
Potential-based Algorithmsin On-line Predition and Game Theory �Niol�o Cesa-Bianhi (esa-bianhi�dti.unimi.it)Department of Information Tehnologies,University of MilanVia Bramante 65,26013 Crema, ItalyG�abor Lugosi (lugosi�upf.es)Department of Eonomis,Pompeu Fabra UniversityRamon Trias Fargas 25-27,08005 Barelona, SpainAugust 2, 2002Abstrat. In this paper we show that several known algorithms for sequentialpredition problems (inluding Weighted Majority and the quasi-additive family ofGrove, Littlestone, and Shuurmans), for playing iterated games (inluding Freundand Shapire's Hedge and MW, as well as the �-strategies of Hart and Mas-Colell),and for boosting (inluding AdaBoost) are speial ases of a general deision strat-egy based on the notion of potential. By analyzing this strategy we derive knownperformane bounds, as well as new bounds, as simple orollaries of a single generaltheorem. Besides o�ering a new and uni�ed view on a large family of algorithms,we establish a onnetion between potential-based analysis in learning and theirounterparts independently developed in game theory. By exploiting this onnetion,we show that ertain learning problems are instanes of more general game-theoretiproblems. In partiular, we desribe a notion of generalized regret and show itsappliations in learning theory.Keywords: universal predition, on-line learning, Blakwell's strategy, Pereptronalgorithm, weighted average preditors, internal regret, boosting1. IntrodutionWe begin by desribing an abstrat sequential deision problem and ageneral strategy to solve it. As we will see in detail in the subsequentsetions, several previously known algorithms for more spei� deisionproblems turn out to be speial ases of this strategy.The problem is parametrized by a deision spae X , by an outomespae Y, and by a onvex and twie di�erentiable potential funtion � :� An extended abstrat appeared in the Proeedings of the 14th Annual Con-ferene on Computational Learning Theory and the 5th European Conferene onComputational Learning Theory, Springer, 2001. 2002 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 Cesa-Bianhi and LugosiIRN ! IR+. At eah step t = 1; 2; : : :, the urrent state is representedby a point Rt�1 2 IRN , where R0 = 0. The deision maker observes avetor-valued drift funtion rt : X � Y ! IRN and selets an elementbyt from the deision spae X . In return, an outome yt 2 Y is reeived,and the new state of the problem is the \drifted point" Rt = Rt�1 +rt(byt; yt). The goal of the deision maker is to minimize the potential�(Rt) for a given t (whih might be known or unknown to the deisionmaker).One of the main goals of this paper is to point out that manyseemingly unrelated problems �t in the framework of the abstratsequential deision problem desribed above, and that their analysismay be summarized in some general simple theorems. These problemsinlude on-line predition problems in the \experts" model, pereptron-like lassi�ation algorithms, methods of learning in repeated gameplaying, et. We usually think of rt as the vetor of \regrets" the dei-sion maker su�ers at time t and Rt is the orresponding \umulativeregret" vetor. The deision maker's goal is to keep, in some sense,the umulative regret vetor lose to the origin. In the appliationsdesribed below, the deision maker is free to hoose the potentialfuntion �. To �ll the abstrat problem desribed above with meaning,next we desribe a propotype example whih is detailed in Setion 3.Example. Consider an on-line predition problem in the experts'framework of Cesa-Bianhi et al. (1997). Here, the deision maker isa preditor whose goal is to foreast a hidden sequene y1; y2; : : : ofelements in the outome spae Y. At eah time t, the preditor om-putes its guess byt 2 X for the next outome yt. This guess is basedon the advie f1;t; : : : ; fN;t 2 X of N referene preditors, or expertsfrom a �xed pool. The guesses of the preditor and the experts arethen individually sored using a loss funtion ` : X � Y ! IR. Thepreditor's goal is to keep as small as possible the umulative regretwith respet to eah expert. This quantity is de�ned, for expert i, bythe sum tXs=1 (`(bys; ys)� `(fi;s; ys)) :This an be easily modeled within our abstrat deision problem byassoiating a oordinate to eah expert and by de�ning the omponentsri;t of the drift funtion rt by ri;t(byt; yt) = `(byt; yt) � `(fi;t; yt) for i =1; : : : ; N .The role of the potential funtion � in the predition-with-expertsframework is to provide a generalized way to measure the size (or
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Potential-based Algorithms 3distane from the origin) of the regret Rt. This distane informationan then be used by the preditor to ontrol the regret. Below, weintrodue a lass of preditors that use the potential information tokeep the drift rt in the same halfspae where the negative gradient of�(Rt) resides. To guarantee the existene of suh preditors we needto onstrain our abstrat deision problem by making two assump-tions whih will be naturally satis�ed by all of our appliations. Thenotation u � v stands for the inner produt of two vetors de�ned byu � v = u1v1 + : : : + uNvN .1. Generalized Blakwell's ondition. At eah time t, a deisionbyt 2 X exists suh thatsupyt2Yr�(Rt�1) � rt(byt; yt) � 0 ; (1)2. Additive potential. The potential � an be written as �(u) =PNi=1 �(ui) for all u = (u1; : : : ; uN ) 2 IRN , where � : IR ! IR+ isa nonnegative funtion of one variable. Typially, � will be mono-tonially inreasing and onvex on IR.Remark. Strategies satisfying ondition (1) tend to keep the pointRt as lose as possible to the minimum of the potential by foringthe drift vetor to point away from the gradient of the urrent poten-tial. This gradient desent approah to sequential deision problemsis not new. A prominent example of a deision strategy of this typeis the one used by Blakwell to prove his elebrated approahabilitytheorem (Blakwell, 1956), generalizing to vetor-valued payo�s vonNeumann's minimax theorem. The appliation of Blakwell's strategyto sequential deision problems, and its generalization to arbitrary po-tentials, is due to a series of papers by Hart and Mas-Colell (2000, 2001),where ondition (1) was �rst introdued (though in a somewhat morerestrited ontext). Condition (1) has been independently introduedby Grove et al. (2001), who used it to de�ne and analyze a new familyof algorithms for solving on-line binary lassi�ation problems. Thisfamily inludes, as speial ases, the Pereptron (Rosenblatt, 1962)and the zero-threshold Winnow algorithm (Littlestone, 1989). Finally,our abstrat deision problem bears some similarities with Shapire'sdrifting game (Shapire, 2001).The rest of the paper is organized as follows. In Setion 2 a generalresult is derived for the performane of sequential deision strategiessatisfying ondition (1), and the speial ases of the most important
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4 Cesa-Bianhi and Lugositypes of potential funtions (i.e., exponential and polynomial) are dis-ussed in detail. In Setion 3 we return to the problem of preditionwith expert advie, and reover several well-known results by the mainresult of Setion 2. The purpose of Setion 4 is to show that manyvariants of the pereptron algorithm for on-line linear lassi�ation(inluding winnow and the p-norm pereptron) are again speial asesof the general problem and that it is a simple matter to re-derive severalwell-known mistake bounds using the general framework. In Setion 5boosting is revisited with a similar purpose. Setion 6 is dediated toproblems of learning in repeated game playing. Here we disuss a familyof Hannan onsistent methods, and �t an algorithm of Freund andShapire in the general framework. Finally, we disuss a very generalnotion of regret, and derive performane bounds for a generalization ofa method of adaptive game playing due to Hart and Mas-Colell.2. General boundsIn this setion we desribe a general upper bound on the potential of theloation reahed by the drifting point when the deision maker uses astrategy satisfying ondition (1). This result is inspired by, and partiallybuilds on, Hart and Mas-Colell's analysis of their �-strategies (Hart andMas-Colell, 2001) for playing iterated games and the analysis of quasi-additive algorithms for binary lassi�ation by Grove, Littlestone andShuurmans (1997).Theorem 1. Let � be a twie di�erentiable additive potential funtionand let r1; r2; : : : 2 IRN be suh thatr�(Rt�1) � rt � 0for all t � 1, where Rt = r1 + : : : + rt. Let f : IR+ ! IR+ be aninreasing, onave, and twie di�erentiable auxiliary funtion suhthat, for all t = 1; 2; : : :,supu2IRN f 0 (�(u)) NXi=1 �00(ui)r2i;t � C(rt)for some nonegative funtion C : IRN ! IR+. Then, for all t = 1; 2; : : :,f (�(Rt)) � f (�(0)) + 12 tXs=1 C(rs) :
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Potential-based Algorithms 5Remark. At a �rst sight it not obvious how to interpret this result.Yet, as we will see below, it may be used to derive useful bounds veryeasily in a large variety of speial ases. At this point we simply pointout that in most interesting appliations, one �nds a bounded funtionC satisfying the assumption. In suh ases one obtains, for some on-stant , f (�(Rt)) � f (�(0)) + t. Now if f(�(u)) has a superlineargrowth in some norm of u (e.g., if f Æ � is stritly onvex) then this issuÆient to onlude that Rt=t ! 0 as t ! 1, independently of theoutome sequene. In the examples below we use the theorem to derivenonasymptoti inequalities of this spirit.Proof. We estimate f(�(Rt)) in terms of f (�(Rt�1)) using Taylor'stheorem. Note that rf(�(Rt�1)) = f 0(�(Rt�1))r�(Rt�1). We obtainf (�(Rt)) = f (�(Rt�1 + rt))= f (�(Rt�1)) + f 0 (�(Rt�1)) r(�(Rt�1)) � rt+12 NXi=1 NXj=1 �2f(�)�ui�uj ����� ri;trj;t(where � is some vetor between Rt�1 and Rt)� f (�(Rt�1)) + 12 NXi=1 NXj=1 �2f(�)�ui�uj ����� ri;trj;twhere the inequality follows by (1) and the fat that f 0 � 0. Sine � isadditive, straightforward alulation shows thatNXi=1 NXj=1 �2f(�)�ui�uj ����� ri;trj;t= f 00 (�(�)) NXi=1 NXj=1 �0(�i)�0(�j)ri;trj;t + f 0 (�(�)) NXi=1 �00(�i)r2i;t= f 00 (�(�)) NXi=1 �0(�i)ri;t!2 + f 0 (�(�)) NXi=1 �00(�i)r2i;t� f 0 (�(�)) NXi=1 �00(�i)r2i;t (sine f is onave)� C(rt)where at the last step we used the hypothesis of the theorem. Thus, wehave obtained f(�(Rt)) � f(�(Rt�1))+C(rt)=2. The proof is �nishedby iterating the argument. 2
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6 Cesa-Bianhi and LugosiIn what follows, we will often write rt instead of rt(byt; yt) whenbyt and yt are taken as arbitrary elements of, respetively, X and Y.Moreover, we will always use Rt to denote r1(by1; y1) + : : : + rt(byt; yt).We now review two simple appliations of Theorem 1. The �rst isfor polynomial potential funtions. For p � 1, de�ne the p-norm of avetor u by kukp =  NXi=1 juijp!1=pand further let a+ denote maxf0; ag.Corollary 1. Assume that a predition algorithm satis�es (1) withthe potential funtion �(u) = NXi=1(ui)p+ ; (2)where p � 2. Then�(Rt)2=p � (p� 1) tXs=1 krsk2p and max1�i�N Ri;t �vuut(p� 1) tXs=1 krsk2p :Proof. Apply Theorem 1 with f(x) = x2=p and �(x) = (x)p+. Bystraightforward alulation,f 0(x) = 2px(p�2)=p :On the other hand, sine �00(x) = p(p�1)(x)p�2+ , by H�older's inequality,NXi=1 �00(ui)r2i;t = p(p� 1) NXi=1(ui)p�2+ r2i;t� p(p� 1) NXi=1 �(ui)p�2+ �p=(p�2)!(p�2)=p NXi=1 jri;tjp!2=p :Thus, f 0 (�(u)) NXi=1 �00(ui)r2i;t � 2(p� 1) NXi=1 jri;tjp!2=p :
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Potential-based Algorithms 7The onditions of Theorem 1 are then satis�ed with the hoie C(rt) =2(p� 1) krtk2p. Sine �(0) = 0, Theorem 1 implies the �rst statement.The seond follows from the �rst simply beausemax1�i�N Ri;t �  NXi=1 Rpi;t!1=p = �(Rt)1=p : 2Another simple and important hoie for the potential funtion is theexponential potential, treated in the next orollary.Corollary 2. Assume that a predition algorithm satis�es (1) withthe potential funtion �(u) = NXi=1 e�ui ; (3)where � > 0 is a parameter. Thenln�(Rt) � lnN + �22 tXs=1 max1�i�N r2i;sand, in partiular,max1�i�N Ri;t � lnN� + �2 tXs=1 max1�i�N r2i;s :Proof. Choosing f(x) = (1=�) ln x and �(x) = e�x, the onditions ofTheorem 1 are satis�ed with C(rt) = �max1�i�N r2i;t. Using �(0) = Nthen yields the result. 2Remark. The polynomial potential was onsidered by Hart and Mas-Colell (2001) and, in the ontext of binary lassi�ation, by Groveet al. (1997), where it was used to de�ne the p-norm Pereptron.The exponential potential is also reminisent of the smooth �titiousplay approah used in game theory (Fudenberg and Levine, 1995) (in�titious play, the player hooses the pure strategy that is best giventhe past distribution of the adversary's plays; smoothing this hoieamounts to introduing randomization). In learning theory, algorithmsbased on the exponential potential have been intensively studied andapplied to a variety of problems | see, e.g., (Cesa-Bianhi et al.,1997; Freund and Shapire, 1997; Littlestone andWarmuth, 1994; Vovk,1990; Vovk, 1998).
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8 Cesa-Bianhi and LugosiIf rt 2 [�1; 1℄N for all t, then the hoie p = 2 lnN for the polyno-mial potential yields the boundmax1�i�N Ri;t � vuut(2 lnN � 1) tXs=1 NXi=1 jri;sj2 lnN!1= lnN� q(2 lnN � 1)N1= lnN t =p(2 lnN � 1)et :(This hoie of p was also suggested by Gentile (2001) in the ontextof p-norm pereptron algorithms.) A similar bound an be obtained,under the same assumption on the rt's, by setting � =p2 lnN=t in theexponential potential. Note that this tuning of � requires knowledge ofthe horizon t. 3. Weighted average preditorsIn this setion, we onsider one of the main appliations of the potential-based strategy indued by the generalized Blakwell ondition, that is,the experts' framework mentioned in Setion 1. Reall that, in thisframework, the i-th omponent of the drift vetor at time t takes theform of a regret ri;t(byt; yt) = `(byt; yt)� `(fi;t; yt)where `(byt; yt) is the loss of the preditor and `(fi;t; yt) is the loss ofthe i-th expert. Denote ��(u)=�ui by ri�(u) and assume ri�(u) � 0for all u 2 IRN . A remarkable fat in this appliation is that, if X is aonvex subset of a vetor spae and the loss funtion ` is onvex in its�rst omponent, then a preditor satisfying ondition (1) is always ob-tained by averaging the experts' preditions weighted by the normalizedpotential gradient. Indeed, note that ondition (1) is equivalent to(8y 2 Y) `(byt; y) � PNi=1ri�(Rt�1)`(fi;t; y)PNj=1rj�(Rt�1) (4)Now by onvexity of `, we have that (4) is implied by(8y 2 Y) `(byt; y) � ` PNi=1ri�(Rt�1)fi;tPNj=1rj�(Rt�1) ; y!whih is learly satis�ed by hoosingbyt = PNi=1ri�(Rt�1)fi;tPNj=1rj�(Rt�1) :
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Potential-based Algorithms 9Example. Consider the exponential potential funtion of Corollary 2.In this ase, the weighted average preditor desribed above simpli�esto byt = PNi=1 exp��Pt�1s=1 (`(bys; ys)� `(fi;s; ys))� fi;tPNi=1 exp��Pt�1s=1 (`(bys; ys)� `(fi;s; ys))�= PNi=1 exp���Pt�1s=1 `(fi;s; ys)� fi;tPNi=1 exp���Pt�1s=1 `(fi;s; ys)� : (5)This is the well-known Weighted Majority preditor of Littlestone andWarmuth (1994), and Corollary 2 reovers, up to onstant fators, pre-viously known performane bounds | see, e.g., (Cesa-Bianhi, 1999).Similarly, Corollary 1 may be used to derive performane bounds forthe preditorbyt = PNi=1 �Pt�1s=1 (`(bys; ys)� `(fi;s; ys))�p�1+ fi;tPNi=1 �Pt�1s=1 (`(bys; ys)� `(fi;s; ys))�p�1+ (6)based on the polynomial potential (2).These results are summarized as follows.Corollary 3. Assume that the deision spae X is a onvex subsetof a vetor spae and let ` be a loss funtion whih is onvex in its�rst omponent and bounded between 0 and 1. Then the exponentialweighted average preditor (5) with parameter � =p2 lnN=t satis�es,for all sequenes y1; y2; : : :,tXs=1 `(bys; ys) � mini=1;:::;N tXs=1 `(fi;s; ys) +p2t lnN ;and the polynomial weighted average preditor (6) with parameter p =2 lnN satis�es, for all sequenes y1; y2; : : :,tXs=1 `(bys; ys) � mini=1;:::;N tXs=1 `(fi;s; ys) +pte(2 lnN � 1) :The beauty of the Weighted Majority preditor of Corollary 3 isthat it only depends on the past performane of the experts, whereas
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10 Cesa-Bianhi and Lugosithe preditions made using polynomial (and other general) potentialsdepend on the past preditions bys, s < t as well.Remark. In some ases Theorem 1 gives suboptimal bounds. In fat,the arguments of Theorem 1 use Taylor's theorem to bound the inreaseof the potential funtion. However, in some situations the value of thepotential funtion is atually noninreasing. The following property isproven by repeating an argument of Kivinen and Warmuth (1999).Proposition 1. Consider the weighted majority preditor (5). If theloss funtion ` is suh that the funtion F (z) = e��`(z;y) is onavefor all y 2 Y, then for all t � 1, �(Rt) � �(0) where � is theexponential potential funtion (3). In partiular, sine �(0) = N , wehave maxi=1;:::;N Ri;t � ln(N)=�.Proof. It suÆes to show that �(Rt) � �(Rt�1) or, equivalently,that NXi=1 exp �� t�1Xs=1 `(fi;s; ys)! e�(`(ŷt;yt)�`(fi;t;yt))� NXi=1 exp �� t�1Xs=1 `(fi;s; ys)! ;whih, denoting wi;t�1 = exp���Pt�1s=1 `(fi;s; ys)�, may be written ase��`(ŷt;yt) � PNi=1 wi;t�1e��`(fi;t;yt)PNi=1 wi;t�1 :But sine byt = �PNi=1 wi;t�1fi;t�.�PNi=1wi;t�1�, this follows by theonavity of F (z) and Jensen's inequality. 2Simple and ommon examples of loss funtions satisfying the onavityassumption of the proposition inlude the square loss `(z; y) = (z� y)2for X = Y = [0; 1℄ with � = 1=2 and the logarithmi loss `(z; y) =y ln(y=z)+ (1� y) ln((1� y)=(1� z)) with � = 1. For more informationon this type of predition problems we refer to (Vovk, 2001; Haussleret al., 1998; Kivinen and Warmuth, 1999). Observe that the proof ofthe proposition does not make expliit use of the generalized Blakwellondition.We lose this setion by mentioning that lassi�ation algorithmsbased on time-varying potentials or nonadditive potential funtions
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Potential-based Algorithms 11have been de�ned and analyzed in (Auer et al., 2002; Cesa-Bianhiet al., 2002). 4. The quasi-additive algorithmIn this setion, we show that the quasi-additive algorithm of Grove,Littlestone and Shuurmans (whose spei� instanes are the p-normPereptron (Gentile, 2001; Grove et al., 1997), the lassial Perep-tron (Blok, 1962; Noviko�, 1962; Rosenblatt, 1962), and the zero-threshold Winnow algorithm (Littlestone, 1989)) is a speial ase ofour general deision strategy. Then, we derive performane bounds asorollaries of Theorem 1.We reall that the quasi-additive algorithm performs binary lassi-�ation of attribute vetors x = (x1; : : : ; xN ) 2 IRN by inrementallyadjusting a vetor w 2 IRN of weights. If wt is the weight vetor beforeobserving the t-th attribute vetor xt, then the quasi-additive algorithmpredits the unknown label yt 2 f�1; 1g of xt with the thresholdedlinear funtion byt = sgn(xt � wt). If the orret label yt is di�erentfrom byt, then the weight vetor is updated, and the preise way thisupdate ours distinguishes the various instanes of the quasi-additivealgorithm.To �t and analyze the quasi-additive algorithm in our framework,we speialize the abstrat deision problem of Setion 1 as follows. Thedeision spae X and the outome spae Y are both set equal to f�1; 1g.The drift vetor at time t is the funtion rt(byt; yt) = Ifyt 6=bytgytxt whereIfEg is the indiator funtion of event E. Instanes of the quasi-additivealgorithm are parametrized by a potential funtion � and use the gra-dient of the urrent potential as weight vetor, that is,wt = r�(Rt�1).Hene, the weight update is de�ned bywt+1 = r� �(r�)�1(wt) + rt�where (r�)�1 is the funtional inverse of r� (as we will show inSetion 4.3, this inverse always exists for the potentials onsideredhere). We now hek that ondition (1) is satis�ed. If byt = yt, thenrt(byt; yt) = 0 and the ondition is satis�ed. Otherwise, rt �r�(Rt�1) =Ifyt 6=bytgytxt �wt � 0, and the ondition is satis�ed in this ase as well.In the rest of this setion, we denote by Mt = Pts=1 Ifyt 6=bytg thetotal number of mistakes made by the spei� quasi-additive algorithmbeing onsidered.
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12 Cesa-Bianhi and Lugosi4.1. The p-norm PereptronAs de�ned in (Grove et al., 1997), the p-norm Pereptron uses thepotential based on �(u) = jujp, whih is just a slight modi�ationof our polynomial potential (2). We now derive a generalization ofthe Pereptron onvergene theorem (Blok, 1962; Noviko�, 1962). Aversion somewhat stronger than ours was proven by Gentile (2001).For an arbitrary sequene (x1; y1); : : : ; (xt; yt) of labeled attributevetors, letDt =Pts=1maxf0; �ys xs �v0g be the total deviation (Fre-und and Shapire, 1999b; Gentile, 2001; Gentile and Warmuth, 1999)of v0 2 IRN with respet to a given margin  > 0. Eah term in thesum de�ning Dt tells whether, and by how muh, the linear thresholdlassi�er based on weight vetor v0 missed to lassify, to within a ertainmargin, the orresponding example. Thus Dt measures a notion of loss,alled hinge loss in (Gentile and Warmuth, 1999), di�erent from thenumber of mislassi�ations, assoiated to the weight vetor v0.Corollary 4. Let (x1; y1); (x2; y2); : : : 2 IRN � f�1; 1g be any se-quene of labeled attribute vetors. Then the number Mt of mistakesmade by the p-norm Pereptron on a pre�x of arbitrary length t of thissequene suh that kxskp � Xp for some Xp and for all s � t is at mostMt � Dt + p� 12 �Xp �2 +s(p� 1)2X4p + 4(p� 1)DtX2p44� Dt + (p� 1)�Xp �2 +s(p� 1)�Xp �2 Dtwhere Dt is the hinge loss of v0 with respet to margin  for any v0 ofunit q-norm (q being the dual norm of p) and any  > 0.Proof. Adapting the proof of Corollary 1 to the potential based on�(u) = jujp, and using the bound on kxtkp, we �nd that kRtk2p �(p� 1)X2pMt. On the other hand, let v0 2 IRN be any vetor suh thatkv0kq = 1. ThenkRtkp � Rt � v0 (by H�older's inequality)= Rt�1 � v0 + Ifyt 6=bytgytxt � v0� Rt�1 � v0 + Ifyt 6=bytg( � dt)= � � � � Mt �Dt :Pieing together the two inequalities, and solving the resulting inequal-ity for Mt, yields the desired result. 2
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Potential-based Algorithms 134.2. Zero-threshold WinnowThe zero-threshold Winnow algorithm is based on the exponential po-tential (3). As we did for the p-norm Pereptron, we derive as a orollarya robust version of the bound shown by Grove et al. (1997). Let Dt bethe same as in Corollary 4.Corollary 5. Let (x1; y1); (x2; y2); : : : 2 IRN � f�1; 1g be any se-quene of labeled attribute vetors. On a pre�x of arbitrary lengtht of this sequene suh thatkxsk1 � X1 for some X1 and for all s � t,L � Dt= for some probability vetor v0 and for some L;  > 0,the numberMt of mistakes made by zero-threshold Winnow tuned with� = 8>><>>: =(X21) if L < 2(X1=)2 lnNs2 lnNX21L otherwiseis at most 6 (X1=)2 lnN if L < 2(X1=)2 lnN , and at mostDt +s2L�X1 �2 lnN + 2�X1 �2 lnN :otherwise.Proof. Corollary 2 implies that ln�(Rt) � lnN + (�2=2)X21Mt.To obtain a lower bound on ln�(Rt), onsider any vetor v0 of on-vex oeÆients. Then we use the well-known \log-sum inequality" |see (Cover and Thomas, 1991) | whih implies that, for any vetorsu;v 2 IRN of nonnegative numbers with PNi=1 vi = 1,ln NXi=1 ui � NXi=1 vi lnui +H(v) ;where H(v) = �PNi=1 vi lnvi is the entropy of v. Therefore, for anyvetor v0 of onvex oeÆients suh that ysv0 � xs �  for all s =1; : : : ; t,ln�(Rt) = ln NXi=1 e�Ri;t � �Rt � v0 +H(v0) � � (Mt �Dt) +H(v0)
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14 Cesa-Bianhi and Lugosiwhere in the last step we proeeded just like in the proof of Corollary 4.Putting the upper and lower bounds for ln�(Rt) together we obtain� (Mt �Dt) +H(v0) � lnN + (�2=2)X21Mtwhih, dropping the positive term H(v0), impliesMt�1� �2X21 � � Dt + lnN� : (7)We show the proof only for the ase L � 2(X1=)2 lnN . Letting � =(�X21)=(2), and verifying that � < 1, we may rearrange (7) as followsMt � 11� �  Dt + 12� �X1 �2 lnN!� Dt + 11� � ��Dt + 1� A2 � where we set A = (X1=)2 lnN� Dt + 11� � ��L+ 1� A2 � sine L � Dt= by hypothesis� Dt + p2AL1�pA=(2L) sine � =pA=(2L) by our hoie of �� Dt +p2AL+ 2Awhenever L � 2A, whih holds by hypothesis.4.3. Potentials and Bregman divergenesAn alternative analysis for the quasi-additive algorithm, whih wasproposed in (Warmuth and Jagota, 1997; Kivinen and Warmuth, 2001),leads to mistake bounds essentially equivalent to ours. This alternativeanalysis is based on the notion on Bregman divergenes (Bregman,1967). In this setion we re-derive a (very general) form of these mis-take bounds starting from our notion of potential. Conrete bounds forpartiular hoies of the potential funtions an be also derived just aswe did for our potential-based analysis.Fix a di�erentiable stritly onvex nonegative additive potential �on IRN . For any pair of vetors u;v 2 IRN , the Bregman divergenefrom u to v is de�ned by�� (u;v) = �(u)� �(v)� (u� v)r�(v) :
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Potential-based Algorithms 15Hene, �� (u;v) is the error of the �rst-order Taylor approximation ofthe onvex potential �(u) around v.The only property of Bregman divergenes we use is the followingtrivial fat.Fat 1. For all u;v;w 2 IRN ,�� (u;v) + �� (v;w) = �� (u;w) + (u� v) (r�(w)�r�(v)) :The Bregman divergene �� (�; �), de�ned diretly on the additive po-tential �(u) = Pi �(ui) on whih the quasi-additive algorithm is de-�ned, turns out to be the wrong quantity for deriving mistake bounds.Instead, we will use the related potential e�(u) = PNi=1 e�(ui), wheree� : IR! IR has the forme�(u) = Z u�1(�0)�1(s) ds :Note that the inverse (�0)�1 exists sine we assumed �00 > 0.The additive potential e� has the following key property.Fat 2. re� = (r�)�1.Proof. Pik any R 2 IRN and let w = r�(R). Thenre�(w)i = (�0)�1(wi) = (�0)�1 ��0(Ri)� = Riand thus re�(w) = R. 2We are now ready to derive a bound on the umulative hinge loss,or total deviation, of the quasi-additive algorithm. As the hinge lossupper bounds the number of mistakes, this will also serve as a mistakebound for the same algorithm. Our derivation is taken from (Warmuthand Jagota, 1997; Kivinen and Warmuth, 2001); we just hange theirnotation to the one used here.Theorem 2. Let (x1; y1); (x2; y2); : : : 2 IRN�f�1; 1g be any sequeneof labeled attribute vetors. If the quasi-additive algorithm is run withpotential � then its umulative hinge loss Pts=1( � ysws � xs)+ on apre�x of arbitrary length t of this sequene is at mostDt +�e� (v0;0) + tXs=1�e� (ws;ws+1)where Dt is the umulative hinge loss of v0 at margin , for any v0 2IRN and any  > 0.
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16 Cesa-Bianhi and LugosiProof. For all y 2 f�1; 1g, all  > 0, and all u;x 2 IRN let `(u�x; ys)be the hinge loss ( � yu � x)+. Let alsor`(u � x; y) = ��`(u � x; y)�u1 ; : : : ; �`(u � x; y)�uN �and note that when  > yu � x, then �r`(u � x; y) = yx is the driftvetor r(u � x; y). Now �x  > 0 and v0 2 IRN . Then for every s =1; : : : ; t suh that `(ws � xs; ys) is positive, we have`(ws � xs; ys)� `(v0 � xs; ys)� �(v0 �ws) � r`(ws � xs; ys)(by Taylor's theorem and using onvexity of the hinge loss)= (v0 �ws) � (Rs �Rs�1)(as �r`(ws � xs; ys) = rs)= (v0 �ws) � �re�(ws+1)�re�(ws)�(by Fat 2 realling that ws = r�(Rs�1) for eah s � 1).= ��e� (v0;ws)��e� (v0;ws+1) + �e� (ws;ws+1)�(by Fat 1)By summing over s, using the positivity of Bregman divergenes, andrealling that w1 = 0 we get the desired result. 2Remark. Unlike our potential-based analysis, the analysis based onBregman divergenes shown above an be naturally applied not only tothe binary lassi�ation problem but also to regression problems withany arbitrary onvex loss. However, while the divergene-based analysisappears to be limited to preditors based on weighted averages, thepotential-based analysis an handle more general preditors like thoseintrodued in Setion 6. It is therefore an interesting open problem tounderstand whether these more omplex preditors ould be analyzedusing Bregman divergenes (or, alternatively, to show that the problemsof Setion 6 an be solved by weighted average preditors).5. BoostingBoosting algorithms for binary lassi�ation problems reeive in inputa labeled sample (v1; `1); : : : ; (vN ; `N ) 2 V � f�1; 1g, where V is ageneri instane spae, and return linear-threshold lassi�ers of theform sgn �Pts=1 �shs� ; where �s 2 IR and the funtions hs : V !
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Potential-based Algorithms 17[�1; 1℄ belong to a �xed hypothesis spae H. In the boosting by re-sampling shema, the lassi�er is built inrementally: at eah step t,the booster weighs the sample and alls an orale (the so-alled weaklearner) that returns some ht 2 H. Then the booster hooses �t basedon the performane of ht on the weighted sample and adds �tht to thelinear-threshold lassi�er. Boosting by resampling an be easily �ttedin our framework by letting, at eah round t, �t be the deision maker'shoie (X = IR) and ht be the outome (Y = H). The drift funtionrt is de�ned by ri;t(�t; ht) = ��t`iht(vi) for eah i = 1; : : : ; N , andondition (1) takes the formr�(Rt�1) � rt = ��t NXi=1 `iht(vi)ri�(Rt�1) � 0 :De�ne m(ht) =PNi=1 `iht(vi)ri�(Rt�1) as the weighted margin of ht.We see that (1) orresponds to �tm(ht) � 0. Freund and Shapire'sAdaBoost (1997) is a speial ase of this shema: the potential is expo-nential and �t is hosen in a way suh that (1) is satis�ed. We reoverthe known bound on the training auray of the lassi�er output byAdaBoost as a speial ase of our main result.Corollary 6. For every training set (v1; `1); : : : ; (vN ; `N ) 2 V�f�1; 1g,and for every sequene h1; h2; : : : of funtions ht : V ! [�1; 1℄, if � isthe exponential potential (3) with � = 1, then the training error of thelassi�er f = sgn �Pts=1 e�shs� satis�es1N NXi=1 Iff(vi)6=`ig � exp �12 tXs=1 e�2s! ;where e�s =m(hs)= NXi=1 exp(Ri;t�1)! is the normalized weighted mar-gin.Proof. The result does not follow diretly from Corollary 2. We needto slightly modify the proof of Theorem 1 when the negative termf 0(�(Rt�1))r�(Rt�1) �rt was dropped. Here, this term takes the form�e�t NXi=1 `iht(vi) exp(Ri;t�1)PNj=1 exp(Rj;t�1) = � e�tm(ht)PNj=1 exp(Rj;t�1) = �e�2t :We keep this term around and proeed by noting thatC(rt) = max1�i�N r2i;t = max1�i�N (e�t`iht(vi))2 � e�2t :
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18 Cesa-Bianhi and LugosiContinuing as in the proof of Corollary 2, we obtainln�(Rt) � lnN + tXs=1��e�2s + e�2s2 � = lnN � 12 tXs=1 e�2s :By rearranging and exponentiating we get�(Rt)N � exp �12 tXs=1 e�2s! :As, for the exponential potential,1N NXi=1 Iff(vi)6=`ig � 1N NXi=1 exp �`i tXs=1 e�shs(vi)! = �(Rt)Nwe get the desired result. 26. Potential-based algorithms in game theoryOur abstrat deision problem an be applied to the problem of play-ing repeated games. Consider �rst a game between a player and anadversary. At eah round of the game, the player hooses an ation(or pure strategy) i 2 f1; : : : ;mg and, independently, the adversaryhooses an ation y 2 Y. The player's loss L(i; y) is the value of a lossfuntion L : f1; : : : ;mg � Y ! [0; 1℄ for all (i; y) 2 f1; : : : ;mg � Y.Now suppose that, at the t-th round of the game, the player hoosesan ation aording to the mixed strategy (i.e., probability distributionover ations) pt = (p1;t; : : : ; pm;t), and suppose the adversary hoosesation yt 2 Y. Then the regret for the player is the vetor rt 2 IRm,whose j-th omponent isrj;t(pt; yt) = mXk=1 pk;tL(k; yt)� L(j; yt) = mXk=1 pk;t (L(k; yt)� L(j; yt)) :(8)The �rst termPmk=1 pk;tL(k; y) is just the expeted loss of the preditor,and this is ompared to L(j; y), the loss of playing ation j. Thus, thej-th omponent of the drift rt(pt; y) measures the expeted hange inthe player's loss if it were to deterministially hoose ation j, and theadversary did not hange his ation. If all omponents of the per-roundumulative regret vetor Rt=t = (r1 + : : : + rt)=t were lose to zero,then it would mean that the player has played as well as the best pure
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Potential-based Algorithms 19ation. This notion was made preise by Hannan as follows: A playeris Hannan onsistent if the per-round regret vetor Rt=t onverges tothe zero vetor as t grows to in�nity.Our general deision strategy an be used to play repeated games ofthis type by letting the deision spae X be the set of distributions onthe player set f1; : : : ;mg of ations and the drift vetor be the regretvetor (8). De�ne now a general potential-based mixed strategy pt bypi;t = ri�(Rt�1)Pmk=1rk�(Rt�1) (9)for t > 1 and pi;1 = 1=m for i = 1; : : : ;m, where � is an appropriatetwie di�erentiable additive potential funtion. It is immediate to seethat for any value of the outome yt,r�(Rt�1) � rt = 0and therefore ondition (1) is satis�ed.The Hedge algorithm (Freund and Shapire, 1997) and the strategyin Blakwell's proof of the approahability theorem are speial asesof (9) for, respetively, the exponential potential (3) and the polynomialpotential (2) with p = 2. Corollaries 1 and 2 imply the Hannan onsis-teny of these two algorithms. Hart and Mas-Colell (2001) haraterizethe whole lass of potentials for whih ondition (1) yields a Hannanonsistent player.6.1. Multipliative algorithms for playing repeated gamesNext we onsider the setup disussed by Freund and Shapire (1999a)for adaptive game playing. Here the game is de�ned by an m�M lossmatrix S of entries in [0; 1℄. In eah round t the row player hooses arow of S aording to a mixed strategy pt = (p1;t; : : : ; pm;t) and theolumn player hooses a olumn of S aording to the mixed strategyqt = (q1;t; : : : ; qM;t). The row player's loss at time t isS(pt; qt) = mXi=1 MXj=1 pi;tqj;tS(i; j)and its goal is to ahieve a umulative loss Pts=1 S(pt; qt) almost assmall as the umulative loss minpPts=1 S(p; qt) of the best �xed mixedstrategy.
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20 Cesa-Bianhi and LugosiFreund and Shapire introdue an algorithm, based on a multiplia-tive updating of weights, de�ned bypi;t = exp���Pt�1s=1 S(i; qs)�Pmk=1 exp���Pt�1s=1 S(k; qs)� i = 1; : : : ;mwith pi;1 set to 1=m, where � > 0 is an appropriately hosen onstant.Next, we point out that this algorithm is just a speial ase of thepotental-based algorithm (9) de�ned above. To see this, de�ne theation spae Y of the adversary as the set of all probability distributionsq over the olumns, and the loss funtion L byL(i; q) = S(i; q) = MXj=1 qjS(i; j) :Then we are bak to the problem desribed at the beginning of thissetion. Indeed, de�ning the drift vetor rt as in (8), it is immediate tosee that the multipliative weight algorithm of Freund and Shapire isjust (9) with the exponential potential (3).In view of this observation, it is now straightforward to derive per-formane bounds for the multipliative update algorithm. Corollary 2implies that ln�(Rt) = ln mXi=1 e�Ri;t � lnm+ t�22 :To obtain a lower bound for ln�(Rt) we use again the log-sum in-equality (see Setion 4.2) to onlude that, for any probability vetorp,ln�(Rt) � �Rt �p+H(p) = � tXs=1 S(ps; qs)� tXs=1 S(p; qs)!+H(p) :Comparing the upper and lower bounds for ln�(Rt) we obtain thefollowing result.Corollary 7. The multipliative update algorithm de�ned above sat-is�es1t tXs=1 S(ps; qs) � minp  1t tXs=1 S(p; qs)� H(p)t� !+ lnmt� + �2 :
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Potential-based Algorithms 21This bound is very similar to the one derived by Freund and Shapire(1999a). By hoosing � =p2 lnm=t and using the nonnegativity of theentropy, we obtain1t tXs=1 S(ps; qs) � minp 1t tXs=1 S(p; qs) +r2 lnmt ;whih is an insigni�ant improvement over Corollary 4 of Freund andShapire (1999a).Of ourse, potential funtions di�erent from the exponential maybe used as well. By varying the potential funtion, we obtain a wholefamily of algorithms whose performane bounds are straightforward toobtain by Theorem 1.6.2. Generalized regret in learning with expertsIn this setion we onsider a more general notion of regret, whih weall \generalized regret", introdued by Lehrer (2001). As we will see,generalized regret inludes, as speial ases, several other notions ofregret, suh as those de�ned by Fudenberg and Levine (1999) andby Foster and Vohra (1997). Aording to our de�nition, a repeatedgame an be viewed as an on-line predition problem with a randomizedpreditor. Hene, we an use generalized regret to analyze suh on-linepredition problems. Consider the predition with experts framework,where f1;t; : : : ; fN;t 2 f1; : : : ;mg denote the preditions of the expertsat time t. For eah expert i = 1; : : : ; N , de�ne an ativation funtionAi : f1; : : : ;mg � IN ! f0; 1g. The ativation funtion determineswhether the orresponding expert is ative based on the urrent stepindex t and, possibly, on the preditor's guess k. At eah time instantt, the values Ai(k; t), i = 1; : : : ; N , k = 1; : : : ;m of the ativationfuntion are revealed to the preditor who then deides on his guesspt = (p1;t; : : : ; pm;t). De�ne the generalized regret of a randomizedpreditor with respet to expert i at round t byri;t(pt; yt) = mXk=1 pk;tAi(k; t) (L(k; yt)� L(fi;t; yt)) : (10)Hene, the (instantaneous) generalized regret with respet to expert iis nonzero only when expert i is ative,To illustrate the power of this general notion of regret, next wedesribe some important speial ases.Example. external regret. The simplest speial ase is whenN = m, fi;t = i, and Ai(k; t) = 1 for all k and t. Then the problem
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22 Cesa-Bianhi and Lugosiredues to the one desribed in the previous setion and the drift fun-tion beomes just (8). In game theory, this regret is sometimes alled\external" (as opposed to the internal regret desribed below).Example. speialists. The general formulation permits us to on-sider a muh wider family of predition problems. Examples inludevariants of the learning with experts framework, suh as \shifting ex-perts" or the more general \speialists" (Freund et al., 1997). In thespeialists framework, the ativation funtion Ai(k; t) depends arbi-trarily on the round index t but not on the atual preditor's guess k.This setup may be useful to model predition senarios where expertsare allowed to oasionally abstain from prediting (experts may wantto abstain for several reasons; for instane, when they are not on�-dent in their predition). See (Cohen and Singer, 1999) for a pratialappliation of the speialists framework.Example. internal regret. Here we disuss in detail the speialase of the problem of minimizing the so-alled internal (or onditional)regret (Hart and Mas-Colell, 2000). Foster and Vohra (1999) surveythis notion of a regret and its relationship with the external regret (8).Minimization of the internal regret plays a key role in the onstrutionof adaptive game-playing strategies whih ahieve, asymptotially, aorrelated equilibrium (see Hart and Mas-Colell Hart and Mas-Colell(2000)). The formal desription is as follows: the N = m(m�1) expertsare labeled by pairs (i; j) for i 6= j. Expert (i; j) predits always i, thatis, f(i;j);t = i for all t, and it is ative only when the preditor's guess isj, that is, A(i;j)(k; t) = Ifk=jg. Thus, omponent (i; j) of the generalizedregret vetor rt(pt; y) 2 IRN beomesr(i;j);t(pt; y) = pj;t(L(j; y) � L(i; y)) :Hene, the umulative internal regret with respet to expert (i; j),R(i;j);t = r(i;j);1 + : : : + r(i;j);tis the total amount by whih the preditor's umulative loss wouldhave inreased, had he predited i at every time he predited j. Thus,R(i;j);t may be interpreted as the regret the preditor feels of not havingpredited i eah time he predited j.The internal regret is formally similar to the external regret (8)but there are some important di�erenes. First of all, it is easy tosee that internal regret is stronger than the usual regret (8) in thesense that if a player sueeds in keeping the internal regret small foreah pairs (i; j), then every omponent of the per-round umulative
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Potential-based Algorithms 23external regret vetor stays lose to zero as well. Indeed, assume thatmaxf0; R(i;j);tg � at = o(t) for all possible pairs (i; j) and for somesequene at � 0, t � 1. Let k 2 f1; : : : ;mg be the ation with minimalumulative loss, that is,Pts=1 L(k; ys) = min1�i�mPts=1 L(i; ys). Thenthe umulative regret based on (8) is justtXs=10� mXj=1 pj;tL(j; ys)� L(k; ys)1A = mXj=1R(k;j);t � mat = o(t) :Thus, small umulative internal regret implies small umulative regretof the form onsidered in the experts' framework. On the other hand,it is easy to show by example that, for m � 3, small umulative regretdoes not imply small internal regret, and in fat, it is signi�antly morediÆult to onstrut strategies whih ahieve a small internal regret.The key question now is whether it is possible to de�ne a preditor ptsatisfying ondition (1) for the generalized regret. The existene of suhpt is shown in the next result. For suh a preditor we may then applyTheorem 1 and its orollaries to obtain performane bounds withoutfurther work.Theorem 3. Consider a deision problem desribed above with driftfuntion (10) and potential �, where r� � 0. Then a randomizedpreditor satisfying ondition (1) is de�ned by the unique solution tothe set of m linear equationspk;t = Pmj=1 pj;t PNi=1 Iffi;t=kgAi(j; t)ri�(Rt�1)PNi=1Ai(k; t)ri�(Rt�1) k = 1; : : : ;m:Observe that in the speial ase of N = m and fi;t = i and Ai(k; t) =1, the preditor of Theorem 3 redues to the preditor (9). The proofof the theorem, whih we relegate to the appendix, is a generalizationof a proof ontained in (Hart and Mas-Colell, 2000).We return now to the speial ase of internal regret. Hart and Mas-Colell (2000) �rst proved the existene of a preditor for whih themaximal umulative internal regret maxj;kR(j;k);t is o(t). Indeed, theiralgorithm is just the speial ase of the preditor of Theorem 3 for thepolynomial potential with p = 2. For the algorithm of Hart and Mas-Colell one obtains a bound of the form maxj;kR(j;k);t = O(ptm) . Thisbound may be improved signi�antly for large values of m by onsid-ering the preditor of Theorem 3 with other potential funtions. Forexample, if � is the exponential potential (3), then a straightforwardombination of Theorem 3 and Corollary 2 implies the following:
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24 Cesa-Bianhi and LugosiCorollary 8. If the randomized preditor of Theorem 3 is run withthe exponential potential (3) and parameter � = p4 lnm=t, then forall sequenes y1; y2; : : : 2 Y its internal regret satis�esmaxj;k R(j;k);t � 2pt lnm :A similar bound may be obtained by using the polynomial potentialwith exponent p = 2 lnN . It is an interesting open question to �nd thebest possible bound for maxj;kR(j;k);t in terms of m.AppendixProof. We write ondition (1) as follows:r�(Rt�1) � rt= NXi=1 ri�(Rt�1) mXk=1 pk;tAi(k; t) [L(k; yt)� L(fi;t; yt)℄= mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t) [L(k; yt)� L(fi;t; yt)℄= mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t)L(k; yt)� mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t)L(fi;t; yt)= mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t)L(k; yt)� mXk=1 mXj=1 NXi=1 Iffi;t=kgri�(Rt�1)pj;tAi(j; t)L(k; yt)= mXk=1L(k; yt)" NXi=1 ri�(Rt�1)pk;tAi(k; t)� mXj=1 NXi=1 Iffi;t=kgri�(Rt�1)pj;tAi(j; t)35 � 0 :
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Potential-based Algorithms 25Sine the L(k; yt) are arbitrary and nonnegative, the above is impliedby NXi=1 ri�(Rt�1)pk;tAi(k; t)� mXj=1 NXi=1 Iffi;t=kgri�(Rt�1)pj;tAi(j; t) � 0 (11)for eah k = 1; : : : ;m. Solving for pk;t yields the result.We now hek that suh a preditor always exists. Let M be the(m�m) matrix whose entries areMk;j = PNi=1 Iffi;t=kgri�(Rt�1)Ai(j; t)PNi=1ri�(Rt�1)Ai(k; t) :Then ondition (11) is implied by Mp = p. As r� � 0, M is nonnega-tive, and thus the eigenvetor equation Mp = p has a positive solutionby the Perron-Frobenius theorem (Seneta, 1981). 2AknowledgementsBoth authors aknowledge partial support of ESPRIT Working GroupEP 27150, Neural and Computational Learning II (NeuroCOLT II).The work of the seond author was also supported by DGI grantBMF2000-0807. ReferenesAuer, P., Cesa-Bianhi, N. and Gentile, C. (2002). Adaptive and Self-Con�dentOn-Line Learning Algorithms. Journal of Computer and System Sienes, 64:1,48-75.Blakwell, D. (1956). An Analog of the Minimax Theorem for Vetor Payo�s. Pai�Journal of Mathematis, 6, 1{8.Blok, H. (1962). The Pereptron: A Model for Brain Funtioning. Review of ModernPhysis, 34, 123{135.Bregman, L. (1967). The Relaxation Method of Finding the Common Point ofConvex Sets and its Appliation to the Solutions of Problems in ConvexProgramming. USSR Computational Mathematis and Physis, 7, 200{217.Cesa-Bianhi, N. (1999). Analysis of Two Gradient-based Algorithms for On-lineRegression. Journal of Computer and System Sienes, 59:3, 392{411.
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