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realisation can be (automatically) derived, using a speci�cation language thatis more machine oriented.Several conceptual modelling techniques have an underlying object-role struc-ture (e.g. ER [5] and NIAM [11], [15]). In these techniques a model consists offact types, de�ned in terms of object types and roles. Depending on the powerof the technique, fact types may be of any degree and can be treated as objecttypes (objecti�ed fact types). Furthermore, a distinction can be made betweenlexical and non-lexical object types and ISA (or subtype) relationships can bede�ned.For a given conceptual model the number of correct internal models maybe very large, depending on the complexity of the conceptual model and thelanguage used for the internal model. Some internal models will result in an e�-cient system, others will not. The problem then is how to �nd a good candidate.The question how such a good candidate can be found will not be addressed inthis paper. Our aim is to describe a mechanism for the reduction of the searchspace, setting a context for more sophisticated search algorithms. Furthermore,this reduction provides a base for structural translations in automated proto-typing (see e.g. [12]). As design tools are becoming more important, the needfor automatic translation becomes more pressing.Various implementation oriented modelling techniques exist. A classical dis-tinction can be made between relational, network and hierarchical models. Re-cently a lot of research has been done on nested relational models, also callednon �rst normal form or NF2 models (see [1], [6] and [19]). These models are in-teresting for special database applications, involving e.g. textual data, computeraided design or image processing.Current approaches to the transformation of conceptual models into internalmodels focus mainly on the relational model. The result of the transformationis a relational schema in a certain normal form (see for instance [11], [13], [17],[21], [22] and [24]). Other approaches can be found in [2], [10], [20] and [25].In this paper we present a framework for the transformation of object-rolemodels. We describe a representation mechanism for internal structures, suchthat the conventional internal models can be represented. The advantage ofthis approach is, that we can describe conceptual-internal mappings within thescope of a single speci�cation language. For example, the mapping of an internalstructure into a Codasyl model can be done by a simple syntactic transforma-tion. Furthermore, this approach gives the opportunity to describe intermediateresults easily.Then, the attention will be focussed on the question how this transformationprocess can be guided, in order to generate structures having certain prede�nedcharacteristics, involving e.g. redundancy, optionals and size of the generatedstructure.The organisation of the paper is as follows. In section 2, we discuss a gen-eral object-role platform, called the Predicator Model. The central notion ofthis platform is the predicator, the combination of an object type and a role.2



In section 3 we show how the NF2 data structure can be recognised as a treeconsisting of nodes of predicators. In section 4 we show how alternative treerepresentations can be generated for a given information structure, and howguidance parameters can be used to reduce the set of generated representations.In section 5 the generation algorithm is exempli�ed, starting from a very simpleobject-role information structure and tracing the generation process. Examplesalso show how populations (or instantiations) of the information structure corre-spond to populations of the generated structures. In section 6 we shortly addresssimpli�cation during postprocessing.With respect to the graphical representation of information structures, wemake use of the drawing conventions of NIAM. Our approach however, is appli-cable in any model with an underlying object-role structure.2 The Predicator ModelIn the Predicator Model a schema � = hI; Ci consists of an information structureI and a set of constraints C (see [3], [8] and [27]). The semantics of a schema isexpressed in terms of populations (instantiations) of the information structure.Such a population should �t in the structure I and satisfy the requirementsspeci�ed in C.With respect to the separation of the information structure I and the con-straints C, note that constraints can also be seen as structural rules. However,constraints are usually expressed in a language that is derived from the compo-nents in I (see for example [3]).We will �rst introduce the information structure, and then de�ne the con-cept of population. Two special types of constraints, the uniqueness constraintand the total role constraint, will be discussed and illustrated using examplepopulations.2.1 The information structureDe�nition 2.1Information StructureAn information structure I = hP;O;F;Base; Sub;ui, is a structure consistingof the following basic components:� P is a set of predicators. A predicator is intended to model a connectionbetween an object type and a role in a fact type. The associated objecttype is found by the operator Base : P ! O.� O is a set of object types.� F is a partition of the set P of predicators. The elements of F are calledfact types. Fact types are regarded as objects types: F � O. They are alsoreferred to as composed object types.3



The object types in A = O�F are called atomic object types. There aretwo di�erent sorts of atomic object types: entity types (E) and label types(L). Note that in this model a composed object type can not correspondto an entity type.� Sub is a partial order for atomic object types, with the convention thata Sub b is interpreted as: a is a subtype of b. Note that the name atomiconly refers to being undividable in the sense of not consisting of predicators(as fact types are).Each element ofA has associated a (unique) top element, its pater familias.It is found by the function u : A! A (which is similar to the top operatorfrom lattice theory). This function satis�es:1. a Sub b) u(a) = u(b)2. a 6= u(a)) a Subu(a)We call predicators p and q attached to each other (p � q), when u(Base(p)) =u(Base(q)). The fact type that corresponds with a predicator is obtained by theoperator: Fact : P ! FIt is de�ned by: Fact(p) = f , p 2 f .A fact type is called objecti�ed, if it occurs as the base of a predicator.A predicator is called an objecti�cation, if its base is a fact type. The set Hcontains all objecti�cations:H = � p 2 P j Base(p) 2 F 	Example 2.1 In �gure 1 we see an example of a simple information structure.In this structure we have: P = fp; q; r; sgO = fA;B;C; f; ggF = ff; ggThe fact types are de�ned as follows: f = fp; qg, g = fr; sg. With respect to thepredicators we have:Base(p) = A Fact(p) = fBase(q) = B Fact(q) = fBase(r) = B Fact(r) = gBase(s) = C Fact(s) = gThe black dots and double-headed arrows represent so-called constraints. Beforethese constraints are introduced, we �rst de�ne the concept of population.4



����A r p �-f q ����Br r �-g s ����CrFigure 1: An example information structure2.2 PopulationFor the population of an information structure we assume some universal domain(see [14]).De�nition 2.2PopulationA population of an information structure I = hP;O;F ;Base; Sub;ui (also calledan instantiation or state) assigns to each object type in O a subset of the uni-versal domain, conforming to the structure as prescribed in P and F , respectingthe subtype hierarchy Sub. In case of an atomic object type, this subset shouldcomprise only elementary values of the universal domain. The population of acomposed object type is a set of composed values (or tuples). A tuple t of a facttype f is a mapping of all its predicators to values of the appropriate type.Example 2.2 f(p; a1); (q; b1)g is an example of a tuple of fact type f in �gure 1.When no confusion is likely to occur, a tuple will be denoted simply as a set ofvalues. In the example above this results in fa1; b1g.Example 2.3 In �gure 2 we see an example population for the informationstructure shown in �gure 1. fA Ba1 b1a2 b1a3 b2a4 b3 gB Cb2 c1b3 c1Figure 2: Example populationThe set of possible populations of an information structure de�nes the seman-tics of that structure. Unwanted populations can be excluded from this set bystatic constraints. Changes of population (state transitions) can be forbiddenby so-called dynamic constraints. In this paper we only use two types of staticconstraints: the uniqueness constraint and the total role constraint.5



A uniqueness constraint expresses a functional dependency and is denotedas a double-headed arrow. A total role constraint expresses a mandatory rolefor a certain predicator: every instance of a certain object type (the base of thepredicator) must play that role at least once. The notation used for this type ofconstraint is a black dot.It is also possible to de�ne uniqueness constraints over more than one facttype, or total role constraints over more than one predicator (with the samebase). For a formal de�nition of syntax and semantics of these (and other)constraints, we refer to [3] and [27].Example 2.4 Consider the information structure in �gure 1. We see a unique-ness constraint unique(fpg). The population of fact type f given in �gure 2 sat-is�es this constraint, since every instance of object type A occurs at most oncein a tuple of f . This property does not hold for predicator q, as b1 occurs twice.The constraint total(fqg) is also satis�ed, since every instance of object typeB occurs at least once in a tuple of fact type f . Note the absence of total(frg).Example 2.5 In �gure 3 we see objecti�ed fact type f . This fact type is thebase of predicator r. Note that this structure has the same de�nition as thestructure in �gure 1 (even the constraints are identical), except for the de�nitionof Base(r). In this situation the constraint unique(r) means that each instanceof f can be associated at most once with an instance of C.
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Figure 3: A simple information structure with objecti�cationFor more examples of objecti�cation and the meaning of constraints over objec-ti�cation, see [3], [15] and [27].2.3 DefoliationIn section 2.1 two kinds of atomic object types were distinguished: entity typesand label types. The di�erence is that labels can, in contrast with entities, be6



reproduced on a communication medium. Therefore it should be possible touniquely identify an entity type via one or more label types. This unique iden-ti�cation is also called a naming reference. Usually, identi�cation is guaranteedusing uniqueness and total role constraints.A naming reference very often consists of one single label type, speci�ed viaa so-called bridge type. A fact type f is called a bridge type, only if it has theform f = fp; qg with Base(p) 2 L and Base(q) 2 E .In complex cases, identi�cation is de�ned by more than one bridge type, orby a combination of bridge types and fact types.����Commu-nity rr����(C-name)r ����Streetr rr����(S-name)r ����Houser r����(H-nr)r ����Personr r����(P-name)r
� -@��- �- ?6?6?6?6?6 ?6 �-p1p2 p6p5 p12p11 p13 p14p3 p4 p9 p10 p16p15p7 p8f1 f3 f6 f7f2 f5 f8f4����u ����uFigure 4: Schema with complex identi�cationExample 2.6 Consider the schema in �gure 4. In this schema persons live ina house (f7), houses are located in a street (f5), and streets cross other streets(f4) and are located in a community (f2). By convention a label type is denotedin parenthesis.There are two simple naming references: f1 and f8. The other naming ref-erences are complex. A street can be identi�ed by the unique combination of itscommunity (f2) and its name (f3). This combination is unique as a result of theconstraints unique fp4g, unique fp5g and unique fp3; p6g. A house can be iden-ti�ed by the unique combination of its street (f5) and its number (f6). Thesenaming references ful�l the requirements for structural identi�cation (see [3]).In internal models the distinction between label types and entity types isnot made. Therefore, an information structure must be defoliated before it istransformed into an internal structure.The term \defoliation" is based on the Object Relation Network view of aninformation structure (see [3]). The e�ect of defoliation is the restriction of the7



information structure to the fact types that are not bridge types:Fd(I) = � f 2 F j 8p2f [Base(p) 62 L] 	Example 2.7 Consider the schema in �gure 4 again. For this schema we haveFd = ff2; f4; f5; f7g. The defoliated information structure is presented in Fig-ure 5.����Commu-nity r ����Streetr r ����Houser ����Personr� -@��- �- �-p13 p14p3 p4 p9 p10p7 p8 f7f2 f5f4Figure 5: The defoliated information structureThe predicators in a defoliated information structure are speci�ed by Pd =[Fd.3 Embedding internal structuresIn this section data structures that are used in internal models are embeddedwithin the Predicator Model. We �rst introduce the nested relational model (alsocalled non �rst normal form or NF2 ) as the underlying data structure. Infor-mation structures from the examples in the previous section will be representedin alternative NF2 relation types.Then, tree structures consisting of nodes of predicators are de�ned. Thesetrees represent information structures in a hierarchical way, such that NF2 struc-tures are easily recognised. They form the basis of the generation algorithmdescribed in section 4.3.1 The underlying data structureAn NF2 model consists of relation types, where a relation type consists of atomicattribute types and other relation types, called relation-valued attribute types(see [6] and [19]). NF2 relation types may be in one of the classical relationalnormal forms (see e.g. [26]), but they do not necessarily have to. In this way therelational theory can be exploited in a wider area.Recent research involves the de�nition of a recursive relational algebra (see [6], [18]and [19]) and the introduction of nested normal forms (see e.g. [7] and [16]).Furthermore, the relationship with other modelling approaches is investigated.8



Several representations have been introduced for NF2 relation types, for in-stance a linear form, a tree representation and a tabular representation (see [19]).In this section we give some examples of the linear form and the tabular repre-sentation. In section 3.2 we give a formal de�nition of tree structures, consistingof nodes of predicators.In the linear form, a relation type can be denoted as a regular expression, inthe so-called nested bracket notation. Then it is an enumeration of the attributetypes it contains, separated by brackets.Example 3.1 We may for instance have the following relation type:[A; [B;C] rep]This relation type consists of two attribute types, an atomic attribute type Aand a relation-valued attribute type [B;C] rep. The relation-valued attribute typeconsists of two atomic attribute types B and C.In this structure an A value can be related to one or moreB;C combinations.The keyword rep expresses repeating.If each A value occurs only once, denoted as A, the relation type is said tobe in partitioned normal form (PNF). With this basic normal form it can beguaranteed that nest is always the inverse operator for unnest, an importantproperty for e.g. query optimization. For more details see [18]).In this paper we restrict ourselves to relation types in PNF. As a furtherre�nement, we use the keyword op to denote an optional attribute type.Example 3.2The schema in �gure 1 can be represented by the following alternative relationtypes:1. � A ;B;C op�2. � B ;A rep; C op�3. � C ; �B ;A rep� rep�Each relation type corresponds to a hierarchical view of the information struc-ture, with either A, B or C as root. The root of a (sub)tree is a key of thecorresponding relation type. The formal de�nition of this hierarchical view isgiven in section 3.2.Consider the �rst alternative. We will show how this alternative is obtained bytaking object type A as root. Direct translation of the structure in �gure 1 intoa regular expression results in �A ; �B ; � C � op��. As a notational simpli�ca-tion, unary groups are usually denoted without surrounding brackets. Struc-tural simpli�cations are also possible. For example, � A ; �B ;C�� is equivalentto � A ;B;C�, as the subgroup �B ;C� is neither optional nor repeating.9



Note the e�ect of the constraints, speci�ed in �gure 1, on the candidaterelation types. For instance, the absence of constraint total(r) caused an optionalattribute type Cop in the �rst and second alternative. The absence of constraintunique(q) caused a repeating (relation-valued) attribute type Arep in the secondand third alternative.The second alternative mentioned above is illustrated at the instance levelin �gure 6. B A rep C opb1 a1 "a2b2 a3 c1b3 a4 c1Figure 6: Example population in second alternativeThe population in �gure 6 corresponds to the example population of theoriginal information structure (see �gure 2). Note that we have used " to denotethe empty value.Example 3.3The schema in �gure 3 can be represented by the following relation types:1. � A ;B;C op�2. � B ; �A ;C op� rep�For very simple information structures it is su�cient to use object typesfor the denotation of the resulting NF2 attribute types. However, to be ableto represent information structures of arbitrary complexity, a predicator basedapproach should be used. Instead of using the associated object types, attributetypes then are denoted as sets of predicators.Example 3.4For the alternatives given in example 3.2 this leads to:1. h fpg ; fq; rg ; fsg opi2. h fq; rg ; fpg rep; fsg opi3. h fsg ; h fq; rg ; fpg repi repi 10



3.2 Tree representationsIn this section we extend the Predicator Model by a representation mechanismcorresponding to an internal structure, in the form of a hierarchical relation type,as we encountered in the previous section. The hierarchical nature is representedin a tree, where each node is a set of predicators.De�nition 3.1Tree RepresentationA forest (set of trees) T = hN ; E; `i is a complete tree representation of informa-tion structure I = hP;O;F;Base; Sub;ui, i� it satis�es the following conditions:t1 : A node is a set of predicators. The set of nodes N forms a partition of Pd(I)(see section 2.3). All predicators in a node are mutually attached to eachother. As a result, all object types that are involved in a node belong tothe same subtype hierarchy. The associated pater familias is denoted asthe base of the node: Base(n) for node n.t2 : No two predicators of the same fact type may participate in the same node:8n2N ;f2F [jn \ f j � 1]t3 : Objecti�cations (elements of H) are treated separately:8n2N [jn \Hj � 1]t4 : E is a set of edges. The pair hm;ni represents an edge from node m to noden. Edges are labelled by fact types in the obvious way, with some care tohandle objecti�cation. The function ` : E ! F assigns ` (hm;ni) = f , i�:1. n \ f 6= ;2. m \ f = ; ) Base(m) = ft5 : Fact types are located around a single father:`(hm1; n1i) = `(hm2; n2i) ) n1 = n2t6 : In order to guarantee that the complete information structure is repre-sented, each predicator must be involved in some edge:8p2Pd9hm;ni2E [p 2 m [ n]We call a tree representation incomplete if it does not necessarily ful�l the lastrequirement. 11



Example 3.5The tree in �gure 7 is a possible tree representation for the information structureof �gure 1, according to:N = fn1; n2; n3g with:n1 = fq; rg ; n2 = fpg and n3 = fsgE = fe1; e2g with:e1 = hn2; n1i and e2 = hn3; n1i`(e1) = f`(e2) = gThis tree representation corresponds to relation type h fq; rg ; fpg rep; fsg opi,which is the second alternative of example 3.4.'&$%n2 ����A p '&$%n3 ����C s'&$%n1 ����B@q� r����� @@@@If gFigure 7: Simple treeExample 3.6The tree in �gure 8 is a possible tree representation for the information structureof �gure 3, according to:N = fn1; n2; n3; n4g with:n1 = fqg ; n2 = fpg ; n3 = frg andn4 = fsgE = fe1; e2; e3g with:e1 = hn2; n1i ; e2 = hn3; n1i ande3 = hn4; n3i`(e1) = f`(e2) = f`(e3) = g 12



This tree representation corresponds to relation type h fqg ; h fpg ; fsg opi repi,which is the second alternative of example 3.3.'&$%n2 ����A p '&$%n3 ����f r'&$%n1 ����Bq����� @@@@If f'&$%n4 ����C s6gFigure 8: Example tree with objecti�cationNote the duality of both partitions F and N of the predicators. The �rst isbased on equality of fact type, the second is related to attachedness. The uniquenode in which a predicator is contained can be found by the function:Node : Pd ! NIt is de�ned by: Node(p) = n , p 2 n, analogous with the function Fact (seesection 2).A node m, being the source of an edge, is anchored to this edge by a uniquepredicator p 2 m:Lemma 3.1 Let e = hm;ni be an edge and let `(e) = f . If node m has anatomic base, it has the following property:jm \ f j = 1Proof: Let hm;ni 2 E with Base(m) 2 A and `(hm;ni) = f . From conditiont4 we conclude that m \ f 6= ;. Now the result can be obtained fromcondition t2. 13



2For node m this unique predicator is denoted as Anchor(m). During the con-struction of tree representations this anchor will play an important role in theguidance of the generation process.The application of lemma 3.1 in the example tree representations is trivial:Example 3.7In the tree shown in �gure 7 we have Anchor(n2) = p and Anchor(n3) = s. Forn1 it is not de�ned, since n1 is not the source of any edge.Example 3.8In the tree shown in �gure 8 we have Anchor(n2) = p and Anchor(n4) = s. Forthe root n1 and the objecti�cation n3 it is not de�ned.For the nodes, being the destination of some edge, an analogous propertyholds:Lemma 3.2 Edge e = hm;ni with `(e) = f has the following property:jn \ f j = 1Proof: Let hm;ni 2 E with `(hm;ni) = f . From condition t4 we conclude thatn \ f 6= ;. Now the result can be obtained from condition t2.2 R � N is the set of nodes being the root of some tree:R = � x 2 N �� 8hm;ni2E [x 6= m] 	A basic property of a forest T of information structure I involves the numberof nodes in T . It can be expressed in terms of the number of predicators, facttypes and objecti�cations in I and the number of trees in T :Lemma 3.3 jN j = jPdj � jFdj+ jHj+ jRjProof: Suppose e1; : : : ; ek are all edges labelled with the same fact type f .Then all these edges have the same destination node (condition t5). Thisdestination node contains precisely one predicator of f (see lemma 3.2).From lemma 3.1 we conclude that the sources of the edges either containprecisely one predicator of f , or correspond to an objecti�cation of f .We denote the number of objecti�cations of f as kfk. We then have:number of edges labelled with f= jf j � 1 + kfk14



Summation of all fact types yields:jEj = Xf2F d number of edges labelled with f= Xf2F d (jf j � 1 + kfk)= jPdj � jFdj+ jHjThe number of nodes equals the number of edges plus the number of trees.As a result: jN j = jEj+ jRj = jPdj � jFdj+ jHj+ jRj24 Generation of tree representations4.1 The generation processThe intention of the generation process that we describe is to generate all treerepresentations for a given information structure I. However, in order to avoidthe overhead of the backtrack mechanism, we let the algorithm search for arandom tree structure.The construction �rst sets up an initial incomplete tree representation. Thisincomplete representation is transformed step by step until it is complete. Ineach step a fact type will be incorporated in the tree representation. As a con-sequence, the number of steps equals the number of fact types in the defoliatedinformation structure.Initially each predicator constitutes its own isolated node, not linked to anyother node. This initialisation establishes the following precondition:Lemma 4.1 Precondition# I is an information structure #N := � fpg j p 2 Pd(I) 	;E := ;;` := ;;T := hN ;E; `i;# Forest(T ; I) #Proof: Let I be an information structure. After the initialisation, hN ; E; `isatis�es the conditions t1, t2 and t3, because each node contains exactly15



one predicator. The conditions t4 and t5 are void, because there are noedges. From this we conclude that T is an incomplete tree representationof I, denoted as Forest(T ; I).2 In each step of the algorithm a fact type should be selected to be incorpo-rated in the tree representation. This is done by selecting a predicator of a yetunprocessed fact type. This predicator then will act as a handle for the extensionof the tree representation.We use the set U to record the unprocessed isolated nodes. The procedureCanExtend selects an unprocessed node m 2 U , in combination with anothernode n 2 N . The actual extension is performed by the procedure ProcessFact-Type. The algorithm:proc GenerateForest (I : Information Structure):Forest;N := � fpg j p 2 Pd(I) 	;E := ;;` := ;;U := N ;while CanExtend (m, n) doProcessFactType (m;n)od ;T := hN ;E; `iendproc GenerateForestThe extension of a tree representation either enlarges an already existingtree, or adds a new tree to the forest. If the unprocessed node m 2 U is chosenin combination with a processed node n 2 N �U , an existing tree is extended.A choice for n = m leads to the creation of a new tree. Other combinations of mand n are not allowed, because they do not result in a correct tree representation.The procedure CanExtend will check this. Furthermore it will guarantee that allobject types within the same node belong to the same subtype hierarchy:u(Base(m)) = Base(n)It may be desirable to further restrict the possibilities for extension, e.g. whenthe result of the generation must ful�l certain design criteria. This further re-striction is discussed in the next section.For the extension of an existing tree and for the creation of a new tree onesingle strategy can be used. This strategy consists of the processing of the facttype, which is implicitly speci�ed via the unprocessed unary node m.The extension starts with the union of the selected nodes m and n. Then theentire fact type f , speci�ed via m, is processed by the addition of edges withlabel f : 16



proc ProcessFactType (m;n : Node);Let m = fpg;if m 6= n then N := N � fmg;n := m [ n;for x 2 Fact(p)�m doE := E [ �
Node(x); n�	;`(
Node(x); n�) := Fact(p)od ;U := U � Fact(p);if 9fxg2U �Base(x) = Fact(p)� then ProcessObjecti�cations(Fact(p), n);endproc ProcessFactTypeFinally, we have to handle the objecti�cations of the fact type f under con-sideration. For each fact type g, which contains an objecti�cation of f , we haveto choose a predicator for unnesting. This unnesting is performed by the ad-dition of edges with label f . The fact type g then is processed by recursivelycalling procedure ProcessFactType:proc ProcessObjecti�cations (f : FactType; n : Node);for m 2 U with Base(m) = f doE := E [ fhm;nig;`(hm;ni) := f ;ProcessFactType(m;m)odendproc ProcessObjecti�cationsNext we show that the loop in procedure GenerateForest is governed by thefollowing invariant:Lemma 4.2 Invariant# Forest(T ; I) and CanExtend(m;n) #ProcessFactType(m;n)# Forest(T ; I) #Proof: Suppose Forest(T ; I) and CanExtend(m;n). Let f be the fact type im-plicitly speci�ed by m. After the execution of ProcessFactType, conditiont1 is satis�ed as a result of the checks in CanExtend(m;n).Each predicator in f �m is the source of a new edge with destinationn and label f . From this we conclude that the conditions t2 and t5 aresatis�ed. 17



Furthermore, the recursive call in the processing of objecti�cations guar-antees the conditions t3 and t4. As a consequence, the resulting forest Tis an incomplete tree representation of I.2 The previous lemmas guarantee the correctness of the entire generation:Lemma 4.3 Postcondition# I is an information structure #T := GenerateForest(I)# U = ; ) CompleteForest(T ; I) #Proof: Let I be an information structure. The result of the initialisation isan incomplete tree representation (see lemma 4.1). In each iteration theprocedure ProcessFactType yields an incomplete tree representation (seelemma 4.2). If GenerateForest terminates with U = ; each predicator hasbeen classi�ed, and thus T is a complete tree representation according tocondition t6.24.2 Further restrictionThe generation process described in the previous section results in a correcttree representation, according to the de�nition in section 3.2. However, in manycases the property of correctness is not strong enough, e.g. when the searchspace in schema transformation is to be reduced. Then, database structures tobe generated must be characterised in advance, in order to exclude candidateswith undesirable properties from the generation process.This characterisation can be embedded within the generation framework asfollows. In each iteration the procedure CanExtend selects two nodes m and nas a base for further processing. This selection leaves us many opportunities toinuence the nature of the resulting tree representation, simply by restricting thenumber of possible combinations of m and n. We will discuss some restrictionsin this section. In section 5 and 6 the algorithm is illustrated in several detailedexamples.Let m = fpg 2 U be an unprocessed isolated node and let n be either aprocessed node (n 2 N �U) or a new root (n = m), such that their basesbelong to the same subtype hierarchy. This forms the starting-point for furtherrestriction (see �gure 9). 18



proc CanExtend (var m;n : Node) : Boolean;take randomm = fpg 2 U , n 2 (N �U)[ fmg with u(Base(m)) = Base(n)such that: n 2 R _ total(Anchor(n))and if NoNesting then unique(p)and if NoRedundancy then n 2 R _ unique(Anchor(n))and if NoOptionals thenif n 2 Rthen 8x2m[n [total(x)]_ 8x2m[n [: total(x)]else total(p)and if SizePreference then jFacts(n)j < and if DepthPreference then Depth(n) < �endproc CanExtendFigure 9: Guidance conditions for the extension of the tree representationFirst we deal with lossless tree representations. To prevent loss of informationin the result, the anchor of node n should have a total role constraint:n 2 R _ total(Anchor(n))Absence of this constraint allows Fact(p) to have instances that cannot be relatedto instances of Fact(Anchor(n)) higher up in the tree. These instances of Fact(p)can not be reached via node n, which results in loss of information.Next we deal with several other structural properties, such as absence ofnesting, redundancy or optionals, and preferences with respect to the size ordepth of the tree. A certain combination of these properties can be speci�ed viathe guidance parameters NoNesting, NoRedundancy, etcetera (see �gure 9).The meaning of these parameters is expressed in so-called guidance condi-tions. For example, for the construction of at relational structures (parameterNoNesting), a uniqueness constraint unique(p) is required. Freedom from redun-dancy (parameter NoRedundancy) is obtained when Anchor(n) has a uniquenessconstraint, provided n is not a root:n 2 R _ unique(Anchor(n))A structure will be free from optionals (parameter NoOptionals) when the equal-ity of Pop(m) and Pop(n) can be guaranteed. This is expressed in terms of totalrole constraints. Furthermore, a maximal number () of fact types per tree canbe speci�ed (parameter SizePreference) and a maximal depth � of the tree can bespeci�ed (parameter DepthPreference). In the following sections these conditionswill be illustrated in examples. 19



5 An elaborated exampleIn this section the behaviour of the generation algorithm is illustrated. This isdone by showing how an example information structure is transformed into treestructures, and how di�erent settings of the guidance parameters inuence theresult.Consider the information structure shown in �gure 10. We assume that thisstructure has already been defoliated. The population in �gure 11 will be usedto illustrate the characteristics of some generated trees at the level of instances.����A r p �-f q ����Br r����r �-g XXXXs����Crr� -hXXXXt ����uFigure 10: Example schemafA Ba1 b1a2 b1a3 b2a4 b3 gB Cb1 c1b2 c1b3 c2 hB Cb1 c1b2 c1b1 c2Figure 11: Example populationThe selection of a parameter setting will on the one hand be determined byquantitative aspects of the conceptual schema under consideration. On the otherhand it will be determined by aspects of the target environment. For example, ifthe application is to be stored on CD-ROM, the parameter NoRedundancy canbe switched o�. In a relational target environment, the parameter NoNestingobviously should be set to true. For more details, see [4].5.1 Size preference without redundancySuppose we aim at a tree structure where the maximal number of fact types pertree is 2 and redundancy can not occur. This can be obtained by the followingsetting of parameters: 20



NoRedundancy = TrueSizePreference = True = 2In the structure in �gure 10 we have Pd(I) = fp; q; r; s; t; ug and therefore bothN and U initially consist of 6 nodes, each containing one predicator. There areno edges yet: E = ; and ` = ;.We will show how the generation proceeds step by step, in each step choosingtwo nodes m and n that ful�l the guidance criteria, followed by the processingof the fact type implicitly speci�ed by m. During this processing the set ofunprocessed nodes U will be reduced. Furthermore, nodes in N will be joinedand edges between these nodes will be constructed.1. Let the �rst selection of nodes consist of m = frg and n = frg. Note thatthe choice m = n will lead to the creation of a new root (see section 4.1).This choice passes all checks in CanExtend. Procedure ProcessFactTypereacts as follows: an edge labelled with g from fsg to frg is created, andfsg and frg are removed from U . N does not change, because no nodeshave to be joined. The resulting situation is shown in �gure 12.'&$%����Br'&$%����C s6gFigure 12: Situation after one step2. Now U contains the unprocessed isolated nodes fpg ; fqg ; ftg and fug.Since the maximal grouping rate  = 2 has not yet been reached, the nextstep may either extend the tree in �gure 12 or create a new root. Supposethe existing tree is extended. There are three possibilities to do this:(a) Choose m = fug and n = fsg, and process fact type h.(b) Choose m = ftg and n = frg, and process fact type h.(c) Choose m = fqg and n = frg, and process fact type f .Consider the �rst alternative. It attempts to join the nodes fug and fsg,and to add an edge fromnode ftg to node fu; sg. However, Anchor(fu; sg) =21



s and predicator s is not unique. Therefore, the guidance condition of pa-rameter NoRedundancy is not ful�lled and as a consequence, this possibilityis rejected. In section 5.2 the meaning of this guidance condition will beillustrated at the instance level.Next we consider the second alternative. ProcessFactType reacts as fol-lows: after joining ftg and frg, an edge labelled with h from fug to fr; tgis added. Furthermore, the nodes fug and ftg are deleted from U . Theresulting tree is shown in �gure 13.'&$%����C s '&$%����C u'&$%����B@r � t����� @@@@Ig hFigure 13: Situation after two stepsIn case the third alternative is selected, the result is an edge labelled ffrom fpg to fq; rg. We do not consider this alternative and proceed withthe tree shown in �gure 13.3. At this moment U contains two unprocessed nodes fpg and fqg. Thisleaves three possibilities for the processing of fact type f in the last step:(a) Join fqg and fr; tg.(b) Create a new root fqg.(c) Create a new root fpg.Consider the �rst alternative. Observing the guidance parameters (espe-cially  = 2), we see that this alternative is rejected, as it would result ina tree containing three fact types.Next we consider the second alternative. In this alternative q is chosen tobecome the root of a new tree. In the reaction of ProcessFactType, N doesnot change, U is made empty and an edge from node fpg to node fqg isadded. The label of this new edge is f . This alternative leads to the �nalsituation shown in �gure 14.If the third alternative is chosen the new root is fpg. Then an edge fromfqg to fpg is added. 22



'&$%����C s '&$%����C u'&$%����B@r � t����� @@@@Ig h '&$%����Bq'&$%����A p6fFigure 14: Final situationThe forest in �gure 14 corresponds to the following relation types:� h fr; tg ; fsg ; fug op repi� h fqg ; fpg repiThere are two relation-valued attribute types fug and fpg. fug is an optionalrelation-valued attribute type for instances of C. It is the result of : unique(t)and : total(t) (see �gure 10).The example population from �gure 11 is represented in the generated struc-ture in �gure 15. fr; tg fsg fug op repb1 c1 c1c2b2 c1 c1b3 c2 " fqg fpg repb1 a1a2b2 a3b3 a4Figure 15: Example population in generated structureWe have used parameter NoRedundancy for the generated structure. Notethat this structure is indeed free from redundancy, as every fact instance ismentioned only once. Note furthermore that empty values (denoted by ") areallowed for attribute type fug.The scenario discussed in this section shows the strong inuence of the �rststep of the generation on the �nal result. The choice for node frg in the �rst step(in combination with parameter NoRedundancy) fully determined the height ofthe tree(s) in the resulting structure. 23



5.2 Maximal grouping without optionalsIn case a maximal grouping of fact types is preferred, such that optional at-tribute types cannot occur, the parameters should be set as follows:NoOptionals = TrueSizePreference = True = jFd j = 3The ultimate result of maximal grouping is a forest consisting of a single tree.However, since  expresses themaximal number of fact types per tree, the setting = jFdj will also allow representations consisting of more than one tree.Initially both U and N consist of 6 nodes, each containing one predicator.Furthermore E = ; and ` = ;.1. Suppose the �rst step chooses m = fqg and n = fqg. This choice passesall checks in CanExtend. Then ProcessFactType reacts as follows: an edgelabelled with f is constructed from fpg to fqg, and both processed nodesare removed from U . N does not change. The resulting situation is shownin �gure 16. '&$%����Bq'&$%����A p6fFigure 16: Situation after one step2. Now U consists of the nodes frg ; fsg ; ftg and fug. There are six possibil-ities for the next step:(a) Choose m = ftg and n = fqg, and process fact type h.(b) Choose m = frg and n = fqg, and process fact type g.(c) Create a new root for either frg ; fsg ; ftg or fug.Consider the �rst alternative. It attempts to join node ftg and node fqg,adding an edge from node fug to node fq; tg. However, the root fq; tgcauses an optional attribute type fug, since predicator q is total and t24



is not. Therefore the guidance condition of parameter NoOptionals is notful�lled and CanExtend rejects this possibility.Next we consider the second alternative. It selects unprocessed node frgin combination with processed node fqg. Procedure ProcessFactType willreact as follows: after joining frg and fqg, an edge labelled with g fromfsg to fq; rg is added. Furthermore, the nodes frg and fsg are deletedfrom U . The situation is shown in �gure 17.'&$%����A p '&$%����C s'&$%����B@q � r����� @@@@If gFigure 17: Situation after two stepsIn the third alternative a new root is created. This possibility will not beworked out further.3. At this moment U contains the unprocessed nodes ftg and fug. This leavesfour possibilities for the processing of fact type h in the last step:(a) Choose m = ftg and n = fq; rg.(b) Choose m = fug and n = fsg.(c) Create a new root for either ftg or fug.Consider the �rst alternative. It attempts to join ftg and fq; rg. As aresult of parameter NoOptionals this alternative will be rejected (see alsothe previous step).Consider the second alternative. It selects fug and fsg to be joined. In thereaction of ProcessFactType the set N is adapted by joining fug and fsg,and U is made empty. Furthermore an edge labelled with h from node ftgto node fu; sg is added. This leads to the �nal situation shown in �gure 18.The tree in �gure 18 corresponds to the following relation type:h fq; rg ; fpg rep; fs; ug ; ftg repi 25



'&$%����A p '& $%����C su
'&$%����B@q� r
'&$%����B t

����� @@@@I 6f ghFigure 18: Final situationThere are two relation-valued attribute types fpg and ftg, for instances of A andB respectively. The nesting of these attribute types is the result of : unique(q)and : unique(u) (see �gure 10).The population from �gure 11 is represented in the generated relation typein �gure 19. Note that this structure does not have optional attribute types, aswas speci�ed by the guidance parameters.fq; rg fpg rep fs; ug ftg repb1 a1 c1 b1a2 b2b2 a3 c1 b1b2b3 a4 c2 b1Figure 19: Example population in generated structureThe tree representation shown in �gure 18 is essential for the meaning of�gure 19. There are three tuples, the �rst one of which is read as follows: b1 isrelated to a1 and a2 (via f) and to c1 (via g). c1 is related to b1 and b2 (via h).An incorrect interpretation could be: a1 is related to b1, and a2 is related to b2.26



We see that the generated structure allows for redundancy: the instancesfc1; b1g and fc1; b2g of fact type h are mentioned twice. A closer inspection ofthe original schema in �gure 10 and the tree representation in �gure 18 leadsto the cause of this redundancy. In the tree structure we see that an instance offact type h containing object x of type C is mentioned as often as x is involvedin g. Since predicator s is not unique, some instances of h may be mentionedmore than once.5.3 Loss of informationAt the end of the previous section we considered the cause of redundancy. Inthis section we will show that the point that was made there is closely relatedto the question of loss of information.Consider the schema in �gure 10 and the tree representation in �gure 18again. Assume the absence of constraint total(s). This assumption does nota�ect the relation type expressed by the tree in �gure 18:h fq; rg ; fpg rep; fs; ug ; ftg repiLet c3 be an object of type C which is not involved in fact type g. If c3 isinvolved in an instance of fact type h, a problem arises: this instance of hcannot be represented in a tree structure according to �gure 18. This problemdoes not occur if the anchor of non-root and non-leave nodes is required to betotal (see section 4.2).6 Complex identi�cationVery often the identi�cation of an entity type can be done by a single label type.However, it may be necessary to use a combination of label types as identi�er.In this section we discuss the e�ect of such complex naming references on theresulting relation types. We take the schema from example 2.6 as input for thegeneration process.6.1 Maximal groupingMaximal grouping is obtained by the following setting of parameters:SizePreference = True = jFdjConsider the tree representation in �gure 20. It is easily checked that thistree represents the defoliated information structure correctly and that no guidingconditions are violated.The corresponding relation type will contain two optional relation-valuedattribute types fp14g and fp8g, since predicators p13 and p7 are neither total27
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����� @@@@I����� @@@@I
f7 f5f2 f4Figure 20: Example treenor unique (see example 2.6). Furthermore, redundancy is allowed for fact typesf2 and f4. This redundancy is caused as follows: the anchor of node fp4; p7; p9gis predicator p9, which is not unique.Usually di�erent scenarios can result in the same tree representation. Thetree in �gure 20 may be the result of a generation starting with predicator p13:Start with node fp13g and process fact type f7. Then join fp10g andfp13g and add an edge labelled by fact type f5. Proceed with fp4gand fp7g.Another scenario that generates this tree starts with predicator p10:Start with node fp10g and process fact type f5. Then join fp7g andfp9g and add an edge labelled by fact type f4. Proceed with fp4gand fp13g.Both scenarios mentioned above contain a permutation of the predicators p13,p10, p4 and p7. Not every possible sequence of these predicators will result inthe same tree. Firstly, it depends on the choice for a node to be extended.Furthermore, only if both p4 and p7 are chosen after p10, the result will be thesame. 28



The tree structure shown in �gure 20 corresponds to the following hierarchi-cal relation type:h fp13; p10g ; fp14goprep; fp9; p4; p7g ; fp3g ; fp8g oprepiEach set of predicators can be replaced by the naming reference (identi�cation)of its base. These naming references were discussed in example 2.6. For example,fp13; p10g has baseH. Entity typeH has naming reference hH-nr; S-name;C-namei,or hH;S;Ci for short. The resulting relation type then is:h hH;S;Ci ; hP i oprep; hS;Ci ; hCi ; hS;CioprepiThis relation type can be simpli�ed to a large extend. It is dominated by thetuple hH;S;Ci. Naming reference hS;Ci corresponding to node fp9; p4; p7g con-tains the same S and C values as naming reference hH;S;Ci. This hS;Ci there-fore can be omitted. For the same reason hCi is obsolete. Note that hS;Cicorresponding to node fp8g cannot be treated in the same way, as it is theresult of fact type f4 which is not part of the identi�cation of another base.Finally, leaving out the sharp brackets, we get:�H;S;C ; P op rep; [S;C]op rep�6.2 Size / depth preference without optionalsConsider the following setting of parameters:NoOptionals = TrueSizePreference = True = 2DepthPreference = True� = 2The result of the generation will be a forest where each tree contains at most 2fact types and has maximal depth 2, such that optional attribute types do notoccur. The tree representation in �gure 21 satis�es these conditions.It can be reached via the following scenario:1. Start with node fp4g and process fact type f2.2. Then join fp4g and fp9g and add an edge labelled by fact type f5.3. Proceed with fp14g. It becomes a new root because the tree does notcontain a node with base P yet. Add an edge from fp13g to fp14g labelledby f7.4. Finally, create a new root fp8g. For two reasons it is not possible to addp8 to fp4; p9g. 29



'&$%����C p3 '&$%����H p10'&$%����S@p4 � p9����� @@@@If2 f5 '&$%����Pp14'&$%����H p13 '&$%����Sp8'&$%����S p76 6f7 f4Figure 21: Example forestFirstly, parameter NoOptionals only allows the extension of node fp4; p9gwith predicators having a total role constraint. Secondly, the tree havingfp4; p9g as root already contains the maximal number of fact types.The resulting tree representation corresponds to the following relation types:h fp4; p9g ; fp3g ; fp10g repih fp14g ; fp13gih fp8g ; fp7g repiReplacing the sets of predicators by the naming references of their bases, weget:h hS;Ci ; hCi ; hH;S;Ci repih hP i ; hH;S;Ciih hS;Ci ; hS;Ci repiIn the �rst relation type the values of hCi also occur in hS;Ci, since f2 is partof the identi�cation of entity type S. Therefore, this hCi can be omitted.7 ConclusionsIn this paper we discussed the automatic generation of database structures fora given conceptual schema. A mechanism for the guidance of the generationprocess was introduced. 30



For the speci�cation of conceptual schemata a general object-role platformwas used. These schemata were hierarchically represented in trees consisting ofnodes of predicators, the central notion of the platform. Then, a simple gen-eration algorithm for these tree representations was introduced, leaving manyopportunities to inuence the nature of the result.In this way the correctness of the algorithm could be easily guaranteed.Furthermore, it was possible to specify guidance parameters, in order to yieldstructures having desirable properties, involving e.g. redundancy and table size.We did not consider more sophisticated search algorithms in this paper. Thisgeneration algorithm can be used as a base when searching an optimal represen-tation (subject to some cost function). Another problem that can be addressedis �nding suitable candidate keys for the generated internal representation. Ina complicated schema, that might be a problem. Finally, future research willconsist of: (1) the incorporation of object-orientation and complex objects interms of object-role models (see also [23] and [9]) and (2) the incorporation ofadditional background in database storage structures.AcknowledgementWe would like to thank the anonymous referees for their contributive remarks.References[1] S. Abiteboul, P.C. Fischer, and H.J. (Eds.) Schek. Nested Relations andComplex Objects in Databases. Springer Verlag, 1987.[2] A.D. Atri and D. Sacca. Equivalence and mapping of database schemes.In Proceedings of the Tenth International Conference on Very Large DataBases, pages 187{195, 1984.[3] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semanticsand veri�cation of object-role models. Information Systems, 16(5), October1991.[4] P. van Bommel and Th.P. van der Weide. Towards database optimizationby evolution. In Proceedings Computing Science in The Netherlands (CSN)1991, pages 109{123, November 1991.[5] P.P. Chen. The entity-relationship model: toward a uni�ed view of data.ACM Transactions on Database Systems, 1(1):9{36, 1976.[6] L.S. Colby. A recursive algebra for nested relations. Information Systems,15(5):567{582, 1990. 31
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