
Learning Page-Independent Heuristics for ExtractingData from Web PagesWilliam W. CohenAT&T Shannon Laboratories180 Park AveFlorham Park, NJ 07974wcohen@research.att.com Wei FanDepartment of Computer ScienceColumbia UniversityNew York, NY 10027wfan@cs.columbia.eduAbstractOne bottleneck in implementing a system that intelligently queries the Web is de-veloping \wrappers"|programs that extract data from Web pages. Here we describea method for learning general, page-independent heuristics for extracting data fromHTML documents. The input to our learning system is a set of working wrapper pro-grams, paired with HTML pages they correctly wrap. The output is a general procedurefor extracting data that works for many formats and many pages. In experiments with acollection of 84 constrained but realistic extraction problems, we demonstrate that 30%of the problems can be handled perfectly by learned extraction heuristics, and around50% can be handled acceptably. We also demonstrate that learned page-independentextraction heuristics can substantially improve the performance of methods for learningpage-speci�c wrappers.Keywords: information integration, machine learning, extraction.1 IntroductionA number of recent systems operate by taking information from the Web, storing it in somesort of knowledge base, and then allowing a user to query that knowledge base [14, 7, 11, 8,13, 15, 19]. One bottleneck in building such an information integration system is developing\wrappers"|programs that convert Web pages into an appropriate format for the knowledgebase. Because data can be presented in many di�erent ways on the Web, and Web pagesfrequently change format, building and maintaining these wrappers is often time-consumingand tedious.A number of proposals have been made for reducing the cost of building wrappers. Dataexchange standards like XML have promise; unfortunately, XML is not yet widely used, and1



one might expect that Web information sources using \legacy" formats like HTML will becommon for some time. Some researchers have proposed special languages for writing wrap-pers [9, 5], or semi-automated tools for wrapper construction [1]. Others have implementedsystems that allow wrappers to be trained from examples [12, 10, 16]. Although languagesand learning methods for wrapper construction are useful, they do not entirely eliminate thehuman e�ort involved in \wrapping" a Web site; for example, if learning is used, it is stillnecessary for a human to label the examples given to the learner.Most of the data extracted by wrappers is originally encoded in HTML, and is very regularand repetitive in format: generally, the pages being wrapped are well-structured tablesand lists. An alternative research program would be to develop general, page-independent,heuristics for recognizing (and extracting data from) tables and lists in HTML documents.However, developing general-purpose, reliable, heuristics for table- and list-recognition isnon-trivial, as users often do not implement tables and lists using the appropriate HTMLconstructs (e.g., <table>, <ul>, <dl>). Furthermore, any such heuristics might wellrequire substantial e�ort to maintain as HTML and conventions for using it continue toevolve.In this paper, we seek to learn general, page-independent heuristics for extracting datafrom HTML documents. The input to our learning system is a set of working wrapperprograms, paired with HTML pages they correctly wrap. The output is a general, page-independent procedure for extracting data|a procedure that works for many formats andmany pages. New pages that are correctly wrapped by the learned procedure can be incor-porated into a knowledge base with minimal human e�ort; it is only necessary to indicatewhere in the knowledge base the extracted information should be stored. Our method thusdi�ers from earlier methods for learning wrappers, in which the goal of learning was a wrap-per for pages with a single speci�c format, and a new training process is needed for eachpage format.Below we will describe our learning method, and evaluate it on a collection of 84 extrac-tion problems encountered in building applications for the information integration systemWHIRL [4, 5]. We �rst identify two types of extraction problems, namely extraction ofsimple lists and simple hotlists; these were the most common types of extraction problemsfor WHIRL, together comprising about 75% of the implemented wrappers. We then explainhow this extraction problem can be reduced to a more conventional classi�cation problem,thus allowing existing learners to be used to learn extraction heuristics. We demonstratethat around 30% of the benchmark problems can be handled perfectly by learned extractionheuristics, and around 50% of the benchmarks can be handled reasonably well. We also showthat the learned heuristics are domain-independent.We also evaluate a hybrid system that combines learned page-independent extractionheuristics with a more conventional wrapper-learning approach, in which the learner is re-trained for each page format. We show that incorporating page-independent heuristics leadsto improved performance: for instance, the hybrid system gets acceptable performance on80% of the benchmarks after seeing only 6 training examples, where as the conventionalsystem requires 12 training examples to do as well.2



2 Extraction as classi�cation2.1 Extraction as tree rewritingIn earlier work [5] we described a special-purpose language for writing wrappers. A programin this language manipulates an HTML parse tree (that is, a tree with nodes labeled by tagnames like body, table, and ul), primarily by deleting and relabeling nodes. A wrapper inthis language converts the parse tree for a Web page into another tree labeled with termsfrom the knowledge base, which can be stored directly in the knowledge base. This paradigmfor extraction is clearly not su�cient for all purposes, since it is impossible to extract alongboundaries not indicated by HTML markup commands; for instance, it is impossible toseparate names from a�liations in the HTML page shown on the left-hand side of Figure 1.In practise, however, the language is almost always expressive enough to wrap the inputs ofWHIRL.1As a �rst step in understanding the problems involved in automatically learning wrappers,we collected 111 di�erent wrapper programs, all written as part of the WHIRL project, butwritten over several months in several di�erent domains. Each of these wrappers was pairedwith a single sample page that it correctly wrapped. This was as complete a sample ofworking conversion programs as we could assemble; the only existing wrappers that werediscarded were ones for which no correctly-wrapped HTML pages were available, due tochanges in the associated Web sites. Of these 111 wrappers, 84 (or nearly 75%) fell into twospecial classes, which we call simple lists and simple hotlists.In a page containing a simple list , the structure extracted is a one-column relation con-taining a set of strings s1, . . . , sN , and each si is all the text that falls below some nodeni in the parse tree. In a simple hotlist , the extracted structure is a two-column relation,containing a set of pairs hs1; u1i, . . . , hsn; uNi; each si is all the text that falls below somenode ni in the parse tree; and each ui is a URL that is associated with some HTML anchorelement ai that appears somewhere inside ni. Figure 1 shows the HTML source for a simplelist and a simple hotlist, together with the data that is extracted from each. Notice that,although we use the term \list", it is not important that the information is presented ina format that looks like a list to the user; for instance, our example for a \simple list" isformatted as a table with two columns.Henceforth we will concern ourselves only with the problem of extracting simple lists andsimple hotlists. We will evaluate all methods on the collection of 84 benchmark problems de-scribed above. In the benchmarks, we ignore certain operations performed by the wrappers.Some wrappers included �lter predicates, which allow them to ignore certain table entries;for instance, a wrapper might extract a pair hs; ui only if the URL u contains the substring\.ps". These �lter predicates were removed, since this sort of �ltering can be performed justas easily after extraction using mechanisms in the knowledge base. A few wrappers werealso associated with sed scripts, which are applied (by the interpreter for the tree-rewritinglanguage) to a Web page before parsing.2 Additional preprocessing steps are applied to every1It should be noted, however, that WHIRL includes certain soft-matching facilities that make it verytolerant of inexact extraction. The language might well be less useful if used to build wrappers for a morebrittle information integration system.2Most of these scripts were written to avoid bugs in the HTML parser.We are currently using the HTML3



A Simple ListHTML Source:<html><head>. . .</head><body><h1>Editorial Board Members</h1><table> <tr><td>G. R. Emlin, Lucent</td><td>Harry Q. Bovik, Cranberry U</td></tr> <tr><td>Bat Gangley, UC/Bovine</td><td>Pheobe L. Mind, Lough Tech</td></tr> <tr>. . .</table>. . .Extracted data:G. R. Emlin, LucentHarry Q. Bovik, Cranberry UBat Gangly, UC/Bovine. . .
A Simple HotlistHTML Source:<html><head>. . .</head><body><h1>My Publications</h1><ul><li>Optimization of fuzzy neuralnetworks using distributed parallelcase-based genetic knowledge discovery(<a href=\buzz.ps">postscript</a>,<a href=\buzz.pdf>PDF</a>)</li><li>A linear-time version of GSAT(<a href=\peqnp.ps">postscript</a>)</li>. . .Extracted data:Optimization . . . (postscript,PDF) buzz.psOptimization . . . (postscript, PDF) buzz.pdfA linear-time version of . . . peqnp.ps. . . . . .Figure 1: A simple list, a simple hotlist, and the data that would be extracted from each.Web page; for example, relative URLs are always translated to absolute ones. We simpli�edthe problem by assuming that all preprocessing steps are known, including any page-speci�csed scripts|i.e., we paired each wrapper with a preprocessed Web page input.2.2 Extraction of lists as classi�cationMost existing learning systems learn to classify: that is, they learn to associate a class labelfrom some small, �xed, set with an unlabeled instance. To use a classi�cation learner on anextraction problem, it is necessary to re-cast extraction as a labeling task.It is straightforward to use labels to encode the output of a wrapper for a simple lists ora simple hotlists. Since each data item extracted by the wrapper corresponds directly to anode in the parse tree, one can encode output of wrapper by appropriately labeling parsetree nodes. To encode a simple list, label a node ni as \positive" if it is associated with someextracted string si, and \negative" otherwise. For instance, in the parse tree for the simplelist in Figure 1, every td node would be labelled as positive. Given a correctly labeled tree,data can be extracted by simply �nding each positive node ni, and extracting all the textbelow it as si, the i-th entry in the extracted list.parser included in the Perl libwww package, which is fairly robust, but far from perfect. It is fairly hard towrite a completely general HTML parser, since HTML elements are often not explicitly closed, and the rulesfor implicitly closing unclosed elements are complex. 4



Encoding a simple hotlist with parse tree labels can be done in a similar way. For asimple hotlist, label a node ni as \positive" if it is associated with some extracted string sior some extracted URL ui, and \negative" otherwise. For instance, in the parse tree for thesimple hotlist in Figure 1, every a (anchor) node would be labelled as positive, as well asevery li node. To extract data from a correctly labeled tree, one examines each outermostpositively labeled node yi, and does the following. If yi contains some positive node zi, thenfor each such zi, extract the pair hsi; uii, where si consists of all text below yi, and ui is thehref attribute of zi. If yi does not contain any positive nodes, then treat yi as both the\text node" and the \anchor node": that is, extract the pair hsi; uii, where si consists of alltext below yi, and ui is the href attribute of yi (which must be an anchor).To summarize, for simple lists and hotlists, the task of extracting data from a Web pagecan be re-cast as the task of labeling each node in the HTML parse tree for the page. Bythe same token, a wrapper can be represented as a procedure for labeling parse tree nodes.Such a node-labeling procedure can be learned from a sample of correctly labeled parse treenodes. A set of correctly labeled parse tree nodes, in turn, can be easily generated given anexisting wrapper and a page that is correctly wrapped.We thus propose the following procedure for learning general, page-independent extrac-tion procedures. Begin with a set of wrappers w1; : : : ; wN that correctly wrap the Web pagesp1; : : : ; pN . For each wi; pi pair, �nd the parse tree for pi, and label nodes in that tree ac-cording to wi. This results in a set of labeled parse tree nodes hni;1; `i;1i, . . . , hni;mi; `i;mii,which are added to a data set S. Finally, use S to train some classi�cation learner. Theoutput of the learner is a node-labeling procedure h, which is a functionh : parse-tree-node �! fpositive;negativegThe learned function h can then be used to label the parse tree nodes of new Web pages,and thereby to extract data from these pages. It remains to describe the learning method,and the way in which parse tree nodes are encoded for the learner.2.3 Features and learning methodsIn most of our experiments we used the rule learning system RIPPER [2]. RIPPER has someadvantages for this problem: in particular, it handles the \set-valued" features (describedbelow) directly, and is e�cient enough to use on problems of this scale. (About 65,000 parse-tree node examples are generated from the 84 wrapper/page pairs). The main reason forusing RIPPER, however, was that we were familiar with it; as we show later, other learningsystems achieve comparable results on this problem.RIPPER, like most classi�cation learners, requires an example to be represented as avector of relatively simple features. The value of each feature is either a real number, orelse a symbolic feature|an atomic symbol from a designated set, like ftrue, falseg. Theprimitive tests allowed for a real-valued feature are of the form f � � or f � �, where f is afeature and � is a constant number, and the primitive tests allowed for a symbolic feature areof the form f = ai, where f is a feature and ai is a possible value for f . RIPPER also allowsset-valued features [3]. The value of a set-valued feature is a set of atomic symbols, and testson set-valued features are of the form ai 2 f , where f is the name of feature and ai is a5



possible value (e.g., ul2ancestorTagNames). For two-class problems of this sort, RIPPERuses a number of heuristics to build a disjunctive normal form formula that generalizes thepositive examples. This formula is usually thought of as a set of rules, each rule having theform \label an instance `positive' if t1 and t2 and ...", where each ti in the rule is a primitivetest on some feature.After some thought, we devised the following nineteen features to describe a parse treenode. The tag name is the HTML tag name associated with the node, such as a, p, br,and html. This is an informative feature: some tags such as head are always negative, while,other tags such as the anchor tag a are often positive. We measured the size of the stringdirectly associated3 with a node in two ways: the text length is the total size of all the textassociated with a node, and the non-white text length is similar to text length but ignoresblanks, tabs, and line returns. We also measured the length of text contained in the subtreerooted at the current node by the features recursive text length and recursive non-white textlength; these features are important because they measure the size of the string si that wouldbe extracted if the node were marked as positive. The features set of ancestor tag names,depth, number of children, number of siblings, parent tag name, set of child tag names andset of descendent tag names are other natural and easily-computed features. Since the sizeof parse trees varies considerably, we also normalize many of the above features by the totalnumber of nodes or by the maximal node degree.The �nal features we designed are intended to detect and quantify repeated structurein the parse tree; intuitively, this is important, because positive nodes often reside on astructure frequently repeated in the tree. The repetitive aspect of a structure can often bedetected by looking at the sequence of node tags that appear in paths through the tree; forinstance, in the parse tree for bibliography page of Figure 1, there are many paths labeledli-a that originate at the ul node.To measure this sort of repetition, let tag(n) denote the tag associate with a node n,and de�ne the tag sequence position of n, p(n), as the sequence of tags encountered intraversing the path from the root of the parse tree to n: that is, p(n) = hhtml; : : : ; tag(n)i.If p(n1) = ht1; : : : ; tki and p(n2) = ht1; : : : ; tk; tk+1; : : : ; tmi, then we say the tag sequenceposition p(n1) is a pre�x of p(n2); if additionally p(n1) is strictly shorter than p(n2), thenwe say that p(n1) is a proper pre�x of p(n2).We use the node pre�x count for n as a way of measuring the degree to which n partic-ipates in a repeated substructure. The node pre�x count for n, pcount (n), is the number ofleaf nodes l in the tree such that the tag sequence position of n is a pre�x of the tag sequenceof l: more formally, pcount (n) = jfl : p(n) is a tag sequence pre�x of p(l); l is a leaf gj. Thenode su�x count for n, s(n), is closely related; it is de�ned as the number of leaf nodes lwith tag sequence positions of which p(n) is a proper pre�x. We normalize both pcount (n)and scount (n) by the total number of paths in the tree.These last features are clearly engineered, but are based on clear and plausible intutions;the tree-rewriting language speci�es nodes to be re-written in terms of their tag sequence3Text is considered to be \directly associated" with a node if it is contained in the HTML elementassociated with the node, and not contained in any smaller HTML element. For instance, if n is the �rst linode in the parse tree for the simple hotlist of Figure 1, the text \Optimization of . . . discovery" is directlyassociated with n, but the text \(postscript)" is not.6



Rule 1. Label a node \positive" if tagName= \a" and normalizedNodeSu�xCount � 0.445545.Rule 2. Label a node \positive" if tagName= \a", normalizedNodeSu�xCount � 0.2666355, anddepth � 4.Rule 3. Label a node \positive" if normalizedNodePre�xCount � 0.688645, tagName = \p", andnumSiblings � 317.Rule 4. Label a node \positive" if tagName= \td" and normalizedNodePre�xCount�0.981132.Figure 2: Some extraction rules learned by RIPPER.positions, and tools for writing programs in the tree-rewriting language are also based onlooking for repeated tag sequences. Most of the other features were introduced with a fairlynon-selective \brainstorming" process; here we were looking for features that were easy tocompute and plausibly related to the classi�cation task. No e�ort was made to to select anoptimal set of features, or to include any sort of strong knowledge of the type of extractionprograms we expected to see.As an illustration of the way in which these features are used in learning, Figure 2 showssome representative rules that appear in the hypothesis obtained by training RIPPER on allof the 84 wrapper/page pairs. Rule 1 says that a node should be labeled as \positive"|thatis, part of a list to be extracted|if it is an anchor (a) element that repeats frequently, asmeasured by the normalized su�x count for the node. Rule 2 is similar; it marks anchorelements for extraction if they repeat somewhat less frequently, but are close to the rootof the parse tree. Rule 3 marks paragraph (p) elements for extraction; since this type ofelement is less likely to be in a list, the rule requires very strong repetition, as measured bothby the node pre�x count, and by the number of siblings of the node. Rule 4 marks tableentry elements (td) for extraction if they are part of a repeating structure that comprisesmost of the page. The complete hypothesis learned by RIPPER from this data contains atotal of 36 such rules.3 Experimental results3.1 Leave-one-page-out experimentsWe used the following method to evaluate the learned extraction heuristics. For each wrap-per/Web page pair wi; pi, we trained the learner on a dataset constructed from all other wrap-per/page pairs: that is, from the pairs hw1; p1i; : : : ; hwi�1; pi�1i; hwi+1; pi+1i; : : : ; hwm; pmi.We then tested the learned extraction heuristics on data constructed from the single held-out page pi, measuring the recall and precision of the learned classi�er.44Recall is the fraction of positive labels that were labeled as positive by the classi�er, and precision isthe fraction of nodes labeled as positive by the classi�er that were correctly labeled. In other words, if Pp isthe set of nodes predicted to be positive by the learner, and Pw is the set of nodes that are labeled positiveby the target wrapper program, then recall is jPp \ Pwj=jPwj, and precision is jPp \ Pwj=jPpj.7
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lv1-domain-out lv1-page-out Intra-domain(baseline) lv1-page-outDomain #pages #perfect #good #perfect #good #perfect #goodbirds 41 13 22 12 23 13 23games 25 8 9 10 12 10 11movies 9 1 3 3 4 5 6news 9 2 2 1 2 0 0Total 84 24 36 26 41 28 40(as percent) 29% 43% 31% 49% 33% 48%Table 1: Performance of RIPPER on leave-one-out variants, by domainlv1-domain-out lv1-page-out Intra-domainlv1-page-outDomain #pages #perfect #good #perfect #good #perfect #goodbirds 41 10 21 12 24 15 25games 25 6 7 7 8 7 10movies 9 1 1 3 5 8 8news 9 4 4 4 4 0 0Total 84 21 33 26 41 30 43(as percent) 25% 39% 31% 49% 36% 51%Table 2: Performance of CART on leave-one-out experimentsexperiment above.We will use � = 5% as a baseline performance threshold for later experiments; however, asshown in Figure 3, the number of �-good pages does not change much as � is varied (becausethe clusters are so tight). We believe that this sort of aggregation is more appropriate formeasuring overall performance than other common aggregation schemes, such as measuringaverage precision and recall. On problems like this, a system that �nds perfect wrappersonly half the time and fails abjectly on the remaining problems is much more useful than asystem which is consistently mediocre.3.2 Variations on leave-one-page-outIn the leave-one-page-out experiment, when extraction performance is tested on a page pi,the learned extraction program has no knowledge whatsoever of pi itself. However, it maywell be the case that the learner has seen examples of only slightly di�erent pages|forinstance, pages from the same Web site, or Web pages from di�erent sites that presentsimilar information. So it is still possible that the learned extraction heuristics are to someextent specialized to the benchmark problems from which they were generated, and wouldwork poorly in a novel application domain.We explored this issue by conducting two variants of the leave-one-page-out experiment.The �rst variant is a \leave-one-domain-out" experiment. Here we group the pages bydomain, and for each domain, test performance of the extraction heuristics obtained by9



training on the other three domains. If the extraction heuristics were domain-speci�c, thenone would expect to see markedly worse performance; in fact, the performance degradesonly slightly. (Note also that less training data is available in the \leave-one-domain-out"experiments, another possible cause of degraded performance.) These results shown in theleftmost section of Table 1.The second variant is presented in the rightmost section of Table 1, labeled as the \intra-domain leave-one-page-out" experiment. Here we again group the pages by domain, andperform a separate leave-one-page-out experiment for each domain. Thus, in this experimentthe extraction heuristics tested for page pi are learned from only the most similar pages|the pages from the same domain. In this variant, one would expect a marked improvementin performance if the learned extraction heuristics were very domain- or site-speci�c. Infact, there is little change. These experiments thus support the conjecture that the learnedextraction are in fact quite general.We also explored using classi�cation learners other than RIPPER. Table 2 shows theresults for the same set of experiments using CART, a widely used decision tree learner.7CART achieves performance generally comparable to RIPPER. We also explored using C4.5[17] and an implementation of Naive Bayes; however, preliminary experiments suggestedthat their performance was somewhat worse than both RIPPER and CART.4 Comparison to page-speci�c wrapper learningAs noted in the introduction, in previous research in learning wrappers, a new wrapper hasbeen trained for each new page format, using examples speci�c to that page. One possibleway of training such a wrapper-induction system is the following. The user �rst labels the�rst few items that should be extracted from the list starting from the top of the page. Theseare assumed to be a complete list of items to be extracted up to this point; that is, it isassumed that any unmarked text preceding the last marked item should not be extracted.The learning system then learns a wrapper from these examples, and uses it to extract datafrom the remainder of the page. The learned wrapper can also be used for other pages withthe same format as the page used in training.For simple lists and hotlists, the approach outlined above in Section 2.2 can also beused to learn page-speci�c wrappers. The only di�erence is in the way that a dataset isconstructed, and the circumstances in which the learned wrapper is used; in learning a page-speci�c wrapper, all training examples come from the page p being wrapped, and the learnedclassi�er is only used to label parse tree nodes from p (or other pages with the same formatas p).We performed the following experiment to test the e�ectiveness of such a learning system.For a wrapper/page pair wi; pi, we used wi and pi to build a labeled parse tree. Then, wetraversed the tree in a left-to-right, depth-�rst order, collecting all nodes up to and includingthe K-th node with a positive label into a sample Si;K; this simulates asking the user to7We used the implementation of CART supplied with the IND package. Since CART doesn't handleset-valued attribute, we encoded sets with a bit-vector of boolean attributes, one for each possible set value.After this transformation, there are 235 attributes in the data set for CART.10
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wrappers for 60% of the problems with only 6 user inputs for the hybrid system, while forthe intra-page system, 15-20 labeled examples are necessary; also, the hybrid system getsacceptable performance on 80% of the benchmarks after seeing only 6 training examples,while the intra-page system requires 12 training examples to do as well.Similar results were obtained with CART (not shown), except that CART's performancewas worse for very small values of K.5 ConclusionWe have described a method for learning general, page-independent heuristics for extractingdata from (\wrapping") HTML documents. The input to our learning system is a set ofworking wrapper programs, paired with HTML pages they correctly wrap. The output isa general, page-independent heuristic procedure for extracting data. Page formats that arecorrectly \wrapped" by the learned heuristics can be incorporated into a knowledge basewith minimal human e�ort; it is only necessary to indicate where in the knowledge basethe extracted information should be stored. In contrast, other wrapper-induction methodsrequire a human teacher to train them on each new page format.More speci�cally, we de�ned two common types of extraction problems|extraction ofsimple lists and simple hotlists|which together comprise nearly 75% of the wrappers re-quired in experiments with WHIRL. We showed that learning these types of wrappers canbe reduced to a classi�cation problem. Using this reduction and standard-o�-the shelf learn-ers, we were able to learn extraction heuristics which worked perfectly on about 30% ofthe problems in a large benchmark collection, and which worked well about about 50% ofthe problems. The extraction heuristics were also demonstrated to be domain-independent.Finally, we showed that page-independent extraction heuristics are complementary to moretraditional methods for learning wrappers, and that a simple combination of these methodscan substantially improve the performance of a page-speci�c wrapper learning method.Ashish and Knoblock [1] propose heuristics for detecting hierarchical structure in anHTML document; obtaining this structure can facilitate programming a wrapper. Theseheuristics were designed manually, rather than acquired by learning as in our system.One of the authors of this paper has also evaluated certain hand-coded heuristic meth-ods for detecting lists and hotlists in HTML pages [6]. Briey, this work considers a veryrestricted class of possible wrapper programs|one chosen by careful analysis of the 84 ex-traction problems used in this study. Given an HTML page, it is possible to enumerate allwrapper programs in the restricted class, and then rank the enumerated wrappers accordingto various heuristic measures. Cohen's results show that some natural ranking heuristicsperform relatively poorly on this task: for instance, the wrapper that extracts the longestlist is correct only 18% of the time. However, more complex heuristics, encoded in a special-purpose logic, perform as well as or better than the learning approach discussed here. Anadvantage of the learning approach (relative to the ranking approach [6]) is that the learnedheuristics are obtained without manual engineering, and hence can be more readily adaptedto variations of the extraction problem. The learning approach is also applicable to a broaderclass of extraction programs. 13
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