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t. In this paper we show that several known algorithms for sequentialpredi
tion problems (in
luding Weighted Majority and the quasi-additive family ofGrove, Littlestone, and S
huurmans), for playing iterated games (in
luding Freundand S
hapire's Hedge and MW, as well as the �-strategies of Hart and Mas-Colell),and for boosting (in
luding AdaBoost) are spe
ial 
ases of a general de
ision strat-egy based on the notion of potential. By analyzing this strategy we derive knownperforman
e bounds, as well as new bounds, as simple 
orollaries of a single generaltheorem. Besides o�ering a new and uni�ed view on a large family of algorithms,we establish a 
onne
tion between potential-based analysis in learning and their
ounterparts independently developed in game theory. By exploiting this 
onne
tion,we show that 
ertain learning problems are instan
es of more general game-theoreti
problems. In parti
ular, we des
ribe a notion of generalized regret and show itsappli
ations in learning theory.Keywords: universal predi
tion, on-line learning, Bla
kwell's strategy, Per
eptronalgorithm, weighted average predi
tors, internal regret, boosting1. Introdu
tionWe begin by des
ribing an abstra
t sequential de
ision problem and ageneral strategy to solve it. As we will see in detail in the subsequentse
tions, several previously known algorithms for more spe
i�
 de
isionproblems turn out to be spe
ial 
ases of this strategy.The problem is parametrized by a de
ision spa
e X , by an out
omespa
e Y, and by a 
onvex and twi
e di�erentiable potential fun
tion � :� An extended abstra
t appeared in the Pro
eedings of the 14th Annual Con-feren
e on Computational Learning Theory and the 5th European Conferen
e onComputational Learning Theory, Springer, 2001.
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2 Cesa-Bian
hi and LugosiIRN ! IR+. At ea
h step t = 1; 2; : : :, the 
urrent state is representedby a point Rt�1 2 IRN , where R0 = 0. The de
ision maker observes ave
tor-valued drift fun
tion rt : X � Y ! IRN and sele
ts an elementbyt from the de
ision spa
e X . In return, an out
ome yt 2 Y is re
eived,and the new state of the problem is the \drifted point" Rt = Rt�1 +rt(byt; yt). The goal of the de
ision maker is to minimize the potential�(Rt) for a given t (whi
h might be known or unknown to the de
isionmaker).One of the main goals of this paper is to point out that manyseemingly unrelated problems �t in the framework of the abstra
tsequential de
ision problem des
ribed above, and that their analysismay be summarized in some general simple theorems. These problemsin
lude on-line predi
tion problems in the \experts" model, per
eptron-like 
lassi�
ation algorithms, methods of learning in repeated gameplaying, et
. We usually think of rt as the ve
tor of \regrets" the de
i-sion maker su�ers at time t and Rt is the 
orresponding \
umulativeregret" ve
tor. The de
ision maker's goal is to keep, in some sense,the 
umulative regret ve
tor 
lose to the origin. In the appli
ationsdes
ribed below, the de
ision maker is free to 
hoose the potentialfun
tion �. To �ll the abstra
t problem des
ribed above with meaning,next we des
ribe a propotype example whi
h is detailed in Se
tion 3.Example. Consider an on-line predi
tion problem in the experts'framework of Cesa-Bian
hi et al. (1997). Here, the de
ision maker isa predi
tor whose goal is to fore
ast a hidden sequen
e y1; y2; : : : ofelements in the out
ome spa
e Y. At ea
h time t, the predi
tor 
om-putes its guess byt 2 X for the next out
ome yt. This guess is basedon the advi
e f1;t; : : : ; fN;t 2 X of N referen
e predi
tors, or expertsfrom a �xed pool. The guesses of the predi
tor and the experts arethen individually s
ored using a loss fun
tion ` : X � Y ! IR. Thepredi
tor's goal is to keep as small as possible the 
umulative regretwith respe
t to ea
h expert. This quantity is de�ned, for expert i, bythe sum tXs=1 (`(bys; ys)� `(fi;s; ys)) :This 
an be easily modeled within our abstra
t de
ision problem byasso
iating a 
oordinate to ea
h expert and by de�ning the 
omponentsri;t of the drift fun
tion rt by ri;t(byt; yt) = `(byt; yt) � `(fi;t; yt) for i =1; : : : ; N .The role of the potential fun
tion � in the predi
tion-with-expertsframework is to provide a generalized way to measure the size (or
ml.tex; 2/08/2002; 13:25; p.2



Potential-based Algorithms 3distan
e from the origin) of the regret Rt. This distan
e information
an then be used by the predi
tor to 
ontrol the regret. Below, weintrodu
e a 
lass of predi
tors that use the potential information tokeep the drift rt in the same halfspa
e where the negative gradient of�(Rt) resides. To guarantee the existen
e of su
h predi
tors we needto 
onstrain our abstra
t de
ision problem by making two assump-tions whi
h will be naturally satis�ed by all of our appli
ations. Thenotation u � v stands for the inner produ
t of two ve
tors de�ned byu � v = u1v1 + : : : + uNvN .1. Generalized Bla
kwell's 
ondition. At ea
h time t, a de
isionbyt 2 X exists su
h thatsupyt2Yr�(Rt�1) � rt(byt; yt) � 0 ; (1)2. Additive potential. The potential � 
an be written as �(u) =PNi=1 �(ui) for all u = (u1; : : : ; uN ) 2 IRN , where � : IR ! IR+ isa nonnegative fun
tion of one variable. Typi
ally, � will be mono-toni
ally in
reasing and 
onvex on IR.Remark. Strategies satisfying 
ondition (1) tend to keep the pointRt as 
lose as possible to the minimum of the potential by for
ingthe drift ve
tor to point away from the gradient of the 
urrent poten-tial. This gradient des
ent approa
h to sequential de
ision problemsis not new. A prominent example of a de
ision strategy of this typeis the one used by Bla
kwell to prove his 
elebrated approa
habilitytheorem (Bla
kwell, 1956), generalizing to ve
tor-valued payo�s vonNeumann's minimax theorem. The appli
ation of Bla
kwell's strategyto sequential de
ision problems, and its generalization to arbitrary po-tentials, is due to a series of papers by Hart and Mas-Colell (2000, 2001),where 
ondition (1) was �rst introdu
ed (though in a somewhat morerestri
ted 
ontext). Condition (1) has been independently introdu
edby Grove et al. (2001), who used it to de�ne and analyze a new familyof algorithms for solving on-line binary 
lassi�
ation problems. Thisfamily in
ludes, as spe
ial 
ases, the Per
eptron (Rosenblatt, 1962)and the zero-threshold Winnow algorithm (Littlestone, 1989). Finally,our abstra
t de
ision problem bears some similarities with S
hapire'sdrifting game (S
hapire, 2001).The rest of the paper is organized as follows. In Se
tion 2 a generalresult is derived for the performan
e of sequential de
ision strategiessatisfying 
ondition (1), and the spe
ial 
ases of the most important
ml.tex; 2/08/2002; 13:25; p.3



4 Cesa-Bian
hi and Lugositypes of potential fun
tions (i.e., exponential and polynomial) are dis-
ussed in detail. In Se
tion 3 we return to the problem of predi
tionwith expert advi
e, and re
over several well-known results by the mainresult of Se
tion 2. The purpose of Se
tion 4 is to show that manyvariants of the per
eptron algorithm for on-line linear 
lassi�
ation(in
luding winnow and the p-norm per
eptron) are again spe
ial 
asesof the general problem and that it is a simple matter to re-derive severalwell-known mistake bounds using the general framework. In Se
tion 5boosting is revisited with a similar purpose. Se
tion 6 is dedi
ated toproblems of learning in repeated game playing. Here we dis
uss a familyof Hannan 
onsistent methods, and �t an algorithm of Freund andS
hapire in the general framework. Finally, we dis
uss a very generalnotion of regret, and derive performan
e bounds for a generalization ofa method of adaptive game playing due to Hart and Mas-Colell.2. General boundsIn this se
tion we des
ribe a general upper bound on the potential of thelo
ation rea
hed by the drifting point when the de
ision maker uses astrategy satisfying 
ondition (1). This result is inspired by, and partiallybuilds on, Hart and Mas-Colell's analysis of their �-strategies (Hart andMas-Colell, 2001) for playing iterated games and the analysis of quasi-additive algorithms for binary 
lassi�
ation by Grove, Littlestone andS
huurmans (1997).Theorem 1. Let � be a twi
e di�erentiable additive potential fun
tionand let r1; r2; : : : 2 IRN be su
h thatr�(Rt�1) � rt � 0for all t � 1, where Rt = r1 + : : : + rt. Let f : IR+ ! IR+ be anin
reasing, 
on
ave, and twi
e di�erentiable auxiliary fun
tion su
hthat, for all t = 1; 2; : : :,supu2IRN f 0 (�(u)) NXi=1 �00(ui)r2i;t � C(rt)for some nonegative fun
tion C : IRN ! IR+. Then, for all t = 1; 2; : : :,f (�(Rt)) � f (�(0)) + 12 tXs=1 C(rs) :
ml.tex; 2/08/2002; 13:25; p.4



Potential-based Algorithms 5Remark. At a �rst sight it not obvious how to interpret this result.Yet, as we will see below, it may be used to derive useful bounds veryeasily in a large variety of spe
ial 
ases. At this point we simply pointout that in most interesting appli
ations, one �nds a bounded fun
tionC satisfying the assumption. In su
h 
ases one obtains, for some 
on-stant 
, f (�(Rt)) � f (�(0)) + 
t. Now if f(�(u)) has a superlineargrowth in some norm of u (e.g., if f Æ � is stri
tly 
onvex) then this issuÆ
ient to 
on
lude that Rt=t ! 0 as t ! 1, independently of theout
ome sequen
e. In the examples below we use the theorem to derivenonasymptoti
 inequalities of this spirit.Proof. We estimate f(�(Rt)) in terms of f (�(Rt�1)) using Taylor'stheorem. Note that rf(�(Rt�1)) = f 0(�(Rt�1))r�(Rt�1). We obtainf (�(Rt)) = f (�(Rt�1 + rt))= f (�(Rt�1)) + f 0 (�(Rt�1)) r(�(Rt�1)) � rt+12 NXi=1 NXj=1 �2f(�)�ui�uj ����� ri;trj;t(where � is some ve
tor between Rt�1 and Rt)� f (�(Rt�1)) + 12 NXi=1 NXj=1 �2f(�)�ui�uj ����� ri;trj;twhere the inequality follows by (1) and the fa
t that f 0 � 0. Sin
e � isadditive, straightforward 
al
ulation shows thatNXi=1 NXj=1 �2f(�)�ui�uj ����� ri;trj;t= f 00 (�(�)) NXi=1 NXj=1 �0(�i)�0(�j)ri;trj;t + f 0 (�(�)) NXi=1 �00(�i)r2i;t= f 00 (�(�)) NXi=1 �0(�i)ri;t!2 + f 0 (�(�)) NXi=1 �00(�i)r2i;t� f 0 (�(�)) NXi=1 �00(�i)r2i;t (sin
e f is 
on
ave)� C(rt)where at the last step we used the hypothesis of the theorem. Thus, wehave obtained f(�(Rt)) � f(�(Rt�1))+C(rt)=2. The proof is �nishedby iterating the argument. 2
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6 Cesa-Bian
hi and LugosiIn what follows, we will often write rt instead of rt(byt; yt) whenbyt and yt are taken as arbitrary elements of, respe
tively, X and Y.Moreover, we will always use Rt to denote r1(by1; y1) + : : : + rt(byt; yt).We now review two simple appli
ations of Theorem 1. The �rst isfor polynomial potential fun
tions. For p � 1, de�ne the p-norm of ave
tor u by kukp =  NXi=1 juijp!1=pand further let a+ denote maxf0; ag.Corollary 1. Assume that a predi
tion algorithm satis�es (1) withthe potential fun
tion �(u) = NXi=1(ui)p+ ; (2)where p � 2. Then�(Rt)2=p � (p� 1) tXs=1 krsk2p and max1�i�N Ri;t �vuut(p� 1) tXs=1 krsk2p :Proof. Apply Theorem 1 with f(x) = x2=p and �(x) = (x)p+. Bystraightforward 
al
ulation,f 0(x) = 2px(p�2)=p :On the other hand, sin
e �00(x) = p(p�1)(x)p�2+ , by H�older's inequality,NXi=1 �00(ui)r2i;t = p(p� 1) NXi=1(ui)p�2+ r2i;t� p(p� 1) NXi=1 �(ui)p�2+ �p=(p�2)!(p�2)=p NXi=1 jri;tjp!2=p :Thus, f 0 (�(u)) NXi=1 �00(ui)r2i;t � 2(p� 1) NXi=1 jri;tjp!2=p :
ml.tex; 2/08/2002; 13:25; p.6



Potential-based Algorithms 7The 
onditions of Theorem 1 are then satis�ed with the 
hoi
e C(rt) =2(p� 1) krtk2p. Sin
e �(0) = 0, Theorem 1 implies the �rst statement.The se
ond follows from the �rst simply be
ausemax1�i�N Ri;t �  NXi=1 Rpi;t!1=p = �(Rt)1=p : 2Another simple and important 
hoi
e for the potential fun
tion is theexponential potential, treated in the next 
orollary.Corollary 2. Assume that a predi
tion algorithm satis�es (1) withthe potential fun
tion �(u) = NXi=1 e�ui ; (3)where � > 0 is a parameter. Thenln�(Rt) � lnN + �22 tXs=1 max1�i�N r2i;sand, in parti
ular,max1�i�N Ri;t � lnN� + �2 tXs=1 max1�i�N r2i;s :Proof. Choosing f(x) = (1=�) ln x and �(x) = e�x, the 
onditions ofTheorem 1 are satis�ed with C(rt) = �max1�i�N r2i;t. Using �(0) = Nthen yields the result. 2Remark. The polynomial potential was 
onsidered by Hart and Mas-Colell (2001) and, in the 
ontext of binary 
lassi�
ation, by Groveet al. (1997), where it was used to de�ne the p-norm Per
eptron.The exponential potential is also reminis
ent of the smooth �
titiousplay approa
h used in game theory (Fudenberg and Levine, 1995) (in�
titious play, the player 
hooses the pure strategy that is best giventhe past distribution of the adversary's plays; smoothing this 
hoi
eamounts to introdu
ing randomization). In learning theory, algorithmsbased on the exponential potential have been intensively studied andapplied to a variety of problems | see, e.g., (Cesa-Bian
hi et al.,1997; Freund and S
hapire, 1997; Littlestone andWarmuth, 1994; Vovk,1990; Vovk, 1998).
ml.tex; 2/08/2002; 13:25; p.7



8 Cesa-Bian
hi and LugosiIf rt 2 [�1; 1℄N for all t, then the 
hoi
e p = 2 lnN for the polyno-mial potential yields the boundmax1�i�N Ri;t � vuut(2 lnN � 1) tXs=1 NXi=1 jri;sj2 lnN!1= lnN� q(2 lnN � 1)N1= lnN t =p(2 lnN � 1)et :(This 
hoi
e of p was also suggested by Gentile (2001) in the 
ontextof p-norm per
eptron algorithms.) A similar bound 
an be obtained,under the same assumption on the rt's, by setting � =p2 lnN=t in theexponential potential. Note that this tuning of � requires knowledge ofthe horizon t. 3. Weighted average predi
torsIn this se
tion, we 
onsider one of the main appli
ations of the potential-based strategy indu
ed by the generalized Bla
kwell 
ondition, that is,the experts' framework mentioned in Se
tion 1. Re
all that, in thisframework, the i-th 
omponent of the drift ve
tor at time t takes theform of a regret ri;t(byt; yt) = `(byt; yt)� `(fi;t; yt)where `(byt; yt) is the loss of the predi
tor and `(fi;t; yt) is the loss ofthe i-th expert. Denote ��(u)=�ui by ri�(u) and assume ri�(u) � 0for all u 2 IRN . A remarkable fa
t in this appli
ation is that, if X is a
onvex subset of a ve
tor spa
e and the loss fun
tion ` is 
onvex in its�rst 
omponent, then a predi
tor satisfying 
ondition (1) is always ob-tained by averaging the experts' predi
tions weighted by the normalizedpotential gradient. Indeed, note that 
ondition (1) is equivalent to(8y 2 Y) `(byt; y) � PNi=1ri�(Rt�1)`(fi;t; y)PNj=1rj�(Rt�1) (4)Now by 
onvexity of `, we have that (4) is implied by(8y 2 Y) `(byt; y) � ` PNi=1ri�(Rt�1)fi;tPNj=1rj�(Rt�1) ; y!whi
h is 
learly satis�ed by 
hoosingbyt = PNi=1ri�(Rt�1)fi;tPNj=1rj�(Rt�1) :
ml.tex; 2/08/2002; 13:25; p.8



Potential-based Algorithms 9Example. Consider the exponential potential fun
tion of Corollary 2.In this 
ase, the weighted average predi
tor des
ribed above simpli�esto byt = PNi=1 exp��Pt�1s=1 (`(bys; ys)� `(fi;s; ys))� fi;tPNi=1 exp��Pt�1s=1 (`(bys; ys)� `(fi;s; ys))�= PNi=1 exp���Pt�1s=1 `(fi;s; ys)� fi;tPNi=1 exp���Pt�1s=1 `(fi;s; ys)� : (5)This is the well-known Weighted Majority predi
tor of Littlestone andWarmuth (1994), and Corollary 2 re
overs, up to 
onstant fa
tors, pre-viously known performan
e bounds | see, e.g., (Cesa-Bian
hi, 1999).Similarly, Corollary 1 may be used to derive performan
e bounds forthe predi
torbyt = PNi=1 �Pt�1s=1 (`(bys; ys)� `(fi;s; ys))�p�1+ fi;tPNi=1 �Pt�1s=1 (`(bys; ys)� `(fi;s; ys))�p�1+ (6)based on the polynomial potential (2).These results are summarized as follows.Corollary 3. Assume that the de
ision spa
e X is a 
onvex subsetof a ve
tor spa
e and let ` be a loss fun
tion whi
h is 
onvex in its�rst 
omponent and bounded between 0 and 1. Then the exponentialweighted average predi
tor (5) with parameter � =p2 lnN=t satis�es,for all sequen
es y1; y2; : : :,tXs=1 `(bys; ys) � mini=1;:::;N tXs=1 `(fi;s; ys) +p2t lnN ;and the polynomial weighted average predi
tor (6) with parameter p =2 lnN satis�es, for all sequen
es y1; y2; : : :,tXs=1 `(bys; ys) � mini=1;:::;N tXs=1 `(fi;s; ys) +pte(2 lnN � 1) :The beauty of the Weighted Majority predi
tor of Corollary 3 isthat it only depends on the past performan
e of the experts, whereas
ml.tex; 2/08/2002; 13:25; p.9



10 Cesa-Bian
hi and Lugosithe predi
tions made using polynomial (and other general) potentialsdepend on the past predi
tions bys, s < t as well.Remark. In some 
ases Theorem 1 gives suboptimal bounds. In fa
t,the arguments of Theorem 1 use Taylor's theorem to bound the in
reaseof the potential fun
tion. However, in some situations the value of thepotential fun
tion is a
tually nonin
reasing. The following property isproven by repeating an argument of Kivinen and Warmuth (1999).Proposition 1. Consider the weighted majority predi
tor (5). If theloss fun
tion ` is su
h that the fun
tion F (z) = e��`(z;y) is 
on
avefor all y 2 Y, then for all t � 1, �(Rt) � �(0) where � is theexponential potential fun
tion (3). In parti
ular, sin
e �(0) = N , wehave maxi=1;:::;N Ri;t � ln(N)=�.Proof. It suÆ
es to show that �(Rt) � �(Rt�1) or, equivalently,that NXi=1 exp �� t�1Xs=1 `(fi;s; ys)! e�(`(ŷt;yt)�`(fi;t;yt))� NXi=1 exp �� t�1Xs=1 `(fi;s; ys)! ;whi
h, denoting wi;t�1 = exp���Pt�1s=1 `(fi;s; ys)�, may be written ase��`(ŷt;yt) � PNi=1 wi;t�1e��`(fi;t;yt)PNi=1 wi;t�1 :But sin
e byt = �PNi=1 wi;t�1fi;t�.�PNi=1wi;t�1�, this follows by the
on
avity of F (z) and Jensen's inequality. 2Simple and 
ommon examples of loss fun
tions satisfying the 
on
avityassumption of the proposition in
lude the square loss `(z; y) = (z� y)2for X = Y = [0; 1℄ with � = 1=2 and the logarithmi
 loss `(z; y) =y ln(y=z)+ (1� y) ln((1� y)=(1� z)) with � = 1. For more informationon this type of predi
tion problems we refer to (Vovk, 2001; Haussleret al., 1998; Kivinen and Warmuth, 1999). Observe that the proof ofthe proposition does not make expli
it use of the generalized Bla
kwell
ondition.We 
lose this se
tion by mentioning that 
lassi�
ation algorithmsbased on time-varying potentials or nonadditive potential fun
tions
ml.tex; 2/08/2002; 13:25; p.10



Potential-based Algorithms 11have been de�ned and analyzed in (Auer et al., 2002; Cesa-Bian
hiet al., 2002). 4. The quasi-additive algorithmIn this se
tion, we show that the quasi-additive algorithm of Grove,Littlestone and S
huurmans (whose spe
i�
 instan
es are the p-normPer
eptron (Gentile, 2001; Grove et al., 1997), the 
lassi
al Per
ep-tron (Blo
k, 1962; Noviko�, 1962; Rosenblatt, 1962), and the zero-threshold Winnow algorithm (Littlestone, 1989)) is a spe
ial 
ase ofour general de
ision strategy. Then, we derive performan
e bounds as
orollaries of Theorem 1.We re
all that the quasi-additive algorithm performs binary 
lassi-�
ation of attribute ve
tors x = (x1; : : : ; xN ) 2 IRN by in
rementallyadjusting a ve
tor w 2 IRN of weights. If wt is the weight ve
tor beforeobserving the t-th attribute ve
tor xt, then the quasi-additive algorithmpredi
ts the unknown label yt 2 f�1; 1g of xt with the thresholdedlinear fun
tion byt = sgn(xt � wt). If the 
orre
t label yt is di�erentfrom byt, then the weight ve
tor is updated, and the pre
ise way thisupdate o

urs distinguishes the various instan
es of the quasi-additivealgorithm.To �t and analyze the quasi-additive algorithm in our framework,we spe
ialize the abstra
t de
ision problem of Se
tion 1 as follows. Thede
ision spa
e X and the out
ome spa
e Y are both set equal to f�1; 1g.The drift ve
tor at time t is the fun
tion rt(byt; yt) = Ifyt 6=bytgytxt whereIfEg is the indi
ator fun
tion of event E. Instan
es of the quasi-additivealgorithm are parametrized by a potential fun
tion � and use the gra-dient of the 
urrent potential as weight ve
tor, that is,wt = r�(Rt�1).Hen
e, the weight update is de�ned bywt+1 = r� �(r�)�1(wt) + rt�where (r�)�1 is the fun
tional inverse of r� (as we will show inSe
tion 4.3, this inverse always exists for the potentials 
onsideredhere). We now 
he
k that 
ondition (1) is satis�ed. If byt = yt, thenrt(byt; yt) = 0 and the 
ondition is satis�ed. Otherwise, rt �r�(Rt�1) =Ifyt 6=bytgytxt �wt � 0, and the 
ondition is satis�ed in this 
ase as well.In the rest of this se
tion, we denote by Mt = Pts=1 Ifyt 6=bytg thetotal number of mistakes made by the spe
i�
 quasi-additive algorithmbeing 
onsidered.
ml.tex; 2/08/2002; 13:25; p.11



12 Cesa-Bian
hi and Lugosi4.1. The p-norm Per
eptronAs de�ned in (Grove et al., 1997), the p-norm Per
eptron uses thepotential based on �(u) = jujp, whi
h is just a slight modi�
ationof our polynomial potential (2). We now derive a generalization ofthe Per
eptron 
onvergen
e theorem (Blo
k, 1962; Noviko�, 1962). Aversion somewhat stronger than ours was proven by Gentile (2001).For an arbitrary sequen
e (x1; y1); : : : ; (xt; yt) of labeled attributeve
tors, letDt =Pts=1maxf0; 
�ys xs �v0g be the total deviation (Fre-und and S
hapire, 1999b; Gentile, 2001; Gentile and Warmuth, 1999)of v0 2 IRN with respe
t to a given margin 
 > 0. Ea
h term in thesum de�ning Dt tells whether, and by how mu
h, the linear threshold
lassi�er based on weight ve
tor v0 missed to 
lassify, to within a 
ertainmargin, the 
orresponding example. Thus Dt measures a notion of loss,
alled hinge loss in (Gentile and Warmuth, 1999), di�erent from thenumber of mis
lassi�
ations, asso
iated to the weight ve
tor v0.Corollary 4. Let (x1; y1); (x2; y2); : : : 2 IRN � f�1; 1g be any se-quen
e of labeled attribute ve
tors. Then the number Mt of mistakesmade by the p-norm Per
eptron on a pre�x of arbitrary length t of thissequen
e su
h that kxskp � Xp for some Xp and for all s � t is at mostMt � Dt
 + p� 12 �Xp
 �2 +s(p� 1)2X4p + 4(p� 1)
DtX2p4
4� Dt
 + (p� 1)�Xp
 �2 +s(p� 1)�Xp
 �2 Dt
where Dt is the hinge loss of v0 with respe
t to margin 
 for any v0 ofunit q-norm (q being the dual norm of p) and any 
 > 0.Proof. Adapting the proof of Corollary 1 to the potential based on�(u) = jujp, and using the bound on kxtkp, we �nd that kRtk2p �(p� 1)X2pMt. On the other hand, let v0 2 IRN be any ve
tor su
h thatkv0kq = 1. ThenkRtkp � Rt � v0 (by H�older's inequality)= Rt�1 � v0 + Ifyt 6=bytgytxt � v0� Rt�1 � v0 + Ifyt 6=bytg(
 � dt)= � � � � 
Mt �Dt :Pie
ing together the two inequalities, and solving the resulting inequal-ity for Mt, yields the desired result. 2
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Potential-based Algorithms 134.2. Zero-threshold WinnowThe zero-threshold Winnow algorithm is based on the exponential po-tential (3). As we did for the p-norm Per
eptron, we derive as a 
orollarya robust version of the bound shown by Grove et al. (1997). Let Dt bethe same as in Corollary 4.Corollary 5. Let (x1; y1); (x2; y2); : : : 2 IRN � f�1; 1g be any se-quen
e of labeled attribute ve
tors. On a pre�x of arbitrary lengtht of this sequen
e su
h thatkxsk1 � X1 for some X1 and for all s � t,L � Dt=
 for some probability ve
tor v0 and for some L; 
 > 0,the numberMt of mistakes made by zero-threshold Winnow tuned with� = 8>><>>: 
=(X21) if L < 2(X1=
)2 lnNs2 lnNX21L otherwiseis at most 6 (X1=
)2 lnN if L < 2(X1=
)2 lnN , and at mostDt
 +s2L�X1
 �2 lnN + 2�X1
 �2 lnN :otherwise.Proof. Corollary 2 implies that ln�(Rt) � lnN + (�2=2)X21Mt.To obtain a lower bound on ln�(Rt), 
onsider any ve
tor v0 of 
on-vex 
oeÆ
ients. Then we use the well-known \log-sum inequality" |see (Cover and Thomas, 1991) | whi
h implies that, for any ve
torsu;v 2 IRN of nonnegative numbers with PNi=1 vi = 1,ln NXi=1 ui � NXi=1 vi lnui +H(v) ;where H(v) = �PNi=1 vi lnvi is the entropy of v. Therefore, for anyve
tor v0 of 
onvex 
oeÆ
ients su
h that ysv0 � xs � 
 for all s =1; : : : ; t,ln�(Rt) = ln NXi=1 e�Ri;t � �Rt � v0 +H(v0) � � (
Mt �Dt) +H(v0)
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14 Cesa-Bian
hi and Lugosiwhere in the last step we pro
eeded just like in the proof of Corollary 4.Putting the upper and lower bounds for ln�(Rt) together we obtain� (
Mt �Dt) +H(v0) � lnN + (�2=2)X21Mtwhi
h, dropping the positive term H(v0), impliesMt�1� �2X21
 � � Dt
 + lnN�
 : (7)We show the proof only for the 
ase L � 2(X1=
)2 lnN . Letting � =(�X21)=(2
), and verifying that � < 1, we may rearrange (7) as followsMt � 11� �  Dt
 + 12� �X1
 �2 lnN!� Dt
 + 11� � ��Dt
 + 1� A2 � where we set A = (X1=
)2 lnN� Dt
 + 11� � ��L+ 1� A2 � sin
e L � Dt=
 by hypothesis� Dt
 + p2AL1�pA=(2L) sin
e � =pA=(2L) by our 
hoi
e of �� Dt
 +p2AL+ 2Awhenever L � 2A, whi
h holds by hypothesis.4.3. Potentials and Bregman divergen
esAn alternative analysis for the quasi-additive algorithm, whi
h wasproposed in (Warmuth and Jagota, 1997; Kivinen and Warmuth, 2001),leads to mistake bounds essentially equivalent to ours. This alternativeanalysis is based on the notion on Bregman divergen
es (Bregman,1967). In this se
tion we re-derive a (very general) form of these mis-take bounds starting from our notion of potential. Con
rete bounds forparti
ular 
hoi
es of the potential fun
tions 
an be also derived just aswe did for our potential-based analysis.Fix a di�erentiable stri
tly 
onvex nonegative additive potential �on IRN . For any pair of ve
tors u;v 2 IRN , the Bregman divergen
efrom u to v is de�ned by�� (u;v) = �(u)� �(v)� (u� v)r�(v) :
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Potential-based Algorithms 15Hen
e, �� (u;v) is the error of the �rst-order Taylor approximation ofthe 
onvex potential �(u) around v.The only property of Bregman divergen
es we use is the followingtrivial fa
t.Fa
t 1. For all u;v;w 2 IRN ,�� (u;v) + �� (v;w) = �� (u;w) + (u� v) (r�(w)�r�(v)) :The Bregman divergen
e �� (�; �), de�ned dire
tly on the additive po-tential �(u) = Pi �(ui) on whi
h the quasi-additive algorithm is de-�ned, turns out to be the wrong quantity for deriving mistake bounds.Instead, we will use the related potential e�(u) = PNi=1 e�(ui), wheree� : IR! IR has the forme�(u) = Z u�1(�0)�1(s) ds :Note that the inverse (�0)�1 exists sin
e we assumed �00 > 0.The additive potential e� has the following key property.Fa
t 2. re� = (r�)�1.Proof. Pi
k any R 2 IRN and let w = r�(R). Thenre�(w)i = (�0)�1(wi) = (�0)�1 ��0(Ri)� = Riand thus re�(w) = R. 2We are now ready to derive a bound on the 
umulative hinge loss,or total deviation, of the quasi-additive algorithm. As the hinge lossupper bounds the number of mistakes, this will also serve as a mistakebound for the same algorithm. Our derivation is taken from (Warmuthand Jagota, 1997; Kivinen and Warmuth, 2001); we just 
hange theirnotation to the one used here.Theorem 2. Let (x1; y1); (x2; y2); : : : 2 IRN�f�1; 1g be any sequen
eof labeled attribute ve
tors. If the quasi-additive algorithm is run withpotential � then its 
umulative hinge loss Pts=1(
 � ysws � xs)+ on apre�x of arbitrary length t of this sequen
e is at mostDt +�e� (v0;0) + tXs=1�e� (ws;ws+1)where Dt is the 
umulative hinge loss of v0 at margin 
, for any v0 2IRN and any 
 > 0.
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16 Cesa-Bian
hi and LugosiProof. For all y 2 f�1; 1g, all 
 > 0, and all u;x 2 IRN let `(u�x; ys)be the hinge loss (
 � yu � x)+. Let alsor`(u � x; y) = ��`(u � x; y)�u1 ; : : : ; �`(u � x; y)�uN �and note that when 
 > yu � x, then �r`(u � x; y) = yx is the driftve
tor r(u � x; y). Now �x 
 > 0 and v0 2 IRN . Then for every s =1; : : : ; t su
h that `(ws � xs; ys) is positive, we have`(ws � xs; ys)� `(v0 � xs; ys)� �(v0 �ws) � r`(ws � xs; ys)(by Taylor's theorem and using 
onvexity of the hinge loss)= (v0 �ws) � (Rs �Rs�1)(as �r`(ws � xs; ys) = rs)= (v0 �ws) � �re�(ws+1)�re�(ws)�(by Fa
t 2 re
alling that ws = r�(Rs�1) for ea
h s � 1).= ��e� (v0;ws)��e� (v0;ws+1) + �e� (ws;ws+1)�(by Fa
t 1)By summing over s, using the positivity of Bregman divergen
es, andre
alling that w1 = 0 we get the desired result. 2Remark. Unlike our potential-based analysis, the analysis based onBregman divergen
es shown above 
an be naturally applied not only tothe binary 
lassi�
ation problem but also to regression problems withany arbitrary 
onvex loss. However, while the divergen
e-based analysisappears to be limited to predi
tors based on weighted averages, thepotential-based analysis 
an handle more general predi
tors like thoseintrodu
ed in Se
tion 6. It is therefore an interesting open problem tounderstand whether these more 
omplex predi
tors 
ould be analyzedusing Bregman divergen
es (or, alternatively, to show that the problemsof Se
tion 6 
an be solved by weighted average predi
tors).5. BoostingBoosting algorithms for binary 
lassi�
ation problems re
eive in inputa labeled sample (v1; `1); : : : ; (vN ; `N ) 2 V � f�1; 1g, where V is ageneri
 instan
e spa
e, and return linear-threshold 
lassi�ers of theform sgn �Pts=1 �shs� ; where �s 2 IR and the fun
tions hs : V !
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Potential-based Algorithms 17[�1; 1℄ belong to a �xed hypothesis spa
e H. In the boosting by re-sampling s
hema, the 
lassi�er is built in
rementally: at ea
h step t,the booster weighs the sample and 
alls an ora
le (the so-
alled weaklearner) that returns some ht 2 H. Then the booster 
hooses �t basedon the performan
e of ht on the weighted sample and adds �tht to thelinear-threshold 
lassi�er. Boosting by resampling 
an be easily �ttedin our framework by letting, at ea
h round t, �t be the de
ision maker's
hoi
e (X = IR) and ht be the out
ome (Y = H). The drift fun
tionrt is de�ned by ri;t(�t; ht) = ��t`iht(vi) for ea
h i = 1; : : : ; N , and
ondition (1) takes the formr�(Rt�1) � rt = ��t NXi=1 `iht(vi)ri�(Rt�1) � 0 :De�ne m(ht) =PNi=1 `iht(vi)ri�(Rt�1) as the weighted margin of ht.We see that (1) 
orresponds to �tm(ht) � 0. Freund and S
hapire'sAdaBoost (1997) is a spe
ial 
ase of this s
hema: the potential is expo-nential and �t is 
hosen in a way su
h that (1) is satis�ed. We re
overthe known bound on the training a

ura
y of the 
lassi�er output byAdaBoost as a spe
ial 
ase of our main result.Corollary 6. For every training set (v1; `1); : : : ; (vN ; `N ) 2 V�f�1; 1g,and for every sequen
e h1; h2; : : : of fun
tions ht : V ! [�1; 1℄, if � isthe exponential potential (3) with � = 1, then the training error of the
lassi�er f = sgn �Pts=1 e�shs� satis�es1N NXi=1 Iff(vi)6=`ig � exp �12 tXs=1 e�2s! ;where e�s =m(hs)= NXi=1 exp(Ri;t�1)! is the normalized weighted mar-gin.Proof. The result does not follow dire
tly from Corollary 2. We needto slightly modify the proof of Theorem 1 when the negative termf 0(�(Rt�1))r�(Rt�1) �rt was dropped. Here, this term takes the form�e�t NXi=1 `iht(vi) exp(Ri;t�1)PNj=1 exp(Rj;t�1) = � e�tm(ht)PNj=1 exp(Rj;t�1) = �e�2t :We keep this term around and pro
eed by noting thatC(rt) = max1�i�N r2i;t = max1�i�N (e�t`iht(vi))2 � e�2t :
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18 Cesa-Bian
hi and LugosiContinuing as in the proof of Corollary 2, we obtainln�(Rt) � lnN + tXs=1��e�2s + e�2s2 � = lnN � 12 tXs=1 e�2s :By rearranging and exponentiating we get�(Rt)N � exp �12 tXs=1 e�2s! :As, for the exponential potential,1N NXi=1 Iff(vi)6=`ig � 1N NXi=1 exp �`i tXs=1 e�shs(vi)! = �(Rt)Nwe get the desired result. 26. Potential-based algorithms in game theoryOur abstra
t de
ision problem 
an be applied to the problem of play-ing repeated games. Consider �rst a game between a player and anadversary. At ea
h round of the game, the player 
hooses an a
tion(or pure strategy) i 2 f1; : : : ;mg and, independently, the adversary
hooses an a
tion y 2 Y. The player's loss L(i; y) is the value of a lossfun
tion L : f1; : : : ;mg � Y ! [0; 1℄ for all (i; y) 2 f1; : : : ;mg � Y.Now suppose that, at the t-th round of the game, the player 
hoosesan a
tion a

ording to the mixed strategy (i.e., probability distributionover a
tions) pt = (p1;t; : : : ; pm;t), and suppose the adversary 
hoosesa
tion yt 2 Y. Then the regret for the player is the ve
tor rt 2 IRm,whose j-th 
omponent isrj;t(pt; yt) = mXk=1 pk;tL(k; yt)� L(j; yt) = mXk=1 pk;t (L(k; yt)� L(j; yt)) :(8)The �rst termPmk=1 pk;tL(k; y) is just the expe
ted loss of the predi
tor,and this is 
ompared to L(j; y), the loss of playing a
tion j. Thus, thej-th 
omponent of the drift rt(pt; y) measures the expe
ted 
hange inthe player's loss if it were to deterministi
ally 
hoose a
tion j, and theadversary did not 
hange his a
tion. If all 
omponents of the per-round
umulative regret ve
tor Rt=t = (r1 + : : : + rt)=t were 
lose to zero,then it would mean that the player has played as well as the best pure
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Potential-based Algorithms 19a
tion. This notion was made pre
ise by Hannan as follows: A playeris Hannan 
onsistent if the per-round regret ve
tor Rt=t 
onverges tothe zero ve
tor as t grows to in�nity.Our general de
ision strategy 
an be used to play repeated games ofthis type by letting the de
ision spa
e X be the set of distributions onthe player set f1; : : : ;mg of a
tions and the drift ve
tor be the regretve
tor (8). De�ne now a general potential-based mixed strategy pt bypi;t = ri�(Rt�1)Pmk=1rk�(Rt�1) (9)for t > 1 and pi;1 = 1=m for i = 1; : : : ;m, where � is an appropriatetwi
e di�erentiable additive potential fun
tion. It is immediate to seethat for any value of the out
ome yt,r�(Rt�1) � rt = 0and therefore 
ondition (1) is satis�ed.The Hedge algorithm (Freund and S
hapire, 1997) and the strategyin Bla
kwell's proof of the approa
hability theorem are spe
ial 
asesof (9) for, respe
tively, the exponential potential (3) and the polynomialpotential (2) with p = 2. Corollaries 1 and 2 imply the Hannan 
onsis-ten
y of these two algorithms. Hart and Mas-Colell (2001) 
hara
terizethe whole 
lass of potentials for whi
h 
ondition (1) yields a Hannan
onsistent player.6.1. Multipli
ative algorithms for playing repeated gamesNext we 
onsider the setup dis
ussed by Freund and S
hapire (1999a)for adaptive game playing. Here the game is de�ned by an m�M lossmatrix S of entries in [0; 1℄. In ea
h round t the row player 
hooses arow of S a

ording to a mixed strategy pt = (p1;t; : : : ; pm;t) and the
olumn player 
hooses a 
olumn of S a

ording to the mixed strategyqt = (q1;t; : : : ; qM;t). The row player's loss at time t isS(pt; qt) = mXi=1 MXj=1 pi;tqj;tS(i; j)and its goal is to a
hieve a 
umulative loss Pts=1 S(pt; qt) almost assmall as the 
umulative loss minpPts=1 S(p; qt) of the best �xed mixedstrategy.
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20 Cesa-Bian
hi and LugosiFreund and S
hapire introdu
e an algorithm, based on a multipli
a-tive updating of weights, de�ned bypi;t = exp���Pt�1s=1 S(i; qs)�Pmk=1 exp���Pt�1s=1 S(k; qs)� i = 1; : : : ;mwith pi;1 set to 1=m, where � > 0 is an appropriately 
hosen 
onstant.Next, we point out that this algorithm is just a spe
ial 
ase of thepotental-based algorithm (9) de�ned above. To see this, de�ne thea
tion spa
e Y of the adversary as the set of all probability distributionsq over the 
olumns, and the loss fun
tion L byL(i; q) = S(i; q) = MXj=1 qjS(i; j) :Then we are ba
k to the problem des
ribed at the beginning of thisse
tion. Indeed, de�ning the drift ve
tor rt as in (8), it is immediate tosee that the multipli
ative weight algorithm of Freund and S
hapire isjust (9) with the exponential potential (3).In view of this observation, it is now straightforward to derive per-forman
e bounds for the multipli
ative update algorithm. Corollary 2implies that ln�(Rt) = ln mXi=1 e�Ri;t � lnm+ t�22 :To obtain a lower bound for ln�(Rt) we use again the log-sum in-equality (see Se
tion 4.2) to 
on
lude that, for any probability ve
torp,ln�(Rt) � �Rt �p+H(p) = � tXs=1 S(ps; qs)� tXs=1 S(p; qs)!+H(p) :Comparing the upper and lower bounds for ln�(Rt) we obtain thefollowing result.Corollary 7. The multipli
ative update algorithm de�ned above sat-is�es1t tXs=1 S(ps; qs) � minp  1t tXs=1 S(p; qs)� H(p)t� !+ lnmt� + �2 :
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Potential-based Algorithms 21This bound is very similar to the one derived by Freund and S
hapire(1999a). By 
hoosing � =p2 lnm=t and using the nonnegativity of theentropy, we obtain1t tXs=1 S(ps; qs) � minp 1t tXs=1 S(p; qs) +r2 lnmt ;whi
h is an insigni�
ant improvement over Corollary 4 of Freund andS
hapire (1999a).Of 
ourse, potential fun
tions di�erent from the exponential maybe used as well. By varying the potential fun
tion, we obtain a wholefamily of algorithms whose performan
e bounds are straightforward toobtain by Theorem 1.6.2. Generalized regret in learning with expertsIn this se
tion we 
onsider a more general notion of regret, whi
h we
all \generalized regret", introdu
ed by Lehrer (2001). As we will see,generalized regret in
ludes, as spe
ial 
ases, several other notions ofregret, su
h as those de�ned by Fudenberg and Levine (1999) andby Foster and Vohra (1997). A

ording to our de�nition, a repeatedgame 
an be viewed as an on-line predi
tion problem with a randomizedpredi
tor. Hen
e, we 
an use generalized regret to analyze su
h on-linepredi
tion problems. Consider the predi
tion with experts framework,where f1;t; : : : ; fN;t 2 f1; : : : ;mg denote the predi
tions of the expertsat time t. For ea
h expert i = 1; : : : ; N , de�ne an a
tivation fun
tionAi : f1; : : : ;mg � IN ! f0; 1g. The a
tivation fun
tion determineswhether the 
orresponding expert is a
tive based on the 
urrent stepindex t and, possibly, on the predi
tor's guess k. At ea
h time instantt, the values Ai(k; t), i = 1; : : : ; N , k = 1; : : : ;m of the a
tivationfun
tion are revealed to the predi
tor who then de
ides on his guesspt = (p1;t; : : : ; pm;t). De�ne the generalized regret of a randomizedpredi
tor with respe
t to expert i at round t byri;t(pt; yt) = mXk=1 pk;tAi(k; t) (L(k; yt)� L(fi;t; yt)) : (10)Hen
e, the (instantaneous) generalized regret with respe
t to expert iis nonzero only when expert i is a
tive,To illustrate the power of this general notion of regret, next wedes
ribe some important spe
ial 
ases.Example. external regret. The simplest spe
ial 
ase is whenN = m, fi;t = i, and Ai(k; t) = 1 for all k and t. Then the problem
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22 Cesa-Bian
hi and Lugosiredu
es to the one des
ribed in the previous se
tion and the drift fun
-tion be
omes just (8). In game theory, this regret is sometimes 
alled\external" (as opposed to the internal regret des
ribed below).Example. spe
ialists. The general formulation permits us to 
on-sider a mu
h wider family of predi
tion problems. Examples in
ludevariants of the learning with experts framework, su
h as \shifting ex-perts" or the more general \spe
ialists" (Freund et al., 1997). In thespe
ialists framework, the a
tivation fun
tion Ai(k; t) depends arbi-trarily on the round index t but not on the a
tual predi
tor's guess k.This setup may be useful to model predi
tion s
enarios where expertsare allowed to o

asionally abstain from predi
ting (experts may wantto abstain for several reasons; for instan
e, when they are not 
on�-dent in their predi
tion). See (Cohen and Singer, 1999) for a pra
ti
alappli
ation of the spe
ialists framework.Example. internal regret. Here we dis
uss in detail the spe
ial
ase of the problem of minimizing the so-
alled internal (or 
onditional)regret (Hart and Mas-Colell, 2000). Foster and Vohra (1999) surveythis notion of a regret and its relationship with the external regret (8).Minimization of the internal regret plays a key role in the 
onstru
tionof adaptive game-playing strategies whi
h a
hieve, asymptoti
ally, a
orrelated equilibrium (see Hart and Mas-Colell Hart and Mas-Colell(2000)). The formal des
ription is as follows: the N = m(m�1) expertsare labeled by pairs (i; j) for i 6= j. Expert (i; j) predi
ts always i, thatis, f(i;j);t = i for all t, and it is a
tive only when the predi
tor's guess isj, that is, A(i;j)(k; t) = Ifk=jg. Thus, 
omponent (i; j) of the generalizedregret ve
tor rt(pt; y) 2 IRN be
omesr(i;j);t(pt; y) = pj;t(L(j; y) � L(i; y)) :Hen
e, the 
umulative internal regret with respe
t to expert (i; j),R(i;j);t = r(i;j);1 + : : : + r(i;j);tis the total amount by whi
h the predi
tor's 
umulative loss wouldhave in
reased, had he predi
ted i at every time he predi
ted j. Thus,R(i;j);t may be interpreted as the regret the predi
tor feels of not havingpredi
ted i ea
h time he predi
ted j.The internal regret is formally similar to the external regret (8)but there are some important di�eren
es. First of all, it is easy tosee that internal regret is stronger than the usual regret (8) in thesense that if a player su

eeds in keeping the internal regret small forea
h pairs (i; j), then every 
omponent of the per-round 
umulative
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Potential-based Algorithms 23external regret ve
tor stays 
lose to zero as well. Indeed, assume thatmaxf0; R(i;j);tg � at = o(t) for all possible pairs (i; j) and for somesequen
e at � 0, t � 1. Let k 2 f1; : : : ;mg be the a
tion with minimal
umulative loss, that is,Pts=1 L(k; ys) = min1�i�mPts=1 L(i; ys). Thenthe 
umulative regret based on (8) is justtXs=10� mXj=1 pj;tL(j; ys)� L(k; ys)1A = mXj=1R(k;j);t � mat = o(t) :Thus, small 
umulative internal regret implies small 
umulative regretof the form 
onsidered in the experts' framework. On the other hand,it is easy to show by example that, for m � 3, small 
umulative regretdoes not imply small internal regret, and in fa
t, it is signi�
antly morediÆ
ult to 
onstru
t strategies whi
h a
hieve a small internal regret.The key question now is whether it is possible to de�ne a predi
tor ptsatisfying 
ondition (1) for the generalized regret. The existen
e of su
hpt is shown in the next result. For su
h a predi
tor we may then applyTheorem 1 and its 
orollaries to obtain performan
e bounds withoutfurther work.Theorem 3. Consider a de
ision problem des
ribed above with driftfun
tion (10) and potential �, where r� � 0. Then a randomizedpredi
tor satisfying 
ondition (1) is de�ned by the unique solution tothe set of m linear equationspk;t = Pmj=1 pj;t PNi=1 Iffi;t=kgAi(j; t)ri�(Rt�1)PNi=1Ai(k; t)ri�(Rt�1) k = 1; : : : ;m:Observe that in the spe
ial 
ase of N = m and fi;t = i and Ai(k; t) =1, the predi
tor of Theorem 3 redu
es to the predi
tor (9). The proofof the theorem, whi
h we relegate to the appendix, is a generalizationof a proof 
ontained in (Hart and Mas-Colell, 2000).We return now to the spe
ial 
ase of internal regret. Hart and Mas-Colell (2000) �rst proved the existen
e of a predi
tor for whi
h themaximal 
umulative internal regret maxj;kR(j;k);t is o(t). Indeed, theiralgorithm is just the spe
ial 
ase of the predi
tor of Theorem 3 for thepolynomial potential with p = 2. For the algorithm of Hart and Mas-Colell one obtains a bound of the form maxj;kR(j;k);t = O(ptm) . Thisbound may be improved signi�
antly for large values of m by 
onsid-ering the predi
tor of Theorem 3 with other potential fun
tions. Forexample, if � is the exponential potential (3), then a straightforward
ombination of Theorem 3 and Corollary 2 implies the following:
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24 Cesa-Bian
hi and LugosiCorollary 8. If the randomized predi
tor of Theorem 3 is run withthe exponential potential (3) and parameter � = p4 lnm=t, then forall sequen
es y1; y2; : : : 2 Y its internal regret satis�esmaxj;k R(j;k);t � 2pt lnm :A similar bound may be obtained by using the polynomial potentialwith exponent p = 2 lnN . It is an interesting open question to �nd thebest possible bound for maxj;kR(j;k);t in terms of m.AppendixProof. We write 
ondition (1) as follows:r�(Rt�1) � rt= NXi=1 ri�(Rt�1) mXk=1 pk;tAi(k; t) [L(k; yt)� L(fi;t; yt)℄= mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t) [L(k; yt)� L(fi;t; yt)℄= mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t)L(k; yt)� mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t)L(fi;t; yt)= mXk=1 mXj=1 NXi=1 Iffi;t=jgri�(Rt�1)pk;tAi(k; t)L(k; yt)� mXk=1 mXj=1 NXi=1 Iffi;t=kgri�(Rt�1)pj;tAi(j; t)L(k; yt)= mXk=1L(k; yt)" NXi=1 ri�(Rt�1)pk;tAi(k; t)� mXj=1 NXi=1 Iffi;t=kgri�(Rt�1)pj;tAi(j; t)35 � 0 :
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Potential-based Algorithms 25Sin
e the L(k; yt) are arbitrary and nonnegative, the above is impliedby NXi=1 ri�(Rt�1)pk;tAi(k; t)� mXj=1 NXi=1 Iffi;t=kgri�(Rt�1)pj;tAi(j; t) � 0 (11)for ea
h k = 1; : : : ;m. Solving for pk;t yields the result.We now 
he
k that su
h a predi
tor always exists. Let M be the(m�m) matrix whose entries areMk;j = PNi=1 Iffi;t=kgri�(Rt�1)Ai(j; t)PNi=1ri�(Rt�1)Ai(k; t) :Then 
ondition (11) is implied by Mp = p. As r� � 0, M is nonnega-tive, and thus the eigenve
tor equation Mp = p has a positive solutionby the Perron-Frobenius theorem (Seneta, 1981). 2A
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