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Abstract

One bottleneck in implementing a system that intelligently queries the Web is de-
veloping “wrappers” —programs that extract data from Web pages. Here we describe
a method for learning general, page-independent heuristics for extracting data from
HTML documents. The input to our learning system is a set of working wrapper pro-
grams, paired with HTML pages they correctly wrap. The output is a general procedure
for extracting data that works for many formats and many pages. In experiments with a
collection of 84 constrained but realistic extraction problems, we demonstrate that 30%
of the problems can be handled perfectly by learned extraction heuristics, and around
50% can be handled acceptably. We also demonstrate that learned page-independent
extraction heuristics can substantially improve the performance of methods for learning
page-specific wrappers.
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1 Introduction

A number of recent systems operate by taking information from the Web, storing it in some
sort of knowledge base, and then allowing a user to query that knowledge base [14, 7, 11, 8,
13, 15, 19]. One bottleneck in building such an information integration system is developing
“wrappers”—programs that convert Web pages into an appropriate format for the knowledge
base. Because data can be presented in many different ways on the Web, and Web pages
frequently change format, building and maintaining these wrappers is often time-consuming
and tedious.

A number of proposals have been made for reducing the cost of building wrappers. Data
exchange standards like XML have promise; unfortunately, XML is not yet widely used, and



one might expect that Web information sources using “legacy” formats like HTML will be
common for some time. Some researchers have proposed special languages for writing wrap-
pers [9, 5], or semi-automated tools for wrapper construction [1]. Others have implemented
systems that allow wrappers to be trained from examples [12, 10, 16]. Although languages
and learning methods for wrapper construction are useful, they do not entirely eliminate the
human effort involved in “wrapping” a Web site; for example, if learning is used, it is still
necessary for a human to label the examples given to the learner.

Most of the data extracted by wrappers is originally encoded in HT'ML, and is very regular
and repetitive in format: generally, the pages being wrapped are well-structured tables
and lists. An alternative research program would be to develop general, page-independent,
heuristics for recognizing (and extracting data from) tables and lists in HI'ML documents.
However, developing general-purpose, reliable, heuristics for table- and list-recognition is
non-trivial, as users often do not implement tables and lists using the appropriate HTML
constructs (e.g., <table>, <ul>, <dl>). Furthermore, any such heuristics might well
require substantial effort to maintain as HTML and conventions for using it continue to
evolve.

In this paper, we seek to learn general, page-independent heuristics for extracting data
from HTML documents. The input to our learning system is a set of working wrapper
programs, paired with HTML pages they correctly wrap. The output is a general, page-
independent procedure for extracting data—a procedure that works for many formats and
many pages. New pages that are correctly wrapped by the learned procedure can be incor-
porated into a knowledge base with minimal human effort; it is only necessary to indicate
where in the knowledge base the extracted information should be stored. Our method thus
differs from earlier methods for learning wrappers, in which the goal of learning was a wrap-
per for pages with a single specific format, and a new training process is needed for each
page format.

Below we will describe our learning method, and evaluate it on a collection of 84 extrac-
tion problems encountered in building applications for the information integration system
WHIRL [4, 5]. We first identify two types of extraction problems, namely extraction of
simple lists and simple hotlists; these were the most common types of extraction problems
for WHIRL, together comprising about 75% of the implemented wrappers. We then explain
how this extraction problem can be reduced to a more conventional classification problem,
thus allowing existing learners to be used to learn extraction heuristics. We demonstrate
that around 30% of the benchmark problems can be handled perfectly by learned extraction
heuristics, and around 50% of the benchmarks can be handled reasonably well. We also show
that the learned heuristics are domain-independent.

We also evaluate a hybrid system that combines learned page-independent extraction
heuristics with a more conventional wrapper-learning approach, in which the learner is re-
trained for each page format. We show that incorporating page-independent heuristics leads
to improved performance: for instance, the hybrid system gets acceptable performance on
80% of the benchmarks after seeing only 6 training examples, where as the conventional
system requires 12 training examples to do as well.



2 Extraction as classification

2.1 Extraction as tree rewriting

In earlier work [5] we described a special-purpose language for writing wrappers. A program
in this language manipulates an HTML parse tree (that is, a tree with nodes labeled by tag
names like body, table, and ul), primarily by deleting and relabeling nodes. A wrapper in
this language converts the parse tree for a Web page into another tree labeled with terms
from the knowledge base, which can be stored directly in the knowledge base. This paradigm
for extraction is clearly not sufficient for all purposes, since it is impossible to extract along
boundaries not indicated by HTML markup commands; for instance, it is impossible to
separate names from affiliations in the HTML page shown on the left-hand side of Figure 1.
In practise, however, the language is almost always expressive enough to wrap the inputs of
WHIRL.!

As a first step in understanding the problems involved in automatically learning wrappers,
we collected 111 different wrapper programs, all written as part of the WHIRL project, but
written over several months in several different domains. Each of these wrappers was paired
with a single sample page that it correctly wrapped. This was as complete a sample of
working conversion programs as we could assemble; the only existing wrappers that were
discarded were ones for which no correctly-wrapped HTML pages were available, due to
changes in the associated Web sites. Of these 111 wrappers, 84 (or nearly 75%) fell into two
special classes, which we call simple lists and simple hotlists.

In a page containing a stmple list, the structure extracted is a one-column relation con-
taining a set of strings sy, ..., sy, and each s; is all the text that falls below some node
n; in the parse tree. In a simple hotlist, the extracted structure is a two-column relation,
containing a set of pairs (s1,uy), ..., (sn,un); each s; is all the text that falls below some
node n; in the parse tree; and each wu; is a URL that is associated with some HTML anchor
element a; that appears somewhere inside n;. Figure 1 shows the HTML source for a simple
list and a simple hotlist, together with the data that is extracted from each. Notice that,
although we use the term “list”, it is not important that the information is presented in
a format that looks like a list to the user; for instance, our example for a “simple list” is
formatted as a table with two columns.

Henceforth we will concern ourselves only with the problem of extracting simple lists and
simple hotlists. We will evaluate all methods on the collection of 84 benchmark problems de-
scribed above. In the benchmarks, we ignore certain operations performed by the wrappers.
Some wrappers included filter predicates, which allow them to ignore certain table entries;
for instance, a wrapper might extract a pair (s, u) only if the URL w contains the substring
“.ps”. These filter predicates were removed, since this sort of filtering can be performed just
as easily after extraction using mechanisms in the knowledge base. A few wrappers were
also associated with sed scripts, which are applied (by the interpreter for the tree-rewriting
language) to a Web page before parsing.? Additional preprocessing steps are applied to every

1t should be noted, however, that WHIRL includes certain soft-matching facilities that make it very
tolerant of inexact extraction. The language might well be less useful if used to build wrappers for a more
brittle information integration system.

ZMost of these scripts were written to avoid bugs in the HTML parser.We are currently using the HTML



A Simple List

HTML Source:
<html><head>. .. </head>
<body>
<h1>Editorial Board Members< /h1>
<table> <tr>
<td>G. R. Emlin, Lucent</td>
<td>Harry Q. Bovik, Cranberry U< /td>
<Jtr> <tr>
<td>Bat Gangley, UC/Bovine< /td>
<td>Pheobe L. Mind, Lough Tech</td>
<Jtr> <tr>

A Simple Hotlist

HTML Source:

<html><head>. .. </head>

<body>

<h1>My Publications</h1>

<ul>

<li>Optimization of fuzzy neural
networks using distributed parallel
case-based genetic knowledge discovery
(<a href="buzz.ps” >postscript</a>,
<a href=“buzz.pdf>PDF < /a>)</li>

<li>A linear-time version of GSAT

... (<a href="peqnp.ps” >postscript</a>)</li>
</table>

Extracted data: Extracted data:

G. R. Emlin. Lucent Optimization ... (postscript,PDF) | buzz.ps
Harry Q. Bovik, Cranberry U Optimization ... (postscript, PDF) | buzz.pdf
Bat Gangly, UC/Bovine A linear-time version of ... peqnp.ps

Figure 1: A simple list, a simple hotlist, and the data that would be extracted from each.

Web page; for example, relative URLs are always translated to absolute ones. We simplified
the problem by assuming that all preprocessing steps are known, including any page-specific
sed scripts—i.e., we paired each wrapper with a preprocessed Web page input.

2.2 Extraction of lists as classification

Most existing learning systems learn to classify: that is, they learn to associate a class label
from some small, fixed, set with an unlabeled instance. To use a classification learner on an
extraction problem, it is necessary to re-cast extraction as a labeling task.

It is straightforward to use labels to encode the output of a wrapper for a simple lists or
a simple hotlists. Since each data item extracted by the wrapper corresponds directly to a
node in the parse tree, one can encode output of wrapper by appropriately labeling parse
tree nodes. To encode a simple list, label a node n; as “positive” if it is associated with some
extracted string s;, and “negative” otherwise. For instance, in the parse tree for the simple
list in Figure 1, every td node would be labelled as positive. Given a correctly labeled tree,
data can be extracted by simply finding each positive node n;, and extracting all the text
below it as s;, the i-th entry in the extracted list.

parser included in the Perl libwww package, which is fairly robust, but far from perfect. It is fairly hard to
write a completely general HTML parser, since HITML elements are often not explicitly closed, and the rules
for implicitly closing unclosed elements are complex.



Encoding a simple hotlist with parse tree labels can be done in a similar way. For a
simple hotlist, label a node n; as “positive” if it is associated with some extracted string s;
or some extracted URL wu;, and “negative” otherwise. For instance, in the parse tree for the
simple hotlist in Figure 1, every a (anchor) node would be labelled as positive, as well as
every 11 node. To extract data from a correctly labeled tree, one examines each outermost
positively labeled node y;, and does the following. If y; contains some positive node z;, then
for each such z;, extract the pair (s;,u;), where s; consists of all text below y;, and u; is the
href attribute of z;. If y; does not contain any positive nodes, then treat y; as both the
“text node” and the “anchor node”: that is, extract the pair (s;, u;), where s; consists of all
text below y;, and w; is the href attribute of y; (which must be an anchor).

To summarize, for simple lists and hotlists, the task of extracting data from a Web page
can be re-cast as the task of labeling each node in the HTML parse tree for the page. By
the same token, a wrapper can be represented as a procedure for labeling parse tree nodes.
Such a node-labeling procedure can be learned from a sample of correctly labeled parse tree
nodes. A set of correctly labeled parse tree nodes, in turn, can be easily generated given an
existing wrapper and a page that is correctly wrapped.

We thus propose the following procedure for learning general, page-independent extrac-
tion procedures. Begin with a set of wrappers wy, ..., wy that correctly wrap the Web pages
P1,...,pn. For each w;, p; pair, find the parse tree for p;, and label nodes in that tree ac-
cording to w;. This results in a set of labeled parse tree nodes (n;1,0;1), .y (Nimys lim,)s
which are added to a data set S. Finally, use S to train some classification learner. The
output of the learner is a node-labeling procedure h, which is a function

h : parse-tree-node — {positive, negative}

The learned function h can then be used to label the parse tree nodes of new Web pages,
and thereby to extract data from these pages. It remains to describe the learning method,
and the way in which parse tree nodes are encoded for the learner.

2.3 Features and learning methods

In most of our experiments we used the rule learning system RIPPER [2]. RIPPER has some
advantages for this problem: in particular, it handles the “set-valued” features (described
below) directly, and is efficient enough to use on problems of this scale. (About 65,000 parse-
tree node examples are generated from the 84 wrapper/page pairs). The main reason for
using RIPPER, however, was that we were familiar with it; as we show later, other learning
systems achieve comparable results on this problem.

RIPPER, like most classification learners, requires an example to be represented as a
vector of relatively simple features. The value of each feature is either a real number, or
else a symbolic feature—an atomic symbol from a designated set, like {true, false}. The
primitive tests allowed for a real-valued feature are of the form f > 6 or f < 6, where f is a
feature and 6 is a constant number, and the primitive tests allowed for a symbolic feature are
of the form f = a;, where f is a feature and «; is a possible value for f. RIPPER also allows
set-valued features [3]. The value of a set-valued feature is a set of atomic symbols, and tests
on set-valued features are of the form a; € f, where f is the name of feature and «; is a



possible value (e.g., ul€ancestorTagNames). For two-class problems of this sort, RIPPER
uses a number of heuristics to build a disjunctive normal form formula that generalizes the
positive examples. This formula is usually thought of as a set of rules, each rule having the
form “label an instance ‘positive’ if ¢; and ¢5 and ...”, where each ¢; in the rule is a primitive
test on some feature.

After some thought, we devised the following nineteen features to describe a parse tree
node. The tag name is the HTML tag name associated with the node, such as a, p, br,
and html. This is an informative feature: some tags such as head are always negative, while,
other tags such as the anchor tag a are often positive. We measured the size of the string
directly associated® with a node in two ways: the text length is the total size of all the text
associated with a node, and the non-white text length is similar to text length but ignores
blanks, tabs, and line returns. We also measured the length of text contained in the subtree
rooted at the current node by the features recursive text length and recursive non-white text
length; these features are important because they measure the size of the string s; that would
be extracted if the node were marked as positive. The features set of ancestor tag names,
depth, number of children, number of siblings, parent tag name, set of child tag names and
set of descendent tag names are other natural and easily-computed features. Since the size
of parse trees varies considerably, we also normalize many of the above features by the total
number of nodes or by the maximal node degree.

The final features we designed are intended to detect and quantify repeated structure
in the parse tree; intuitively, this is important, because positive nodes often reside on a
structure frequently repeated in the tree. The repetitive aspect of a structure can often be
detected by looking at the sequence of node tags that appear in paths through the tree; for
instance, in the parse tree for bibliography page of Figure 1, there are many paths labeled
li-a that originate at the ul node.

To measure this sort of repetition, let tag(n) denote the tag associate with a node n,
and define the tag sequence position of n, p(n), as the sequence of tags encountered in
traversing the path from the root of the parse tree to n: that is, p(n) = (html,... tag(n)).
If p(n1) = (t1,...,tx) and p(ng) = (t1,..., tkytes1,.--,1m), then we say the tag sequence
position p(ny) is a prefix of p(ny); if additionally p(nq) is strictly shorter than p(ns), then
we say that p(ni) is a proper prefix of p(ns).

We use the node prefix count for n as a way of measuring the degree to which n partic-
ipates in a repeated substructure. The node prefix count for n, peount(n), is the number of
leaf nodes [ in the tree such that the tag sequence position of n is a prefix of the tag sequence
of [: more formally, p.oun:(n) = [{{ : p(n) is a tag sequence prefix of p({),[ is a leaf }|. The
node suffix count for n, s(n), is closely related; it is defined as the number of leaf nodes [
with tag sequence positions of which p(n) is a proper prefix. We normalize both peunt(n)
and Se,unt(n) by the total number of paths in the tree.

These last features are clearly engineered, but are based on clear and plausible intutions;
the tree-rewriting language specifies nodes to be re-written in terms of their tag sequence

3Text is considered to be “directly associated” with a node if it is contained in the HTML element
assoclated with the node, and not contained in any smaller HI'ML element. For instance, if n 1s the first 11
node in the parse tree for the simple hotlist of Figure 1, the text “Optimization of . ..discovery” is directly
associated with n, but the text “(postscript)” is not.



Rule 1. Label a node “positive” if tagName= “a” and normalizedNodeSuffixCount > 0.445545.

Rule 2. Label a node “positive” if tagName= “a”, normalizedNodeSuffixCount > 0.2666355, and
depth < 4.

Rule 3. Label a node “positive” if normalizedNodePrefixCount > 0.688645, tagName = “p”, and
numSiblings > 317.

Rule 4. Label a node “positive” if tagName= “td” and normalizedNodePrefixCount>0.981132.

Figure 2: Some extraction rules learned by RIPPER.

positions, and tools for writing programs in the tree-rewriting language are also based on
looking for repeated tag sequences. Most of the other features were introduced with a fairly
non-selective “brainstorming” process; here we were looking for features that were easy to
compute and plausibly related to the classification task. No effort was made to to select an
optimal set of features, or to include any sort of strong knowledge of the type of extraction
programs we expected to see.

As an illustration of the way in which these features are used in learning, Figure 2 shows
some representative rules that appear in the hypothesis obtained by training RIPPER on all
of the 84 wrapper/page pairs. Rule 1 says that a node should be labeled as “positive”—that
is, part of a list to be extracted—if it is an anchor (a) element that repeats frequently, as
measured by the normalized suffix count for the node. Rule 2 is similar; it marks anchor
elements for extraction if they repeat somewhat less frequently, but are close to the root
of the parse tree. Rule 3 marks paragraph (p) elements for extraction; since this type of
element is less likely to be in a list, the rule requires very strong repetition, as measured both
by the node prefix count, and by the number of siblings of the node. Rule 4 marks table
entry elements (td) for extraction if they are part of a repeating structure that comprises
most of the page. The complete hypothesis learned by RIPPER from this data contains a
total of 36 such rules.

3 Experimental results

3.1 Leave-one-page-out experiments

We used the following method to evaluate the learned extraction heuristics. For each wrap-
per/Web page pair w;, p;, we trained the learner on a dataset constructed from all other wrap-
per/page pairs: that is, from the pairs (wy,p1),. .., (Wi—1, Pic1), (Wit1, Pid1)s - -« Wiy P )-
We then tested the learned extraction heuristics on data constructed from the single held-
out page p;, measuring the recall and precision of the learned classifier.*

*Recall is the fraction of positive labels that were labeled as positive by the classifier, and precision is
the fraction of nodes labeled as positive by the classifier that were correctly labeled. In other words, if P, is
the set of nodes predicted to be positive by the learner, and P, is the set of nodes that are labeled positive
by the target wrapper program, then recall is |P, N Py |/|Py|, and precision is | Py, N Pyl/|Ppl.
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Figure 3: Performance of RIPPER in leave-one-page out experiments.

This results in 168 measurements, two for each page. Before attempting to summarize
these measurements we will first present the raw data in detail. All the results of this “leave
one page out” experiment (and two variants that will be described shortly) are shown in the
scatterplot of Figure 3; here we plot for each page p; a point where recall is the z-axis position
and precision is the y-axis position. So that nearby points can be more easily distinguished,
we added 5% noise to both coordinates.’

The scatter plot shows three distinct clusters. One cluster is near the point (100%,100%),
corresponding to perfect agreement with the target wrapper program. The second cluster
is near (0%,100%), and usually corresponds to a test case for which no data at all was
extracted.® The third cluster is near (50%,100%) and represents an interesting type of error:
for most pages in the cluster, the learned wrapper extracted the anchor nodes correctly,
but incorrectly assumed that the text node was identical to the anchor node. We note that
in many cases, the choice of how much context to include in the description s; of a URL
u; 1s somewhat arbitrary, and hand-examination of a sample these results showed that the
choices made by the learned system are usually not unreasonable; therefore it is probably
appropriate to consider results in this cluster as qualified successes, rather than failures.

For an information integration system like WHIRL—one which is somewhat tolerant to
imperfect extraction—many of these results would acceptably accurate. In particular, results
near either the (100%,100%) or (50%,100%) clusters are probably good enough for WHIRL’s
purposes. In aggregating these results, we thus considered two levels of performance. A
learned extraction heuristic has perfect performance on a page p; if recall and precision are
both 1. An extraction heuristic has e-good performance on a page p; if recall and precision
are both at least 1 — ¢, or if precision is at least 1 — ¢ and recall is at least 1/2 — ¢. The table
in Figure 3 shows the number of perfect and e-good results in conducting the leave-one-out

®More precisely, for each point (z,y) (where z is recall and y is precision on some problem) we plot
(x+ R1,y+ Ra), where Ry and Rs are picked uniformly at random from the interval [—0.05,0.05]. Note that
adding noise 1n this way can produce impossible recall-precision combinations, such as a precision greater
than 1, or a recall of 0 and precision of 0.9.

S1f nothing as labeled as positive by the classifier, we score the precision as 100%, even though precision
is strictly speaking undefined in this case.



lvl-domain-out

Ivl-page-out

Intra-domain

(baseline) Ivl-page-out
Domain #pages | #perfect Fgood | #perfect F#good | #perfect Fgood
birds 41 13 22 12 23 13 23
games 25 8 9 10 12 10 11
movies 9 1 3 3 4 5 6
news 9 2 2 1 2 0 0
Total 84 24 36 26 41 28 40
(as percent) 29% 43% 31% 49% 33% 48%

Table 1: Performance of RIPPER on leave-one-out variants, by domain

lvl-domain-out Ivl-page-out Intra-domain

Ivl-page-out

Domain #pages | #perfect Fgood | #perfect F#good | #perfect Fgood
birds 41 10 21 12 24 15 25
games 25 6 7 7 8 7 10
movies 9 1 1 3 5 8 8
news 9 4 4 4 4 0 0
Total 84 21 33 26 41 30 43
(as percent) 25% 39% 31% 49% 36% 51%

Table 2: Performance of CART on leave-one-out experiments

experiment above.

We will use € = 5% as a baseline performance threshold for later experiments; however, as
shown in Figure 3, the number of e-good pages does not change much as ¢ is varied (because
the clusters are so tight). We believe that this sort of aggregation is more appropriate for
measuring overall performance than other common aggregation schemes, such as measuring
average precision and recall. On problems like this, a system that finds perfect wrappers
only half the time and fails abjectly on the remaining problems is much more useful than a
system which is consistently mediocre.

3.2 Variations on leave-one-page-out

In the leave-one-page-out experiment, when extraction performance is tested on a page p;,
the learned extraction program has no knowledge whatsoever of p; itself. However, it may
well be the case that the learner has seen examples of only slightly different pages—for
instance, pages from the same Web site, or Web pages from different sites that present
similar information. So it is still possible that the learned extraction heuristics are to some
extent specialized to the benchmark problems from which they were generated, and would
work poorly in a novel application domain.

We explored this issue by conducting two variants of the leave-one-page-out experiment.
The first variant is a “leave-one-domain-out” experiment. Here we group the pages by
domain, and for each domain, test performance of the extraction heuristics obtained by



training on the other three domains. If the extraction heuristics were domain-specific, then
one would expect to see markedly worse performance; in fact, the performance degrades
only slightly. (Note also that less training data is available in the “leave-one-domain-out”
experiments, another possible cause of degraded performance.) These results shown in the
leftmost section of Table 1.

The second variant is presented in the rightmost section of Table 1, labeled as the “intra-
domain leave-one-page-out” experiment. Here we again group the pages by domain, and
perform a separate leave-one-page-out experiment for each domain. Thus, in this experiment
the extraction heuristics tested for page p; are learned from only the most similar pages—
the pages from the same domain. In this variant, one would expect a marked improvement
in performance if the learned extraction heuristics were very domain- or site-specific. In
fact, there is little change. These experiments thus support the conjecture that the learned
extraction are in fact quite general.

We also explored using classification learners other than RIPPER. Table 2 shows the
results for the same set of experiments using CART, a widely used decision tree learner.”
CART achieves performance generally comparable to RIPPER. We also explored using C4.5
[17] and an implementation of Naive Bayes; however, preliminary experiments suggested
that their performance was somewhat worse than both RIPPER and CART.

4 Comparison to page-specific wrapper learning

As noted in the introduction, in previous research in learning wrappers, a new wrapper has
been trained for each new page format, using examples specific to that page. One possible
way of training such a wrapper-induction system is the following. The user first labels the
first few items that should be extracted from the list starting from the top of the page. These
are assumed to be a complete list of items to be extracted up to this point; that is, it is
assumed that any unmarked text preceding the last marked item should not be extracted.
The learning system then learns a wrapper from these examples, and uses it to extract data
from the remainder of the page. The learned wrapper can also be used for other pages with
the same format as the page used in training.

For simple lists and hotlists, the approach outlined above in Section 2.2 can also be
used to learn page-specific wrappers. The only difference is in the way that a dataset is
constructed, and the circumstances in which the learned wrapper is used; in learning a page-
specific wrapper, all training examples come from the page p being wrapped, and the learned
classifier is only used to label parse tree nodes from p (or other pages with the same format
as p).

We performed the following experiment to test the effectiveness of such a learning system.
For a wrapper/page pair w;, p;, we used w; and p; to build a labeled parse tree. Then, we
traversed the tree in a left-to-right, depth-first order, collecting all nodes up to and including
the K-th node with a positive label into a sample \S; i; this simulates asking the user to

“We used the implementation of CART supplied with the IND package. Since CART doesn’t handle
set-valued attribute, we encoded sets with a bit-vector of boolean attributes, one for each possible set value.
After this transformation, there are 235 attributes in the data set for CART.

10
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Figure 4: Details of the intra-page learning method vs the number of positive examples K.
Each point is a successful result for the intra-page method. The vertical lines are drawn
where the page-independent method succeeds. The top graph is for perfect performance, the
bottom for good performance with ¢ = 5%.

label the first few sections of text to be extracted. We then trained a wrapper in the usual
way on the sample 5; i, and tested its performance on the remaining nodes. We repeated
this procedure for all 84 wrapper/page pairs, and for K = 1,...,20.

The results are shown in Figure 4. In each plot, we place a mark at row K and column
1 if the tested performance of the classifier trained on problem ¢ with K positive examples
exceeds some performance threshold; in the bottom plot, a mark is placed if performance is
perfect, and in the top plot, a mark is placed if performance is e-good for ¢ = 5%. Also, a
vertical line is placed at column ¢ if the corresponding page-independent classifier exceeds
the performance threshold; that is, if the extraction heuristic learned from all problems other
than problem ¢ had acceptable performance on problem 1.

The figure illustrates a number of interesting points. One surprising point is that many
of the extraction tasks handled correctly by the page-independent learned heuristics are
difficult to learn using examples taken from the specific page being wrapped. For instance,
problems 32, 65 and 72 are handled perfectly with the page-independent extractor; however,
extraction performance with examples from these pages alone is not e-good, even with 20
positive examples. Thus the technique of learning page-independent extraction heuristics
seem to be somewhat complementary to the technique of learning page-specific wrappers.

Another point is that, while labeling more examples does clearly help on average, perfor-
mance improves erratically on many specific problems. In problems 29 and 30, for example,
the learner appears to oscillate between performance that is perfect and performance that
is not even e-good. Because the amount of training data on these problems is small, adding
even a single new positive example—together with all negative examples that precede it—can
change the statistics of the training data substantially.

11
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Figure 5: Performance of the intra-page learning method and the hybrid intra-page and
page-independent learning method as the number of positive examples K is increased.

Based on these observations, we evaluated the performance of two possible methods for
learning page-specific wrappers. In applying the pure intra-page method to problem i, the
user is repeatedly prompted for the next positive example, until the wrapper learned from the
existing dataset meets some performance goal. At this point learning stops. We simulated
the intra-page method experimentally for two performance goals (perfection, and e-goodness)
using the depth-first left-to-right tree traversal discussed above to simulate user input. The
results are shown in the two curves labeled “intra-page” in Figure 5; for each value K, we
show the percentage of benchmark problems that meet the performance goal with K™ or fewer
examples.

In the hybrid method, the system first learns a page-independent classifier from all pages
other than page i, and then attempts to wrap that page with the learned extraction heuristics.
If the user accepts this wrapper—in simulation, if the performance goal is reached—then
learning stops. Otherwise, the user is repeatedly prompted for the next positive example, as
in intra-page learning, until the learned wrapper meets the performance goal. The results
are shown in the two curves labeled “hybrid” in Figure 5; however, for each value K., we
show the percentage of benchmark problems that meet the performance goal with K™ or fewer
user inputs, rather than K or fewer examples. The first “user input” is the acceptance or
rejection of the page-independent wrapper—this query is thus charged equally with labeling
an example.

The graph shows that the hybrid method offers a substantial advantage over the pure
intra-page method; in many situations, one would have to label double or triple the number of
examples to obtain a comparable same set of wrappers. For instance, one can obtain perfect
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wrappers for 60% of the problems with only 6 user inputs for the hybrid system, while for
the intra-page system, 15-20 labeled examples are necessary; also, the hybrid system gets
acceptable performance on 80% of the benchmarks after seeing only 6 training examples,
while the intra-page system requires 12 training examples to do as well.

Similar results were obtained with CART (not shown), except that CART’s performance
was worse for very small values of K.

5 Conclusion

We have described a method for learning general, page-independent heuristics for extracting
data from (“wrapping”) HTML documents. The input to our learning system is a set of
working wrapper programs, paired with HTML pages they correctly wrap. The output is
a general, page-independent heuristic procedure for extracting data. Page formats that are
correctly “wrapped” by the learned heuristics can be incorporated into a knowledge base
with minimal human effort; it is only necessary to indicate where in the knowledge base
the extracted information should be stored. In contrast, other wrapper-induction methods
require a human teacher to train them on each new page format.

More specifically, we defined two common types of extraction problems—extraction of
simple lists and simple hotlists—which together comprise nearly 75% of the wrappers re-
quired in experiments with WHIRL. We showed that learning these types of wrappers can
be reduced to a classification problem. Using this reduction and standard-off-the shelf learn-
ers, we were able to learn extraction heuristics which worked perfectly on about 30% of
the problems in a large benchmark collection, and which worked well about about 50% of
the problems. The extraction heuristics were also demonstrated to be domain-independent.
Finally, we showed that page-independent extraction heuristics are complementary to more
traditional methods for learning wrappers, and that a simple combination of these methods
can substantially improve the performance of a page-specific wrapper learning method.

Ashish and Knoblock [1] propose heuristics for detecting hierarchical structure in an
HTML document; obtaining this structure can facilitate programming a wrapper. These
heuristics were designed manually, rather than acquired by learning as in our system.

One of the authors of this paper has also evaluated certain hand-coded heuristic meth-
ods for detecting lists and hotlists in HTML pages [6]. Briefly, this work considers a very
restricted class of possible wrapper programs—one chosen by careful analysis of the 84 ex-
traction problems used in this study. Given an HTML page, it is possible to enumerate all
wrapper programs in the restricted class, and then rank the enumerated wrappers according
to various heuristic measures. Cohen’s results show that some natural ranking heuristics
perform relatively poorly on this task: for instance, the wrapper that extracts the longest
list is correct only 18% of the time. However, more complex heuristics, encoded in a special-
purpose logic, perform as well as or better than the learning approach discussed here. An
advantage of the learning approach (relative to the ranking approach [6]) is that the learned
heuristics are obtained without manual engineering, and hence can be more readily adapted
to variations of the extraction problem. The learning approach is also applicable to a broader
class of extraction programs.
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Earlier work on automatic extraction of data from documents include heuristic meth-
ods for recognizing tables given a bitmap-level representation of a document [18]. These
methods rely on finding rows and columns of white space in the bitmap; and would seem
to be relatively expensive to apply directly to HI'ML documents. Our method also has the
advantage that it can extract information not clearly visible to the human reader, such as
URLs that appear only as attribute values in the HTML. The heuristics devised by Rus and
Subramanian were also designed manually, rather than acquired by learning.

The results of this paper raise a number of questions for further research. The breadth of
the system could be improved by devising labeling schemes for other sorts of extraction tasks.
Performance on lists and hotlists could perhaps be improved by using more powerful learning
methods, or learning methods that exploit more knowledge about this specific learning task.
Finally, it might be useful to couple these automatic extraction methods with methods
that automatically determine if a Web page contains a list or hotlist, and methods that
automatically associate types with the extracted data. This combination of methods could
further lower the cost of fielding an information integration system for a new domain.
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