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Abstract

In this paper we focus on the transformation of a conceptual schema
into an internal schema. For a given conceptual schema, quite a number
of internal schemata can be derived. This number can be reduced by
imposing restrictions on internal schemata.

We present a transformation algorithm that can generate internal
schemata of several types (including the relational model and the NF?
model). Guidance parameters are used to impose further restrictions.

We harmonise the different types of schemata by extending the con-
ceptual language, such that both the conceptual and the internal models
can be represented within the same language.

Keywords: Conceptual schema, internal schema, schema transforma-
tion, relational data model, NF? data model.

1 Introduction

The importance of conceptual modelling has been generally recognised. The
advantage is that it gives the designer the opportunity to separate the concern
of constructing a correct model from that of finding an efficient implementation.
Once the conceptual model has been specified in a suitable language, an efficient
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realisation can be (automatically) derived, using a specification language that
is more machine oriented.

Several conceptual modelling techniques have an underlying object-role struc-
ture (e.g. ER [5] and NTAM [11], [15]). In these techniques a model consists of
fact types, defined in terms of object types and roles. Depending on the power
of the technique, fact types may be of any degree and can be treated as object
types (objectified fact types). Furthermore, a distinction can be made between
lexical and non-lexical object types and ISA (or subtype) relationships can be
defined.

For a given conceptual model the number of correct internal models may
be very large, depending on the complexity of the conceptual model and the
language used for the internal model. Some internal models will result in an effi-
cient system, others will not. The problem then is how to find a good candidate.
The question how such a good candidate can be found will not be addressed in
this paper. OQur aim is to describe a mechanism for the reduction of the search
space, setting a context for more sophisticated search algorithms. Furthermore,
this reduction provides a base for structural translations in automated proto-
typing (see e.g. [12]). As design tools are becoming more important, the need
for automatic translation becomes more pressing.

Various implementation oriented modelling techniques exist. A classical dis-
tinction can be made between relational, network and hierarchical models. Re-
cently a lot of research has been done on nested relational models, also called
non first normal form or NF? models (see [1], [6] and [19]). These models are in-
teresting for special database applications, involving e.g. textual data, computer
aided design or image processing.

Current approaches to the transformation of conceptual models into internal
models focus mainly on the relational model. The result of the transformation
is a relational schema in a certain normal form (see for instance [11], [13], [17],
[21], [22] and [24]). Other approaches can be found in [2], [10], [20] and [25].

In this paper we present a framework for the transformation of object-role
models. We describe a representation mechanism for internal structures, such
that the conventional internal models can be represented. The advantage of
this approach 1s, that we can describe conceptual-internal mappings within the
scope of a single specification language. For example, the mapping of an internal
structure into a Codasyl model can be done by a simple syntactic transforma-
tion. Furthermore, this approach gives the opportunity to describe intermediate
results easily.

Then, the attention will be focussed on the question how this transformation
process can be guided, in order to generate structures having certain predefined
characteristics, involving e.g. redundancy, optionals and size of the generated
structure.

The organisation of the paper is as follows. In section 2, we discuss a gen-
eral object-role platform, called the Predicator Model. The central notion of
this platform is the predicator, the combination of an object type and a role.



In section 3 we show how the NF? data structure can be recognised as a tree
consisting of nodes of predicators. In section 4 we show how alternative tree
representations can be generated for a given information structure, and how
guidance parameters can be used to reduce the set of generated representations.
In section b the generation algorithm is exemplified, starting from a very simple
object-role information structure and tracing the generation process. Examples
also show how populations (or instantiations) of the information structure corre-
spond to populations of the generated structures. In section 6 we shortly address
simplification during postprocessing.

With respect to the graphical representation of information structures, we
make use of the drawing conventions of NTAM. Our approach however, is appli-
cable in any model with an underlying object-role structure.

2 The Predicator Model

In the Predicator Model aschema X = (Z, C) consists of an information structure
T and a set of constraints C (see [3], [8] and [27]). The semantics of a schema is
expressed in terms of populations (instantiations) of the information structure.
Such a population should fit in the structure Z and satisfy the requirements
specified in C.

With respect to the separation of the information structure Z and the con-
straints C, note that constraints can also be seen as structural rules. However,
constraints are usually expressed in a language that is derived from the compo-
nents in Z (see for example [3]).

We will first introduce the information structure, and then define the con-
cept of population. Two special types of constraints, the uniqueness constraint
and the total role constraint, will be discussed and illustrated using example
populations.

2.1 The information structure

Definition 2.1

Information Structure
An information structure T = (P, O, F,Base,Sub, M), is a structure consisting
of the following basic components:

e P is a set of predicators. A predicator is intended to model a connection
between an object type and a role in a fact type. The associated object
type is found by the operator Base : P — O.

e (O 1is a set of object types.

e F is a partition of the set P of predicators. The elements of F are called
fact types. Fact types are regarded as objects types: F C O. They are also
referred to as composed object types.



The object types in A = O — F are called atomic object types. There are
two different sorts of atomic object types: entity types (£) and label types
(£). Note that in this model a composed object type can not correspond
to an entity type.

e Sub is a partial order for atomic object types, with the convention that
aSub b is interpreted as: @ is a subtype of b. Note that the name atomic
only refers to being undividable in the sense of not consisting of predicators
(as fact types are).

Fach element of A has associated a (unique) top element, its pater familias.
It is found by the function M : A — A (which is similar to the top operator
from lattice theory). This function satisfies:

1. aSubb = N(a) =N(b)
2. a# N(a) = aSubN(a)

We call predicators p and ¢ attached to each other (p ~ ¢), when M(Base(p)) =
M(Base(g)). The fact type that corresponds with a predicator is obtained by the
operator:

Fact: P — F

It is defined by: Fact(p) = f < p€e f.

A fact type is called objectified, if it occurs as the base of a predicator.
A predicator is called an objectification, if its base 1s a fact type. The set H
contains all objectifications:

H={peP |Base(p) e F }

Example 2.1 In figure 1 we see an example of a simple information structure.
In this structure we have:

P = {p,qr, s}
0 = {A’B’C’ f’ g}
F = {fq}

The fact types are defined as follows: f = {p,q}, g = {r,s}. With respect to the
predicators we have:

Base(p) = A Fact(p) = f
Base(q) = B Fact(¢) = f
Base(r) = B Fact(r) = ¢
Base(s) = C Fact(s) = ¢

The black dots and double-headed arrows represent so-called constraints. Before
these constraints are introduced, we first define the concept of population.



Figure 1: An example information structure

2.2 Population

For the population of an information structure we assume some universal domain

(see [14]).

Definition 2.2

Population

A population of an information structure Z = (P, O, F, Base, Sub, M) (also called
an instantiation or state) assigns to each object type in O a subset of the uni-
versal domain, conforming to the structure as prescribed in P and F | respecting
the subtype hierarchy Sub. In case of an atomic object type, this subset should
comprise only elementary values of the universal domain. The population of a
composed object type is a set of composed values (or tuples). A tuple ¢ of a fact
type f is a mapping of all its predicators to values of the appropriate type.

Example 2.2 {(p,a1),(q,b1)} is an example of a tuple of fact type f in figure 1.

When no confusion is likely to occur, a tuple will be denoted simply as a set of
values. In the example above this results in {ay, b1 }.

Example 2.3 In figure 2 we see an example population for the information
structure shown in figure 1.

f
A B g
ay bl B C
a2 by by C1
as by b3 C1
Qaq b3

Figure 2: Example population

The set of possible populations of an information structure defines the seman-
tics of that structure. Unwanted populations can be excluded from this set by
static constraints. Changes of population (state transitions) can be forbidden
by so-called dynamic constraints. In this paper we only use two types of static
constraints: the untqueness constraint and the fotal role constraint.



A uniqueness constraint expresses a functional dependency and is denoted
as a double-headed arrow. A total role constraint expresses a mandatory role
for a certain predicator: every instance of a certain object type (the base of the
predicator) must play that role at least once. The notation used for this type of
constraint is a black dot.

It is also possible to define uniqueness constraints over more than one fact
type, or total role constraints over more than one predicator (with the same
base). For a formal definition of syntax and semantics of these (and other)
constraints, we refer to [3] and [27].

Example 2.4 Consider the information structure in figure 1. We see ¢ unique-
ness constraint unique({p}). The population of fact type f given in figure 2 sat-
1sfies this constraint, since every instance of object type A occurs at most once
wm a tuple of f. This property does not hold for predicator q, as by occurs twice.

The constraint total({q}) is also satisfied, since every instance of object type
B occurs at least once in a tuple of fact type f. Note the absence of total({r}).

Example 2.5 In figure 3 we see objectified fact type f. This fact type s the
base of predicator r. Note that this structure has the same definition as the
structure in figure 1 (even the constraints are identical), except for the definition
of Base(r). In this situation the constraint unique(r) means that each instance
of f can be associated at most once with an instance of C.

Figure 3: A simple information structure with objectification

For more examples of objectification and the meaning of constraints over objec-

tification, see [3], [15] and [27].

2.3 Defoliation

In section 2.1 two kinds of atomic object types were distinguished: entity types
and label types. The difference i1s that labels can, in contrast with entities, be



reproduced on a communication medium. Therefore 1t should be possible to
uniquely identify an entity type via one or more label types. This unique iden-
tification is also called a naming reference. Usually, identification is guaranteed
using uniqueness and total role constraints.

A naming reference very often consists of one single label type, specified via
a so-called bridge type. A fact type f is called a bridge type, only if it has the
form f = {p, ¢} with Base(p) € £ and Base(q) € £.

In complex cases, identification is defined by more than one bridge type, or
by a combination of bridge types and fact types.

Figure 4: Schema with complex identification

Example 2.6 Consider the schema in figure 4. In this schema persons live in
a house (f7), houses are located in a street (fs), and streets cross other streets
(fa) and are located in a community (f2). By convention a label type is denoted
i parenthesis.

There are two stmple naming references: f1 and fs. The other naming ref-
erences are complex. A street can be identified by the unique combination of its
community (f2) and its name (f3). This combination is unique as a result of the
constraints unique {pa}, unique {ps} and unique {ps,ps}. A house can be iden-
tified by the unique combination of its street (fs) and its number (fs). These
naming references fulfil the requirements for structural identification (see [3]).

In internal models the distinction between label types and entity types is
not made. Therefore, an information structure must be defoliated before 1t 1s
transformed into an internal structure.

The term “defoliation” is based on the Object Relation Network view of an
information structure (see [3]). The effect of defoliation is the restriction of the



information structure to the fact types that are not bridge types:

Fa(Z)={f€F |Vpes [Base(p) ¢ L] }

Example 2.7 Consider the schema in figure 4 again. For this schema we have
Fa=A{f2 fa, [5, [7}. The defoliated information structure is presenied in Fig-
ure .

Figure 5: The defoliated information structure

The predicators in a defoliated information structure are specified by Py =

UFq.

3 Embedding internal structures

In this section data structures that are used in internal models are embedded
within the Predicator Model. We first introduce the nested relational model (also
called non first normal form or NF? ) as the underlying data structure. Infor-
mation structures from the examples in the previous section will be represented
in alternative NF? relation types.

Then, tree structures consisting of nodes of predicators are defined. These
trees represent information structures in a hierarchical way, such that NF? struc-
tures are easily recognised. They form the basis of the generation algorithm
described in section 4.

3.1 The underlying data structure

An NF? model consists of relation types, where a relation type consists of atomic
attribute types and other relation types, called relation-valued attribute types
(see [6] and [19]). NF? relation types may be in one of the classical relational
normal forms (see e.g. [26]), but they do not necessarily have to. In this way the
relational theory can be exploited in a wider area.
Recent research involves the definition of a recursive relational algebra (see [6], [18]

and [19]) and the introduction of nested normal forms (see e.g. [7] and [16]).
Furthermore, the relationship with other modelling approaches is investigated.



Several representations have been introduced for NF? relation types, for in-
stance a linear form, a tree representation and a tabular representation (see [19]).
In this section we give some examples of the linear form and the tabular repre-
sentation. In section 3.2 we give a formal definition of tree structures, consisting
of nodes of predicators.

In the linear form, a relation type can be denoted as a regular expression, in
the so-called nested bracket notation. Then it is an enumeration of the attribute
types it contains, separated by brackets.

Example 3.1 We may for instance have the following relation type:
[A, [B, C]rep]

This relation type consists of two attribute types, an atomic atiribute type A
and a relation-valued atiribule type [B,Clrep. The relation-valued atiribule type
consists of two atomic attribute types B and C'.

In this structure an A value can be related to one or more B, C' combinations.
The keyword rep expresses repeating.

If each A value occurs only once, denoted as A, the relation type is said to
be in partitioned normal form (PNF). With this basic normal form it can be
guaranteed that nest is always the inverse operator for unnest, an important
property for e.g. query optimization. For more details see [18]).

In this paper we restrict ourselves to relation types in PNF. As a further
refinement, we use the keyword op to denote an optional attribute type.

Example 3.2
The schema in figure 1 can be represented by the following alternative relation
types:

1. [Z,B,C’op]
2. [F,Arep,C’op]
3. [6,[§,Arep] rep]

FEach relation type corresponds to a hierarchical view of the information struc-
ture, with either A, B or C as root. The root of a (sub)tree is a key of the
corresponding relation type. The formal definition of this hierarchical view 1is
given in section 3.2.

Consider the first alternative. We will show how this alternative is obtained by
taking object type A as root. Direct translation of the structure in figure 1 into
a regular expression results in [Z, [F, [6] op”. As a notational simplifica-
tion, unary groups are usually denoted without surrounding brackets. Struc-
tural simplifications are also possible. For example, [Z, [F , C’]] is equivalent
to [Z , B, C’], as the subgroup [F , C’] is neither optional nor repeating.



Note the effect of the constraints, specified in figure 1, on the candidate
relation types. For instance, the absence of constraint total(r) caused an optional
attribute type C'op in the first and second alternative. The absence of constraint
unique(q) caused a repeating (relation-valued) attribute type Arep in the second
and third alternative.

The second alternative mentioned above is illustrated at the instance level
in figure 6.

|§|Arep|C’op|

bl ay 9
a2

by | asz C1

by | a4 C1

Figure 6: Example population in second alternative

The population in figure 6 corresponds to the example population of the
original information structure (see figure 2). Note that we have used ¢ to denote
the empty value.

Example 3.3
The schema in figure 3 can be represented by the following relation types:

1. [Z,B,C’op]
2. [F, [Z,C’op] rep]

For very simple information structures it is sufficient to use object types
for the denotation of the resulting NF? attribute types. However, to be able
to represent information structures of arbitrary complexity, a predicator based
approach should be used. Instead of using the associated object types, attribute
types then are denoted as sets of predicators.

Example 3.4
For the alternatives given in example 3.2 this leads to:

L [TF g v} {5} op)
2. [W,{p} rep, {s} OP]
3. [@ [W,{p} rep] rep]

10



3.2 Tree representations

In this section we extend the Predicator Model by a representation mechanism
corresponding to an internal structure, in the form of a hierarchical relation type,
as we encountered in the previous section. The hierarchical nature is represented
in a tree, where each node is a set of predicators.

Definition 3.1

Tree Representation
A forest (set of trees) 7 = (N, E, £) is a complete iree representation of informa-
tion structure 7 = (P, O, F, Base, Sub, M), iff it satisfies the following conditions:

t1 : A node is a set of predicators. The set of nodes A forms a partition of P4(Z)
(see section 2.3). All predicators in a node are mutually attached to each
other. As a result, all object types that are involved in a node belong to
the same subtype hierarchy. The associated pater familias is denoted as
the base of the node: Base(n) for node n.

ts : No two predicators of the same fact type may participate in the same node:
Voo ser (0 fl < 1)

t3 : Objectifications (elements of H) are treated separately:

VN InOH| <]

t4: Fis aset of edges. The pair {m, n) represents an edge from node m to node
n. Edges are labelled by fact types in the obvious way, with some care to
handle objectification. The function £ : E' — F assigns £({m,n)) = f, iff:

IL.ennNf#0
2. mNf=0= Base(m)=f

t5 : Fact types are located around a single father:
L({my,n1)) = £({ma,n2)) = n1 = no

ts : In order to guarantee that the complete information structure is repre-
sented, each predicator must be involved in some edge:

Vpepdﬂmyn)eE [p€muUn]

We call a tree representation incomplete if it does not necessarily fulfil the last
requirement.

11



Example 3.5
The tree in figure 7 1s a possible tree representation for the information structure

of figure 1, according to:

N = {ni,n2,n3} with:
ny = {q,7},n2 = {p} and nz ={s}
E = e, ea} with:
€1 = {na,n1) and e3 = (nz, n1)
ley) = f
le) = ¢

This tree representation corresponds to relation type | {q,v},{p} rep,{s} op|,

which is the second alternative of example 3.4.

n2

Figure 7: Simple tree

Example 3.6
The tree in figure 8 is a possible tree representation for the information structure

of figure 3, according to:
N = {ni,n2,n3, na} with:
n = {q},n2 = {p},nz = {r} and
ny = {s}
E = {ey,eq,e3} with:
€1 = {na,n1),e2 = {ng,ny) and

€3 = (n4, n3)

=
—~
(5}
[5V)
~—

f
f
g

12



This tree representation corresponds to relation type [@, [m s} op] rep],

which is the second alternative of example 3.3.

n2

Figure 8: Example tree with objectification

Note the duality of both partitions F and A of the predicators. The first is
based on equality of fact type, the second is related to attachedness. The unique
node in which a predicator is contained can be found by the function:

Node : Py — N

It is defined by: Node(p) = n < p € n, analogous with the function Fact (see
section 2).

A node m, being the source of an edge, is anchored to this edge by a unique
predicator p € m:

Lemma 3.1 Let e = {(m,n) be an edge and let {(e) = f. If node m has an
atomic base, it has the following property:

m g =1

Proof: Let (m,n) € F with Base(m) € A and £({m,n)) = f. From condition
t4 we conclude that m N f # (. Now the result can be obtained from
condition 5.

13
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For node m this unique predicator is denoted as Anchor(m). During the con-
struction of tree representations this anchor will play an important role in the
guidance of the generation process.

The application of lemma 3.1 in the example tree representations is trivial:

Example 3.7
In the tree shown in figure 7 we have Anchor(ny) = p and Anchor(ns) = s. For
ny ot 1s not defined, since ny is not the source of any edge.

Example 3.8
In the tree shown in figure 8 we have Anchor(ny) = p and Anchor(ny) = s. For
the root ny and the objectification ns it is not defined.

For the nodes, being the destination of some edge, an analogous property

holds:
Lemma 3.2 Fdge e = (m,n) with {(e) = [ has the following property:
mnfl=1

Proof: Let (m,n) € E with {({m,n)) = f. From condition t4 we conclude that
n N f # 0. Now the result can be obtained from condition ¢s.

R C N is the set of nodes being the root of some tree:
R:{l‘EN |V<myn)eE[l‘;ﬁm] }

A basic property of a forest 7 of information structure 7 involves the number
of nodes in 7. It can be expressed in terms of the number of predicators, fact
types and objectifications in Z and the number of trees in 7:

Lemma 3.3 [N| = |P4| — |Fa| + [H|+ [R]

Proof: Suppose e1,... e; are all edges labelled with the same fact type f.
Then all these edges have the same destination node (condition ¢3). This
destination node contains precisely one predicator of f (see lemma 3.2).
From lemma 3.1 we conclude that the sources of the edges either contain
precisely one predicator of f, or correspond to an objectification of f.

We denote the number of objectifications of f as [|f]|. We then have:

number of edges labelled with f
= =1+

14



Summation of all fact types yields:

|E| = Z number of edges labelled with f
reFaq

> UfA=1+ 1D

reFaq

= |Pal = |Fal + [H|

The number of nodes equals the number of edges plus the number of trees.
As a result:

W= EI+ R[] =[Pal = |Fal + [H] + [R]

4 Generation of tree representations

4.1 The generation process

The intention of the generation process that we describe is to generate all tree
representations for a given information structure Z. However, in order to avoid
the overhead of the backtrack mechanism, we let the algorithm search for a
random tree structure.

The construction first sets up an initial incomplete tree representation. This
incomplete representation is transformed step by step until it is complete. In
each step a fact type will be incorporated in the tree representation. As a con-
sequence, the number of steps equals the number of fact types in the defoliated
information structure.

Initially each predicator constitutes its own isolated node, not linked to any
other node. This initialisation establishes the following precondition:

Lemma 4.1 Precondition

# 7 is an information structure #

N={ ) lpePa(®) };
E = §;

L= 0

T = (N, E, &);

# Forest(7,7) #

Proof: Let Z be an information structure. After the initialisation, (N, F, £)
satisfies the conditions 1, {9 and t3, because each node contains exactly

15



one predicator. The conditions ¢4 and 5 are void, because there are no
edges. From this we conclude that 7 is an incomplete tree representation
of 7, denoted as Forest(7,7).

In each step of the algorithm a fact type should be selected to be incorpo-
rated in the tree representation. This is done by selecting a predicator of a yet
unprocessed fact type. This predicator then will act as a handle for the extension
of the tree representation.

We use the set U to record the unprocessed isolated nodes. The procedure
CanExtend selects an unprocessed node m € U, in combination with another
node n € . The actual extension is performed by the procedure ProcessFact-
Type. The algorithm:

proc GenerateForest (7 : Information Structure):Forest;

N::{ {p} |p € PalD) };

E =10
(=0
U= N;

while CanExtend (m, n) do
ProcessFactType (m,n)

od ;

T :=(N,E, 1)

endproc GenerateForest

The extension of a tree representation either enlarges an already existing
tree, or adds a new tree to the forest. If the unprocessed node m € U 1s chosen
in combination with a processed node n € N'— U, an existing tree is extended.
A choice for n = m leads to the creation of a new tree. Other combinations of m
and n are not allowed, because they do not result in a correct tree representation.
The procedure CanExtend will check this. Furthermore it will guarantee that all
object types within the same node belong to the same subtype hierarchy:

M(Base(m)) = Base(n)

It may be desirable to further restrict the possibilities for extension, e.g. when
the result of the generation must fulfil certain design criteria. This further re-
striction is discussed in the next section.

For the extension of an existing tree and for the creation of a new tree one
single strategy can be used. This strategy consists of the processing of the fact
type, which is implicitly specified via the unprocessed unary node m.

The extension starts with the union of the selected nodes m and n. Then the
entire fact type f, specified via m, is processed by the addition of edges with
label f:

16



proc ProcessFactType (m,n : Node);
Let m = {p};
if m #n then N := N — {m};
n =m U n;
for = € Fact(p) — m do
E:=FEuU {<|\|Ode(aﬁ),n>}7
¢({(Node(z),n)) := Fact(p)
od ;
U :=U - Fact(p);
if El{m}el/{ [Base(x) = Fact(p)] then ProcessObjectifications(Fact(p), n);
endproc ProcessFactType

Finally, we have to handle the objectifications of the fact type f under con-
sideration. For each fact type ¢, which contains an objectification of f, we have
to choose a predicator for unnesting. This unnesting is performed by the ad-
dition of edges with label f. The fact type g then is processed by recursively
calling procedure ProcessFactType:

proc ProcessObjectifications (f : FactType; n : Node);
for m € U with Base(m) = f do
E:=FE U {{m,n)};
(mym)) = 5
ProcessFactType(m,m)
od

endproc ProcessObjectifications

Next we show that the loop in procedure GenerateForest is governed by the
following invariant:

Lemma 4.2 Invariant

# Forest(7,7) and CanExtend(m,n) #
ProcessFactType(m,n)

# Forest(7,7) #

Proof: Suppose Forest(7,7) and CanExtend(m,n). Let f be the fact type im-
plicitly specified by m. After the execution of ProcessFactType, condition
t; is satisfied as a result of the checks in CanExtend(m, n).

Each predicator in f —m is the source of a new edge with destination
n and label f. From this we conclude that the conditions ¢5 and ¢5 are
satisfied.

17



Furthermore, the recursive call in the processing of objectifications guar-
antees the conditions ¢3 and #4. As a consequence, the resulting forest 7
1s an incomplete tree representation of 7.

The previous lemmas guarantee the correctness of the entire generation:

Lemma 4.3 Postcondition

# 7 is an information structure #
7T := GenerateForest(7T)

#U =0 = CompleteForest(7,T) #

Proof: Let 7 be an information structure. The result of the initialisation is
an incomplete tree representation (see lemma 4.1). In each iteration the
procedure ProcessFactType yields an incomplete tree representation (see
lemma 4.2). If GenerateForest terminates with &/ = () each predicator has
been classified, and thus 7 is a complete tree representation according to
condition tg.

O

4.2 Further restriction

The generation process described in the previous section results in a correct
tree representation, according to the definition in section 3.2. However, in many
cases the property of correctness is not strong enough, e.g. when the search
space 1n schema transformation is to be reduced. Then, database structures to
be generated must be characterised in advance, in order to exclude candidates
with undesirable properties from the generation process.

This characterisation can be embedded within the generation framework as
follows. In each iteration the procedure CanExtend selects two nodes m and n
as a base for further processing. This selection leaves us many opportunities to
influence the nature of the resulting tree representation, simply by restricting the
number of possible combinations of m and n. We will discuss some restrictions
in this section. In section 5 and 6 the algorithm is illustrated in several detailed
examples.

Let m = {p} € U be an unprocessed isolated node and let n be either a
processed node (n € N —U) or a new root (n = m), such that their bases
belong to the same subtype hierarchy. This forms the starting-point for further
restriction (see figure 9).
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proc CanExtend (var m,n : Node) : Boolean;
take random m = {p} € U, n € (N —=U) U {m} with M(Base(m)) = Base(n)
such that: n € R V total(Anchor(n))
and if NoNesting then unique(p)
and if NoRedundancy then n € R V unique(Anchor(n))
and if NoOptionals then
ifneR
then Veemun [total(z)] V Veemun [ total(z)]
else total(p)
and if SizePreference then |Facts(n)| < ~
and if DepthPreference then Depth(n) < §
endproc CanExtend

Figure 9: Guidance conditions for the extension of the tree representation

First we deal with lossless tree representations. To prevent loss of information
in the result, the anchor of node n should have a total role constraint:

n € R V total(Anchor(n))

Absence of this constraint allows Fact(p) to have instances that cannot be related
to instances of Fact(Anchor(n)) higher up in the tree. These instances of Fact(p)
can not be reached via node n, which results in loss of information.

Next we deal with several other structural properties, such as absence of
nesting, redundancy or optionals, and preferences with respect to the size or
depth of the tree. A certain combination of these properties can be specified via
the guidance parameters NoNesting, NoRedundancy, etcetera (see figure 9).

The meaning of these parameters is expressed in so-called guidance condi-
tions. For example, for the construction of flat relational structures (parameter
NoNesting), a uniqueness constraint unique(p) is required. Freedom from redun-
dancy (parameter NoRedundancy) is obtained when Anchor(n) has a uniqueness
constraint, provided n is not a root:

n € R V unique(Anchor(n))

A structure will be free from optionals (parameter NoOptionals) when the equal-
ity of Pop(m) and Pop(n) can be guaranteed. This is expressed in terms of total
role constraints. Furthermore, a maximal number (7) of fact types per tree can
be specified (parameter SizePreference) and a maximal depth é of the tree can be
specified (parameter DepthPreference). In the following sections these conditions
will be illustrated in examples.
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5 An elaborated example

In this section the behaviour of the generation algorithm is illustrated. This is
done by showing how an example information structure is transformed into tree
structures, and how different settings of the guidance parameters influence the
result.

Consider the information structure shown in figure 10. We assume that this
structure has already been defoliated. The population in figure 11 will be used
to illustrate the characteristics of some generated trees at the level of instances.

f
g h
;4 ey 1B c
al bl by C1 by C1
: bl by C1 by C1
45 ° b3 C2 by C2
aq b3

Figure 11: Example population

The selection of a parameter setting will on the one hand be determined by
quantitative aspects of the conceptual schema under consideration. On the other
hand it will be determined by aspects of the target environment. For example, if
the application is to be stored on CD-ROM, the parameter NoRedundancy can
be switched off. In a relational target environment, the parameter NoNesting
obviously should be set to true. For more details, see [4].

5.1 Size preference without redundancy

Suppose we aim at a tree structure where the maximal number of fact types per
tree 18 2 and redundancy can not occur. This can be obtained by the following
setting of parameters:
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NoRedundancy = True
SizePreference = True
v =2

In the structure in figure 10 we have P4(Z) = {p,q,r, s,t, u} and therefore both
N and U initially consist of 6 nodes, each containing one predicator. There are
no edges yet: £ = 0 and £ = 0.

We will show how the generation proceeds step by step, in each step choosing
two nodes m and n that fulfil the guidance criteria, followed by the processing
of the fact type implicitly specified by m. During this processing the set of
unprocessed nodes ¢ will be reduced. Furthermore, nodes in A" will be joined
and edges between these nodes will be constructed.

1. Let the first selection of nodes consist of m = {r} and n = {r}. Note that
the choice m = n will lead to the creation of a new root (see section 4.1).
This choice passes all checks in CanExtend. Procedure ProcessFactType
reacts as follows: an edge labelled with ¢ from {s} to {r} is created, and
{s} and {r} are removed from #/. N does not change, because no nodes
have to be joined. The resulting situation is shown in figure 12.

Figure 12: Situation after one step

2. Now U contains the unprocessed isolated nodes {p},{q},{t} and {u}.
Since the maximal grouping rate ¥ = 2 has not yet been reached, the next
step may either extend the tree in figure 12 or create a new root. Suppose
the existing tree 1s extended. There are three possibilities to do this:

(a) Choose m = {u} and n = {s}, and process fact type A.
(b) Choose m = {t} and n = {r}, and process fact type h.
(¢) Choose m = {¢q} and n = {r}, and process fact type f.

Consider the first alternative. It attempts to join the nodes {u} and {s},
and to add an edge from node {t} to node {u, s}. However, Anchor({u, s}) =
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s and predicator s is not unique. Therefore, the guidance condition of pa-
rameter NoRedundancy is not fulfilled and as a consequence, this possibility
is rejected. In section 5.2 the meaning of this guidance condition will be
illustrated at the instance level.

Next we consider the second alternative. ProcessFactType reacts as fol-
lows: after joining {¢} and {r}, an edge labelled with h from {u} to {r,¢}
is added. Furthermore, the nodes {u} and {t} are deleted from #. The
resulting tree is shown in figure 13.

Figure 13: Situation after two steps

In case the third alternative is selected, the result is an edge labelled f
from {p} to {q,r}. We do not consider this alternative and proceed with
the tree shown in figure 13.

. At this moment U contains two unprocessed nodes {p} and {q}. This
leaves three possibilities for the processing of fact type f in the last step:

(a) Join {q} and {r,t}.
(b) Create a new root {¢}.
(¢) Create a new root {p}.

Consider the first alternative. Observing the guidance parameters (espe-
cially ¥ = 2), we see that this alternative is rejected, as it would result in
a tree containing three fact types.

Next we consider the second alternative. In this alternative ¢ is chosen to
become the root of a new tree. In the reaction of ProcessFactType, A" does
not change, ¢ is made empty and an edge from node {p} to node {q} is
added. The label of this new edge is f. This alternative leads to the final
situation shown in figure 14.

If the third alternative is chosen the new root is {p}. Then an edge from
{q} to {p} is added.
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Figure 14: Final situation

The forest in figure 14 corresponds to the following relation types:
o [T17 (s} {u} op rep]
o [Ta} v} res]

There are two relation-valued attribute types {u} and {p}. {u} is an optional
relation-valued attribute type for instances of C. It is the result of — unique(?)
and —total(?) (see figure 10).

The example population from figure 11 is represented in the generated struc-
ture in figure 15.

| {rt} {s} {u}oprep || {a} {p}rep |

by C1 C1 by a

C2 a2
by C1 C1 by as
b3 Cy 9 b3 aq

Figure 15: Example population in generated structure

We have used parameter NoRedundancy for the generated structure. Note
that this structure is indeed free from redundancy, as every fact instance is
mentioned only once. Note furthermore that empty values (denoted by ) are
allowed for attribute type {u}.

The scenario discussed in this section shows the strong influence of the first
step of the generation on the final result. The choice for node {r} in the first step
(in combination with parameter NoRedundancy) fully determined the height of
the tree(s) in the resulting structure.
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5.2 Maximal grouping without optionals

In case a maximal grouping of fact types is preferred, such that optional at-
tribute types cannot occur, the parameters should be set as follows:

NoOptionals = True
SizePreference = True
v=1|Fal=3

The ultimate result of maximal grouping is a forest consisting of a single tree.

However, since 7 expresses the mazimal number of fact types per tree, the setting

vy = |Faq| will also allow representations consisting of more than one tree.
Initially both ¢ and N consist of 6 nodes, each containing one predicator.

Furthermore & = () and ¢ = .

1. Suppose the first step chooses m = {¢q} and n = {¢}. This choice passes
all checks in CanExtend. Then ProcessFactType reacts as follows: an edge
labelled with f is constructed from {p} to {¢q}, and both processed nodes
are removed from /. N does not change. The resulting situation is shown
in figure 16.

Figure 16: Situation after one step

2. Now U consists of the nodes {r},{s}, {t} and {u}. There are six possibil-
ities for the next step:
(a) Choose m = {t} and n = {¢}, and process fact type h.
(b) Choose m = {r} and n = {q}, and process fact type g.
(¢) Create a new root for either {r}, {s},{t} or {u}.
Consider the first alternative. It attempts to join node {¢} and node {¢},

adding an edge from node {u} to node {q,¢}. However, the root {q,t}
causes an optional attribute type {u}, since predicator ¢ is total and ¢

24



is not. Therefore the guidance condition of parameter NoOptionals is not
fulfilled and CanExtend rejects this possibility.

Next we consider the second alternative. It selects unprocessed node {r}
in combination with processed node {¢}. Procedure ProcessFactType will
react as follows: after joining {r} and {q}, an edge labelled with g from
{s} to {q,r} is added. Furthermore, the nodes {r} and {s} are deleted
from U. The situation is shown in figure 17.

Figure 17: Situation after two steps

In the third alternative a new root is created. This possibility will not be
worked out further.

3. At this momentf contains the unprocessed nodes {¢} and {u}. This leaves
four possibilities for the processing of fact type h in the last step:
(a) Choose m = {t} and n = {¢,r}.
(b) Choose m = {u} and n = {s}.
(¢) Create a new root for either {t} or {u}.
Consider the first alternative. It attempts to join {t} and {q,r}. As a

result of parameter NoOptionals this alternative will be rejected (see also
the previous step).

Consider the second alternative. It selects {u} and {s} to be joined. In the
reaction of ProcessFactType the set A is adapted by joining {u} and {s},
and U is made empty. Furthermore an edge labelled with A from node {t}
to node {u, s} is added. This leads to the final situation shown in figure 18.

The tree in figure 18 corresponds to the following relation type:

{a,7} {p} rep, {s,u}, {t} rep
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Figure 18: Final situation

There are two relation-valued attribute types {p} and {t}, for instances of A and
B respectively. The nesting of these attribute types is the result of = unique(q)
and — unique(u) (see figure 10).

The population from figure 11 is represented in the generated relation type
in figure 19. Note that this structure does not have optional attribute types, as
was specified by the guidance parameters.

[{o.r} {pirep {su} {t}rep |

by a C1 by
a2 by

by as C1 by
ba

b3 aq C2 by

Figure 19: Example population in generated structure

The tree representation shown in figure 18 is essential for the meaning of
figure 19. There are three tuples, the first one of which is read as follows: by s
related to a1 and as (via f) and to e1 (via g). ¢y is related to by and ba (via h).
An incorrect interpretation could be: ay is related to by, and as s related to bs.
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We see that the generated structure allows for redundancy: the instances
{c1,b1} and {e1,ba} of fact type h are mentioned twice. A closer inspection of
the original schema in figure 10 and the tree representation in figure 18 leads
to the cause of this redundancy. In the tree structure we see that an instance of
fact type h containing object z of type C' is mentioned as often as x is involved
in g. Since predicator s i1s not unique, some instances of A may be mentioned
more than once.

5.8 Loss of information

At the end of the previous section we considered the cause of redundancy. In
this section we will show that the point that was made there is closely related
to the question of loss of information.

Consider the schema in figure 10 and the tree representation in figure 18
again. Assume the absence of constraint total(s). This assumption does not
affect the relation type expressed by the tree in figure 18:

{a.7} Ap}rep, {s,u}, {t}rep

Let ¢3 be an object of type C' which is not involved in fact type g¢. If ¢3 is
involved in an instance of fact type h, a problem arises: this instance of h
cannot be represented in a tree structure according to figure 18. This problem
does not occur if the anchor of non-root and non-leave nodes is required to be
total (see section 4.2).

6 Complex identification

Very often the identification of an entity type can be done by a single label type.
However, it may be necessary to use a combination of label types as identifier.
In this section we discuss the effect of such complex naming references on the
resulting relation types. We take the schema from example 2.6 as input for the
generation process.

6.1 Maximal grouping

Maximal grouping is obtained by the following setting of parameters:

SizePreference = True
v = |F4l

Consider the tree representation in figure 20. It is easily checked that this
tree represents the defoliated information structure correctly and that no guiding
conditions are violated.

The corresponding relation type will contain two optional relation-valued
attribute types {p14} and {ps}, since predicators p15 and p7 are neither total
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Figure 20: Example tree

nor unique (see example 2.6). Furthermore, redundancy is allowed for fact types
J2 and f4. This redundancy is caused as follows: the anchor of node {pa, pz,ps}
is predicator pg, which is not unique.

Usually different scenarios can result in the same tree representation. The
tree in figure 20 may be the result of a generation starting with predicator pis:

Start with node {p13} and process fact type f7. Then join {pio} and
{p13} and add an edge labelled by fact type f5. Proceed with {p4}

and {p7}.

Another scenario that generates this tree starts with predicator pig:

Start with node {p1o} and process fact type f5. Then join {p7} and
{ps} and add an edge labelled by fact type fi. Proceed with {p4}
and {p13}.

Both scenarios mentioned above contain a permutation of the predicators pis,
p1o, p4 and p7. Not every possible sequence of these predicators will result in
the same tree. Firstly, it depends on the choice for a node to be extended.
Furthermore, only if both p; and p7 are chosen after pig, the result will be the
same.
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The tree structure shown in figure 20 corresponds to the following hierarchi-
cal relation type:

{p13, P10}, {p1a}oprep, {po, pa, p7},{ps}, {ps} oprep

Fach set of predicators can be replaced by the naming reference (identification)
of its base. These naming references were discussed in example 2.6. For example,
{p13, P10} has base H. Entity type H has naming reference (H-nr, S-name, C-name},
or (H,S,C) for short. The resulting relation type then is:

(H,S,CY ,{P) oprep, (S,C) ,{C), (S, C)oprep

This relation type can be simplified to a large extend. It is dominated by the

tuple (I, S, C). Naming reference (S, C') corresponding to node {pg, ps, p7} con-

tains the same S and C' values as naming reference (H, S, C). This (S, C) there-

fore can be omitted. For the same reason (C) is obsolete. Note that (S,

corresponding to node {pg} cannot be treated in the same way, as it is the

result of fact type f4 which is not part of the identification of another base.
Finally, leaving out the sharp brackets, we get:

[H, S,C", Poprep,[S,Clop rep]

6.2 Size / depth preference without optionals
Consider the following setting of parameters:

NoOptionals = True
SizePreference = True

v =2
DepthPreference = True
§=2

The result of the generation will be a forest where each tree contains at most 2
fact types and has maximal depth 2, such that optional attribute types do not
occur. The tree representation in figure 21 satisfies these conditions.

It can be reached via the following scenario:

1. Start with node {ps} and process fact type fs.
2. Then join {ps} and {py} and add an edge labelled by fact type fs.

3. Proceed with {p14}. Tt becomes a new root because the tree does not
contain a node with base P yet. Add an edge from {p13} to {p14} labelled

by f7.

4. Finally, create a new root {ps}. For two reasons it is not possible to add
ps to {pa,po}.
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Figure 21: Example forest

Firstly, parameter NoOptionals only allows the extension of node {p4, po}
with predicators having a total role constraint. Secondly, the tree having
{pa, ps} as root already contains the maximal number of fact types.

The resulting tree representation corresponds to the following relation types:

[ Toapo}  {ps} . {pao} rep)]
[ Tora] s}
[@,{m} rep]

Replacing the sets of predicators by the naming references of their bases, we
get:

S.CY,(C), (H,5,C) rep]

(S,C) (S, C) rep]

In the first relation type the values of (C) also occur in (S, C), since f; is part
of the identification of entity type S. Therefore, this (C') can be omitted.

7 Conclusions
In this paper we discussed the automatic generation of database structures for

a given conceptual schema. A mechanism for the guidance of the generation
process was introduced.
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For the specification of conceptual schemata a general object-role platform
was used. These schemata were hierarchically represented in trees consisting of
nodes of predicators, the central notion of the platform. Then, a simple gen-
eration algorithm for these tree representations was introduced, leaving many
opportunities to influence the nature of the result.

In this way the correctness of the algorithm could be easily guaranteed.
Furthermore, it was possible to specify guidance parameters, in order to yield
structures having desirable properties, involving e.g. redundancy and table size.

We did not consider more sophisticated search algorithms in this paper. This
generation algorithm can be used as a base when searching an optimal represen-
tation (subject to some cost function). Another problem that can be addressed
is finding suitable candidate keys for the generated internal representation. In
a complicated schema, that might be a problem. Finally, future research will
consist of: (1) the incorporation of object-orientation and complex objects in
terms of object-role models (see also [23] and [9]) and (2) the incorporation of
additional background in database storage structures.
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