A Broader Class of Trees for Recursive Type
Definitions for HOL

Elsa L. Gunter

AT&T Bell Laboratories, Rm.#2A-432
600 Mountain Ave., Murray Hill, N.J. 07974, USA

elsa@research.att.com

Abstract. In this paper we describe the construction in HOL of the
inductive type of arbitrarily branching labeled trees. Such a type is char-
acterized by an initiality theorem similar to that for finitely branching
labeled trees. We discuss how to use this type to extend the system of
simple recursive type specifications automatically definable in HOL to
ones including a limited class of functional arguments. The work dis-
cussed here i1s a part of a larger project to expand the recursive types
package of HOL which is nearing completion. All work described in this
paper has been completed.

1 A Broader Class of Recursive Type Definitions

The work described in this paper forms the foundation of a project to expand the
class of recursive type specifications for which HOL is capable of automatically
defining the types specified and proving the initiality theorem, which acts as an
axiomatization for the defined types. The full class of specifications the project
aims to handle are those BNF-style specification of the form

rtyy == Cratyy g q- .. IR | ...] Crma WY1 my 1 - 'tyl,ml,kl,ml

rty, 2= Cnalyn g W1 g, | ...] Cromal¥p mu1 - Wom, k

n,Mmp

where each type description ty, ; , must be admussible, as defined below (and
where we can show that every type specified 1s well-founded, or in essence, has
a base case).

Definition: A type description ty is admissible (in a given mutually recursive
type specification) if it satisfies one of the following three conditions:

— ty is an existing type.

— tyis riy, forsome ¢, 1 <i<n

— ty 1s of the form ety — tyd where ety is an existing type and {tyd i1s an
admissible type description.

It is also possible to extend the notion of admissibility to include occurrences of
certain kinds of type constructors, but the precise definition of this case is quite
complicated and we omit it here.

This project 1s composed of three major aspects. The first is the development
of a theory of a broader class of (broader) trees in HOL to form the basic building
blocks for all other types defined by specifications of the kind described above.
The second is the construction of types for a simplified subclass of specifications.
The third aspect is the translation between the full class of specifications and
the simplified subclass.

The specifications of the simplified subclass are those of the form

rty = Oty gty g | | Gty 1, g,

where {1y, ; is either an existing type, or of the form {y — rty for some existing
type ty. To see that this simplified class is already a generalization of specifica-
tions that are currently handled, notice that any type 7ty is isomorphic to the
type one — riy.

The first two aspects of the project have been completed and are discussed
in this paper in some detail. The third aspect will only be discussed briefly in
the concluding section.

2 Broadening Trees

The current system for automatic definition of recursive types from specifications
is founded upon the type of finitely branching labeled trees of finite height. (See
[2]). This type will not do as the foundation for the class of specifications which
we are attempting to handle. To see this, consider the following specification:

tree ::= Leaf integer | Node integer (num — tree)
and the following specific tree of that type:
flat = Node (neg (INT 1)) (An.Leaf (INTn))

Any finitely branching tree of finite height can have only finitely many leaves, but
this tree has a countably infinite set of leaves (one for each natural number). The
natural structure to use to model this specification is the collection of arbitrarily
branching trees. To be a bit more precise, we will create a polymorphic type
of tree, parametrized by a type «, which will act as the indexing set for the
branching of trees, and by a type 3 for labeling the nodes. The type tree described
above could be modeled using num for the branching indexing set and integer
for the labeling set.

2.1 Partial Functions

In defining our type of broader trees; and providing a succinct “axiomatization”
for 1t, we will want a theory of partial functions between two types. As an
example of why we would expect to use partial functions in defining this new
type of trees, consider the collection of all trees labeled by strings and having
at most continuum many subtrees at each node (that is, each node has no more
subtrees than there are real numbers). Then, the collection of subtrees at any
node of a tree of this type is a set of trees, again of this type, indexed by a subset
of the reals. That is, it 1s a partial function from the reals to trees of this type.

HOL 1is equipped with a notion of total function, but no built-in notion of
partial function. So the question is, how do we best encode the notion of a
partial function, given only total functions. To answer this, we define a type
constructor lift that is the solution to the specification

a lift ::= lift « | undefined
The type « lift is characterized by the initiality theorem
Vfe. Alfn. (Ve fa(lift) = f) A (fn undefined = e).

The constructor lift is one-to-one and has a left inverse lower.

By a partial function from « to f we mean a function from « to g lift.
Total functions are injected into partial functions in the obvious manner by the
constant lift_fun: (o — 8) — (a — 3 lift). The constant

lift_compose: (f — v lift) — (o — f lift) — (o — v lift)

1s the expected composition of partial functions. The domain of definition of a
partial function (7.e. the set of values on which the partial function takes on a
value other than undefined) is given by the predicate

part_fun_domain: (o — S lift) — o — bool.
The range of a partial function is given by

part_fun_range: (oo — 3 lift) — 7 — bool.

2.2 Broad Trees

Using the type lift, and the constants associated with it, we can now say more
precisely what we mean by the type of a-branching g-labeled trees. We mean
any polymorphic type («, 3)7 such that the following initiality theorem holds:

ANode: 8 — (o — (a0, B)7 lift) — (o, F)T.
Y Cases.Af. ¥ label subtrees. (1)
f(Node label subtrees) =
Cases (lift_compose (lift_fun f) subtrees) label subtrees

The value subtrees is the indexed set of immediate subtrees of our tree, and label
is the label at the root node. The term lift_compose (lift_fun f) subtrees is the
set of recursive values of f on the immediate subtrees of the tree, indexed in the
same manner over « as the subtrees are. At first glance, this may strike some
as a peculiar statement of initiality since there is no obvious separate base case.
To see that there is in fact a base case, note that if subtrees is the everywhere
undefined function, then so is lift_compose (lift_fun f) subtrees, and hence there
are no recursive calls for such trees.

Before we begin the discussion of the construction of such trees, let us note
a couple of facts about them. Firstly, it is inevitable that we will have to find a
model for such trees, if we wish to be able to handle all (well-founded) specifica-
tions of the sort described in Section 1, since the type of a-branching g-labeled
trees can be described by

bonsai ::= bonsai_NODE 8 (or — bonsai lift)

This is an allowable specification, and as we noted above, it has a base case.
Therefore, what ever mechanism we devise for handling our class of specifica-
tions, it will have to be able to generate a model for this type of a-branching

[B-labeled trees.

Secondly, these trees behave a bit differently than the finitely branching trees
used as the foundation for the current recursive type package in HOL. Not only
are these trees potentially infinitely branching, but they potentially have infinite
height. It is possible to define a function over these trees using the initiality
theorem (1) which returns twice the height of the tree, if the tree has finite
height, and returns thirteen otherwise. (See Appendix A.l for details of the
example.) When this function is applied to a tree of infinite height (which can
exist), there is no finite subtree for which this function will return the same
result. Moreover, no finite number of unwindings of the recursive equation will
allow us to eliminate the recursion and directly compute the answer. In the
domain theoretic sense, this function is not the limit of its finite approximates.
This is radically different behavior than is had by the finitely branching trees.
There, every function given by a primitive recursive equation, when applied to
a specific tree, can be directly computed by unwinding the recursion as many
times as the height of the tree. This fact is central to the proof of existence of
functions given by primitive recursion. We do not have any such fact available to
us, and hence we shall have to take a different route entirely to show existence.

To begin the construction of our broader trees, we will first build the unla-
beled kind. An a-branching unlabeled tree is represented by the set (described
by a predicate) of its finite branches (where a branch always starts at the root).
A finite branch is a list of as, describing which index was selected at each height.
A set of finite branches is the branch set of an a-branching unlabeled tree pro-
vided that the empty list (or trivial branch) is in the set and, if a branch is in
the set, then all prefixes of the branch are again branches and thus are in the

set. Hence, we have the following definition:

Y branch_set:« list — bool.
Is_unlabeled_tree branch_set =
branch_set [] A
(V by ba. branch_set (APPEND by bs) — branch_set by)

A labeling of an unlabeled tree is a partial function mapping the nodes of
the tree to labels. A node is given by the path (or branch) from the root to it.
Thus, if the type of the labels is 3, a labeling is a partial function from « list to
3 whose domain of definition is an unlabeled tree.

V l:o list — G lift. Is_labeling { = Is_unlabeled_tree(part_fun_domain)

At this point, we can define a type of a-branching f-labeled trees, by iden-
tifying them with partial functions that are labelings. We will call this type
(o, f)broad_tree. Thus we have

Jrep: (o, f)broad_tree — (« list — f lift). TYPE_DEFINITION Is_labeling rep

In the usual manner, we can define the representation and abstraction func-
tions giving the isomorphism between the new type (e, §)broad_tree and the set
described by Is_labeling:

(Va. broad_tree_ABS (broad_tree_REP a) = a) A
(Vr. Is_labeling » = broad_tree_REP (broad_tree_ABS r) = r)

For more information on defining new types in HOL, see [1, 2].

The next thing we want to do is define a function broad_tree_NODE that
will behave as a constructor for terms of type («, 3)broad_tree. Given a function
subtrees supplying the subtrees of a tree, and a label label for the root of the
tree, how do we reconstruct the tree? To determine this, we need to know what
the set of branches of the new tree is, and what the new labeling is. Each branch
of the new tree is either the trivial branch (given by the empty list) or is an
element of type « followed by a branch of the tree indexed by that element.
Thus, if subtrees x = lift t and b is a branch of ¢, then x :: b is a branch of
broad_tree_NODE label subtrees. A labeling on this set of branches returns the
root label label on the trivial branch, and on a nontrivial branch returns the
label of the node found at the end of the branch of the subtree indexed by the
head of the given branch, where the branch of the subtree is described by the tail
of the given branch. Hence, if subtrees & = lift t and the branch [of ¢ i1s labeled
by ¢, then ¢ is the labeling of @ :: [in the tree broad_tree_NODE b subtrees.

t = lower (subtrees x)

Formally, the definition of broad_tree_ NODE is

V(label: B) (subtrees: o — (o, 3)broad_tree).
broad_tree_NODE label subtrees =
broad_tree_ ABS(AL. (I = []) = (lift label)
| ((subtrees (HD) = undefined) = undefined
| (broad_tree_REP (lower (subtrees (HD [))) (TL 1))))

At this point, it would seem that we are almost done. All we have to
do is prove that the initiality theorem holds for broad_tree_ NODE, right?
Unfortunately, life is not so simple. The initiality theorem (1) is false for
broad_tree_ NODE. Both existence and uniqueness fail. (What we have built so
far is not the initial algebra, but the final algebra, instead.) For an example
of this failure, see Appendix A.2. Since uniqueness fails and induction implies
uniqueness, induction must fail also.

2.3 Bonsai

To remedy the failing of induction, we do the standard construction, basically the
same construction that allowed us to build the natural numbers from the type of
individuals. Let Is_bonsai be the intersection of all predicates on («, F)broad_tree
that are closed under broad_tree NODE. More precisely,

Ytr. Is_bonsai tr =
(VP. (Vsubtrees label. (Vsbtr. part_fun_range subtrees sbtr — P sbtr) —
P (broad_tree_NODE label subtrees)) —
P tr)

In the same way as with the definition of the naturals, we immediately get an
induction principle from this construct:

VP. (Vsubtrees label. (Vsbtr. part_fun_range subtrees sbtr — P sbtr) —
P (broad_tree_NODE label subtrees)) — (2)
(Vtr. Is_bonsai tr = P tr)

Using the predicate Is_bonsai, we can now introduce a new type (o, 5)bonsai
that is in one-to-one correspondence with the set described by Is_bonsai. (The
name bonsai was chosen, in part not to conflict with the names of existing

types of trees in HOL, but also in part because the set of bonsai i1s the sub-
set of broad_tree consisting precisely of those trees having only finite branches.
That is, only the broad_trees with short branches are bonsai.) We can also pull
over broad_tree_NODE to the type bonsai to get a node constructor bonsai_NODE:

Viabel subtrees. bonsai_NODE label subtrees =
bonsai_ABS (broad_tree NODE
label
(lift_compose (lift_fun bonsai_REP) subtrees))

It follows easily from this definition that bonsai_ NODE is one-to-one, since
broad_tree_NODE is.

It is not so immediate, however, that bonsai_ NODE is onto. What we know
immediately 1s only that every broad_tree satisfying Is_bonsai is a node, all of
whose subtrees are broad_trees. We don’t know off hand that the subtrees of a
tree in Is_bonsai are again in Is_bonsai. This fact 1s proved using the induction
principle (2) for Is_bonsai. From the fact that all subtrees of a tree in Is_bonsai are
again in ls_bonsai, it follows straight-forwardly that bonsai_NODE is onto. Using
the induction principle for Is_bonsai, together with the fact that bonsai_ NODE is
onto, we can then derive the following induction principle for the type bonsai:

VP. (Vsubtrees label. (¥sbtr. part_fun_range subtrees sbtr — P sbtr) —
P (bonsai_NODE label subtrees)) — (3)
(Vtr. P tr)

2.4 Proving Initiality

Now we are back to trying to prove the initiality theorem (1) again. This time,
we know we have an induction principle for the type bonsai and the constructor
bonsai_NODE. The uniqueness of functions defined by structural induction over
bonsai_NODE follows immediately from our induction principle. Therefore, all
we need to show is existence. In previous work with finite trees, the existence
of functions defined by structural induction was shown using the heights of the
trees. In essence, it could be shown that for a tree of height n, it sufficed to
unwind the recursion n times to be able to compute the value of the function on
the tree without further recursive calls. As discussed above, this approach will
not work in our setting because our trees will not in general have finite height.
Another approach must be sought.

The approach we take to demonstrating the existence of such functions is
a rather set-theoretic approach: to show such functions exist, we demonstrate
a graph which is the graph of such a function. By a graph we mean a relation
¢ : (o, f)bonsai — y — bool. Given a case function

Cases: (o — v lift) — 3 — (o — (o, f)bonsai lift) — v

we need to find a relation on (o, F)bonsai and 7y that is closed under Cases and
that is functional. We define what it means for a relation to be closed under a

case function as follows:

YV Cases fun_rel. rel_is_case_closed Cases fun_rel =
(Vsubtrees label rec_fun.
(Vo.((subtrees x = undefined) = (rec_fun x = undefined))A
(—(subtrees x = undefined) =
Jun_rel (lower(subtrees z)) (lower (rec_fun)))) =
fun_rel (bonsai_NODE label subtrees) (Cases rec_fun label subtrees))

The graph we are looking for is the smallest graph that is closed under Cases.
That is, 1t is the intersection of all graphs that are closed under Cases.

V(Cases tr z. smallest_bonsai_fun_rel Cases tr z =
(Vfun_rel. rel_is_case_closed Cases fun_rel = fun_rel tr z)

As was the case with our definition of Is_bonsai, it follows fairly immediately that
smallest_bonsai_fun_rel Cases satisfies rel_is_case_closed Cases, and that we have
the following induction principle:

VCases fun_rel. rel_is_case_closed Cases fun_rel — (4)
(Vir z. smallest_bonsai_fun_rel Cases tr z = fun_rel tr z)

The fact that smallest_bonsai_fun_rel Cases satisfies rel_is_case_closed Cases gets
us that the function f described by the graph smallest_bonsai_fun_rel Cases sat-
isfies the existence half of the initiality theorem, namely that

Vsubtrees label. f(Node label subtrees) =
Cases (lift_compose (lift_fun f) subtrees) label subtrees

assuming we know that smallest_bonsai_fun_rel Clases describes a function.
To prove that smallest_bonsai_fun_rel Cases describes a function, we need to
show two things. We need to show that it describes a partial function:

Vir z1 z1. (smallest_bonsai_fun_rel Cases tr z1A
smallest_bonsai_fun_rel Cases tr z2) = (21 = 22)

and we need to show that it is total in its first argument:
Vir. 3z. smallest_bonsai_fun_rel Cases tr z

This latter fact follows by induction on bonsai (3) using the fact that
smallest_bonsai_fun_rel Cases is closed under Cases. The former fact 1s a bit more
involved. Its proof used both induction on bonsai (3) and the induction principle
for smallest_bonsai_fun_rel (4). This is the last of the pieces required to get us the
initiality theorem we have been seeking:

VCases. Af. Vsubtrees label. f(bonsai_NODE label subtrees) =
Cases (lift_compose (lift_fun f) subtrees) label subtrees

3 A Broader Class of Simple Recursive Types

The next step toward supporting our broader class of recursive type definitions
is to handle the simple recursive case. In this section we show how to solve
recursive type specifications of the form

rty = Cityy gty g | [Catyy g g g,

where ty; ; is either an existing type, or of the form ¢y — rty for some existing
type ty. Given such a specification, a solution for it is a new type rty, constructors
Citty; 1 — ... — ty; ;, — rty and an initiality theorem analogous to (but more
complicated than) the one for bonsai. Thus, we need to identify a type in which we
can build a model for our specification, define a predicate on that type identifying
the elements of the model, and introduce a new type that is isomorphic to
the model. Then we need to define the constructors C; and we need to prove
the initiality theorem. In the description that follows, we will often resort to
giving examples for each of these steps, rather than giving a completely rigorous
description.

3.1 Building the Type

The background type that we are going to use to solve the specification is
(o, T)bonsai, for some branching type ¢ and some labeling type 7. The branching
type o and the labeling type 7 are each a sum type having one component for each
case in the specification. The contribution of a particular case C;ty; ;...1y; j,
to the branching type is sum of all ey, ; where ty, ; = ely, ; — rty, or one if
none such exist. The contribution to the labeling type is the product of each
ty; ; that is an existing type, if there are any, and one elsewise. For example, the
specification

toto::=A bool num | B (o« — toto) (ind — toto) | C | D bool (num — toto)
is modeled using the background type
(one 4+ (o +ind) 4+ one 4 num, (bool x num) + one + one + bool) bonsai

Suppose that tr = bonsai_NODE label subtrees is a bonsai of the background
type. Then label 1s uniquely in one of the summands, say the ¢’th summand, of
the labeling type. The predicate that describes the subset of the background type
that models the specification is true of #r provided that the domain of definition
of subtrees is either exactly the ¢’th summand of the branching type, if the i’th
case has a type argument of the form ty; ; = ety, ; — rty, or is empty otherwise.

Thus, for our example this becomes

Atr Vlabel subtrees.(tr = bonsai_NODE label subtrees) —
(ISL label A (V.part_fun_domain subtrees x = F)) Vv
(ISR label AISL(OUTR label)A
(V. part_fun_domain subtrees x = ISR # A ISL(OUTR z))) Vv
(ISR label AISR(OUTR label) AISL(OUTR(OUTR label))A
(V. part_fun_domain subtrees x = F)) Vv
(ISR label A ISR(OUTR label) A ISR(OUTR(OUTR label))A
(V. part_fun_domain subtrees x =

ISR 2 A ISR(OUTR z) A ISR(OUTR(OUTR z))))

Using new_type_definition with this predicate gets us the type that we need
to solve the specification.

3.2 Making the Constructors

The next phase is making the constructors for the type. Each constructor needs
to make a bonsai and then abstract it to the new type. It makes the bonsai using
bonsai_NODE, and thus it needs to make a label and an indexed collection of sub-
trees. The label is simply the product of all the arguments to the constructor of
pre-existing type (or one if there are none) injected into the corresponding sum-
mand of the label type. The indexed collection of subtrees is rather more com-
plicated. The #’th constructor sends all summands of the branching type, except
the 7’th to undefined. If it has no argument types of the form {y,; ; = ety, ; — riy,
then it sends everything of branching type to undefined. Otherwise, the ’th sum-
mand of the branching type is a sum of all ety; ; such that ty; ; = ety, ; — rity.

A summand of the ¢’th summand of the branching type of type ety; ; is sent
to the bonsai representation of the corresponding rty value. For example, the
second constructor for the type specification given above is

B = A(f1:a — o toto)(f2:ind — « toto).

toto_ ABS(bonsai_NODE

(INR(INL one))

(Az.(ISR z AISL(OUTR 2)) =
((ISL(OUTL(OUTR z))) =
(toto_REP(f1(OUTL(OUTL(OUTR 2)))))
| (toto_REP(f2(OUTR(OUTL(OUTR 2))))))
| undefined))

Given these definitions for our constructors we show that no element is in
the range of two distinct constructors and that every is element is in the range
of one of the constructors.

3.3 Deriving Initiality

We prove initiality roughly in the following manner. Assume we have case
functions for each of the cases of the specification (that is, build variables of
the right types to be such case functions). Using these case functions we can
build a case function over bonsai as follows. Given an indexed collection of
recursive values rec_fun, a label label, and an indexed collection of subtrees
subtrees, for each constructor, test whether there exist arguments such that
bonsai_NODE label subtrees is the representation of the definition of the con-
structor applied to those arguments. If it is, return the appropriate case function
applied to the appropriate arguments. If it fails to match any constructor, return
@z.T. For example, consider the specification

tutu::=A bool | B (hum — tutu)
The case function we get then is

A rec_fun label subtrees.
(Jz.bonsai_NODE label subtrees =
bonsai_NODE (INL z) (Az.undefined)) =
(A_case(OUTL label))
| ((3g.bonsai_NODE label subtrees =
bonsai_NODE (INR one) (Az. (ISR z) =
(tutu_REP(g(OUTR z)))
| undefined)) =
(B_case (Ax.rec_fun(INR z)) (Az.tutu_ ABS(subtrees(INR z))))
| @z.T)

If h is the function over bonsai given by the case function so generated, then
f = Az.h(rty_REP 2) is the function over the new recursive type given by the
case functions over that type. We use the fact that the constructors have distinct
images to demonstrate that the desired equations hold for f. We use the fact that
every element is in the image of some constructor together with the uniqueness of
h to show the uniqueness of the function satisfying the equations of the initiality
theorem. The resultant initiality theorem for the tutu specification 1s

VA_case B_case. f. (Ve. f(A) = A_case z) A
(Vg. f(B g) = B_case (f o g) g)

4 Future Work

As was mentioned in Section 1, this work is a part of a project to support
a class of mutually recursive specifications with nestings of type constructors.
The general approach we take involves translating the specifications into pro-
gressively simpler forms, preserving information necessary to translate solutions
back. First we eliminate the nested type constructors in favor of larger mutually

recursive specifications having no such nestings. For an example of this, consider
the specification we gave for bonsai:

bonsai ::= bonsai_NODE 8 (or — bonsai lift)

The type bonsai being specified has an occurrence within the recursive type
constructor lift. Using the specification for lift (which we can reconstruct from
the initiality theorem for lift) we can convert this specification into the following
form:

bonsai’ ::= bonsai_NODE’ 8 (o — bonsai_lift)

bonsai_lift ::= lift’ bonsai | undefined’

The type bonsai’ is isomorphic to the type bonsai and the type bonsai_lift is
isomorphic to the type bonsai lift.

The next translation transforms the mutually recursive specification into a
simple recursive specification. This translation is basically the same as the one
previously outlined by Thomas Melham in [3]. This translation does not yield
an isomorphism, and so a second predicate must be defined on the type returned
by the simple recursive specification culling out those terms that represent well-
formed terms of the mutually recursive types. One way in which we differ slightly
from the description given by Melham is that we must translate each occurrence
of the recursive type rty as an argument to a constructor into an occurrence of
one — rly. Perhaps one subtlety in this translation that was not discussed in [3]
was determining whether the mutually recursive specification 1s well-founded,
and the computation of witnesses for each type. It is possible for one or more
of the types being defined in a mutually recursive specification to have no base
case by itself, and yet for the system to be well-founded. This is the case, for
example, with the translated specification for bonsai.

It should be noted, that although we haved talked in terms of making various
definitions at various intermediate stages along the path to finding a solution
to a specification, in reality we want to avoid actually introducing multiple in-
termediate types and constructors, and thus in our actual package we deal with
the definitions of the objects instead of actually introducing these objects. It is
rather important for purposes of both space and time efficiency not to introduce
formally definitionally the intermediate stages.

Once the package for defining types from the specifications described in Sec-
tion 1 is completed, there will still need to be a package developed for the flexible
definition of functions over these types. The tools for proving results by induction
over such types will also need to be extended.

5 Acknowledgements

It has come to my attention that David Shepherd of INMOS is carrying out a
independent project parallel to the one discussed in this paper, and in particular,
that he has developed a comparable theory of arbitrarily branching labeled trees
as a foundation.

A Infinite Trees

A.1 An infinitely Tall bonsai (with no infinite branches)
Let us assume that we have a type bonsai described by
bonsai ::= bonsai_NODE 8 (o — bonsai lift)

with the initiality theorem

VCases. 3 f. Vsubtrees label. f(bonsai_NODE label subtrees) =
Cases (lift_compose (lift_fun f) subirees) label subtrees

By primitive recursion on the natural numbers, we can define

mk_tree 0 = bonsai_ZNODE one (Az. undefined) A
Vn. mk_tree (SUC n) = bonsai_NODE one (Am.lift(mk_tree n))

Using these trees, we can then define
tall = bonsai_NODE one (lift_fun mk_tree)

Given a partial function from « to num, we can define the least upper bound of
the function by

Vp. lub p =
(Vo. p & = undefined) = lift 0
| (Fn.(Ya.(p © # undefined) = (lower(p) < n)) A (z. p = = lift n)) =
lift(@n.(Va.(p # undefined) = (lower(p #) < n)) A (Fx. p x = liftn))
| undefined

Now consider the following case function for trees:

Cases rec_fun label subirees =
(Fw. rec_fun z = lift 13) = 13
| (lub rec_fun = undefined) = 13 | (2 + lower(lub rec_fun))

If we define our DoubleHeight function by

DoubleHeight (bonsai_NODE label subtrees) =
Cases(lift_compose (lift_fun f) subtrees) label subtrees

then we can show that DoubleHeight tall = 13.

tall skinny

A.2 broad_tree is not Initial
Notice that the function Al:one list. one satisfies Is_labeling. Let
skinny = broad_tree_ABS(A!:one list. one)
Then we can show the following:
skinny = broad_tree_ NODE one Ax :one. skinny

That is, every immediate subtree of skinny (there is only one) is equal to skinny.
Consider the following two case functions over (one,one)broad_tree:

U rec_fun label subtrees = ((rec_fun one = undefined) V lower(rec_fun one))
and
E rec_fun label subtrees = ((rec_fun one = undefined) V —lower(rec_fun one))

Then we have both that

Viabel subtrees.(Atr.T)(Node label subtrees) =
U(lift_compose(lift_fun (Atr.T)) subtrees) label subtrees

and

Viabel subtrees.(Atr.tr # skinny)(Node label subirees) =
U(lift_compose(lift_fun (Atr.tr # skinny)) subtrees) label subtrees

Therefore, there is no unique function defined by U. The situation is even worse
with E. There we can prove

Vf. f(broad_tree. NODE one Az :one. skinny) #
E(lift_compose(lift_fun f) Az :one. skinny) one Az :one. skinny

References

1. M. J. C. Gordon. The HOL System. Cambridge Research Centre, SRI Interna-
tional, and DSTO Australia, 1989.

2. T. F. Melham. Automating recursive type definitions in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Ver-
ification and Automated Theorem Proving, pages 341 — 386. Springer-Verlag, 1989.

3. T.F. Melham. Email correspondence. info-hol email, 26 April 1992.

This article was processed using the INTpX macro package with LLNCS style

