system with limited room for
downloading, a set of universal major axes is pursued so
that both encoder and decoder include this KLT and no explicit
setup is necessary for each sequence. This universal transform
can be obtained by applying PCA to large amounts of training
data that sample various facial movements.

Another important issue that deserves further discussion is
group PCA. It is well known that PCA provides meaningful

Fig. 8. Block diagram of a predictive coder.

results only if the measurement of each vector element has
approximately equal significance, which is not true for FAP.
For example, the numerical ranges of the eye-movement FAP’s
are much larger than those of the FAP’s around the mouth.
Their measurements have remarkably different significance. A
coding error of 50 FAPU’s on eyeball-rotation FAP’s may
leave no trace in the animated images; however, visually
irritating results are observed if this amount of error is in any
mouth FAP. A meaningful PCA is achieved only inside each
FAP subgroup, in which FAP values have similar significance.

V. REDUCTION OF FAP TEMPORAL REDUNDANCY

In a temporal sequence of each FAP parameter or each
PCA major component , strong interframe correlation exists.
Actually, the similarity between consecutive temporal frames
appears in most animation parameters and can be explained as
the result of the inertia factors existing in all mechanical sys-
tems. Compression techniques in temporal domain exploit this
characteristic to achieve bit savings. Two schemes discussed in
this section are the predictive coding (PC) and discrete cosine
transform (DCT) methods [32].

A. PC Method

Instead of transmitting the parameters themselves, the dif-
ferences between consecutive frames are encoded and sent.
Because neighboring frames for each parameter contain similar
values, the differences between the parameters tend to be
smaller quantities centering around zero. Fewer bits are needed
to represent these differences as the result of their smaller data
ranges and concentrated distributions. The block diagram of a
variable-length predictive encoder is shown in Fig. 8.

For each FAP, its encoded value in the previous frame is
used as the prediction for its current value. Because both de-
coder and encoder use this same prediction, error accumulation
is avoided. The prediction error (i.e., the difference between
the current FAP value and its prediction) is then quantized
and coded using an adaptive arithmetic coding algorithm. This
process is also called interframe coding and is the bit-saving
source.

Intraframe coding, on the contrary, directly encodes the
quantized FAP value. It is equivalent to set the value in
“Memory” to zero. A typical transmission session applies
intraframe coding for the first frame or a frame that is not
closely related to its previous frame.

A noteworthy problem in the FAP predictive coding scheme
is how to set the appropriate quantization step size for each
FAP. Both its visual sensitivity to errors and its original data
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Fig. 9. FAP coding using the DCT method.

range need to be considered simultaneously. For example, the
jaw movements can be quantized more coarsely than the lip
movements without affecting the perceptual quality of the re-
sulting animation. Equivalently, this problem is also addressed
as, for a given transmission bandwidth, how to achieve the best
visual results by adjusting the bit distributions of each param-
eter through setting its quantization step. Extensive empirical
results are indispensable to deduce a plausible solution.

Because there is no temporal latency, the predictive coding
scheme is suitable for real-time applications. In many other
situations, however, a small decoding latency in exchange for
a higher compression is tolerable. An example of this type
of application is a multimedia mailing system with a front-
end talking agent, where the coded FAP sequences are usually
stored on a disk. For such applications, the transform coding
method is an appropriate choice.

B. FAP Coding Using DCT

At video rates such as 30 or 25 Hz, strong correlation exists
not only between consecutive frames but also among multiple
neighboring frames. KLT is applicable for decorrelating orig-
inal data into a compact representation for data reduction in
a manner similar to that described in Section IV. However,
the temporal causal relations, or Markov properties, exist in
facial articulation. It is well known that when a signal is
Markovian, the decorrelation efficiency of faster and simpler
DCT approaches that of KLT. DCT converts the original data
into their frequency domain representations, namely, dc and ac
coefficients. Since FAP data have relatively low frequencies,
most high-frequency ac coefficients are small and can be
discarded. This dramatically reduces the amount of data that
need to be transmitted.

A block diagram of the proposed DCT coder is shown in
Fig. 9. For each FAP parameter or PCA component, the tem-
poral sequence is decomposed into segments. Each segment
contains 16 frames. A one-dimensional length-16 DCT is then
applied to these individual segments.

After DCT, the resulting dc and ac coefficients are quan-
tized. Similar to the predictive coding scheme, for each FAP
parameter, a particular quantization step is specified according

Fig. 10. A hybrid FAP encoding scheme.

Fig. 11. Block diagram of a PCA+ PC coder.

to its perceptual sensitivity to error. Because the dc coefficient
is the mean value of the segment and is prone to error, its
quantization step size is three times smaller than that of ac
coefficients.

For quantized dc coefficients, the predictive coding method
is applied to take advantage of the correlation between them. In
an intrasegment, the quantized dc coefficient value is directly
stored. For an intersegment, the quantized dc coefficient of the
previous segment is used as a prediction, and the prediction
error is coded using the Huffman coding method.

For the nonzero ac coefficients in each segment, their
positions and values need to be encoded. To encode their
positions, a run-length coder is applied to record the number
of leading zeros. A special symbol is defined to indicate the
last nonzero ac coefficient in a segment. Since the segment
length is 16, possible run-length values range from zero to 14.
Therefore, taking the symbol into account,
the Huffman table of the run-length coder contains 16 symbols.
The values of nonzero ac coefficients are then encoded using
a Huffman coder.

As in the predictive FAP coding scheme, quantization steps
need to be carefully assigned to each parameter. Again,
empirical results are used to determine these values. To further
exploit the human perceptual properties, different quantization
steps are assigned to different ac coefficients. Subjective
experiments need to be conducted on the resulting animation.
A set of DCT quantization steps are specified in the MPEG-4
Visual Committee Draft [1].

VI. REDUCTION OF FAP SPATIAL

AND TEMPORAL REDUNDANCY

Compression methods in spatial domain are orthogonal to
compression schemes in temporal domain in the sense that the
former exploit the correlation among FAP’s in a single frame,
whereas the latter take advantage of the temporal correlation
of each FAP parameter. They can be combined in a hybrid
scheme to achieve higher compression performance. Fig. 10
describes possible ways of configuring this type of scheme.
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(a)

(b)

Fig. 12. Using FIT onMarco30 sequence. Frames from the (a) original sequence and (b) decoded sequence.

FIT allows variable FAP inputs in each frame. For example,
in one frame, the FAP for raising the left eyebrow exists but the
FAP for the right eyebrow does not; in another frame, the FAP
for raising the right eyebrow appears but the FAP for the left
eyebrow does not. A FIT for left–right duplication will easily
handle both situations and interprets both frames correctly.
PCA, on the other hand, requires noa priori knowledge
about the data but the same set of FAP’s must appear in all
frames. Neither FIT nor PCA introduces temporal latency.
Different applications may choose the appropriate one for
FAP dimension reduction. Fig. 11 shows the block diagram
of a hybrid scheme using PCA and PC. “Q” is a quantizer
and “IQ” is an inverse quantizer. Prediction is stored in
“Memory.”

Because the predictive coding method can achieve lossless
coding, it is the first candidate for temporal compression
when fidelity is the major concern. However, when the FAP
sampling rate is relatively high (10 Hz) and therefore strong
correlation exists in each temporal segment, the predictive
method is less efficient than the DCT method.

VII. EXPERIMENTAL RESULTS

Results on three FAP test files are shown in this section. In
all test files, the FAP’s are sampled at 30 frames/s. The first
sequenceMarco30contains 1542 frames, 32 active FAP’s per
frame. The facial movements in this sequence include global
head motions, expressions, and speech. The second sequence
Emotionshas 1050 frames and 27 active FAP’s in each frame
and contains six facial expressions. The third sequenceAleta
contains 300 frames and 19 mouth-related FAP’s in each
frame. Only speech contents appear in the sequence.

For objective comparison, the following formula is used to
compute the peak signal-to-noise ratio (PSNR) between the

original and the reconstructed FAP data:

PSNR
MSE

(8)

where is the number of active FAP’s, is the range of
the th FAP parameter, and MSEis the mean square error of
the decodedth FAP sequence.

To inspect the results subjectively, the original and the
reconstructed FAP data are fed into a face-animation program
provided by MIRALAB of EPFL, Switzerland. Rendered
animation sequences are visually compared side by side to
evaluate the perceptual effects of distortion. Even at the same
PSNR and bit rate, animation results can be dramatically dif-
ferent if the bits are distributed to each parameter differently.
Many subjective tests have been performed to choose a set
of FAP quantization steps that consequently leads to visually
optimal bit distributions. A general observation is that humans
are very sensitive to distortion in global motion FAP’s and
FAP’s around the eyes and mouth. With this factor in con-
sideration, relatively smaller quantization steps are applied to
these FAP’s. A set of FAP quantization steps is defined in [1].

A. FIT Results

Experiments on FIT have been conducted on theMarco30
and Emotionssequences. By defining left side to right side,
inner lip to outer lip, bottom-mid lip to open jaw, and middle
eyebrow to side eyebrow interpolations, only 13 of the original
32 FAP’s in Marco30 sequence need to be transmitted. The
interpolation functions are either duplications or in the form
described in Section III-C. This process dramatically reduces
the data volume by a factor of 2.5. Then, from these 13
FAP’s, 19 untransmitted FAP’s are interpolated. The resulting
FAP data are compared subjectively with the original data.
As shown in Fig. 12, the first row contains frames from the
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Fig. 13. FIT results for expression “surprise.” Only expression FAP is sent
for each frame, and the 27 low-level FAP’s are interpolated from it using FIT.

Fig. 14. Compression results ofMarco30 sequence.

sequence generated by animating the originalMarco30 data;
the second row includes results by FAP interpolation. The
difference is almost unnoticeable.

In the second experiment, the expression “surprise” in
the Emotions sequence is analyzed using PCA and FIT,
as described in Section III-C. The interpolation from FAP2
(expression) to 27 other FAP’s (FAP3–FAP13, FAP19–FAP26,
and FAP31–FAP38) is derived. The data-reduction ratio is 27
to 4. Note that there are four subfields in the expression FAP.
Again, as shown in Fig. 13, convincing animation results are
achieved. An important conclusion of this experiment is that
FIT is also a suitable scheme for transmitting the definition
of expression or viseme FAP’s during the setup stage of an
animation session.

B. PC Method

The PC algorithm is implemented and tested on all
three sequences. For each FAP parameter, we use the
corresponding quantization step defined in the MPEG-4
Visual Committee Draft [1]. The final quantization step size
is determined by multiplying each FAP’s quantization step
by . The is used to adjust the total
bit consumption, and the quantization step of each individual
FAP controls the bit distributions among different FAP’s.
By adjusting , a PSNR versus total-bit-number
curve is obtained for each FAP sequence. Such curves are
shown in Figs. 14–16, labeled “PC”. In these figures, the

Fig. 15. Compression results ofEmotionssequence.

Fig. 16. Compression results ofAleta sequence.

horizontal axis is the total number of bits for each sequence;
the vertical axis indicates the PSNR values. Eventually, the
predictive method becomes lossless at a high enough bit rate
(not shown). It achieves better PSNR than other methods.
The predictive coding scheme is simple to implement and
is used as the base method for all performance comparisons.

C. Results of PCA Method

The PCA results obtained show that to preserve 98%
of the signal energy, six principal components are needed
for the Aleta sequence, seven components for theEmotions
sequence, and nine for theMarco30 sequence. These values
are determined by applying PCA independently to each se-
quence. To obtain a universal KLT, all sequences have to be
considered simultaneously. Our results show that around ten
major components are required in a universal basis for these
three sequences. This implies a dramatic cut in bit rate for the
Marco30 and Emotionssequences. For theAleta sequence,
since after KLT most values of those ten components are very
small, further savings are achieved by applying a temporal
compression scheme to them. The bit savings of the PCA
method is due to the compactness of representation.

Results of the PCA method concatenated with a temporal
predictive coding scheme on the three test sequences are
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(a)

(b)

Fig. 17. PCA+ PC results ofEmotionssequence (PSNR= 34 dB, bit rate= 0:24 kbit/s). Frames from the (a) original and (b) decoded sequence.

shown in Figs. 14–16, marked with a PCA PC label. By
adjusting the quantization scalar factor for all FAP’s, different
bit rates are obtained. Since not all transformed components
are kept, this method is always lossy. PSNR versus bit-rate
curves of the PCA method tend to be flat at high bit rates. This
is caused by the fact that not all components are reserved in
the coding process. No matter how many bits are allocated for
encoding these components, the errors caused by the discarded
components are unavoidable. At higher bit rates, where the
quantization error is small, PSNR increases when more PCA
components are kept.

At low bit rates, the PCA predictive coder outperforms
the predictive coder by approximately 3–10 dB. This is be-
cause fewer parameters are encoded after KLT. Though some
parameters may use more bits than the original FAP, the total
number of bits decreases for the same PSNR. Fig. 15 shows
that at 0.24 kbit/s (or a total of 8500 bits), a PSNR of 34 dB
is achieved when nine components are transmitted after KLT.
Similar bit savings are demonstrated in Figs. 14 and 16.

In Fig. 17, frames from the animatedEmotionssequence
are shown. The first row is created from the originalEmotions
sequence. The second row contains animation frames from
a reconstructed FAP sequence with a bit rate of 0.24 kbit/s
and a PSNR of 34 dB. More experimental results are also
demonstrated in [33].

D. DCT Method

To implement the proposed DCT method, the temporal
segment length, the quantization steps for each FAP, the
predictive coding scheme for dc coefficients, and the coding
method for the positions and values of nonzero ac coefficients
have to be determined.

Currently, segment length 16 is determined from empirical
results. When the segment length is too large, more nonzero
ac coefficients appear because FAP data in each segment

are weakly correlated. This reduces the overall compression
performance. On the other hand, when the segment length is
too small, more dc coefficients need to be coded, and the total
number of nonzero ac coefficients also increases. These two
factors combined affect the total efficiency.

As mentioned in Section V-B, the quantization step for
each FAP parameter is deduced according to a perceptual test.
Currently, a single quantization step is applied to all ac co-
efficients in each segment. A more sophisticated quantization
scheme based on experimental results will achieve an even
better compression ratio. Another issue of the DCT scheme is
concerned about the quantization step for dc coefficients and
the quantization step for ac coefficients. If the quantization
step for dc coefficients is too small (relatively), more bits will
be allocated for the dc coefficients but not enough bits for the
ac coefficients. As a result, the animated face may lack the
detailed movements and therefore is less expressive. On the
other hand, if the quantization step for dc coefficients is too
large, jerky motion will be observed at segment boundaries.
From our experiments, the dc quantization step should be about
three times smaller than the ac quantization step.

The dc predictive error falling in the range of255 to 255
is assigned a symbol in the Huffman table. An “ESC” symbol
is defined if it exceeds this range. More bits are then allocated
to encode this value. As a result, the Huffman table for dc
predictive errors contains 512 entries. Coding of ac values
uses a similar strategy, and the corresponding Huffman table
also contains 512 symbols.

The performance of the proposed DCT method is shown
in Figs. 14–16, labeled with “DCT.” It is found that when
PSNR is around 30 dB, the average total bit number is about
50% less than that of the predictive coding method. Fig. 18
shows (a) the rendered sequences using the originalMarco30
sequence and (b) the reconstructed DCT sequence at a bit
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(a)

(b)

Fig. 18. DCT results ofMarco30sequence (PSNR= 34:7 dB, bit rate= 0:4 kbit/s). Frames from the (a) original and (b) decoded sequence.

TABLE II
BIT RATE (bit/s) FOR Marco30SEQUENCE UNDER DIFFERENT PSNR

rate of 0.4 kbit/s (or totally, 20 000 bits) with PSNR equal to
34.7 dB. In Fig. 19, the FAP is plotted. The solid
curve is for the original sequence, and the dotted curve is for
the reconstructed sequence.

E. PCA DCT Method

In Section VII-C, a hybrid FAP compression scheme
using both PCA and PC methods is discussed. An alternative
approach is to replace the PC module with the DCT scheme.
In Figs. 14–16, results using this approach are shown. The
curves are labeled “PCA DCT.” For all three sequences,
this method achieved the highest compression ratio when the
PSNR is around 30 dB. This indicates that strong temporal
redundancy exists in principal component sequences. By
combining PCA with a DCT module, correlation in both
spatial and temporal domains is exploited. Because of the
distortion introduced in PCA by discarding components
and in DCT by quantizing transform coefficients, very high
PSNR is difficult to achieve using this approach. However,
satisfactory visual results are obtained. Tables II–IV
summarize the experimental results.

F. Discussion

Three major factors affecting the choice of FAP compression
algorithms are real-time requirement, fidelity requirement, and
FAP sampling rate.

TABLE III
BIT RATE (bit/s) FOR EmotionsSEQUENCE UNDER DIFFERENT PSNR

TABLE IV
BIT RATE (bit/s) FOR Aleta SEQUENCE UNDER DIFFERENT PSNR

In spatial FAP compression schemes, no coding latency is
introduced. The same is true for the temporal predictive coding
method. For applications with strong real-time requirements,
combinations of these methods are favorable. In DCT, a delay
of a single segment length, or 16 frames in our implementation,
is introduced. The DCT method is appropriate for applications
in which the real-time requirement is less crucial.

Experiments show that if the PSNR is above 30 dB, the
animated face is almost free of major visual distortion. In
Figs. 14–16, we observed that at this PSNR, DCT and PCA
outperform the predictive coding method by a factor of 1.5 to
4 in compression. For a hybrid approach employing both PCA
and DCT methods, an even higher compression is achieved.

When the frame rate is high, the DCT method is superior
to the predictive coding method. On the other hand, if the
frame rate of FAP is lower than 10 Hz, the predictive method
performs better than the others. All the methods also work for
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(a)

(b)

Fig. 19. FAP in Marco30sequence (PSNR= 34:7 dB, bit rate= 0:4 kbit/s). (a) The sequence and (b) a portion of the sequence.

other types of animation parameters, such as body animation
parameters and animal animation parameters.

VIII. C ONCLUSIONS

Spatial and temporal compression methods, as well
as a representation of interpolation for MPEG-4 facial
animation parameters, have been investigated and compared.
Experiments of these proposed methods on several test
sequences are described, and their performances are analyzed.
These methods, which are efficient for FAP compression,
are independent of each other. These methods can be
combined at the user’s choice to meet the requirements of
each particular application at hand.

Since the compression of the animation parameter is a new
research topic, many unique problems are encountered and

investigated. Unlike image or video data, animation parameters
possess more object-specified properties. Our goal is to provide
compression algorithms not only for the face object but also for
other objects. The methods described here are general enough
to achieve this goal.
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