
A Broader Class of Trees for Recursive TypeDe�nitions for holElsa L. GunterAT&T Bell Laboratories, Rm.#2A-432600 Mountain Ave., Murray Hill, N.J. 07974, USAelsa@research.att.comAbstract. In this paper we describe the construction in hol of theinductive type of arbitrarily branching labeled trees. Such a type is char-acterized by an initiality theorem similar to that for �nitely branchinglabeled trees. We discuss how to use this type to extend the system ofsimple recursive type speci�cations automatically de�nable in hol toones including a limited class of functional arguments. The work dis-cussed here is a part of a larger project to expand the recursive typespackage of hol which is nearing completion. All work described in thispaper has been completed.1 A Broader Class of Recursive Type De�nitionsThe work described in this paper forms the foundation of a project to expand theclass of recursive type speci�cations for which hol is capable of automaticallyde�ning the types speci�ed and proving the initiality theorem, which acts as anaxiomatization for the de�ned types. The full class of speci�cations the projectaims to handle are those BNF-style speci�cation of the formrty1 ::= C1;1ty1;1;1 : : : ty1;1;k1;1 j : : : j C1;m1ty1;m1;1 : : : ty1;m1;k1;m1...rtyn ::= Cn;1tyn;1;1 : : : tyn;1;kn;1 j : : : j Cn;mntyn;mn;1 : : : tyn;mn ;kn;mnwhere each type description tyi;j;k must be admissible, as de�ned below (andwhere we can show that every type speci�ed is well-founded, or in essence, hasa base case).De�nition: A type description ty is admissible (in a given mutually recursivetype speci�cation) if it satis�es one of the following three conditions:{ ty is an existing type.{ ty is rtyi for some i, 1 � i � n{ ty is of the form ety ! tyd where ety is an existing type and tyd is anadmissible type description.

It is also possible to extend the notion of admissibility to include occurrences ofcertain kinds of type constructors, but the precise de�nition of this case is quitecomplicated and we omit it here.This project is composed of three major aspects. The �rst is the developmentof a theory of a broader class of (broader) trees in hol to form the basic buildingblocks for all other types de�ned by speci�cations of the kind described above.The second is the construction of types for a simpli�ed subclass of speci�cations.The third aspect is the translation between the full class of speci�cations andthe simpli�ed subclass.The speci�cations of the simpli�ed subclass are those of the formrty ::= C1ty1;1 : : : ty1;k1 j : : : j Cntyn;1 : : : tyn;knwhere ty i;j is either an existing type, or of the form ty ! rty for some existingtype ty. To see that this simpli�ed class is already a generalization of speci�ca-tions that are currently handled, notice that any type rty is isomorphic to thetype one! rty.The �rst two aspects of the project have been completed and are discussedin this paper in some detail. The third aspect will only be discussed briey inthe concluding section.2 Broadening TreesThe current system for automatic de�nition of recursive types from speci�cationsis founded upon the type of �nitely branching labeled trees of �nite height. (See[2]). This type will not do as the foundation for the class of speci�cations whichwe are attempting to handle. To see this, consider the following speci�cation:tree ::= Leaf integer j Node integer (num! tree)and the following speci�c tree of that type:at = Node (neg (INT 1)) (�n:Leaf (INTn))Any �nitely branching tree of �nite height can have only �nitely many leaves, butthis tree has a countably in�nite set of leaves (one for each natural number). Thenatural structure to use to model this speci�cation is the collection of arbitrarilybranching trees. To be a bit more precise, we will create a polymorphic typeof tree, parametrized by a type �, which will act as the indexing set for thebranching of trees, and by a type � for labeling the nodes. The type tree describedabove could be modeled using num for the branching indexing set and integerfor the labeling set.

2.1 Partial FunctionsIn de�ning our type of broader trees, and providing a succinct \axiomatization"for it, we will want a theory of partial functions between two types. As anexample of why we would expect to use partial functions in de�ning this newtype of trees, consider the collection of all trees labeled by strings and havingat most continuum many subtrees at each node (that is, each node has no moresubtrees than there are real numbers). Then, the collection of subtrees at anynode of a tree of this type is a set of trees, again of this type, indexed by a subsetof the reals. That is, it is a partial function from the reals to trees of this type.hol is equipped with a notion of total function, but no built-in notion ofpartial function. So the question is, how do we best encode the notion of apartial function, given only total functions. To answer this, we de�ne a typeconstructor lift that is the solution to the speci�cation� lift ::= lift � j unde�nedThe type � lift is characterized by the initiality theorem8fe: 9!fn: (8x: fn(lift x) = f x) ^ (fn unde�ned = e):The constructor lift is one-to-one and has a left inverse lower.By a partial function from � to � we mean a function from � to � lift.Total functions are injected into partial functions in the obvious manner by theconstant lift fun : (�! �) ! (�! � lift). The constantlift compose : (� ! lift)! (�! � lift)! (�! lift)is the expected composition of partial functions. The domain of de�nition of apartial function (i.e. the set of values on which the partial function takes on avalue other than unde�ned) is given by the predicatepart fun domain : (�! � lift)! �! bool:The range of a partial function is given bypart fun range : (�! � lift)! � ! bool:2.2 Broad TreesUsing the type lift, and the constants associated with it, we can now say moreprecisely what we mean by the type of �-branching �-labeled trees. We meanany polymorphic type (�; �)� such that the following initiality theorem holds:9Node :� ! (�! (�; �)� lift)! (�; �)�:8Cases :9!f: 8 label subtrees:f(Node label subtrees) =Cases (lift compose (lift fun f) subtrees) label subtrees (1)

The value subtrees is the indexed set of immediate subtrees of our tree, and labelis the label at the root node. The term lift compose (lift fun f) subtrees is theset of recursive values of f on the immediate subtrees of the tree, indexed in thesame manner over � as the subtrees are. At �rst glance, this may strike someas a peculiar statement of initiality since there is no obvious separate base case.To see that there is in fact a base case, note that if subtrees is the everywhereunde�ned function, then so is lift compose (lift fun f) subtrees, and hence thereare no recursive calls for such trees.Before we begin the discussion of the construction of such trees, let us notea couple of facts about them. Firstly, it is inevitable that we will have to �nd amodel for such trees, if we wish to be able to handle all (well-founded) speci�ca-tions of the sort described in Section 1, since the type of �-branching �-labeledtrees can be described bybonsai ::= bonsai NODE � (�! bonsai lift)This is an allowable speci�cation, and as we noted above, it has a base case.Therefore, what ever mechanism we devise for handling our class of speci�ca-tions, it will have to be able to generate a model for this type of �-branching�-labeled trees.Secondly, these trees behave a bit di�erently than the �nitely branching treesused as the foundation for the current recursive type package in hol. Not onlyare these trees potentially in�nitely branching, but they potentially have in�niteheight. It is possible to de�ne a function over these trees using the initialitytheorem (1) which returns twice the height of the tree, if the tree has �niteheight, and returns thirteen otherwise. (See Appendix A.1 for details of theexample.) When this function is applied to a tree of in�nite height (which canexist), there is no �nite subtree for which this function will return the sameresult. Moreover, no �nite number of unwindings of the recursive equation willallow us to eliminate the recursion and directly compute the answer. In thedomain theoretic sense, this function is not the limit of its �nite approximates.This is radically di�erent behavior than is had by the �nitely branching trees.There, every function given by a primitive recursive equation, when applied toa speci�c tree, can be directly computed by unwinding the recursion as manytimes as the height of the tree. This fact is central to the proof of existence offunctions given by primitive recursion. We do not have any such fact available tous, and hence we shall have to take a di�erent route entirely to show existence.To begin the construction of our broader trees, we will �rst build the unla-beled kind. An �-branching unlabeled tree is represented by the set (describedby a predicate) of its �nite branches (where a branch always starts at the root).A �nite branch is a list of �s, describing which index was selected at each height.A set of �nite branches is the branch set of an �-branching unlabeled tree pro-vided that the empty list (or trivial branch) is in the set and, if a branch is inthe set, then all pre�xes of the branch are again branches and thus are in the

set. Hence, we have the following de�nition:8 branch set :� list! bool:Is unlabeled tree branch set =branch set [] ^(8 b1 b2: branch set (APPEND b1 b2) =) branch set b1)A labeling of an unlabeled tree is a partial function mapping the nodes ofthe tree to labels. A node is given by the path (or branch) from the root to it.Thus, if the type of the labels is �, a labeling is a partial function from � list to� whose domain of de�nition is an unlabeled tree.8 l :� list! � lift: Is labeling l = Is unlabeled tree(part fun domain l)At this point, we can de�ne a type of �-branching �-labeled trees, by iden-tifying them with partial functions that are labelings. We will call this type(�; �)broad tree. Thus we have9rep : (�; �)broad tree ! (� list! � lift): TYPE DEFINITION Is labeling repIn the usual manner, we can de�ne the representation and abstraction func-tions giving the isomorphism between the new type (�; �)broad tree and the setdescribed by Is labeling:(8a: broad tree ABS (broad tree REP a) = a) ^(8r: Is labeling r = broad tree REP (broad tree ABS r) = r)For more information on de�ning new types in hol, see [1, 2].The next thing we want to do is de�ne a function broad tree NODE thatwill behave as a constructor for terms of type (�; �)broad tree. Given a functionsubtrees supplying the subtrees of a tree, and a label label for the root of thetree, how do we reconstruct the tree? To determine this, we need to know whatthe set of branches of the new tree is, and what the new labeling is. Each branchof the new tree is either the trivial branch (given by the empty list) or is anelement of type � followed by a branch of the tree indexed by that element.Thus, if subtrees x = lift t and b is a branch of t, then x :: b is a branch ofbroad tree NODE label subtrees. A labeling on this set of branches returns theroot label label on the trivial branch, and on a nontrivial branch returns thelabel of the node found at the end of the branch of the subtree indexed by thehead of the given branch, where the branch of the subtree is described by the tailof the given branch. Hence, if subtrees x = lift t and the branch l of t is labeledby c, then c is the labeling of x :: l in the tree broad tree NODE b subtrees.

qJJJJJ

HHHHHHHHH

 JJJJJJJJJJ

 CC��CC��������� l t = lower (subtrees x)u v x cbFormally, the de�nition of broad tree NODE is8(label :�) (subtrees :�! (�; �)broad tree):broad tree NODE label subtrees =broad tree ABS(�l: (l = [])) (lift label)j ((subtrees (HD l) = unde�ned)) unde�nedj (broad tree REP (lower (subtrees (HD l))) (TL l))))At this point, it would seem that we are almost done. All we have todo is prove that the initiality theorem holds for broad tree NODE, right?Unfortunately, life is not so simple. The initiality theorem (1) is false forbroad tree NODE. Both existence and uniqueness fail. (What we have built sofar is not the initial algebra, but the �nal algebra, instead.) For an exampleof this failure, see Appendix A.2. Since uniqueness fails and induction impliesuniqueness, induction must fail also.2.3 BonsaiTo remedy the failing of induction, we do the standard construction, basically thesame construction that allowed us to build the natural numbers from the type ofindividuals. Let Is bonsai be the intersection of all predicates on (�; �)broad treethat are closed under broad tree NODE. More precisely,8tr: Is bonsai tr =(8P: (8subtrees label: (8sbtr: part fun range subtrees sbtr =) P sbtr) =)P (broad tree NODE label subtrees)) =)P tr)In the same way as with the de�nition of the naturals, we immediately get aninduction principle from this construct:8P: (8subtrees label: (8sbtr: part fun range subtrees sbtr =) P sbtr) =)P (broad tree NODE label subtrees)) =)(8tr: Is bonsai tr =) P tr) (2)Using the predicate Is bonsai, we can now introduce a new type (�; �)bonsaithat is in one-to-one correspondence with the set described by Is bonsai. (Thename bonsai was chosen, in part not to conict with the names of existing

types of trees in hol, but also in part because the set of bonsai is the sub-set of broad tree consisting precisely of those trees having only �nite branches.That is, only the broad trees with short branches are bonsai.) We can also pullover broad tree NODE to the type bonsai to get a node constructor bonsai NODE:8label subtrees: bonsai NODE label subtrees =bonsai ABS (broad tree NODElabel(lift compose (lift fun bonsai REP) subtrees))It follows easily from this de�nition that bonsai NODE is one-to-one, sincebroad tree NODE is.It is not so immediate, however, that bonsai NODE is onto. What we knowimmediately is only that every broad tree satisfying Is bonsai is a node, all ofwhose subtrees are broad trees. We don't know o� hand that the subtrees of atree in Is bonsai are again in Is bonsai. This fact is proved using the inductionprinciple (2) for Is bonsai. From the fact that all subtrees of a tree in Is bonsai areagain in Is bonsai, it follows straight-forwardly that bonsai NODE is onto. Usingthe induction principle for Is bonsai, together with the fact that bonsai NODE isonto, we can then derive the following induction principle for the type bonsai:8P: (8subtrees label : (8sbtr: part fun range subtrees sbtr =) P sbtr) =)P (bonsai NODE label subtrees)) =)(8tr: P tr) (3)2.4 Proving InitialityNow we are back to trying to prove the initiality theorem (1) again. This time,we know we have an induction principle for the type bonsai and the constructorbonsai NODE. The uniqueness of functions de�ned by structural induction overbonsai NODE follows immediately from our induction principle. Therefore, allwe need to show is existence. In previous work with �nite trees, the existenceof functions de�ned by structural induction was shown using the heights of thetrees. In essence, it could be shown that for a tree of height n, it su�ced tounwind the recursion n times to be able to compute the value of the function onthe tree without further recursive calls. As discussed above, this approach willnot work in our setting because our trees will not in general have �nite height.Another approach must be sought.The approach we take to demonstrating the existence of such functions isa rather set-theoretic approach: to show such functions exist, we demonstratea graph which is the graph of such a function. By a graph we mean a relationg : (�; �)bonsai! ! bool. Given a case functionCases : (�! lift)! � ! (�! (�; �)bonsai lift)! we need to �nd a relation on (�; �)bonsai and that is closed under Cases andthat is functional. We de�ne what it means for a relation to be closed under a

case function as follows:8Cases fun rel: rel is case closed Cases fun rel =(8subtrees label rec fun :(8x:((subtrees x = unde�ned) = (rec fun x = unde�ned))^(:(subtrees x = unde�ned) =)fun rel (lower(subtrees x)) (lower (rec fun x)))) =)fun rel (bonsai NODE label subtrees) (Cases rec fun label subtrees))The graph we are looking for is the smallest graph that is closed under Cases .That is, it is the intersection of all graphs that are closed under Cases.8Cases tr z: smallest bonsai fun rel Cases tr z =(8fun rel: rel is case closed Cases fun rel =) fun rel tr z)As was the case with our de�nition of Is bonsai, it follows fairly immediately thatsmallest bonsai fun rel Cases satis�es rel is case closed Cases, and that we havethe following induction principle:8Cases fun rel: rel is case closed Cases fun rel =)(8tr z: smallest bonsai fun rel Cases tr z =) fun rel tr z) (4)The fact that smallest bonsai fun rel Cases satis�es rel is case closed Cases getsus that the function f described by the graph smallest bonsai fun rel Cases sat-is�es the existence half of the initiality theorem, namely that8subtrees label : f(Node label subtrees) =Cases (lift compose (lift fun f) subtrees) label subtreesassuming we know that smallest bonsai fun rel Cases describes a function.To prove that smallest bonsai fun rel Cases describes a function, we need toshow two things. We need to show that it describes a partial function:8tr z1 z1: (smallest bonsai fun rel Cases tr z1^smallest bonsai fun rel Cases tr z2) =) (z1 = z2)and we need to show that it is total in its �rst argument:8tr : 9z: smallest bonsai fun rel Cases tr zThis latter fact follows by induction on bonsai (3) using the fact thatsmallest bonsai fun rel Cases is closed under Cases . The former fact is a bit moreinvolved. Its proof used both induction on bonsai (3) and the induction principlefor smallest bonsai fun rel (4). This is the last of the pieces required to get us theinitiality theorem we have been seeking:8Cases: 9!f: 8subtrees label : f(bonsai NODE label subtrees) =Cases (lift compose (lift fun f) subtrees) label subtrees

3 A Broader Class of Simple Recursive TypesThe next step toward supporting our broader class of recursive type de�nitionsis to handle the simple recursive case. In this section we show how to solverecursive type speci�cations of the formrty ::= C1ty1;1 : : : ty1;k1 j : : : j Cntyn;1 : : : tyn;knwhere ty i;j is either an existing type, or of the form ty ! rty for some existingtype ty. Given such a speci�cation, a solution for it is a new type rty, constructorsCi : tyi;1 ! : : :! ty i;ki ! rty and an initiality theorem analogous to (but morecomplicated than) the one for bonsai. Thus, we need to identify a type in which wecan build a model for our speci�cation, de�ne a predicate on that type identifyingthe elements of the model, and introduce a new type that is isomorphic tothe model. Then we need to de�ne the constructors Ci and we need to provethe initiality theorem. In the description that follows, we will often resort togiving examples for each of these steps, rather than giving a completely rigorousdescription.3.1 Building the TypeThe background type that we are going to use to solve the speci�cation is(�; �)bonsai, for some branching type � and some labeling type � . The branchingtype � and the labeling type � are each a sum type having one component for eachcase in the speci�cation. The contribution of a particular case City i;1 : : : ty i;kito the branching type is sum of all etyi;j where tyi;j = etyi;j ! rty, or one ifnone such exist. The contribution to the labeling type is the product of eachtyi;j that is an existing type, if there are any, and one elsewise. For example, thespeci�cationtoto::=A bool num j B (�! toto) (ind ! toto) j C j D bool (num! toto)is modeled using the background type(one + (�+ ind) + one + num; (bool� num) + one+ one + bool) bonsaiSuppose that tr = bonsai NODE label subtrees is a bonsai of the backgroundtype. Then label is uniquely in one of the summands, say the i'th summand, ofthe labeling type. The predicate that describes the subset of the background typethat models the speci�cation is true of tr provided that the domain of de�nitionof subtrees is either exactly the i'th summand of the branching type, if the i'thcase has a type argument of the form tyi;j = etyi;j ! rty, or is empty otherwise.

Thus, for our example this becomes�tr :8label subtrees:(tr = bonsai NODE label subtrees) =)(ISL label ^ (8x:part fun domain subtrees x = F)) _(ISR label ^ ISL(OUTR label)^(8x: part fun domain subtrees x = ISR x ^ ISL(OUTR x))) _(ISR label ^ ISR(OUTR label) ^ ISL(OUTR(OUTR label))^(8x: part fun domain subtrees x = F)) _(ISR label ^ ISR(OUTR label) ^ ISR(OUTR(OUTR label))^(8x: part fun domain subtrees x =ISR x^ ISR(OUTR x) ^ ISR(OUTR(OUTR x))))Using new type definition with this predicate gets us the type that we needto solve the speci�cation.3.2 Making the ConstructorsThe next phase is making the constructors for the type. Each constructor needsto make a bonsai and then abstract it to the new type. It makes the bonsai usingbonsai NODE, and thus it needs to make a label and an indexed collection of sub-trees. The label is simply the product of all the arguments to the constructor ofpre-existing type (or one if there are none) injected into the corresponding sum-mand of the label type. The indexed collection of subtrees is rather more com-plicated. The i'th constructor sends all summands of the branching type, exceptthe i'th to unde�ned. If it has no argument types of the form ty i;j = ety i;j ! rty,then it sends everything of branching type to unde�ned. Otherwise, the i'th sum-mand of the branching type is a sum of all ety i;j such that ty i;j = ety i;j ! rty.A summand of the i'th summand of the branching type of type ety i;j is sentto the bonsai representation of the corresponding rty value. For example, thesecond constructor for the type speci�cation given above isB = �(f1 :�! � toto)(f2 : ind! � toto):toto ABS(bonsai NODE(INR(INL one))(�z:(ISR z ^ ISL(OUTR z)))((ISL(OUTL(OUTR z))))(toto REP(f1(OUTL(OUTL(OUTR z)))))j (toto REP(f2(OUTR(OUTL(OUTR z))))))j unde�ned))Given these de�nitions for our constructors we show that no element is inthe range of two distinct constructors and that every is element is in the rangeof one of the constructors.

3.3 Deriving InitialityWe prove initiality roughly in the following manner. Assume we have casefunctions for each of the cases of the speci�cation (that is, build variables ofthe right types to be such case functions). Using these case functions we canbuild a case function over bonsai as follows. Given an indexed collection ofrecursive values rec fun, a label label , and an indexed collection of subtreessubtrees, for each constructor, test whether there exist arguments such thatbonsai NODE label subtrees is the representation of the de�nition of the con-structor applied to those arguments. If it is, return the appropriate case functionapplied to the appropriate arguments. If it fails to match any constructor, return@x:T. For example, consider the speci�cationtutu::=A bool j B (num! tutu)The case function we get then is� rec fun label subtrees:(9x:bonsai NODE label subtrees =bonsai NODE (INL x) (�z:unde�ned)))(A case(OUTL label))j ((9g:bonsai NODE label subtrees =bonsai NODE (INR one) (�z: (ISR z))(tutu REP(g(OUTR z)))j unde�ned)))(B case (�x:rec fun(INR x)) (�x:tutu ABS(subtrees(INR x))))j @x:T)If h is the function over bonsai given by the case function so generated, thenf = �x:h(rty REP x) is the function over the new recursive type given by thecase functions over that type. We use the fact that the constructors have distinctimages to demonstrate that the desired equations hold for f . We use the fact thatevery element is in the image of some constructor together with the uniqueness ofh to show the uniqueness of the function satisfying the equations of the initialitytheorem. The resultant initiality theorem for the tutu speci�cation is8A case B case: 9!f: (8x: f(A x) = A case x) ^(8g: f(B g) = B case (f o g) g)4 Future WorkAs was mentioned in Section 1, this work is a part of a project to supporta class of mutually recursive speci�cations with nestings of type constructors.The general approach we take involves translating the speci�cations into pro-gressively simpler forms, preserving information necessary to translate solutionsback. First we eliminate the nested type constructors in favor of larger mutually

recursive speci�cations having no such nestings. For an example of this, considerthe speci�cation we gave for bonsai:bonsai ::= bonsai NODE � (�! bonsai lift)The type bonsai being speci�ed has an occurrence within the recursive typeconstructor lift. Using the speci�cation for lift (which we can reconstruct fromthe initiality theorem for lift) we can convert this speci�cation into the followingform: bonsai0 ::= bonsai NODE0 � (�! bonsai lift)bonsai lift ::= lift0 bonsai j unde�ned 0The type bonsai0 is isomorphic to the type bonsai and the type bonsai lift isisomorphic to the type bonsai lift.The next translation transforms the mutually recursive speci�cation into asimple recursive speci�cation. This translation is basically the same as the onepreviously outlined by Thomas Melham in [3]. This translation does not yieldan isomorphism, and so a second predicate must be de�ned on the type returnedby the simple recursive speci�cation culling out those terms that represent well-formed terms of the mutually recursive types. One way in which we di�er slightlyfrom the description given by Melham is that we must translate each occurrenceof the recursive type rty as an argument to a constructor into an occurrence ofone ! rty. Perhaps one subtlety in this translation that was not discussed in [3]was determining whether the mutually recursive speci�cation is well-founded,and the computation of witnesses for each type. It is possible for one or moreof the types being de�ned in a mutually recursive speci�cation to have no basecase by itself, and yet for the system to be well-founded. This is the case, forexample, with the translated speci�cation for bonsai.It should be noted, that although we haved talked in terms of making variousde�nitions at various intermediate stages along the path to �nding a solutionto a speci�cation, in reality we want to avoid actually introducing multiple in-termediate types and constructors, and thus in our actual package we deal withthe de�nitions of the objects instead of actually introducing these objects. It israther important for purposes of both space and time e�ciency not to introduceformally de�nitionally the intermediate stages.Once the package for de�ning types from the speci�cations described in Sec-tion 1 is completed, there will still need to be a package developed for the exiblede�nition of functions over these types. The tools for proving results by inductionover such types will also need to be extended.5 AcknowledgementsIt has come to my attention that David Shepherd of INMOS is carrying out aindependent project parallel to the one discussed in this paper, and in particular,that he has developed a comparable theory of arbitrarily branching labeled treesas a foundation.

A In�nite TreesA.1 An in�nitely Tall bonsai (with no in�nite branches)Let us assume that we have a type bonsai described bybonsai ::= bonsai NODE � (�! bonsai lift)with the initiality theorem8Cases: 9!f: 8subtrees label : f(bonsai NODE label subtrees) =Cases (lift compose (lift fun f) subtrees) label subtreesBy primitive recursion on the natural numbers, we can de�nemk tree 0 = bonsai NODE one (�x: unde�ned) ^8n: mk tree (SUC n) = bonsai NODE one (�m:lift(mk tree n))Using these trees, we can then de�netall = bonsai NODE one (lift fun mk tree)Given a partial function from � to num, we can de�ne the least upper bound ofthe function by8p: lub p =(8x: p x = unde�ned)) lift 0j (9n:(8x:(p x 6= unde�ned) =) (lower(p x) � n)) ^ (9x: p x = lift n)))lift(@n:(8x:(p x 6= unde�ned) =) (lower(p x) � n)) ^ (9x: p x = liftn))j unde�nedNow consider the following case function for trees:Cases rec fun label subtrees =(9x: rec fun x = lift 13)) 13j (lub rec fun = unde�ned)) 13 j (2 + lower(lub rec fun))If we de�ne our DoubleHeight function byDoubleHeight (bonsai NODE label subtrees) =Cases(lift compose (lift fun f) subtrees) label subtreesthen we can show that DoubleHeight tall = 13.qq q q q q qq q q q qq q q qq q qq qq � � �HHH@@���������tall qqqqqqq...skinny

A.2 broad tree is not InitialNotice that the function �l :one list: one satis�es Is labeling. Letskinny = broad tree ABS(�l :one list: one)Then we can show the following:skinny = broad tree NODE one �x :one: skinnyThat is, every immediate subtree of skinny (there is only one) is equal to skinny.Consider the following two case functions over (one; one)broad tree:U rec fun label subtrees = ((rec fun one = unde�ned) _ lower(rec fun one))andE rec fun label subtrees = ((rec fun one = unde�ned) _:lower(rec fun one))Then we have both that8label subtrees:(�tr :T)(Node label subtrees) =U(lift compose(lift fun (�tr :T)) subtrees) label subtreesand 8label subtrees:(�tr :tr 6= skinny)(Node label subtrees) =U(lift compose(lift fun (�tr :tr 6= skinny)) subtrees) label subtreesTherefore, there is no unique function de�ned by U. The situation is even worsewith E. There we can prove8f: f(broad tree NODE one �x :one: skinny) 6=E(lift compose(lift fun f) �x :one: skinny) one �x :one: skinnyReferences1. M. J. C. Gordon. The HOL System. Cambridge Research Centre, SRI Interna-tional, and DSTO Australia, 1989.2. T. F. Melham. Automating recursive type de�nitions in higher order logic. InG. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Ver-i�cation and Automated Theorem Proving, pages 341 { 386. Springer-Verlag, 1989.3. T.F. Melham. Email correspondence. info-hol email, 26 April 1992.This article was processed using the LaTEX macro package with LLNCS style

