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AbstractThis paper describes a memory management discipline for programsthat perform dynamic memory allocation and de-allocation. At runtime,all values are put into regions. The store consists of a stack of regions.All points of region allocation and deallocation are inferred automatically,using a type and e�ect based program analysis. The scheme does notassume the presence of a garbage collector.The scheme was �rst presented by Tofte and Talpin (1994); subse-quently, it has been tested in The ML Kit with Regions, a region-based,garbage-collection free implementation of the Standard ML Core language,which includes recursive datatypes, higher-order functions and updatablereferences (Birkedal et al. 96, Elsman and Hallenberg 95).This paper de�nes a region-based dynamic semantics for a skeletal pro-gramming language extracted from Standard ML. We present the inferencesystem which speci�es where regions can be allocated and de-allocated anda detailed proof that the system is sound with respect to a standard se-mantics.We conclude by giving some advice on how to write programs that runwell on a stack of regions, based on practical experience with the ML Kit.
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1 IntroductionComputers have �nite memory. Very often, the total of memory allocated bya program as it is run far exceeds the size of the memory. Thus, a practicaldiscipline of programming must provide some form of memory recycling.One of the key achievements of early work in programming languages is theinvention of the notion of block structure and the associated implementation tech-nology of stack-based memory management for recycling of memory. In block-structured languages, every point of allocation is matched by a point of dealloca-tion and these points can easily be identi�ed in the source program(Naur, 1963;Dijkstra 1960). Properly used, the stack discipline can result in very e�cient useof memory, the maximummemory usage being bounded by the depth of the callstack rather than the number of memory allocations.The stack discipline has its limitations, however, as witnessed by restrictionsin the type systems of block-structured languages. For example, procedures aretypically prevented from returning lists or procedures as results. There are twomain reasons for such restrictions.First, for the stack-discipline to work, the size of a value must be known atthe latest when space for that value is allocated. This allows for example arrayswhich are local to a procedure and have their size determined by the argumentsof the procedure; by contrast, it is not in general possible to determine how biga list is going to become, when generation of the list begins.Second, for the stack-discipline to work, the life-time of values must com-ply with the allocation and deallocation scheme associated with block structure.When procedures are values, there is a danger that a procedure value refers tovalues which have been deallocated. For example, consider the following program:(let x = (2, 3)in (fn y => (#1 x, y))end)(5)This expression is an application of a function (denoted by (let���end)) to thenumber 5. The function has formal parameter y and body (#1 x, y), where#1 stands for �rst projection. (fn is pronounced � in SML.) Thus the operatorexpression is supposed to evaluate to (fn y => (#1 x, y)), where x is bound tothe pair (2; 3), so that the whole expression evaluates to the pair (2; 5). However,if we regard the let���end construct as a block construct (rather than just alexical scope), we see why a stack-based implementation would not work: wecannot de-allocate the space for x at the end, since the �rst component of x isstill needed by the function which is returned by the entire let expression.One way to ease the limitations of the stack discipline is to allow program-mer controlled allocation and de-allocation of memory, as is done in C. (C has5



r0 r1 r2 r3 : : :Figure 1: The store is a stack of regions; every region is uniquely identi�ed by aregion name (e.g., r0) and is depicted by a box in the picture.two operations malloc and free for allocation and de-allocation, respectively.)Unfortunately, it is in general very hard for a programmer to know when a blockof memory does not contain any live values and may therefore be freed; conse-quently, this solution very easily leads to so-called space leaks, i.e., to programsthat use much more memory than expected.Functional languages (like Haskell and Standard ML) and some object-orientedlanguages (e.g., JAVA) instead let a separate routine in the runtime system, thegarbage collector, take care of de-allocation of memory (Knuth 1972; Baker 1978;Lieberman 1983). Allocation is done by the program, often at a very high rate.In our example, the three expressions (2, 3), (fn y => (#1 x, y)) and (#1x, y) each allocate memory, each time they are evaluated. The part of memoryused for holding such values is called the heap; the rôle of the garbage collectoris to recycle those parts of the heap that hold only dead values, i.e., values whichare of no consequence to the rest of the computation.Garbage collection can be very fast, provided the computer has enough mem-ory. Indeed, there is a much quoted argument that the amortized cost of copyinggarbage collection tends to zero, as memory tends to in�nity (Appel 1992, page206). It is not the case, however, that languages such as Standard ML frees theprogrammer completely from having to worry about memory management. Towrite e�cient SML programs, one must understand the potential dangers of, forexample, accidental copying or survival of large data structures. If a programis written without concern for space usage, it may well use much more memorythan one would like; even if the problem is located (using a space pro�ler, forexample), turning a space-wasting program into a space-e�cient one may requiremajor changes to the code.The purpose of the work reported in this paper is to advocate a compromisebetween the two extremes (completely manual vs completely automatic memory6



management). We propose a memory model which the user may use when pro-gramming; memory can be thought of as a stack of regions, see Figure 1. Eachregion is like a stack of unbounded size which grows upwards in the picture, untilthe region in its entirety is popped o� the region stack. For example, a typicaluse of a region is to hold a list. A program analysis automatically identi�es pro-gram points where entire regions can be allocated and de-allocated and decides,for each value-producing expression, into which region the value should be put.More speci�cally, we translate every well-typed source language expression,e, into a target language expression, e0, which is identical with e, except forcertain region annotations. The evaluation of e0 corresponds, step for step, to theevaluation of e. Two forms of annotations aree1 at �letregion � in e2 endThe �rst form is used whenever e1 is an expression which directly produces avalue. (Constant expressions, �-abstractions and tuple expressions fall into thiscategory.) The � is a region variable; it indicates that the value of e1 is to be putin the region bound to �.The second form introduces a region variable � with local scope e2. At run-time, �rst an unused region, identi�ed by a region name, r, is allocated andbound to �. Then e2 is evaluated (probably using the region named r). Finally,the region is de-allocated. The letregion expression is the only way of intro-ducing and eliminating regions. Hence regions are allocated and de-allocated ina stack-like manner.The target program which corresponds to the above source program ise0 � letregion �4; �5in letregion �6in let x = (2 at �2, 3 at �6) at �4in (� y :(#1 x, y) at �1) at �5endend5 at �3endWe shall step through the evaluation of this expression in detail in Section 4.Brie
y, evaluation starts in a region stack with three regions (�1, �2 and �3);evaluation then allocates and de-allocates three more regions (�4, �5 and �6) andat the end, �1, �2 and �3 contain the �nal result.The scheme forms the basis of the ML Kit with Regions, a compiler for theStandard ML Core language, including higher-order functions, references andrecursive datatypes. The region inference rules we describe in this paper addresslife times only. A solution to the other problem, handling values of unknown size,7



is addressed in (Birkedal et al. 96). An important optimisation turns out to beto distinguish between regions, whose size can be determined statically and thosethat cannot. The former can be allocated on a usual stack.Using C terminology, region analysis infers where to insert calls to malloc andfree | but beware that the analysis has only been developed in the context ofStandard ML and relies on the fact that SML is rather more strongly typed thanC. For a strongly typed imperative language like JAVA, region inference might beuseful for freeing memory (unlike C, JAVA does not have free). For readers whoare interested in code generation, Appendix A shows the three-address programwhich the ML Kit produces from the above program, using both region inferenceand the additional optimisations described in (Birkedal et al. 1996). However,this paper is primarily about the semantics of regions, not their implementation.Experience with the Kit is that, properly used, the region scheme is strongenough to execute demanding benchmarks and to make considerable space sav-ings, compared to a garbage-collected system (Birkedal et al. 96). We have foundthat most of the allocation is handled well by the automatic region analysis; oc-casionally it is too conservative and here a garbage collector would probably beuseful, especially if the programmer does not know the region inference rules;for now, we have chosen instead to make (usually small) transformations to thesource programs to make them more \region friendly". We shall describe someof those transformations towards the end of this paper.A very important property of our implementation scheme is that programs areexecuted \as they are written", with no additional costs of unbounded size (seeAppendix A for a detailed example). The memory management directives whichare inserted are each constant time operations. This opens up the possibility ofusing languages with the power of Standard ML for applications where guaranteesabout time and space usage are crucial, for example in real time programming orembedded systems.The key problem which is addressed in this paper is to prove that the regioninference system is safe, in particular, that de-allocation really is safe, when theanalysis claims that it is safe.We do this as follows. We �rst de�ne a standard operational semantics for ourskeletal source language, giving both a static and a dynamic semantics (Section 3).We then de�ne a region-based operational semantics for a target language; thetarget language is identical to the source language, except that programs havebeen annotated with region information (Section 4). In the dynamic semantics orthe source language, there is no notion of store; in the target language semantics,however, there is a store which is organised as a stack of regions. We thenspecify the translation from source language to target language in the form of aninference system (Section 5). We then de�ne a representation relation betweenvalues in a standard semantics for our skeletal language and values in a region-based semantics (Section 7) and show that, for every subexpression e of theoriginal program, as far as the rest of the computation (after the evaluation of8



e) is concerned, e and its image in the target program evaluate to related values,when evaluated in related environments (Section 9). Restricting attention towhat the rest of the computation can observe turns out to be crucial: someconnections between values in the source language semantics and in the region-based semantics are lost when memory is re-used in the region-based semantics.The key point is that on that part of target machine which can be observed bythe rest of the computation, every value used in the source language is faithfullyrepresented by a value in the target language.This representation relation is de�ned as the maximal �xed point of a certainmonotonic operator. Properties of the relation are proved using a method ofproof which we call rule-based co-induction (Section 8.1).Algorithms for region inference are beyond the scope of this paper; however,we shall give some hints about how the region inference rules we present can beimplemented (Section 10).2 Related WorkThe main di�erences between the region stack and the traditional stack disciplinefor block-structured languages are as follows. First, when a value is created in ourscheme, it is not necessarily put into the topmost region. In the case of functionclosures, for example, the closure is put as far down the stack as is necessary inorder to be sure that the closure still exists should it ever be accessed. Second, notall regions have a size which can be determined at the time the region is allocated.Finally, the scheme works for higher-order functions and recursive datatypes andallocation is based on the basis of the type system of the language, not thegrammar.Ruggieri and Murtagh (1988) propose a stack of regions in conjunction with atraditional heap. Each region is associated with an activation record (this is notnecessarily the case in our scheme). They use a combination of interproceduraland intraprocedural data-
ow analysis to �nd suitable regions to put values in.We use a type-inference based analysis, and this is crucial for the handling ofpolymorphism and higher-order functions.Inoue et al. (1988) present an interesting technique for compile-time analy-sis of runtime garbage cells in lists. Their method inserts pairs of HOLD andRECLAIM� instructions in the target language. HOLD holds on to a pointer, psay, to the root cell of its argument and RECLAIM� collects those cells that arereachable from p and �t the path description �. HOLD and RECLAIM pairs arenested, so the HOLD pointers can be held in a stack, not entirely unlike our stackof regions. In our scheme, however, the unit of collection is one entire region,i.e., there is no traversal of values in connection with region collection. The pathdescriptions of Inoue et al. make it possible to distinguish between the individ-ual members of a list. This is not possible in our scheme, as we treat all the9



elements of the same list as equal. Inoue et al. report a 100% reclamation ratefor garbage list cells produced by Quicksort (Inoue 1988, page 575). We obtaina 100% reclamation rate (but for 1 word) for all garbage produced by Quicksort,without garbage collection (Tofte and Talpin, 1994).Hudak (1986) describes a reference counting scheme for a �rst-order call-by-value functional language. Turner, Wadler and Mossin (1995) use a type systeminspired by linear logic to distinguish between variables which are used at mostonce and variables which may be used more than once. These analyses providesomewhat di�erent information from ours: we only distinguish between \no use"and \perhaps some use."George� (1984) describes an implementation scheme for typed lambda ex-pressions in so-called simple form together with a transformation of expressionsinto simple form. The transformation can result in an increase in the number ofevaluation steps by an arbitrarily large factor (George� 1984, page 618). George�also presents an implementation scheme which does not involve translation, al-though this relies on not using call-by-value reduction, when actual parametersare functions.The device we use for grouping values according to regions is uni�cation ofregion variables, using essentially the idea of Baker (1990), namely that two value-producing expressions e1 and e2 should be given the same \at �" annotation, ifand only if type checking, directly or indirectly, uni�es the type of e1 and e2.Baker does not prove safety, however, nor does he deal with polymorphism.To obtain good separation of lifetimes, we use explicit region polymorphism, bywhich we mean that regions can be given as arguments to functions at runtime.For example, a declaration of the successor function fun succ(x)=x+ 1 iscompiled into fun succ[�,�0](x)=letregion �00in (x+ (1 at �00)) at �0endNote that succ has been decorated with two extra formal region parameters (en-closed in square brackets to distinguish them from value variables such as x).The new succ function has type scheme8�; �0:(int; �) fget(�);put(�0)g����������!(int; �0)meaning that, for any � and �0, the function accepts an integer at � and producesan integer at �0 (performing a get operation on region � and a put operationon region �0 in the process). Now succ will put its result in di�erent regions,depending on the context:��� succ[�12; �9](5 at �12) ��� succ[�1; �4](y)10



We make the additional provision that a recursive function, f , can call itselfwith region arguments which are di�erent from its formal region parameters andwhich may well be local to the body of the recursive function. Such local regionsresemble the activation records of the classical stack discipline.We use ideas from e�ect inference (Lucassen 1987; Lucassen and Gi�ord1988; Jouvelot and Gi�ord 1991) to �nd out where to wrap letregion � in: : : end around an expression. Most work on e�ect inference uses the word \ef-fect" with the meaning \side-e�ect" or, in concurrent languages, \communicatione�ect"(Nielson and Nielson 1994). However, our e�ects are side-e�ects relativeto the underlying region-based store model, irrespective of whether these e�ectsstem from imperative features or not.The idea that e�ect inference makes it possible to delimit regions of memoryand delimit their lifetimes goes back to early work on e�ect systems (Lucassenet al. 1987). Lucassen and Gi�ord (1988) call it e�ect masking; they prove that(side-) e�ect masking is sound with respect to a store semantics where regions arenot reused. Talpin (1993) and Talpin and Jouvelot (1992) present a polymorphice�ect system with (side-) e�ect masking and prove that it is sound, with respectto a store semantics where regions are not reused.The �rst version of the proof of the present paper was recorded in a technicalreport (Tofte and Talpin 1993), which in turn was used as the basis for theproof outline in (Tofte and Talpin, 1994). In order to simplify the proofs, severalmodi�cations to the early proofs have been done. The main di�erences are: (a) wehave adopted value polymorphism, which simpli�es the proofs in various ways; inparticular a di�cult lemma| Lemma 4.5 in (Tofte and Talpin 1993) | could beeliminated; (b) the dynamic semantics of the target language has been extendedwith region environments; (c) the de�nition of consistency has been strengthenedto prevent closures with free region variables (these used to complicate the proof)(d) the proofs have been rewritten and reorganised around the idea of rule-basedco-induction.Aiken et al. (1995) have developed a program analysis which can be used asa post-pass to the analysis described in the present paper. Their analysis makesit possible to delay the allocation of regions and to promote the de-allocation,sometimes leading to asymptotic improvements in space usage and never leadingto worse results than region inference without their analysis added.3 The source language, SExpThe skeletal language treated in this paper is essentially Milner's polymorphicallytyped lambda calculus (Milner 78). We assume a denumerably in�nite set Varof (program) variables. We use x and f to range over variables. Finally, c rangesover integer constants. The grammar for the source language ise ::= c j x j �x:e j e1e2 j let x = e1 in e2 end11



j letrec f(x) = e1 in e2 endLet SExp denote the set of source language expressions. The addition of pairsand tuples to the theory is straightforward. (References, exceptions and recursivedatatypes have been added in the implementation, but correctness of the trans-lation of these constructs has not been proved.) Call-cc, concurrency primitivesand other substantial extensions of Standard ML have not been studied. Nor is itclear whether region inference can be made to bear on lazy functional languages.The fact that ML is typed is essential; the fact that it has polymorphism is notessential for what follows.3.1 NotationIn the rest of this paper we shall use the following terminology. A �nite map is amap with �nite domain. Given sets A and B, the set of �nite maps from A to Bis denoted A �n! B. The domain and range of a �nite map f are denoted Dom(f)and Rng(f), respectively. When f and g are �nite maps, f + g is the �nite mapwhose domain is Dom(f) [Dom(g) and whose value is g(x), if x 2 Dom(g), andf(x) otherwise. For any map f and set A, we write f # A to mean the restrictionof f to A. We sometimes write a tuple of region variables, for example, in theform �1����k, i.e, without parentheses and commas.We often need to select components of tuples | for example the region name ofan address. In such cases, we rely on variable names to indicate which componentis being selected. For example, \r of a" means \the region name component ofa". (As we shall see, an address is a pair of the form (r; o), where r is a regionname and o is an o�set.)3.2 Static Semantics for SourceFollowing Damas and Milner (1982), we have ML types and ML type schemesde�ned by:�ML ::= int j � j �ML ! �ML ML type�ML ::= 8�1����n:�ML ML type scheme (n � 0)where � ranges over a denumerably in�nite set TyVar of type variables. An MLtype �ML0 is an instance of an ML type scheme �ML = 8�1����n:�ML, written�ML � �ML0 , if there exist �ML1 ; : : : ; �MLn such that �ML[�ML1 =�1; : : : ; �MLn =�n] =�ML0 . An ML type environment is a �nite map from program variables to MLtype schemes. We use TEML to range over type environments. When o is an MLtype, type scheme or type environment, ftv(o) denotes the set of type variablesthat occur free in o.In Milner's original type discipline, polymorphism is associated with let. Ithas turned out that there are advantages to restricting polymorphism so that in12



let x = e1 in e2 end, x only gets a type scheme if e1 is a syntactic value. (Inthe present language, a syntactic value is an integer constant or a lambda abstrac-tion.) Besides making it easier to prove soundness in connection with referencesand other language extensions, imposing this restriction also makes the proofs ofcorrectness of region inference simpler (we have done both). In fact, we shall takethe restriction one step further, and only allow polymorphism in connection withletrec. Any program which satis�es the value restriction can be turned intoan equivalent program which only has letrec-polymorphism, by simply turningevery let x = e1 in e2 end into letrec x0(z) = e1 in e2[x0(0)=x] end wherex0 and z are fresh variables. In the theory that follows we therefore only havepolymorphism in connection with letrec; with this convention, let x = e1 ine2 end is just syntactic sugar for (�x:e1)(e2); we show the rules for let even so,to make it easier to follow the examples.TEML(x) = �ML �ML � �MLTEML ` x : �MLTEML + fx 7! �ML1 g ` e : �ML2TEML ` �x:e : �ML1 ! �ML2TEML ` e1 : �ML0 ! �ML TEML ` e2 : �ML0TEML ` e1 e2 : �MLTEML ` e1 : �ML1 TEML + fx 7! �ML1 g ` e2 : �MLTEML ` let x = e1 in e2 end : �MLTEML + ff 7! �MLg ` �x:e1 : �ML f�1; : : : ; �ng \ ftv(TEML) = ;TEML + ff 7! 8�1����n:�MLg ` e2 : �ML2TEML ` letrec f(x) = e1 in e2 end : �ML23.3 Dynamic Semantics for SourceA non-recursive closure is a triple hx; e;Ei, where E is an environment, i.e. a�nite map from variables to values. We use E to range over environments; theset of environments is denoted Env. A recursive closure takes the form hx; e;E; fiwhere f is the name of the recursive function in question. A value is either aninteger constant or a closure. We use v to range over values; the set of values isdenoted Val. 13



Evaluation rules appear below. They allow one to infer statements of theform E ` e ! v, read: in environment E the expression e evaluates to value v.A closure representing a recursive function is \unrolled" just before it is applied(rule (5).Expressions E ` e! vE ` c! c (1)E(x) = vE ` x! v (2)E ` �x:e! hx; e;Ei (3)E ` e1 ! hx0; e0; E0i E ` e2 ! v2 E0 + fx0 7! v2g ` e0 ! vE ` e1 e2 ! v (4)E ` e1 ! hx0; e0; E0; fi E ` e2 ! v2E0 + ff 7! hx0; e0; E0; fig+ fx0 7! v2g ` e0 ! vE ` e1 e2 ! v (5)E ` e1 ! v1 E + fx 7! v1g ` e2 ! vE ` let x = e1 in e2 ! v (6)E + ff 7! hx; e1; E; fig ` e2 ! vE ` letrec f(x) = e1 in e2 ! v (7)4 The target language, TExpWe assume a denumerably in�nite set RegVar = f�1; �2; : : :g of region variables;we use � to range over region variables. The grammar for the target language,TExp, is e ::= c j x j f [�1, ���, �n] at � j �x:e at �j e1 e2 j let x = e1 in e2 endj letrec f[�1; ���; �k](x) at � = e1 in e2 endj letregion � in e14



As is common, functions are represented by closures; but region-polymorphicfunctions (introduced by letrec f[���](x) = ���) are represented by so-calledregion function closures, which are di�erent from closures. In the expressionform �x:e at � , the � indicates the region into which the closure representing�x:e should be put. (Hence, the at� quali�es �x:e, not e.) Inletrec f[�1; ���; �k](x) at � = e1 in e2 endthe � indicates where the region function closure for f should be put. A sub-sequent application f [�1, ���, �n] at �0 extracts this region function closurefrom the store, applies it to actual arguments �1; : : : ; �k and creates a functionclosure in �0.For any �nite set f�1; : : : ; �kg of region variables (k � 0), we writeletregion �1; : : : ; �k in e for letregion �1 in ��� letregion �k in e.We shall not present a separate static semantics for the target language, forsuch a semantics can be extracted from the translation rules in Section 5. Wethus proceed to the dynamic semantics.4.1 Dynamic Semantics for TargetAssume a denumerably in�nite set RegName = fr1; r2; : : :g of region names;we use r to range over region names. Region names serve to identify regions atruntime. Further, assume a denumerable in�nite set, O�Set, of o�sets; we use oto range over o�sets.A region is a �nite map from o�sets to storable values. A storable value iseither an integer constant, a function closure, or a region function closure. We usesv to range over storable values; the set of storable values is denoted StoreVal.A variable environment is a �nite map from program variables to values. Weuse VE to range over variable environments; the set of variable environments isdenoted TargetEnv. A region environment is a �nite map from region variablesto region names. We use R to range over region environments; the set of regionenvironments is denoted RegEnv. A function closure is a quadruple hx; e0; VE;Ri,where x is a program variable, e0 is a target language expression, and VE andR give meaning to the free program and region variables of �x:e0. A regionfunction closure is a tuple of the form h�1����k; x; e; VE;Ri. Region functionclosures represent region-polymorphic functions; the region variables �1; : : : ; �kare required to be distinct and are referred to as the formal parameters of theregion function closure.An address is a pair (r; o) of a region name and an o�set. We use a to rangeover addresses and Addr to denote over the set of addresses. For any address a,we write r of a to mean the �rst component (i.e., the region name) of a. A storeis a �nite map from region names to regions. We use s to range over stores; theset of stores is denoted Store. 15



A value is an address. We use v to range over values; the set of values isdenoted TargetVal.We shall be brief about indirect addressing: whenever a = (r; o) is an address,we write s(a) to mean s(r)(o). Similarly, we write s+f(r; o) 7! svg as a shorthandfor s + fr 7! (s(r) + fo 7! svg)g. Moreover, we de�ne the planar domain ofs, written Pdom(s), to be the �nite set f(r; o) 2 Addr j r 2 Dom(s) ^ o 2Dom(s(r))g. Finally, we write \s nn frg" (read: s without r) to mean the stores # (Dom(s) n frg).The inference rules for the dynamic semantics of TExp are shown below. Theyallow one to infer sentences of the form s; VE;R ` e0 ! v0; s0, read: In stores, variable environment VE and region environment R, the target expression e0evaluates to value v0 and (a perhaps modi�ed) store s0.Rule 10 is the evaluation rule for application of a region function closure.A function closure is created from the region closure. One can imagine thata runtime-error occurs if the premises cannot be satis�ed (for example because�0i =2 Dom(R), for som �0i). However, the correctness proof shows that the premisesalways can be satis�ed for programs that result from the translation.Rule 14 concerns region-polymorphic and (possibly) recursive functions. Tokeep down the number of constructs in the target language, we have chosen tocombine the introduction of recursion and region polymorphism in one languageconstruct. Functions de�ned with letrec need not be recursive, so one can alsouse the letrec construct to de�ne region functions that produce non-recursivefunctions. Rule 14 creates a region closure in the store and handles recursion bycreating a cycle in the store: �rst a \fresh address" is chosen (by side-conditionsr = R(�) o =2 Dom(s(r)); the environment VE 0 = VE+ ff 7! (r; o)g is storedin the region function closure h�1; ���; �k; x; e1; VE0; Ri, which in turn is stored inthe fresh address chosen earlier. Any reference to f in e1 will then yield the regionfunction closure itself, by rule 10, as desired (since letrec introduces recursion).Moreover, in any function application, the operator expression will evaluate toa pointer to an ordinary function closure h�1; : : : ; �k; x; e; VE0; R0i, even if theoperator expression is of the the form f [�01, ���, �0k] at �. Consequently, asingle rule for function application su�ces.Finally, the pushing and popping of the region stack is seen in Rule 15.Expressions s; VE;R ` e! v; s0R(�) = r o =2 Dom(s(r))s; VE;R ` c at �! (r; o); s+ f(r; o) 7! cg (8)VE(x) = vs; VE ` x! v; s (9)16



VE(f) = a; s(a) = h�1; : : : ; �k; x; e; VE0; R0ir = R(�) o =2 Dom(s(r)) sv = hx; e; VE0; R0 + f�i 7! R(�0i) ; 1 � i � kgis; VE;R ` f [�01, ���, �0k] at �! (r; o); s+ f(r; o) 7! svg (10)r = R(�) o =2 Dom(s(r))s; VE;R ` �x:e at �! (r; o); s+ f(r; o) 7! hx; e; VE;Rig (11)s; VE;R ` e1 ! a1; s1 s1(a1) = hx0; e0; VE0; R0is1; VE;R ` e2 ! v2; s2 s2; VE0 + fx0 7! v2g; R0 ` e0 ! v; s0s; VE;R ` e1 e2 ! v; s0 (12)s; VE;R ` e1 ! v1; s1 s1; VE + fx 7! v1g; R ` e2 ! v; s0s; VE;R ` let x = e1 in e2 ! v; s0 (13)r = R(�) o =2 Dom(s(r)) VE 0 = VE + ff 7! (r; o)gs+ f(r; o) 7! h�1; ���; �k; x; e1; VE 0; Rig; VE 0; R ` e2 ! v; s0s; VE;R ` letrec f[�1; : : : ; �k](x) at � = e1 in e2 ! v; s0 (14)r =2 Dom(s) s+ fr 7! fgg; VE;R + f� 7! rg ` e! v; s1s; VE;R ` letregion � in e! v; s1 nn frg (15)We now illustrate the use of the rules by two examples, comment on thedesign decisions embodied in the rules and �nally prove some properties aboutthe semantics.4.2 Example: Function ValuesLet us consider the evaluation of the expression e0 from Section 1. Since �1,�2 and �3 occur free in e0, they must be allocated before the evaluation of e0begins. We show three snapshots from the evaluation of e0, namely (a) just afterthe closure has been allocated; (b) just before the closure is applied and (c) atthe end; we assume six regions with names r1; : : : ; r6, which become bound to�1; : : : ; �6, respectively. Notice the dangling, but harmless, pointer at (b).17



r1 r2 r3 r4 (a) r5 r66 6?2 ( �; � ) hy; (#1 x, y)at �1; fx 7! �g; f�1 7! r1gi 3
r1 r2 r3 r4 (b) r56 6?2 5 ( �; � ) hy; (#1 x, y)at �1; fx 7! �g; f�1 7! r1gi
r1 r2 r3 (c)6 ?( �; � ) 2 54.3 Example: Region polymorphismThis example illustrates region polymorphism and the use of polymorphic re-cursion. Consider the following source expression, which computes the 15th Fi-bonacci number.letrec fib(x) = if x=0 then 1else if x=1 then 1else fib(x-2)+fib(x-1)in fib(15) endThe corresponding target expression is shown in Figure 2. In the targetexpression, the fib function takes two arguments, namely �3, which is the regionwhere x is located, and �4, which is the place where fib is supposed to putits result. Due to the presense of polymorphic recursion in the region inference18



system, the recursive calls of fib use regions di�erent from �3 and �4 (and thetwo recursive calls use separate regions). For example, the �rst call �rst reservesspace for the result of the call (�5), then reserves space for the actual argument(�8), then creates the actual argument, performs the call, deallocates the actualargument and uses the result, till it can be discarded (after the +).letregion �2in letrec fib[�3,�4] at �2 (x: (int, �3)) =if ���then 1 at �4else if ��� then 1 at �4else letregion �5,�6in (letregion �7,�8in fib[�8,�5] at �7letregion �9 in (x - (2 at �9)) at �8 endend +letregion �10,�11in fib[�11,�6] at �10letregion �12 in (x - (1 at �12)) at �11 endend) at �4endin letregion �12,�13in fib[�13,�1] at �12(15 at �13)endendendFigure 2: The Fibonacci function annotated with regions. The result will be asingle integer in �1The letrec stores the following cyclic region function closure in the store atsome new address, a:h�3�4; x; if ���; ffib 7! ag; f�1 7! r1; �2 7! r2giAssuming that �13 is bound to r3, the application of fib to 15 near the end ofthe program stores the following function closure in the region denoted by �12:hx; if ���; ffib 7! ag; f�1 7! r1; �2 7! r2; �3 7! r3; �4 7! r1giWe see that region inference has produced allocations and deallocations verysimilar to those of a traditional stack-based implementation. Indeed, the maximal19



memory usage in this example is proportional to the maximum depth of therecursion, as it would be in a pure stack discipline.4.4 Design ChoicesThe region-based semantics relies on a number of design choices, some of whichare crucial.First, it is crucial that the sets RegName and O�Set can be any (denumerable)sets. We do not assume that these sets are ordered or that there is any notion ofaddress locality. Thus no particular physical implementation of the region stackis built into the theory. This is essential since real computers have a 
at addressspace, whereas the region stack conceptually is two-dimensional. The particularimplementation choice used in the ML Kit is described in (Birkedal et al. 1996)Second, it is crucial that the semantics uses so-called \
at environments"; thealternative (\linked environments") is to represent the environment as a linkedlist of environment frames. This is a popular representation in block-structuredlanguages and in some functional languages. With linked environments, closurecreation is cheap, but it does not work with regions, at least if the environmentframes are interspersed with regions on one stack! In example 4.2, it is essentialthat we copy the environment into the closure for � y :(#1 x, y) at �1 so thatthe binding for x is not destroyed when we leave the scope of x and �6 and hencepop the stack.There are also some inessential choices. There is no need to represent allobjects boxed (in the ML Kit, integers and other values that �t in one machineword are represented unboxed). Recursion could probably have been implementedusing unfolding of closures rather than cycles in the store. Finally, there is nodeep need to keep the region environment and the variable environment separatein closures (the ML Kit merges the two) but we do so to make it clear that regionnames are not values.4.5 Properties of region-based evaluationWe can now state formally that the complete evaluation of an expression doesnot decrease the store. For arbitrary �nite maps f1 and f2, we say that f2extends f1, written f1 � f2, if Dom(f1) � Dom(f2) and for all x 2 Dom(f1),f1(x) = f2(x). We then say that s2 succeeds s1, written s2 w s1 (or s1 v s2), ifDom(s1) � Dom(s2) and s1(r) � s2(r), for all r 2 Dom(s1).Lemma 4.1 If s; VE;R ` e! v; s0 then Dom(s) = Dom(s0) and s v s0.The proof is a straightforward induction on the depth of inference of s; VE;RE `e! v; s0. The formula Dom(s) = Dom(s0) in Lemma 4.1 expresses that the storeresulting from the elaboration has neither more nor less regions than the store20



in which the evaluation begins, although other regions may have been allocatedtemporarily during the evaluation. The evaluation of e may write values in ex-isting regions, so it is possible to have s(r) � s0(r), for some r. However, e neverremoves or overwrites any of the values that are in s.4.6 Syntactic Equality of ExpressionsLet e0 be a target expression. The set of program variables that occur free in e0is written fpv(e0). The set of region variables that occur free in e0 is frv(e0).Both in the source language and in the target language, we shall considertwo expressions equal, if they can be obtained from each other by renamingof bound variables. This extends to closures. For example, hx1; e1; VE1i andhx2; e2; VE2i are considered equal if VE1 = VE2 and �x1:e1 and �x2:e2 areequal in the above sense. Moreover, we even allow that the free variables of�x2:e2 may be a renaming of the free variables of �x1:e1, provided of course thatthe corresponding change has been made in the domain of VE1 to obtain VE2.(Loosely speaking, this corresponds to admitting value environments as declara-tions and then allowing the usual renamings permitted in an expression of theform let VE1 in �x1:e1 end .) Finally, we consider hx; e; VE1i and hx; e; VE2iequal, if VE1 # fpv(�x:e) = VE2 # fpv(�x:e). This allows us to introduce anddelete unused program variables in the domains of environments inside closures.Similarly, for any region closure h~�; x; e; VE;Ri we allow the renamings of ~�, x,fpv(e) and frv(e) and the introduction or elimination of unused program variablesthat one would expect if the closure were written let VE;R in �~�; x1:e1 end .Equality on semantic objects in each of the two dynamic semantics is thende�ned to be the smallest equivalence relation which is closed under the threetransformations described above.5 Region inferenceThe rules that specify which translations are legal are called the region inferencerules. In Section 5.1 we present region types and other semantic objects that occurin the region inference rules; the rules themselves are presented in Section 5.2. InSections 5.3 and 5.4 we state and prove properties of the region inference system,for example that the translation is a re�nement of Milner's type discipline.5.1 Semantic objectsRegion typesWe assume three denumerably in�nite, pairwise disjoint sets:� 2 TyVar type variables21



� or p 2 RegVar region variables� 2 E�ectVar e�ect variablesTo avoid too many subscripts and primes, we use both p (for \place") and � torange over region variables. An atomic e�ect is a term of the form� ::= put(�) j get(�) j � atomic e�ectWe use � to range over atomic e�ects. An e�ect is a �nite set of atomic e�ects.We use ' to range over e�ects. For a concrete example, the e�ect of expressione0 in Example 4.2 is fput(�1);put(�2);put(�3)g.Types and types with places are given by:� ::= int j � j � �:'��!� type� ::= (�; �) type with placeIn a function type � �:'��!�0 (16)the object �:' is called an arrow e�ect. Formally, an arrow e�ect is a pair of ane�ect variable and an e�ect; we refer to � and ' as the handle and the latente�ect, respectively. If a function f has type (16) then the latent e�ect ' is to beinterpreted as the e�ect of evaluating the body of f . E�ect variables are usefulfor expressing dependencies between e�ects. For example, the target expressione0 � (�f:(�x:f(x)) at �4) at �5can be given type�e0 = ((�1; �1) �1:;��!(�2; �2); �3) �2:fput(�4)g��������!((�1; �1) �3:fget(�3);�1g���������!(�2; �2); �4) (17)In (17) the last occurrence of �1 indicates that for all e1 and e2 of the appropriatetype, if e1 evaluates to some function, g, and e2 evaluates to some value, v, thenthe evaluation of (e0e1)e2 may involve an application of g. (As it happens, theevaluation would indeed involve an application of g, but the type does not expressthat.)Equality of types is de�ned by term equality, as usual, but up to set equal-ity of latent e�ects. For example, the arrow e�ects �:fput(�);get(�0)g and�:fget(�0);put(�)g are considered equal.One might wonder why we have a pair �:' on the function arrow ratherthan just, say, an e�ect '. The reason is that the region inference algorithmswe use rely on uni�cation, just as ML type inference does (Damas and Milner1982). Thus the e�ect sets on function arrows pose a problem for the existenceof principal uni�ers. A solution is to use arrow e�ects together with certaininvariants about the use of e�ect variables. The basic idea is that e�ect variablesuniquely \stand for" e�ects: if �1:'1 and �2:'2 both occur in a proof tree formed22



by the inference algorithm and �1 = �2 then it will also be the case that '1 = '2.Moreover, if two arrow e�ects �1:'1 and �2:'2 both occur in a proof tree and�2 2 '1 then '2 � '1: the presence of �2 in '1 implies that '2 subsumes theentire e�ect '1 which �1 stands for. With these representation invariants andusing the special notion of substitution de�ned below, one can prove the existenceof principal uni�ers, even though types \contain" e�ects (which are sets). Adetailed account of how this is done is beyond the scope of this paper. Also, theinvariants mentioned above are not needed for proving the soundness of regioninference, so we shall not consider them in what follows.SubstitutionA type substitution is a map from type variables to types; we use St to rangeover type substitutions. A region substitution is a map from region variables toregion variables; we use Sr to range over region substitutions. An e�ect substi-tution is a map from e�ect variables to arrow e�ects; we use Se to range overe�ect substitutions. A substitution is a triple (St; Sr; Se); we use S to range oversubstitutions. Substitution on types, region variables and e�ects is de�ned asfollows. Let S = (St; Sr; Se); then E�ectsS(') = fput(Sr(�)) j put(�) 2 'g [fget(Sr(�)) j get(�) 2 'g [f� j 9�; �0; '0: � 2 ' ^ �0:'0 = Se(�) ^ � 2 f�0g [ '0gTypes and Region VariablesS(int) = int S(�) = St(�) S(�) = Sr(�)S(�; �) = (S(� ); S(�))S(� �:'��!�0) = S(�) �0 :('0[S('))�������!S(�0); where �0:'0 = Se(�)For a concrete example, consider the substitution S = (Sr; St; Se), whereSe(�) = � �8:fget(�1);put(�2)g if � = �1;� otherwiseSt(�) = � int if � = �1 or � = �2;� otherwiseSr(�) = � for all �where �1, �1, �2, �1 and �2 refer to (17). Now we haveS(�e0) = ((int; �1) �8 :fget(�1);put(�2)g������������!(int; �2); �3) �2:fput(�4)g��������!((int; �1) �3:fget(�1);get(�3);put(�2);�8g������������������!(int; �2); �4) (18)23



This more speci�c type for e0 is appropriate if e0 occurs in the following applicationexpression: e0((�n : (int; �1):(n+1) at �2) at �3) (19)for which one will then be able to infer the type and place((int; �1) �3:fget(�1);get(�3);put(�2);�8g������������������!(int; �2); �4)In applying substitutions to semantic objects with bound names (e.g., a typescheme) bound variables are �rst renamed to avoid capture, when necessary.Substitutions compose; Id is the identity substitution.The support of a type substitution St, written Supp(St), is the set f� 2TyVar j St(�) 6= �g. Similarly for region substitutions. The support of ane�ect substitution Se, written Supp(Se), is the set f� 2 E�ectVar j Se(�) 6= �:;g.The support of a substitution S = (St; Sr; Se), written Supp(S), is de�ned asSupp(St) [ Supp(Sr) [ Supp(Se). Whenever St, Sr and Se are �nite maps ofthe appropriate types we take the liberty to consider the triple (St; Sr; Se) asubstitution, without explicitly extending the �nite maps to total maps.Type schemesType schemes resemble the type schemes of Damas and Milner (1982) but withadditional quanti�cation over region variables and e�ect variables:� ::= 8():� simple type schemej 8�1����k�1����n�1����m:� compound type schemewhere n � 0, k � 0 andm � 0. The following de�nitions are stated for compoundtype schemes but are easily extended to simple type schemes. For a type scheme� = 8�1����k�1����n�1����m:� , the bound variables of �, written bv(�), is the setf�1; : : : ; �k; �1; : : : ; �n; �1; : : : ; �mgWe sometimes write the sequences of bound variables as vectors: ~�, ~� and ~�,respectively. Two type schemes are equivalent if they can be obtained from eachother by renaming and reordering of bound variables. A type � 0 is an instance of�, written � � � 0, if there exists a substitution S such that Supp(S) � bv(�) andS(� ) = � 0. When we want to make S explicit, we say that � 0 is an instance of �via S, written � � � 0 via S. Equivalent type schemes have the same instances.We sometimes write � as a shorthand for the simple type scheme 8():� , notto be confused with the compound type scheme 8():�, since compound typeschemes have a special signi�cance: they are used exclusively as types of region-polymorphic functions, even for those region-polymorphic functions that take anempty list of actual region parameters. The underlining serves to make it clearwhether a type scheme is to be regarded as simple or compound.24



� 2 TyVarp or� 2 RegVar� 2 E�ectVar' 2 E�ect = Fin(AtomicE�ect)AtomicE�ect = E�ectVar [ PutE�ect [ GetE�ectput(�) 2 PutE�ect = RegVarget(�) 2 GetE�ect = RegVar� 2 Type = TyVar [ ConsType [ FunTypeSimpleTypeScheme = TypeCompoundTypeScheme =[k�0RegVark � [n�0TyVarn � [m�0E�ectVarm � Type� 2 TypeScheme = SimpleTypeScheme[ CompoundTypeSchemeConsType = fintg� �:'��!� 2 FunType = TypeWithPlace�ArrowE�ect� TypeWithPlace�:' 2 ArrowE�ect = E�ectVar� E�ect� 2 TypeWithPlace = Type� RegVarTE 2 TyEnv = Var �n! (TypeScheme� RegVar)Figure 3: Semantic objects of region inferenceA type environment is a �nite map from program variables to pairs of theform (�; �). We use TE to range over type environments.The semantic objects are summarised in Figure 3. The notion of free variablesextend to larger semantic objects, such as type environments. (For example, atype variable is said to occur free in TE if it occurs free in TE(x), for some x.)For any semantic object A, frv(A) denotes the set of region variables that occurfree in A; ftv(A) denotes the set of type variables that occur free in A; fev(A)denotes the set of e�ect variables that occur free in A; and fv(A) denotes theunion of the above.5.2 The inference systemThe inference rules allow the inference of statements of the formTE ` e) e0 : �;'read: in TE, e translates to e0, which has type and place � and e�ect '. The regioninference rules are non-deterministic: given TE and e, there may be in�nitelymany e0, � and ' satisfying TE ` e ) e0 : �;'. This non-determinism isconvenient to express type-polymorphism, but we also use it to express freedomin the choice of region variables. Indeed, the region inference rules allow one toput all values in a single region, although, in practice, this would be the worstpossible choice. 25



Region-based translation of expressions TE ` e) e0 : �;'TE ` c) c at � : (int; �); fput(�)g (20)TE(x) = (�; �)TE ` x) x : (�; �); ; (21)TE(f) = (�; �0) � = 8�1����k~�~�:�1� � � via S ' = fget(�0);put(�)gTE ` f ) f[S(�1),: : :,S(�k)] at � : (�; �); ' (22)TE + fx 7! �1g ` e) e0 : �2; '' � '0 � = �1 �:'0��!�2 frv(e0) � frv(TE; � )TE ` �x:e) �x:e0 at � : (�; �); fput(�)g (23)TE ` e1 ) e01 : (�0 �:'��!�; �); '1 TE ` e2 ) e02 : �0; '2TE ` e1 e2 ) e01 e02 : �;' [ '1 [ '2 [ f�;get(�)g (24)TE ` e1 ) e01 : (�1; �1); '1TE + fx 7! (�1; �1)g ` e2 ) e02 : �;'2TE ` let x = e1 in e2 end) let x = e01 in e02 end : �;'1 [ '2 (25)TE + ff 7! (8~�~�:�; �0)g ` �x:e1 ) �x:e01 at �0 : (�; �0); '1fv(~�; ~�;~� ) \ fv(TE;'1) = ;TE + ff 7! (8~� ~�~�:�; �0)g ` e2 ) e02 : �;'2TE ` letrec f(x) = e1 in e2 end)letrec f[~� ](x) at �0 = e01 in e02 end : �;'1 [ '2 (26)TE ` e) e0 : �;' � =2 frv(TE; �)TE ` e) letregion � in e0 end : �;' n fput(�);get(�)g (27)TE ` e) e0 : �;' � =2 fev(TE; �)TE ` e) e0 : �;' n f�g (28)In Rule 21, note that the e�ect of referring to x is empty; this is because thee�ects only relate to access of the region store s, not the environments VE andR. In Rule 22 the instances of the bound region variables become actual region26



parameters in the target expression. The resulting e�ect includes get(�0) andput(�), for we access the region closure in �0 and create an ordinary functionclosure in �.In rule 23, the e�ect of creating the function closure at region � is simplyfput(p)g. Following Talpin and Jouvelot (1992), one is allowed to make theinformation about the function less precise by increasing the latent e�ect. Thisis useful in cases where two expressions must have the same functional type(including the latent e�ects on the arrows) but may evaluate to di�erent closures.The freedom to increase e�ects is also useful when one wants to prove that everywell-typed Exp-program of Milner (1978, 1982) can be translated with the regioninference rules | see Lemma 5.2 below. We shall explain the side-conditionfrv(e0) � frv(TE; � ) in a moment.In Rule 24 we see that the latent e�ect is brought out when the function isapplied. The get(�) in the resulting e�ect is due to the fact that we must accessthe closure at � in order to perform the function application.In Rule 26, note that f is region-polymorphic, but not type-polymorphic,inside e1, its own body. In e2, however, f is polymorphic in types, regions ande�ects. Without the limitation on type-polymorphism inside e1, region inferencewould not be decidable.Rule 27 concerns the introduction of letregion expressions. The basic idea,which goes back to early work on e�ect systems (Lucassen et al, 1987), is this.Suppose TE ` e ) e0 : �;' and assume that � is a region variable which doesnot occur free in TE or in � (typically, � occurs free in ', indicating that � isused in the computation of e0). Then � is purely local to the evaluation of e0, inthe sense that the rest of the computation will not access any value stored in �.ExampleOnce again, consider the expression e0 from Section 1. Let e00 be the subexpressione00 � let x = (2 at �2, 3 at �6) at �4in (� y :(#1 x, y) at �1) at �5endThe type environment in force when this expression is produced is TE0 = fg, thetype and place of e00 is�0 = ((int; �3) �1:fget(�4);put(�1)g������������!((int; �2) � (int; �3); �1); �5)and the e�ect of e00 is '0 = fput(�2);put(�6);put(�4);put(�5)g. Note that�6 is the only region variable which occurs free in '0 but occurs free neitherin TE0 nor in �0. Rule 27 allows us to discharge �6, resulting in the e�ectfput(�2);put(�4);put(�5)g and the letregion �6 in e0. ut27



Next, Rule 28 allows one to discharge an e�ect variable from the e�ect; noletregion is introduced, since the discharge does not in
uence evaluation.We owe an explanation for the side-condition frv(e0) � frv(TE; � ) in Rule 23.Often, but not always it is the case that every region variable which occur freein a translated expression occurs free either in the type or in the e�ect of theexpression. Here is an example where this fails to hold:fg ` (�f:1)(�x:2)) ((�f:1 at �1) at �2)((�x:2 at �3) at �4) : (int; �1); 'where ' = fput(�2);put(�3);get(�2);put(�1)g. Here we see that �3 is free inthe target expression but occurs free neither in the e�ect nor in the resulting typeand place. The reason is that 2 at �3 is \dead code": it can never be executed.In Rule 23 we demand that there be no such free region variables in the body ofthe lambda abstraction. This side-condition can always be satis�ed by applyingRule 27 repeatedly, if necessary, just before applying rule 27. However, the side-condition simpli�es the soundness proof (speci�cally the proof of Lemma 8.3).As mentioned earlier, the region inference rules give rise to a static semanticsfor the target language: one just consistency replaces sentences of the TE ` e)e0 : �;' by TE ` e0 : �;'. However, we prefer the present form, which emphasisesthe the rules specify a translation.5.3 Region inference is a re�nement of Milner's type sys-temIn this section we prove that the region inference system is a re�nement of Milner'stype discipline (Milner 1978) in the sense that an expression can be translatedwith the region rules if and only if it is well-typed according to Milner's typediscipline, as de�ned in Section 3.2. In particular, this shows that the problemof determining whether a closed expression can be region-annotated is decidable.We �rst show that an expression can be translated only if it is well-typed. Tothis end, we de�ne a function, �, (for \projection") from semantic objects in theregion rules to the semantic objects in the Milner rules:�(�) = �; �(int) = int; �(� �:'��!�0) = �(�)! �(�0)�(�; �) = �(� ); �(8~�~�~�:� ) = 8~�:�(� ); �(�; �) = �(�); �(TE) = � � TELemma 5.1 If TE ` e) e0 : �;' then �(TE) ` e : �(�).The proof is a straightforward induction on the depth of TE ` e) e0 : �;'. utNext we show that every well-typed term can be translated. To this end wede�ne a relation, R, between Milner's objects and ours. Let �0 be some �xed28



region variable and let �0 be some �xed e�ect variable. The basic idea is tochoose �0 everywhere we need a region variable in the translation and to choose�0:fget(�0);put(�0); �0g everywhere we need an arrow e�ect in the translation.Unfortunately, we cannot simply make R a map, because of the distinction be-tween simple and compound type schemes. So we de�ne R inductively as follows:� R � int R int � R � � 0 R �0(� ! � 0) R (� �0:fget(�0);put(�0);�0g��������������!�0)� R � 08():� R 8():� 0 � R � 08~�:� R 8~�:� 0 � R � 0� R (� 0; �0) � R �0� R (�0; �0)Dom(TE) = Dom(TE 0) 8x 2 Dom(TE):TE(x) R TE 0(x)TE R TE 0Clearly, for every TE there exists a TE 0 such that TE R TE 0.Lemma 5.2 If TE ` e : � and TE R TE 0 then TE 0 ` e ) e0 : �;' forsome e0, � and ' which satisfy � R �, frv(�) = f�0g, frv(e0) � f�0g and' � fget(�0);put(�0); �0g.Proof By induction on the depth of inference of TE ` e : � . We show only twocases, as the rest are straightforward.e � x By assumption we have TE(x) = � and � � � . Since TE R TE 0 we thenhave TE 0(x) = (�0; �0) for some �0 which satis�es � R �0. Now �0 may be simpleor compound, but if it is compound it has no quanti�ed region variables. Let� = (� 0; �0) be the unique type with place satisfying � R �. Then �0 � � 0 andthe desired conclusion follows either by Rule 21 or by Rule 22.e � �x:e1 Here � = �1 ! �2 for some �1 and �2 and TE ` �x:e1 : � musthave been inferred from the premise TE + fx 7! �1g ` e1 : �2. We have(TE + fx 7! �1g) R (TE 0 + fx 7! �1g), where �1 is the unique type with placerelated to �1. By induction there exist e01, �2 and '0 such that TE 0+ fx 7! �1g `e1 ) e01 : �2; '0, frv(�2) = f�0g, frv(e01) � f�0g and '0 � fget(�0);put(�0); �0g.Now Rule 23 conveniently allows us to use this inclusion to prove TE 0 ` �x:e1 )�x:e01 at�0 : (�1 �0:fget(�0);put(�0);�0g��������������!�2; �0); fput(�0)g from which the desired re-sults follows. ut5.4 Substitution lemmaLemma 5.3 For all substitutions S, if TE ` e ) e0 : �;' then S(TE) ` e )S(e0) : S(�); S('). 29



The proof is a straightforward induction on the depth of the inference of TE `e) e0 : �;', using appropriate variants of S in the case for letrec.Next, we shall state a lemma to the e�ect that the operation of making typeschemes in the type environmentmore type-polymorphic does not decrease the setof possible translations. Formally, we say that �1 is at least as type-polymorphicas �2, written �1 w �2, if �1 and �2 are identical, or �1 and �2 are both compoundand �1 = 8~�:�2, for some ~�. Furthermore, we write TE1 w TE2 if Dom(TE1) =Dom(TE2) and, for all x 2 Dom(TE1), if (�1; �1) = TE1(x) and (�2; �2) = TE2(x)then �1 w �2 and �1 = �2.Lemma 5.4 If TE ` e) e0 : �;' and TE 0 w TE then TE 0 ` e) e0 : �;'.We omit the proof, which is a straightforward induction on the depth ofinference of TE ` e ) e0 : �;'. We note, however, that the similar statementconcerning region polymorphism (replacing � = 8~�~�:� by �0 = 8~� ~�~�:�) is nottrue, because applications of region functions in the target expression can bea�ected by such a change.Fortunately, it is precisely the ability to make assumed type schemes moretype-polymorphic that we need.6 Using E�ects to Describe ContinuationsFor the proof of the soundness of the translation scheme, we need to relate thevalues of the dynamic semantics of the source and target language. We refer tothis relation as the consistency relation.Since all values are addresses in the target language semantics, the consistencyrelation must involve stores. Consistency also naturally depends on types: at typeint, source level integers can only be consistent with pointers to integers in thetarget; at a functional type, only closures can be related, and so on. The regioninference rules yield expressions, types with places, and e�ects | all of which cancontain free occurrences of region variables. To relate these region variables to theregion names which identify regions at runtime, we need a region environment,R, and the following de�nition:De�nition 6.1 A region environment R connects e�ect ' to store s, if frv(') �Dom(R) and for all � 2 frv('), R(�) 2 Dom(s).Based on these considerations, assume that we have de�ned consistency as arelation C � RegEnv�TypeWithPlace�Val� Store� TargetValwhere C(R;�; v; s; v0) is read: in region environment R and store s, source valuev is consistent with target value v0 at type with place �. The obvious idea30



would now be somehow to lift this relation �rst from types with places to typeschemes, C(R;�; v; s; v0), and then, by pointwise extension, to environments,C(R;TE;E; s; VE). We might then try to prove the following statement:Conjecture 6.1 If TE ` e ) e0 : �;' and E ` e ! v and C(R;TE; e; s; VE)and R connects ' to s then there exists a store s0 and a target value v0 such thats; VE;R ` e0 ! v0; s0 and C(R;�; v; s0; v0).However, there is a problem with this conjecture. Informally, it states that con-sistency is preserved by evaluation. Unfortunately, we cannot expect that tohold! To see what the problem is, consider example 4.2 once more. Accordingto the conjecture, at point (b) we should have that the source language closurehy; (#1 x, y); fx 7! (2; 3)gi and the closure found in region r5 are consistent.In a sense they are consistent: application of the two closures map consistentarguments to consistent results. But notice that the consistency which used toexist between the source environment fx 7! (2; 3)g and its representation in thetarget semantics was partly destroyed when the region r6 was popped from theregion stack. Thus we see that, intuitively speaking, consistency gradually de-teriorates during computation. The saving factor, it turns out, is that there isalways enough consistency left for the rest of the computation to succeed, withoutrunning into any of the inconsistencies!To make these intuitions precise, we need some notion of \consistency withrespect to the rest of the computation". One possibility is to work explicitlywith continuations or evaluation contexts. However, we have not explored thispossibility, since all we need for the purpose of the soundness proof is a verysimple summary of which regions are accessed by the rest of the computation.Speci�cally, it su�ces to summarise the rest of the computation by an e�ect, '0,which describes which of the currently existing regions are accessed by the restof the computation. Thus we de�ne a relationC � RegEnv� TypeWithPlace�Val� Store� TargetVal� E�ectwhere C(R;�; v; s; v0; '0), also written C(R;�; v; s; v0) w.r.t. '0, is read: at typewith place �, in region environment R and store s, source value v is consistentwith target value v0 with respect to the e�ect '0 (where '0 represents the e�ect ofthe rest of the computation). In our example, '0 is fput(�3);get(�5);put(�1)g,connected via the region environment to regions r3, r5 and r1. The fact that therest of the computation does not access the current contents of r6 is evident fromthe fact that no region variable free in '0 is connected to r6! That is why theenvironments in the two closures are consistent with respect to the rest of thecomputation. The second version of our conjecture becomes:Conjecture 6.2 If TE ` e) e0 : �;' and E ` e! v and C(R;TE; e; s; VE)w.r.t.('['0) and R connects '['0 to s then there exists a store s0 and a target valuev0 such that s; VE;R ` e0 ! v0; s0 and C(R;�; v; s0; v0) w.r.t. '0.31



In other words, if we start out with consistency to cover both the evaluation ofe0 (whose e�ect is ') and the rest of the computation (whose e�ect is '0) thenafter the computation of e0, we will have enough consistency left for the rest ofthe computation.However, Conjecture 6.2 is not quite strong enough to be proved by induction.Consider a source language closure hx; e;Ei and a target closure hx; e0; VE;Ri,which we think of as representing hx; e;Ei. When the source closure is applied,the body e will be evaluated in an environment E + fx 7! v2g, where v2 is theargument to the function. Assuming that v02 is some target value consistent withv2, the corresponding evaluation in the target language takes the form s; VE +fx 7! v02g; R ` e0 ! ���. However, the region environment in which e0 is evaluatedis not necessarily the same as the region environment R0 which is in force atthe point where the application takes place, for more regions may have beenallocated since the closure was created. Moreover,R0 is important for establishingthat E + fx 7! v2g and VE + fx 7! v02g are consistent, since v2 and v02 will beknown to be consistent in R0, not in R. And we must establish consistency ofE + fx 7! v2g and VE + fx 7! v02g in order to use induction to prove that theresults of the function applications are consistent.ExampleConsider the target expressionletregion �1in let x = 3 at �1in letregion �2in let f = (�y:(x+y) at �0) at �2in letregion �3in f(4 at �3)endendendendendConsider the point of the evaluation just after the closure for f has beencreated. Let us say that the region environment is R1 = f�0 7! r0; �1 7! r1; �2 7!r2g. Then the store iss1 = fr0 7! fg; r1 7! fox 7! 3g; r2 7! fof 7! hy; (x+y) at �0; fx 7! (r1; ox)g; R1igWe can reasonable expect to haveC(R1; fx 7! (int; �1)g; fx 7! 3g; s1; fx 7! (r1; ox)g) w.r.t. '1 (29)32



where '1 = fget(�1);get(�2);put(�0)g, which is the net-e�ect of the remainderof the computation at that point. (\Expect" because we have not de�ned C yet.)Next, consider the point where the actual argument 4 to f has been stored, theclosure for f has been fetched and we are just about to evaluate the body of f.Now the region environment has become R2 = R1 + f�3 7! r3g, the store hasbecome s2 = s1 + fr3 7! fo4 7! 4gg and we can reasonably expect to haveC(R2; (int; �3); 4; s2; (r3; o4)) w.r.t.'2 (30)where '2 = fget(�1);get(�3);put(�0)g, i.e., the e�ect of the continuation at thatpoint. From (29) and (30) we can reasonably expect to obtainC(R2; fx 7! (int; �1); y 7! (int; �3)g;fx 7! 3; y 7! 4g; s2; fx 7! (r1; ox); y 7! (r3; o4)g) w.r.t. '2But evaluation of the function body is going to take place inR1 (see rule 12). Thusthe theorem needs to be strong enough to handle the situation that the regionenvironment in which consistency is established is not the same as the regionenvironment in which the expression is evaluated. Incidentally, this is similar tothe situation in block-structured languages, where an an inner block can call afunction declared in an enclosing block. (Indeed, it appears that although thevariable environments do not obey a stack discipline, the region environmentsdo.) utWe therefore prove that the theorem holds not just for R but also for otherregion environments R0 which \agree" with R:De�nition 6.2 Let R and R0 be region environments and let ' be an e�ect. Wesay that R and R0 agree on ', if R # frv(') = R0 # frv(').We are now able to state the main theorem, which we shall prove, once wehave de�ned the consistency relation:Theorem 6.1 If TE ` e ) e0 : �;' and C(R;TE;E; s; VE) w.r.t. ' [ '0 andE ` e ! v and R connects ' [ '0 to s and R0 and R agree on ' [ '0 andfrv(e0) � DomR0 then there exist s0 and v0 such that s; VE;R0 ` e0 ! v0; s0 andC(R0; �; v; s0; v0) w.r.t. '0.The premise \frv(e0) � DomR0" is included only to make the proof simpler; ithelps to ensure that closures in the target language will not contain free regionvariables.Note that we use the e�ect of the rest of the computation as an approximationto what data is \live"; the notion usually employed by garbage collectors (namely33



that data is live, if it is reachable in the memory graph) is incomparable: we havealready seen that data which is reachable in the memory graph is actually deadand can be deallocated using region inference; conversely, sometimes data whichwe keep alive in a region is not actually used by the rest of the computation anda garbage collector would detect it.7 ConsistencyFor simplicity, we �rst present the consistency relation in the form of inferencerules without reference to the underlying mathematics. We shall later explainthat the rules can be viewed as describing a maximal �xed point of a certainmonotonic operator. For now, it su�ces to read the rules as follows: the conclu-sion of a rule holds if and only if the premises hold.Rules 31{35 characterize consistency between source values and storable tar-get values sv (de�ned in Section 4.1). These rules are used in Rules 36 and 37,to characterize consistency between source and target values (recall that targetvalues are addresses). It is precisely in rules Rule 36 and 37 we see the signi�-cance of the idea of representing the rest of the computation by the e�ect ': ifget(�) =2 ', then any claim about consistency of values at region � is allowed,for � then denotes \garbage". However, by rule 36, if v0 = (r; o) 2 Pdom(s)and r = R(�) then the value stored at address v0 has to be consistent with thesource value, v, as described by rules 34 and 35. (Recall that (r; o) 2 Pdom(s)abbreviates r 2 Dom(s) ^ o 2 Dom(s(r)).) Rule 38 says that consistency ofenvironments is the pointwise extension of consistency of values.Rule 31 should be straightforward. In rule 32, note that TE does not oc-cur in the conclusion of the rule: one has to \invent" a TE which can justifythe target expression as a compilation result of the source expression. Also, theenvironments E and VE must be consistent at TE. The region environment Rmay be regarded as the region environment which is in force when the closuresare applied; as we saw earlier, this is not necessarily the same as the region en-vironment which was in force when the target closure was created (R0 in therule). For the purpose of the soundness theorem, we clearly need to know thatR and R0 are related somehow, and it turns out that it su�ces to require thatthey agree on '. The condition frv(e0) � R0 ensures that the target closure con-tains no free region variables; the two �rst premises of the rule already ensurethat fpv(e0) � Dom(VE), i.e., that the closure contains no free program vari-ables. Again this is good hygiene which is useful in the proofs (speci�cally ofLemma 8.3).Rule 33 is similar to Rule 32, but deals with recursion. For the premises tobe satis�ed, TE mush have f in its domain. Moreover, since recursion is handledby unfolding in the source language semantics, it is E + ff 7! hx; e;E; fig andVE that have to be consistent, rather than just E and VE.34



Rule 34 is similar to Rule 33, but it relates recursive closures and regionfunction closures at compound type schemes. For simple type schemes, one usesRule 35 together with rules 31{33.Types and Storable Values C(R;�; v; s; sv) w.r.t. 'i 2 IntC(R; (int; �); i; s; i) w.r.t. ' (31)TE ` �x:e) �x:e0 at � : (�; �); fput(�)gC(R0; TE;E; s; VE) w.r.t. 'R0 and R agree on ' frv(e0) � Dom(R0)C(R; (�; �); hx; e;Ei; s; hx; e0; VE;R0i) w.r.t. ' (32)TE ` �x:e) �x:e0 at � : (�; �); fput(�)gC(R0; TE;E + ff 7! hx; e;E; fig; s; VE) w.r.t. 'R0 and R agree on ' frv(e0) � Dom(R0)C(R; (�; �); hx; e;E; fi; s; hx; e0; VE;R0i) w.r.t. ' (33)Type Schemes and Storable Values C(R; (�; �); v; s; sv) w.r.t. 'TE + ff 7! (�; �)g ` �x:e) �x:e0 at � : (�; �); fput(�)g� = 8�1����k�1����n�1����m:� bv(�) \ fv(TE; �) = ;R0 and R agree on ' frv(e0) � Dom(R0) [ f�1; : : : ; �kgC(R0; TE + ff 7! (�; �)g; E + ff 7! hx; e;E; fig; s; VE) w.r.t. 'C(R; (�; �); hx; e;E; fi; s; h�1; : : : ; �k; x; e0; VE;R0i) w.r.t.' (34)C(R; (�; �); v; s; sv) w.r.t. 'C(R; (8():�; �); v; s; sv) w.r.t.' (35)Type Schemes and addresses C(R; (�; �); v; s; v0) w.r.t. 'v0 = (r; o) R(�) = r v0 2 Pdom(s) C(R; (�; �); v; s; s(v0)) w.r.t.'C(R; (�; �); v; s; v0) w.r.t. ' (36)get(�) =2 'C(R; (�; �); v; s; v0) w.r.t. ' (37)35



Environments C(R;TE;E; s; VE) w.r.t. 'DomTE = DomE = DomVE8x 2 DomTE: C(R;TE(x); E(x); s; VE(x)) w.r.t. 'C(R;TE;E; s; VE) w.r.t. ' (38)The relation C is de�ned as the maximal �xed point of an operator F : P(C)!P(C), where P means powerset and C is de�ned by:C = RegEnv� TypeWithPlace�Val� Store� StoreVal� E�ect[ RegEnv� (TypeScheme� RegVar)�Val� Store� StoreVal� E�ect[ RegEnv� (TypeScheme� RegVar)�Val� Store� TargetVal� E�ect[ RegEnv� TyEnv� Env� Store� TargetEnv� E�ectThe members of C are referred to as (consistency) claims. We use 
 to rangeover claims and � to range over sets of claims. For example, a claim of the form(R; (�; �); v; s; sv; ') is read: (it is claimed that) storable value sv is consistentwith source value v and has type scheme � and resides at � in the store s andregion environment R, with respect to e�ect '.Note that (P(C);�) is a complete lattice. We now de�ne an operator F :P(C) ! P(C). The de�nition is expressed using the syntax of inference rules,but it could equally well be expressed as a non-recursive de�nition by cases; forgiven � � C, F(�) is de�ned as the unique set f
 2 C j 
 2 F(�) can be inferredby one of the inference rules g. Since the rules a very similar to rules 31{38 weshall not explain them further.Types and Storable Values (R;�; v; s; sv; ') 2 F(�)i 2 Int(R; (int; �); i; s; i; ') 2 F(�) (39)TE ` �x:e) �x:e0 at � : (�; �); fput(�)g(R0; TE;E; s; VE;') 2 �R0 and R agree on ' frv(e0) � Dom(R0)(R; (�; �); hx; e;Ei; s; hx; e0; VE;R0i; ') 2 F(�) (40)TE ` �x:e) �x:e0 at � : (�; �); fput(�)g(R0; TE;E + ff 7! hx; e;E; fig; s; VE;') 2 �R0 and R agree on ' frv(e0) � Dom(R0)(R; (�; �); hx; e;E; fi; s; hx; e0; VE;R0i; ') 2 F(�) (41)36



Type Schemes and Storable Values (R; (�; �); v; s; sv; ') 2 F(�)TE + ff 7! (�; �)g ` �x:e) �x:e0 at � : (�; �); fput(�)g� = 8�1����k�1����n�1����m:� bv(�) \ fv(TE; �) = ;R0 and R agree on ' frv(e0) � Dom(R0) [ f�1; : : : ; �kg(R0; TE + ff 7! (�; �)g; E + ff 7! hx; e;E; fig; s; VE;') 2 �(R; (�; �); hx; e;E; fi; s; h�1; : : : ; �k; x; e0; VE;R0i; ') 2 F(�) (42)(R; (�; �); v; s; sv; ') 2 �(R; (8():�; �); v; s; sv; ') 2 F(�) (43)Type Schemes and addresses (R; (�; �); v; s; v0; ') 2 F(�)v0 = (r; o) R(�) = r v0 2 Pdom(s) (R; (�; �); v; s; s(v0); ') 2 �(R; (�; �); v; s; v0; ') 2 F(�) (44)get(�) =2 '(R; (�; �); v; s; v0; ') 2 F(�) (45)Environments (R;TE;E; s; VE;') 2 F(�)DomTE = DomE = DomVE8x 2 DomTE:(R;TE(x); E(x); s; VE(x); ') 2 �(R;TE;E; s; VE;') 2 F(�) (46)The operator F is monotonic: � � �0 implies F(�) � F(�0). Thus, by Tarski's�xed point theorem, there exists a greatest �xed point for F and this greatest�xed point is also the greatest set � satisfying � � F(�). Let �# be this greatest�xed point.De�nition 7.1 We take C to be �# and we write, for example, C(R;�; v; s; v0)w.r.t.' to mean (R;�; v; s; v0; ') 2 C.We use co-induction to prove properties of the consistency relation: to prove thata set � of claims is consistent, (ie., that � � �#) it su�ces to prove � � F(�).37



8 Properties of ConsistencyIn this section we prove important lemmas about the consistency relation C.Besides being useful in the proof of the main theorem (Theorem 6.1) they addressissues such as why it is safe to re-use a deallocated region even when there are deadpointers into it. The lemmas will be proved using a special style of co-inductiveproof, which we call rule-based co-induction.8.1 Rule-based Co-inductionRule-based co-inductive proof is a style of proof which makes it possible to presenta co-inductive proof in a form which resembles ordinary induction on depth ofinference. The scenario is that a set, C, is given, together with an operatorF : P(C)! P(C) which is monotonic with respect to set inclusion. F is de�nedby a �nite set of inference rules (in our case, Rules 39{46). Let �# be the maximal�xed point of F : �# = [f� � C j � � F(�)g. Now consider a lemma whichstates that, for some given relation R � C � C:8
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 0 2 C if 
 2 �# and 
 R 
 0 then 
 0 2 �# (47)Let �R = f
 0 2 C j 9
 2 �#:
 R 
 0g. We refer formally to the members 
 0 of�R as the consequences of the lemma. Then (47) can be stated �R � �#. By theprinciple of co-induction, it su�ces to prove �R � F(�R), i.e., that8
 0 2 C if there exists 
 2 �# such that 
 R 
 0 then 
 0 2 F(�R)Thus the co-inductive proof can be organised as follows: take any 
 0 2 C. Let
 2 �# be such that 
 R 
 0. Show 
 0 2 F(�R), i.e., show that 
 0 can be inferredby the inference rules that de�ne F , using only premises which are themselvesconsequences of the lemma. Often, this is proved by a case analysis on 
 (note:not 
 0), since 
 2 �# implies that 
 can be inferred by an application of one ofthe rules that de�ne F from premises which are themselves in �#. Note thatproving 
 0 2 F(�R) is equivalent to inferring 
 0 2 �#, using the �xed-point rulesfor F (in our case: Rules 31{38) and only using premises 
 0i which are themselvesconsequences of the lemma (i.e., 8i9
i 2 �#:
i R 
 0i). Thus we can word theco-inductive proof almost as if it were a normal inductive proof on the depth ofinference related to mininal �xed points, using the �xed point rules for F ratherthan the rules that de�ne F .We name this style of co-inductive proof rule-based co-induction. We empha-sise that a rule-based co-inductive proof is not a proof on \depth of inference"| for the co-inductive proof establishes claims that are not conclusions of any�nite proof tree constructed by the �xed point rules.38



8.2 Preservation of consistencyThe �rst lemma states that consistency is preserved under decreasing e�ect andincreasing store. This is to be expected: it is easier to obtain consistency withrespect to an observer if the observer observes a little rather than a lot; and thelarger the store is, the easier it is for it to contain bits of target values which areconsistent with a given source value.Lemma 8.1 If C(R;�; v; s1; v0) w.r.t. '1 and '2 � '1 and s1 v s2then C(R;�; v; s2; v0) w.r.t. '2.Lemma 8.1 is a special case of the following lemma:Lemma 8.2 If C(R1; �; v; s1; v0) w.r.t. '1 and '2 � '1 and R2 and R1 agree on'2 and s1 # (Rng(R2 # frv('2))) v s2 then C(R2; �; v; s2; v0) w.r.t. '2. Similarlyfor the other forms of C.Notice that the domain of s1 need not be a subset of the domain of s2 forLemma 8.2 to apply. This is crucial in the proof of the main theorem, in the casefor letregion. Here s1 will be the store resulting from a computation whichinvolves local regions; s2 will be the result of removing the local regions from s1.The region variables that are free in '1, but not in '2 will be the variables of thelocal regions.Proof We prove Lemma 8.2 and the corresponding statements concerning theother forms of consistency by rule-based co-induction. The cases for the inferencerules (31) to (38) are arranged according to judgement forms. In all cases, weassume '2 � '1 (48)R2 and R1 agree on '2 (49)s1 # (Rng(R2 # frv('2))) v s2 (50)Types and Storable Values C(R;�; v; s; sv) w.r.t. 'Assume C(R1; �; v; s1; sv) w.r.t. '1 (51)By the remarks in Section 8 it su�ces to prove that C(R2; �; v; s2; sv)w.r.t.'2 canbe inferred using Rules 31{38, from premises which are themselves conclusions ofthe lemma.Recall that Rules 31{38 express that C is a �xed-point of F : one has (51) ifand only if either the \premises" (i.e., the formulae above the line) of Rule 31hold, or the premises of Rule 32 hold, or the premises of Rule 33 hold. We dealwith each case in turn: 39



Rule 31 Here � = (int; �), for some �, and v = sv = i, for some i 2 Int. Butthen C(R2; �; v; s2; sv) w.r.t. '2, by Rule 31.Rule 32 Here there exist � , �, TE, x, e, E, e0, VE, R0 such that (51) is inferredfrom premises TE ` �x:e) �x:e0 at � : (�; �); fput(�)g (52)C(R0; TE;E; s1; VE) w.r.t. '1 (53)R0 and R1 agree on '1 frv(e0) � Dom(R0) (54)and � = (�; �), v = hx; e;Ei and sv = hx; e0; VE;R0i. But then, by (54), (48) and(49) we have R0 and R2 agree on '2 (55)Obviously, R0 agrees with itself on '2 and, by (55) and (50), s1 # (Rng(R0 #frv('2))) v s2. Thus, using also (48) and (53), we have that the claimC(R0; TE;E; s2; VE) w.r.t. '2 (56)is a consequence of the lemma.2 Thus by Rule 32 on (52), (55) and (56) we haveC(R2; �; v; s2; sv) w.r.t.'2, as desired (since (56) is a consequence of the lemma).Rule 33 Similar to the previous case.Type Schemes and Storable Values C(R; (�; �); v; s; sv) w.r.t. 'Assume C(R1; (�; �); v; s1; sv) w.r.t. '1, which can be inferred by Rule 34 or byRule 35. The case for Rule 34 is similar to the case for Rule 32. So consider thecase for Rule 35. Here � takes the form 8():� and we have C(R1; (�; �); v; s1; sv)w.r.t.'1. Thus the claim C(R2; (�; �); v; s2; sv) w.r.t. '2 is a conseqence of the lemma.But then, by Rule 35 we have C(R2; (�; �); v; s2; sv)w.r.t.'2, as required (since thepremise used, i.e., C(R2; (�; �); v; s2; sv) w.r.t.'2, is a consequence of the lemma).Type Schemes and addresses C(R; (�; �); v; s; v0) w.r.t. 'Assume C(R1; (�; �); v; s1; v0) w.r.t. '1 (57)inferred by Rule 36 or Rule 37. Case analysis:2Strictly speaking, we should say \we have that the claim (R0; TE;E; s2; VE; '2) is a con-sequence of the lemma", but the chosen formulation seems easier to read, so we adopt itthroughout. 40



get(�) 2 '2 Then get(�) 2 '1 so by (36) there exist r, o such that v0 = (r; o)and R1(�) = r (58)v0 2 Pdom(s1) (59)C(R1; (�; �); v; s1; s1(v0)) w.r.t. '1 (60)By (49) on (58) we have R2(�) = r (61)Thus (59) and (50) givev0 2 Pdom(s2) and s2(v0) = s1(v0) (62)By (60), (48), (49) and (50) we have that the claim C(R2; (�; �); v; s2; s1(v0))w.r.t.'2 is a consequence of the lemma, i.e., by (62), that the claimC(R2; (�; �); v; s2; s2(v0)) w.r.t. '2 (63)is a consequence of the lemma. Thus Rule 36 on (61), (62) and (63) givesC(R2; (�; �); v; s2; v0) w.r.t. '2, since the premise used is a consequences of thelemma.get(�) =2 '2 Then C(R2; (�; �); v; s2; v0) w.r.t.'2 by Rule 37.Environments C(R;TE;E; s; VE) w.r.t. 'The case for Rule 38 is straightforward.8.3 Region renamingIn order to prove that re-use of old regions is safe (Lemma 8.4), we shall wantto rename region variables that occur free in some semantic object A but do notoccur free in the e�ect of the rest of the computation, to other region variablesthat do not occur free in the e�ect of the rest of the computation. Let Sr be aregion substitution. The yield of Sr, written Yield(Sr), is the set fSr(�) j � 2Supp(Sr)g.De�nition 8.1 Let A be a semantic object, let ' be an e�ect and let S =(St; Sr; Se) be a substitution. We say that S is a region renaming of A withrespect to ' if S # frv(A) is injective, (Supp(Sr) [ Yield(Sr)) \ frv(') = ; andSupp(Se) = Supp(St) = ;.It is not in general the case that C(R;�; v; s; v0)w.r.t.' implies C(R;S(�); v; s; v0)w.r.t.', for all substitutions S; the reason is that S might map region variables in theset frv(�) n frv(') to variables that are free in ', thereby making consistencyharder to achieve. However, the following special case holds:41



Lemma 8.3 If C(R;�; v; s; v0) w.r.t. ' and S is a region renaming of � withrespect to ' then C(R;S(�); v; s; v0) w.r.t. '. Similarly for the other consistencyjudgement forms.Intuitively: as far as ' is concerned, a region variable � 2 frv(�) n frv(') denotesa garbage region which is no di�erent from any other garbage region!Proof By rule-based co-induction on C(R;�; v; s; v0) w.r.t. ' (and the other con-sistency judgement forms). The cases are ordered according to judgement forms.Types and Storable Values C(R;�; v; s; sv) w.r.t. 'Assume that S is a region renaming of � with respect to ' and thatC(R;�; v; s; sv) w.r.t. ' (64)Now (64) must be the conclusion of one of the following rules:Rule 31 By (64) we have � = (int; �), for some �, and v = sv 2 Int. ThusC(R;S(�); v; s; sv) w.r.t. '.Rule 32 By (64) there exist TE, x, e, e0, R0, E, � , � and VE such thatTE ` �x:e) �x:e0 at � : (�; �); fput(�)g (65)C(R0; TE;E 0; s; VE) w.r.t. ' (66)R0 and R agree on ' frv(e0) � Dom(R0) (67)� = (�; �); v = hx; e;Ei; sv = hx; e0; VE;R0i (68)where E 0 = E. (The reason for introducing E 0 will become clear later.) To proveC(R;S(�); v; s; sv) w.r.t. ' we wish to �nd TE0, R0 and e00 satisfyingTE0 ` �x:e) �x:e00 at S(�) : S(�; �); fput(S(�))g (69)C(R0; TE0; E 0; s; VE) w.r.t. ' (70)R0 and R agree on ' frv(e00) � Dom(R0) (71)sv = hx; e00; VE;R0i (72)and that the claim (70) is itself a consequence of the lemma. Comparing (65)and (69), a tempting idea is simply to apply S throughout (65), taking e00 to beS(e0). However, S is not necessarily a region renaming on TE, so (70) would notnecessarily be a consequence of the lemma.Therefore, let f�1; : : : ; �ng = frv(TE)nfrv(�;') and let f�01; : : : ; �0ng be distinctnew region variables, new in the sense that f�01; : : : ; �0ng \ frv(S(�); ') = ;. Let42



S 0 = S + f�i 7! �0i j 1 � i � ng, let TE0 = S 0(TE) and let e00 = S 0(e0). ThenS 0 is a region renaming of (TE; �) with respect to '. Further, R0 is de�nedas follows. Let Dom(R0) be frv(e00). Since (65) must have been inferred byRule 23, we have frv(e0) � frv(TE; � ). Thus S 0 is injective on frv(e0). Then, forevery region variable �0 2 frv(e00) there exists one and only one region variable� 2 frv(e0) such that S 0(�) = �0. De�ne R0(�0) to be R0(�). By these de�nitions,hx; e0; VE;R0i and hx; e00; VE;R0i are equal. By Lemma 5.3 on (65) and the factthat S 0(�; �) = S(�; �) we obtain (69), as desired. Notice that R0 and R0 agree on', since S 0 is a region renaming with respect to '. Thus (71) also holds. Then,by Lemma 8.2 on (66) we have C(R0; TE;E 0; s; VE) w.r.t. '. But then, since S 0is a region renaming of TE with respect to ' we have that the claim (70) isitself a consequence of the lemma, as desired. Finally Rule 32 on (68){(72) givesC(R;S(�); v; s; sv) w.r.t. ', as desired.Rule 33 Almost identical to the previous case: use E 0 = E+ff 7! hx; e;E; figand v = hx; e;E; fi instead of E 0 = E and v = hx; e;Ei. Conclude using Rule 33instead of using Rule 32.Type Schemes and Storable Values C(R; (�; �); v; s; sv) w.r.t. 'Assume that (�0; �0) = S(�; �), that S is a region renaming of (�; �) with respectto ' and that C(R; (�; �); v; s; sv) w.r.t. ' (73)Then (73) is the conclusion of one of the following rules:Rule 34 Then there exist TE, f , x, e, e0, �1 : : : �k, �1 : : : �n, �1 : : : �m, � , VEand R0 such thatTE + ff 7! (�; �)g ` �x:e) �x:e0 at � : (�; �); fput(�)g (74)� = 8�1����k8�1����n8�1����m:� and bv(�) \ fv(TE; �) = ;R0 and R agree on ' frv(e0) � Dom(R0) [ f�1; : : : ; �kg (75)C(R0; TE + ff 7! (�; �)g; E + ff 7! hx; e;E; fig; s; VE) w.r.t. ' (76)v = hx; e;E; fi; sv = h�1; : : : ; �k; x; e0; VE;R0i (77)As in the previous two cases, S is not necessarily a region renaming of TE +ff 7! (�; �)g. Let f�old1 ; : : : ; �oldl g = (f�1; : : : ; �kg [ frv(TE; � )) n frv((�; �); ').Let f�new1 ; : : : ; �newl g be distinct new region variables, new in the sense thatf�new1 ; : : : ; �newl g \ frv(S(�; �); ') = ;. Let S 0 = S + (fg; f�old1 7! �new1 ; : : : ; �oldl 7!�newl g; fg). ThenS 0 is a region renaming on (f�1; : : : ; �kg; TE; �; �) with respect to ' (78)43



Let TE 0 = S 0(TE) and let e00 = S 0(e0). By Lemma 5.3 on (74) we haveTE0 + ff 7! (S 0(�); �0)g ` �x:e) �x:e00 at �0 : (S 0�; �0); fput(�0)g (79)where we have used S 0(�) = �0. Since S 0 is the identity on every type and e�ectvariable, we have S0(�) = 8S 0�1���S 0�k�1����n�1����m:S 0(� ) (80)Moreover,(fS 0�1; : : : ; S 0�kg; f�1; : : : ; �ng; f�1; : : : ; �mg) \ fv(TE 0; �0) = ; (81)since S 0 is injective on frv(f�1; : : : ; �kg; TE; �). De�neR0 as follows. Let Dom(R0) =frv(e00) n fS 0(�1); : : : ; S 0(�k)g. From (74) and Rule 23 we get frv(e0) � frv(TE +ff 7! (�; �)g; � ). By (78), for every �0 2 e00 there exists a unique � 2 frv(e0) suchthat S 0(�) = �0. Let R0(�0) = R0(�). The closures h�1; : : : ; �k; x; e0; VE;R0i andhS 0�1; : : : ; S 0�k; x; e00; VE;R0i are now equal. Moreover, by (78), R0 and R0 agreeon '. But then, by (75), we haveR0 and R agree on ' frv(e00) � Dom(R0) [ fS 0�1; : : : ; S 0�kg (82)By Lemma 8.2 on (76), using that R0 and R0 agree on ', we getC(R0; TE + ff 7! (�; �)g; E + ff 7! hx; e;E; fig; s; VE) w.r.t. ' (83)Notice that S 0 is a region renaming of TE+ff 7! (�; �)g with respect to '. Thusfrom (83) get get that the claimC(R0; TE 0 + ff 7! (S 0(�); �0)g; E + ff 7! vg; s; VE) w.r.t.' (84)is a consequence of the lemma. By Rule 34 on (79), (80), (81), (82) and (84) wehaveC(R; (S 0(�); p0); hx; e;E; fi; s; hS 0�1; : : : ; S 0�k; x; e00; VE;R0i) w.r.t. ' (85)which is the desired resultRule 35 By (73) and Rule 35 we have that � is simple and takes the form 8():�and C(R; (�; �); v; s; sv) w.r.t.'. Thus the claim C(R;S 0(�; �); v; s; sv) w.r.t.' is aconsequence of the lemma. Thus C(R; (S 0(�); �0); v; s; sv) w.r.t. ', as desired.The cases for the remaining rules (Rules 36{38) are straightforward. ut44



8.4 Region allocationConsistency is not in general preserved under increasing e�ects or decreasingstores. For example, for all addresses a, we have C(f� 7! rg; (int; �); 3; fg; a)w.r.t.' if ' = ;, but not if ' = fget(�)g, since the store is empty. Yet there is onepoint where we do need to increase e�ects, namely in the case of the main proofconcerning expressions of the forme0 � letregion � in e01 endStarting from an assumption of the form C(R;TE;E; s; VE) w.r.t. ' we wish toextend s with a new region, yielding s0 = s + fr 7! fgg, increase ' to ' [fput(�);get(�)g (the get and put e�ects representing the e�ects of e01 on thenew region) and still be able to claim C(R + f� 7! rg; TE;E; s0; VE) w.r.t. ' [fput(�);get(�)g. That this is possible is not trivial, for the region r may havebeen in use earlier (and there may even be dead pointers into the old region namedr). However, if we extend the observing e�ect with a region variable which is notfree in the type environment, then consistency really is preserved:Lemma 8.4 If C(R;TE;E; s; VE) w.r.t. ' and � =2 frv(TE;'), r =2 Dom(s) andfrv('0) � f�g then C(R+f� 7! rg; TE;E; s+fr 7! fgg; VE)w.r.t.'0['. Similarlyfor the other forms of C.Proof The proof is by rule-based co-induction. We assumefrv('0) � f�g (86)r =2 Dom(s) (87)For brevity, let s0 = s + fr 7! fgg. We now have a case analysis with one casefor each of Rules 31 to 38.Types and Storable Values C(R;�; v; s; sv) w.r.t. 'Assume C(R; (�; �0); v; s; sv) w.r.t. ' (88)� =2 frv((�; �0); ') (89)Then (88) is the conclusion of one of the following rules:Rule 31 Here v = sv = i, for some i 2 Int and � = int. Hence C(R + f� 7!rg; (�; �0); v; s0; sv) w.r.t. ' [ '0 by Rule 31 itself.45



Rule 32 Here (88) is inferred from premisesTE ` �x:e) �x:e0 at �0 : (�; �0) : fput(�0)g (90)C(R0; TE;E; s; VE) w.r.t. ' (91)R0 and R agree on ' frv(e0) � Dom(R0) (92)v = hx; e;Ei and sv = hx; e0; VE;R0i (93)Without loss of generality we can assume� =2 frv(TE) (94)for if � 2 frv(TE) we can do the following. Let �0 be a fresh region variable, freshin the sense that �0 =2 frv(TE;'; � ). Consider the substitution S = f� 7! �0g. By(89) and Lemma 5.3 on (90) we haveS(TE) ` �x:e) �x:S(e0) at �0 : (�; �0) : fput(�0)g (95)Moreover, S is a region renaming of TE with respect to ', so Lemma 8.3 on (91)gives C(R0; S(TE); E; s; VE) w.r.t. ' (96)Let R00 be the region environment de�ned as follows. If � =2 Dom(R0) then letR00 = R0. Otherwise let R00 have domain Dom(R00) = Dom(R0) n f�g [ f�0g andvalues R00(�00) = �R0(�00) if �00 6= �R0(�) if �00 = �0Let sv0 = hx; S(e0); VE;R00i. Since frv(e0) � Dom(R0) we have that sv and sv0 areequal and frv(S(e0)) � Dom(R00). Also, R00 and R0 agree on ' (since neither �0nor � is free in '). Thus by Lemma 8.2 on (96) we haveC(R00; S(TE); E; s; VE) w.r.t. ' (97)Thus we can assume that (94) holds.By (91) and (94) we have that the claimC(R0 + f� 7! rg; TE;E; s0; VE) w.r.t. ' [ '0 (98)is itself a conclusion of the lemma. Moreover, from (92) and (86) we haveR0 + f� 7! rg and R + f� 7! rg agree on ' [ '0 (99)By Rule 32 on (90), (98), (99) and the fact that frv(e0) � Dom(R0 + f� 7! rg)we get C(R+ f� 7! rg; (�; �0); v; s0; sv0) w.r.t. ' [ '0 (100)where sv0 = hx; e0; VE;R0 + f� 7! rgi. By (90) and Rule 23 we have frv(e0) �frv(TE; � ) so by (89) and (94) we have � =2 frv(e0). Thus sv and sv0 are equal;thus (100) is the desired result.Rule 33 Similar to the previous case.46



Type Schemes and Storable Values C(R; (�; �0); v; s; sv) w.r.t. 'Assume C(R; (�; �0); v; s; sv) w.r.t. ' (101)� =2 frv((�; �0); ') (102)where (101) must be the conclusion of one of the following rules:Rule 34 Here � is compound and there exist TE, f , x, e, �1; : : : ; �k, �1; : : : ; �n,�1; : : : ; �m, R0 and VE such thatTE + ff 7! (�; �0)g ` �x:e) �x:e0 at �0 : (�; �0); fput(�0)g (103)� = 8�1����k8�1����n8�1����m:� bv(�) \ fv(TE; �0) = ; (104)R0 and R agree on ' frv(e0) � Dom(R0) [ f�1; : : : ; �kg (105)C(R0; TE + ff 7! (�; �0)g; E + ff 7! hx; e;E; fig; s; VE) w.r.t. ' (106)v = hx; e;E; fi and sv = h�1; : : : ; �k; x; e0; VE;R0i (107)As in the case for Rule 32 we may assume� =2 frv(TE + fx 7! (�; �0)g) (108)without loss of generality. By (106) and (108) we get that the claimC(R0 + f� 7! rg; TE + ff 7! (�; �0)g; E + ff 7! hx; e;E; fig; s0; VE) w.r.t.' [ '0(109)is a consequence of the lemma. Let R00 = R0+f� 7! rg and let R0 = R+f� 7! rg.By (105) and (102) we haveR00 and R0 agree on ' [ '0 (110)Thus by Rule 34 on (103), (110) and (109) we haveC(R0; (�; �0); v; s0; h�1; : : : ; �k; x; e0; VE;R00i) w.r.t. ' [ '0 (111)From (103) and Rule 23 we have frv(e0) � frv(TE + ff 7! (�; �0)g; � ). This with(108) gives that if � 2 frv(e0) then � 2 f�1; : : : ; �kg. Thus sv and h�1; : : : ; �k; x; e0; VE;R00iare equal, so (111) really is the desired result.Rule 35 Here � is simple. Write � in the form 8():� . Then � =2 frv((�; �0); '),by (102). By (101) and Rule 35 we have C(R; (�; �0); v; s; sv) w.r.t. '. But thenthe claim C(R + f� 7! rg; (�; �0); v; s0; sv) w.r.t. ' [ '0 is a consequence of thelemma. Thus C(R+ f� 7! rg; (�; �0); v; s0; sv) w.r.t. ' [ '0, by Rule 35.47



Type Schemes and addresses C(R; (�; �0); v; s; v0) w.r.t. 'Assume C(R; (�; �0); v; s; v0) w.r.t. ' (112)� =2 frv(�; �0; ') (113)Then (112) is the conclusion of one of the following rules:Rule 36 Here R(�0) = r of v0, v0 2 Pdom(s) andC(R; (�; �0); v; s; s(v0)) w.r.t. ' (114)By (113) we have (R + f� 7! rg)(�0) = R(�0) = r of v0. Since r =2 Dom(s) wehave v0 2 Pdom(s0) and s0(v0) = s(v0). By (114) and (113) we have that the claimC(R + f� 7! rg; (�; �0); v; s0; s0(v0)) w.r.t. ' [ '0 is a consequence of the lemma.Then, by Rule 36, we have C(R+f� 7! rg; (�; �0); v; s0; v0)w.r.t.'['0, as desired.Rule 37 Since get(�0) =2 ' and (86) and, by (113), � 6= �0, we have get(�0) =2' [ '0. Thus C(R+ f� 7! rg; (�; �0); v; s0; v0) w.r.t. ' [ '0, by Rule 37 itself.Environments C(R;TE;E; s; VE) w.r.t. 'The case for Rule 38 is straightforward. utLemma 8.5 If C(R;TE;E; s; VE)w.r.t.' then C(R;TE;E; s; VE)w.r.t.'[ f�g.Similarly for the other forms of C.Proof Straightforward co-inductive proof.8.5 RecursionThe source and target languages handle recursion di�erently. The source language\unrolls" a closure each time a recursive function is applied | see Rule 5. In thetarget language a closure for a recursive function contains a pointer back to itself| see Rule 14. To prove the correctness of our translation, we must show thatthe two representations are consistent at the point where we create the cycle inthe store.Lemma 8.6 If C(R;TE;E; s; VE) w.r.t. ' and � is a compound type scheme8~� ~�~�:� , with bv(�)\ fv(TE; �) = ;, and TE+ ff 7! (�; �)g ` �x:e) �x:e0 at� :(�; �); fput(�)g and R0 and R agree on ' and frv(e0) � Dom(R0) [ frv(~�) andR(�) = r and r 2 Dom(s) and o =2 Dom(s(r)) thenC( R; TE + ff 7! (�; �)g; E + ff 7! hx; e;E; fig;s+ f(r; o) 7! h~�; x; e0; VE 0; R0ig; VE 0) w.r.t.'where VE 0 = VE + ff 7! (r; o)g. 48



Proof Let TE 0 = TE + ff 7! (�; �)g, E 0 = E + ff 7! hx; e;E; fig, VE 0 =VE + ff 7! (r; o)g and s0 = s + f(r; o) 7! h~�; x; e0; VE 0; R0ig. By Lemma 8.2 itsu�ces to prove C(R0; TE 0; E 0; s0; VE 0) w.r.t. 'The proof is by co-induction. Letq1 = (R0; (�; �); hx; e;E; fi; s0; h~�; x; e0; VE 0; R0i; ')q2 = (R0; (�; �); hx; e;E; fi; s0; (r; o); ')q3 = (R0; TE 0; E 0; s0; VE 0; ')Let �0 = �#[fq1; q2; q3g and show �0 � F(�0). We consider q1, q2 and q3 in turn.q1 Since q3 2 �0 and � = 8~� ~�~�:� , with bv(�)\ fv(TE; �) = ;, and TE + ff 7!(�; �)g ` �x:e ) �x:e0 at � : (�; �); fput(�)g and R0 agrees with itself on ' andfrv(e0) � Dom(R0) [ frv(~�) we have q1 2 F(�0), by rule 42.q2 If get(�) =2 ' then q2 2 F(�0), by Rule 45. Assume get(�) 2 '. Since Rand R0 agree on ' we have R0(�) = R(�) = r. Since also r 2 Dom(s0) and q1 2 �0we have q2 2 F(�0), by rule 44.q3 By Lemma 8.2 on C(R;TE;E; s; VE)w.r.t.'we have C(R0; TE;E; s0; VE)w.r.t.'. Thus Dom(TE) = Dom(E) = Dom(VE) and for every x 2 Dom(TE) we haveC(R0; TE(x); E(x); s0; VE(x))w.r.t.', i.e., for x 6= f , C(R0; TE 0(x); E 0(x); s0; VE 0(x))w.r.t.'. Since also q2 2 �0 we have q3 2 F(�0) by Rule 46.9 Proof of the Correctness of the TranslationThis section is the proof of Theorem 6.1. The proof is by depth of the derivationof E ` e ! v, each with an inner induction on the depth of inference of TE `e) e0 : �;'. There are 7 cases, one for each rule in the dynamic semantics of thesource language. For each of these cases, the inner induction consists of a basecase, in which TE ` e) e0 : �;' was inferred by one of the syntax-directed rules(i.e., rules 20 { 26) plus an inductive step, where Rule 27 or 28 was applied. Itturns out the the inner inductive steps are independent of e, so we start out bydoing them once and for all. Then we deal with each of the 7 syntax-directedcases.In all the cases, we assume TE ` e) e0 : �;' (115)C(R;TE;E; s; VE) w.r.t. ' [ '0 (116)E ` e! v (117)49



R connects ' [ '0 to s (118)R0 and R agree on ' [ '0 (119)frv(e0) � DomR0 (120)Inner inductive step (a): Rule 27 was applied Assume (115) takes the formTE ` e) letregion � in e01 end : �;' (121)and is inferred by Rule 27 from premisesTE ` e) e01 : �;'+ (122)' = '+ n fput(�);get(�)g (123)� =2 frv(TE; �) (124)By Lemma 5.3 we can choose � such that � =2 frv('0) as well as (123)-(124).Thus � =2 frv(TE;' [ '0). Let r be an address satisfying r =2 Dom(s). LetR+ = R+ f� 7! rg and s+ = s+ fr 7! fgg. Then by Lemma 8.4 on (116) we getC(R+; TE;E; s+; VE) w.r.t.'+ [ '0 (125)Let R0+ = R0 + f� 7! rg. By (118) we haveR+ connects '+ [ '0 to s+ (126)and by (119) R0+ and R+ agree on '+ [ '0 (127)By (120) we have frv(e01) � DomR0+ (128)By the inner induction applied to (122), (125), (117), (126), (127) and (128) thereexist s01 and v0 such that s+; VE;R0+ ` e01 ! v0; s01 (129)C(R0+; �; v; s01; v0) w.r.t. '0 (130)Let s0 = s01 nn frg. Rule 15 on (129) givess; VE;R0 ` letregion � in e01 end! v0; s0Note that R0+ and R0 agree on '0 (as � =2 frv('0)). Also, s01 # (Rng(R0 #frv('0))) v s0 by (118) and (119). Then by Lemma 8.2 on (130) we getC(R0; �; v; s0; v0) w.r.t. '0, as required. 50



Inner inductive step (b): Rule 28 was applied Assume (115) is inferred by Rule 28on premises TE ` e) e0 : �;'+, ' = '+ nf�g and � =2 fev(TE; �). By Lemma 8.5on (116) we get C(R;TE;E; s; VE) w.r.t.'+ [ '0. Also, R connects '+ [ '0 to s;R0 and R agree on '+ [ '0 and frv(e0) � Dom(R0). Thus by the inner inductionthere exist s0 and v0 such that s; VE;R0 ` e0 ! v0; s0 and C(R0; �; v; s0; v0)w.r.t.'0,as desired.The syntax-directed cases:Constant, Rule 1 Since R connects fput(�)g [ '0 to s and R0 and R agree onfput(�)g['0 we have that r = R0(�) exists and r 2 Dom(s). Take o =2 Dom(s(r)).By Rule 8 we then have s; VE;R0 ` c at �! (r; o); s+ f(r; o) 7! cg. Letting v0 =(r; o) and s0 = s+f(r; o) 7! cg we furthermore get C(R0; (int; �); v; s0; v0)w.r.t.'0,by (36), (35) and (31), as desired.Variable, Rule 2 There are two cases, depending on whether TE associates asimple or a compound type scheme with the variable. We deal with each of thesein turn:Variable with simple type scheme Assume (115) was inferred using Rule 21.Then e = e0 = x, for some variable x. Moreover, TE(x) = (�; p), for some pand simple �. Let � be the type for which � = 8():� . Then � = (�; p) and' = ;. The evaluation (117) must have been by Rule 2, so we have v = E(x).Let s0 = s. By (115) and (116) we have x 2 Dom(VE). Thus, letting v0 =VE(x), we have s; VE;R0 ` x ! v0; s0, as desired. By Rule 38 on (116) we haveC(R; (�; p); v; s0; v0) w.r.t. '0, i.e., C(R; (�; p); v; s0; v0) w.r.t. '0, as desired (recallthat we identify 8():� and � ).Variable with compound type scheme Assume (115) was obtained by Rule 22.Then e is a variable, f , and e0 is of the form f[S(�1),: : :,S(�k)] at p and� = (�; p), for some � , andTE ` f ) f[S�1,: : :,S�k] at p : (�; p); ' (131)was inferred by application of Rule 22 to the premisesTE(f) = (�; p0) � = 8�1����k~�~�:�1 (132)� � � via S (133)' = fget(p0);put(p)g (134)Then (117) must have been inferred by Rule 2, so we have v = E(f). By (116)and f 2 Dom(TE) we haveC(R; (�; p0); v; s; v01) w.r.t. ' [ '051



where v01 = VE(f). Since get(p0) 2 ', the de�nition of C (rules 36 and 34) givesv01 2 Pdom(s) and r of v01 = R(p0) and v is a recursive closurev = hx0; e0; E0; f0i (135)and s(v01) = h�1; : : : ; �k; x0; e00; VE0; R0i, for some e00, VE0 and R0. Furthermore,there exist TE0, �1; : : : ; �n, �1; : : : ; �m and �0 such thatC(R0; TE0 + ff0 7! (�; p0)g; E0 + ff0 7! vg; s; VE0) w.r.t. ' [ '0 (136)TE0 + ff0 7! (�; p0)g ` �x0:e0 ) �x0:e00 at p0 : (�0; p0); fput(p0)g (137)bv(�) \ fv(TE0; p0) = ; (138)R0 and R agree on ' [ '0 (139)frv(e00) � DomR0 [ f�1; : : : ; �kg (140)Without loss of generality, we can assume that �1; : : : ; �k are chosen so as tosatisfy: f�1; : : : ; �kg \ frv('0) = ; (141)By (134), (118) and (119) we have R0(p) 2 Dom(s). Let r0 = R0(p). Let o0 be ano�set not in Dom(s(r0)). Let v0 = (r0; o0), let R00 = R0 + f�i 7! R0(S(�i)) ; 1 �i � kg and let sv = hx0; e00; VE0; R00i. Notice that R0(S(�i)) exists, by (120). Lets0 = s+ f(r0; o0) 7! svg. It follows from Rule 10 thats; VE;R0 ` f [ S(�1), : : :, S(�k)] at p! v0; s0 (142)as desired. It remains to proveC(R0; (�; p); v; s0; v0) w.r.t. '0 (143)We now consult Rules 31{38 concerning C. If get(p) =2 '0, we are done. But evenif get(p) 2 '0 we have v0 2 Pdom(s0) and r of v0 = r0 = R0(p) as required byRule 36. It remains to proveC(R0; (�; p); v; s0; sv) w.r.t.'0 (144)Let TE = TE0+ ff0 7! (�; p0)g. Since (137) must have been inferred by Rules 23and 28 we equally haveTE ` �x0:e0 ) �x0:e00 at p : (�; p); fput(p)g (145)From (119), (139) and f�1; : : : ; �kg \ frv('0) = ; we getR00 and R0 agree on '0 (146)From Lemma 8.2 on (136) we getC(R00; TE;E0 + ff0 7! vg; s0; VE0) w.r.t. '0 (147)From (140) we get frv(e00) � DomR00 (148)By Rule 33 on (145), (146), (147) and (148) we have C(R0; (�; p); v; s0; hx0; e0; VE0;R00i)w.r.t.'0 as desired. 52



Lambda abstraction, Rule 3 Assume (115) was inferred by Rule 23; then (115)takes the following form:TE ` �x:e1 ) �x:e01 at p : �; fput(p)g (149)Moreover, (117) was inferred by Rule 3 yieldingv = hx; e1; Ei (150)Since R connects ' to s we have R(p) 2 Dom(s). Let r = R(p) and let o be ano�set not in Dom(s(r)). Let v0 = (r; o) and s0 = s + fv0 7! hx; e01; VE;R0ig. By(119) we have R0(p) = r. Thus by rule 11 we haves; VE;R0 ` �x:e01 at p ! v0; s0 (151)Notice that C(R0; TE;E; s0; VE)w.r.t.'0, by Lemma 8.2 and (119). Also frv(e01) �DomR0, by (120). Thus by Rules 32, 35 and 36 (or by (37)) we have C(R;�; v; s0; v0)w.r.t.'0 as required.Application of non-recursive closure, Rule 4 Here e � e1e2, for some e1 and e2,and e0 � e01e02, for some e01 and e02 and (115) was inferred by Rule 24 on premisesTE ` e1 ) e01 : (�0 �:'0���!�; p); '1 (152)TE ` e2 ) e02 : �0; '2 (153)' = '1 [ '2 [ f�;get(p)g [ '0 (154)Moreover, (117) was inferred by Rule 4 on premisesE ` e1 ! v1; v1 = hx0; e0; E0i (155)E ` e2 ! v2 (156)E0 + fx0 7! v2g ` e0 ! v (157)Let '01 = '2 [ f�;get(p)g [ '0 [ '0, i.e. the e�ect that remains after the com-putation of e01. Note that ' [ '0 = '1 [ '01 so from (116), (118) and (119) weget C(R;TE;E; s; VE) w.r.t. '1 [ '01 (158)R connects '1 [ '01 to s (159)R0 and R agree on '1 [ '01 (160)Also, from (120) we getfrv(e01) � DomR0 ^ frv(e02) � DomR0 (161)53



By induction on (152), (158), (155), (159), (160) and (161) there exist s1 and v01such that s; VE;R0 ` e01 ! v01; s1 (162)C(R0; (�0 �:'0���!�; p); v1; s1; v01) w.r.t.'01 (163)Notice that get(p) 2 '01. Thus, by the de�nition of C, (163) tells us that v01 2Pdom(s1) and r of v01 = R0(p) and there exist e00, VE0, TE0 and R0 such thats1(v01) = hx0; e00; VE0; R0i (164)TE0 ` �x0:e0 ) �x0:e00 at p : (�0 �:'0���!�; p); fput(p)g (165)C(R0; TE0; E0; s1; VE0) w.r.t. '01 (166)R0 and R0 agree on '01 (167)frv(e00) � DomR0 (168)Let '02 = f�;get(p)g['0['0, i.e. the e�ect that remains after the computation ofe02. By Lemma 4.1 on (162) we have s v s1. Furthermore, we have '2['02 � '['0,so by Lemma 8.1 on (116) we haveC(R;TE;E; s1; VE) w.r.t. '2 [ '02 (169)Also, from (118) and (119) we getR connects '2 [ '02 to s1 (170)R0 and R agree on '2 [ '02 (171)By induction on (153), (169), (156), (170), (171) and (161) there exist s2 and v02such that s1; VE;R0 ` e02 ! v02; s2 (172)C(R0; �0; v2; s2; v02) w.r.t. '02 (173)Let TE+0 = TE0 + fx0 7! �0g. Now (165) must have been inferred by Rules 23and 28. Thus there exists a '00 such that '00 � '0 andTE+0 ` e0 ) e00 : �;'00 (174)We have s1 v s2, by Lemma 4.1 on (172). By Lemma 8.2 on (166), (167) and'00 � '0 we then have C(R0; TE0; E0; s2; VE0) w.r.t. '00 [ '0 (175)and by Lemma 8.1 on (173) and '00 � '0 we getC(R0; �0; v2; s2; v02) w.r.t. '00 [ '0 (176)54



Let E+0 = E0 + fx0 7! v2g and let VE+0 = VE0 + fx0 7! v02g. Combining (175)and (176) we get C(R0; TE+0 ; E+0 ; s2; VE+0 ) w.r.t. '00 [ '0 (177)Also, by (118), (119) and s v s2 we getR0 connects '00 [ '0 to s2 (178)and by (167) R0 and R0 agree on '00 [ '0 (179)Then by induction on (174), (177), (157), (178), (179) and (168) there exist s0and v0 such that s2; VE+0 ; R0 ` e00 ! v0; s0 (180)C(R0; �; v; s0; v0) w.r.t. '0 (181)From (162), (164), (172) and (180) we get s; VE;R0 ` e01 e02 ! v0; s0, as desired.Moreover, by Lemma 8.2 on (181) and (167) we have C(R0; �; v; s0; v0)w.r.t.'0, asdesired.Application of recursive closure, Rule 5 This case is similar to the previouscase, but we include it for the sake of completeness. We have e � e1e2, for somee1 and e2, and e0 � e01e02, for some e01 and e02 and, by Rule 24, there exist �0, p, �,'0, '1 and '2 such thatTE ` e1 ) e01 : (�0 �:'0���!�; p); '1 (182)TE ` e2 ) e02 : �0; '2 (183)' = '1 [ '2 [ '0 [ fget(p); �g (184)Also, assume that (117) was inferred by application of Rule 5 on premisesE ` e1 ! v1 v1 = hx0; e0; E0; fi (185)E ` e2 ! v2 (186)E0 + ff 7! v1g+ fx0 7! v2g ` e0 ! v (187)To use induction �rst time, we split the e�ect ' [ '0 into '1 [ '01, where '01 ='2 [ '0 [ fget(p); �g [ '0. By (116), (118) and (119) we haveC(R;TE;E; s; VE) w.r.t. '1 [ '01 (188)R connects '1 [ '01 to s (189)R0 and R agree on '1 [ '01 (190)55



Also, by (120) we havefrv(e01) � DomR0 ^ frv(e02) � DomR0 (191)By induction on (182), (188), (185), (189), (190) and (191), there exist v01 and s1such that s; VE;R0 ` e01 ! v01; s1 (192)C(R0; (�0 �:'0���!�; p); v1; s1; v01) w.r.t.'01 (193)Notice that get(p) 2 '01. Thus by (193) and the rules for C (Rules 33, 35 and36) we have v01 2 Pdom(s1) and r of v01 = R0(p) and there exist e00, VE0, TE0 andR0 such that s1(v01) = hx0; e00; VE0; R0i (194)TE0 ` �x0:e0 ) �x0:e00 at p : (�0 �:'0���!�; p); fput(p)g (195)C(R0; TE0; E0 + ff 7! v1g; s1; VE0) w.r.t. '01 (196)R0 and R0 agree on '01 (197)frv(e00) � DomR0 (198)To use induction a second time, we split the remaining e�ect '01 into '2 [ '02,where '02 = '0 [ fget(p); �g [ '0. We have s v s1, by Lemma 4.1. Then, byLemma 8.1 on (116) we haveC(R;TE;E; s1; VE) w.r.t. '2 [ '02 (199)Moreover, (118) and (119) implyR connects '2 [ '02 to s1 (200)R0 and R agree on '2 [ '02 (201)By induction on (183), (199), (186), (200), (201) and (191) there exist s2 and v02such that s1; VE;R0 ` e02 ! v02; s2 (202)C(R0; �0; v2; s2; v02) w.r.t. '02 (203)Let TE+0 = TE0 + fx0 7! �0g. Now (195) must have been inferred by Rules 23and 28. Thus there exists an e�ect '00 with '00 � '0 andTE+0 ` e0 ) e00 : �;'00 (204)By Lemma 8.2 on (196) and (197) we haveC(R0; TE0; E0 + ff 7! v1g; s2; VE0) w.r.t. '02 (205)56



Let E+0 = E0 + ff 7! v1g + fx0 7! v2g and let VE+0 = VE0 + fx0 7! v02g From(205) and (203) and '00 � '0 we haveC(R0; TE+0 ; E+0 ; s2; VE+0 ) w.r.t. '00 [ '0 (206)From (197) we get R0 and R0 agree on '00 [ '0 (207)By (118), (119) and s v s2 we getR0 connects '00 [ '0 to s2 (208)By induction on (204), (206), (187), (208), (207) and (198) there exist s0 and v0such that s2; VE+0 ; R0 ` e00 ! v0; s0 (209)C(R0; �; v; s0; v0) w.r.t. '0 (210)Rule 12 on (192), (202), (194) and (209) gives s; VE;R0 ` e01 e02 ! v0; s0, as desired.Moreover, Lemma 8.2 on (210) and (207) gives the desired C(R0; �; v; s0; v0) w.r.t.'0.let expressions, Rule 6 Assume (115) was inferred by Rule 25; then (115)takes the formTE ` let x = e1 in e2 end) let x = e01 in e02 end : �;' (211)Moreover, (115) and (117) must be inferred by Rules 25 and 6 from the premisesTE ` e1 ) e01 : (�1; p1); '1 (212)TE + fx 7! (�1; p1)g ` e2 ) e02 : �;'2 (213)' = '1 [ '2 (214)E ` e1 ! v1 (215)E + fx 7! v1g ` e2 ! v (216)Let '01 be the e�ect that remains after the evaluation of e01, i.e. let '01 = '2 [ '0.Note that ' [ '0 = '1 [ '01, so by (116), (118) and (119) we haveC(R;TE;E; s; VE) w.r.t. '1 [ '01 (217)R connects '1 [ '01 to s (218)R0 and R agree on '1 [ '01 (219)By (120) we have frv(e01) � DomR0 ^ frv(e02) � DomR0 (220)57



By induction on (212), (217), (215), (218), (219) and (220) there exist s1 and v01such that s; VE;R0 ` e01 ! v01; s1 (221)C(R0; (�1; p1); v1; s1; v01) w.r.t. '01 (222)By Lemma 8.2 on (222) we getC(R; (�1; p1); v1; s1; v01) w.r.t.'01 (223)By Lemma 8.1 on (116) we getC(R;TE;E; s1; VE) w.r.t. '01 (224)Combining these two, we getC(R;TE + fx 7! (�1; p1)g; E+ fx 7! v1g; s1; VE+ fx 7! v01g)w.r.t.'2['0 (225)By (118) and (119) and s v s1 we haveR connects '2 [ '0 to s1 (226)R0 and R agree on '2 [ '0 (227)By induction on (213), (225), (216), (226), (227) and (220) there exist s0 and v0such that s1; VE + fx 7! v01g; R0 ` e02 ! v0; s0 (228)C(R0; �; v; s0; v0) w.r.t. '0 (229)Here (229) is one of the desired results. Moreover, by Rule 13 on (221) and (228)we get the desired s; VE;R0 ` let x = e01 in e02 end! v; s0.
58



letrec, Rule 7 In this case (115) takes the formTE ` letrec f(x) = e1 in e2 end)letrec f[�1,: : :,�k](x) at p = e01 in e02 end : �;' (230)and is inferred by application of Rule 26 to the premisesTE + ff 7! (8�1����k~�:� ; p)g ` �x:e1 ) �x:e01 at p : (�; p); '1 (231)fv(~�; ~�;~� ) \ fv(TE;'1) = ; (232)TE + ff 7! (�0; p)g ` e2 ) e02 : �;'2 (233)' = '1 [ '2 (234)where ~� = �1����k and �0 = 8~� ~�~�:� . Moreover, (117) was inferred by Rule 7 onthe premise E + ff 7! hx; e1; E; fig ` e2 ! v (235)Since (231) must have been inferred by Rules 23 and 28, we have '1 = fput(p)g.By (118) and (119) we have R0(p) = R(p) 2 Dom(s). Let r1 = R(p). Let o1 bean o�set with o1 =2 Dom(s(r1)). Let v1 = (r1; o1). Let VE 0 = VE+ ff 7! v1g andlet s+ = s+ fv1 7! h�1; : : : ; �k; x; e01; VE 0; R0ig. By Lemma 5.4 on (231) we havethat TE + ff 7! (�0; p)g ` �x:e1 ) �x:e01 at p : (�; p); '1 (236)Let TE+ = TE + ff 7! (�0; p)g and let E+ = E + ff 7! hx; e1; E; fig. By (120)we have frv(e01) � DomR0 [ f�1; : : : ; �kg ^ frv(e02) � DomR0 (237)By Lemma 8.6 on (116), (232), (236), (119) and (237) we haveC(R;TE+; E+; s+; VE 0) w.r.t. ' [ '0. Then by Lemma 8.1 we getC(R;TE+; E+; s+; VE0) w.r.t. '2 [ '0 (238)Also, by (118) and (119) we getR connects '2 [ '0 to s+ (239)R0 and R agree on '2 [ '0 (240)By induction on (233), (238), (235), (239), (240) and (237) there exist s0 and v0such that s+; VE 0; R0 ` e02 ! v0; s0 (241)C(R0; �; v; s0; v0) w.r.t. '0 (242)From (241) and Rule 14 we gets; VE;R0 ` letrec f[�1,: : :,�k](x) at p = e01 in e02 end! v0; s0 (243)Now (242) and (243) are the desired results.This concludes the proof of Theorem 6.1.59



10 AlgorithmsThe algorithms used for implementing the region inference rules in the ML Kitwill not be described here. We shall give a brief overview, however. First, ordinaryML type inference is performed using Milner's algorithm W, extended to all ofCore ML. The output of this phase is an explicitly typed lambda term, e0, say.Then region inference is done in two phases. First e0 is decorated with fresh regionand e�ect variables everywhere a region and e�ect variable will be required inan explicitly typed version the fully region annotated target expression. Thisphase is called spreading. During spreading, every recursive function f of typescheme �ML, say, is given the most general type scheme �0 which has �ML as itsprojection (in the sense of Section 5.3). For example, a letrec-bound int! intfunction will be given type scheme 8�1�2�:(int; �1) �:;��!(int; �2). The spreadingphase performs the uni�cations suggested by the inference rules. For example,the two occurrences of �0 in Rule 24 suggest a uni�cation of the types and placesof operator and operand. Spreading employs rules 27 and 28 as aggressively aspossible (i.e., after every application of rules 22, 24, 25 and 26). The resultingprogram, call it e1, is well-annotated with regions, except for the fact that thetype schemes assumed for recursive functions may be too general, compared tothe type schemes that were inferred for the lambda expressions which de�ne thefunctions.The second phase is called �xed-point resolution and takes e1 as input. Foreach recursive function in e1, the region inference steps (uni�cation, introduc-tion of letregions etc) are iterated, using less and less general type schemes forthe recursive functions, till a �xed point is reached. This is similar in spirit toMycroft's algorithms for full polymorphic recursion (Mycroft 1984).It is possible to extend the notion of principal uni�ers for types to a notion ofprincipal uni�er for region-annotated types, even though region-annotated typescontain e�ects. This relies on invariants about arrow e�ects that were outlinedin Section 5.1. One can prove that every two types �1 and �2 that have the sameunderlying ML type have a most general uni�er, provided all the arrow e�ects in�1 and �2 satisfy the invariants.The reason for the separation of spreading and �xed-point resolution is that,unless one takes care, the iteration used to handle the polymorphic region re-cursion does not terminate. In particular, there is a danger of arrow e�ects thatgrow ever larger, as more fresh region and e�ect variables are generated. Thedivision into spreading and �xed-point resolution solves this problem by onlygenerating fresh variables during the spreading phase. It can then be shownthat the second phase always terminates. This approach does not always giveprincipal types, for there are cases where that function in the �xed-point resolu-tion which is responsible for forming type schemes is refused the opportunity toquantify region and e�ect variables even though it is permitted by the inference60



rules. When this happens, the implementation simply prints a warning aboutthe possible loss of principal types and continues with a less-than-principal typescheme. Fortunately, this happens rather infrequently in practice, and since thesoundness result of the present paper shows the correctness for all derivationsTE ` e) e0 : �;', safety is not violated.11 Language ExtensionsIn this section we outline some of the extensions that have been made to the regioninference rules in order to handle references, exceptions and recursive datatypesin the ML Kit.11.1 ReferencesAssume primitives ref, ! and := for creating a reference, dereferencing andassignment, respectively. For the purpose of region inference, these can be treatedas variables with the following type schemes:ref : 8��1�2�:(�; �1) �:fput(�2)g�������!((�; �1)ref; �2)! : 8��1�2�:((�; �1)ref; �2) �:fget(�2)g�������!(�; �1):= : 8��1�2�3�4�:(((�; �1)ref; �2) � (�; �1); �3) �:fput(�2);put(�4)g������������!(unit; �4)The most interesting of these is assignment. The new contents of the reference isrepresented by a pointer (or by a word, if the value is in unboxed representation).The assignment updates the reference with this pointer (or word). Thus there isa put e�ect on the region where the reference resides. The assignment does notmake a copy the stored value. Thus assignment is a constant time operation, butthe downside is that the old and the new contents must be in the same regions(see the two occurrences of �1 in the type for :=). Thus, for values with boxedrepresentation, all the di�erent contents of the reference will be kept alive foras long as the reference is live. In \mostly functional" programs this does notseem to be a serious problem and even if there are many side-e�ects, one can stillexpect reasonable memory usage as long as the references are relatively short-lived. Long-lived references that contain boxed values and are assigned freshlycreated contents often are hostile to region inference.11.2 ExceptionsOur approach here is simple-minded: exception values are put into global regions.Every evaluation of an exception declaration gives rise to an allocation in someglobal region. Application of a unary exception constructor to an argument forces61



the argument to bein global regions as well. Thus if one constructs may exceptionvalues using unary exception constructors, one gets a space leak (indeed, thespace leaking region �122 in Figure 5 contains constructed exception values). Ifone uses nullary constructors only, there is only going to be one allocation foreach evaluation of each exception declaration.11.3 Recursive DatatypesSo far, every type constructor has been paired with one region variable. Forvalues of recursive datatypes, additional region variables, the so-called auxiliaryregion variables, are associated with type constructors. For example, considerthe declaration of the list datatype:datatype 'a list = nil | :: of 'a * 'a listThe region-annotated version of the type � list takes the form (�; �1)(list[�2]; �3),where �1 stands for a region which contains the list elements, �3 contains the spineof the list (i.e., the constructors nil and ::) and �2 is an auxiliary region whichcontains the pairs, to which :: is applied. Thus lists are kept \very boxed":in region �3 every cons cell takes up two words, the �rst is a tag (saying \I amcons") and the second is a pointer to the pair to which :: is applied. The region�2 is called auxiliary because it holds values which are internal to the datatypedeclaration; there will be one auxiliary region for each type constructor or prod-uct type formation in each constructor in the datatype. However, all occurrencesof the type constructor being declared are put in the same region. Hence ::receives type8�1�2�3�:((�; �1) � ((�; �1)list[�2]; �3); �2) �:fput(�3)g�������!((�; �1)list[�2]; �3)Sequential datatype declarations pose an interesting design problem:datatype t1 = C of intdatatype t2 = C of t1 * t1datatype t3 = C of t2 * t2���datatype ti = C of ti�1 * ti�1���In the declaration of ti, should one give the two occurrences of ti�1 on the right-hand side the same or di�erent regions? If one gives them the same regions, oneintroduces unnecessary sharing; if one gives them di�erent regions, the numberof auxiliary region variables grows exponentially in i, potentially leading to slowregion inference. A third possibility is to put a limit on the number of auxiliaryregion variables one will allow. We have chosen the second solution (spreading re-gions as much as possible), but a systematic empirical study of di�erent solutionshas not been conducted. 62



12 Strengths and WeaknessesThe region inference rules were �rst implemented in a prototype system (Tofteand Talpin 1994) and then in the ML Kit (Birkedal et al. 1996). Neither ofthese systems use garbage collection. This section records some of the experiencegained from these systems, with special emphasis on how details of the regioninference rules in
uence memory management. We �rst illustrate consequencesof the region inference rules by a series of small, but complete, examples. Thenwe report a few results from larger benchmarks run on the ML Kit. Throughout,we use Standard ML syntax (Milner et at. 1990); roughly, fun is translated intoletrec and val into let.12.1 Small examplesThe examples are grouped according to the general point they are intended tomake.12.1.1 Polymorphic RecursionGenerally speaking, polymorphic region recursion favours recursive functions thathave a balanced call tree (as opposed to an iterative computation, where the calltree is a list). We illustrate this with two examples. The �rst is the exponentialversion of the Fibonacci function:fun fib n = if n<=1 then 1 else fib(n-2) + fib(n-1)val fib15 = fib 15;Due to region polymorphism, the two recursive calls of fib use di�erent regions,local to the body (see Figure 2). The memory usage appears in Figure 4.The next example, called reynolds2 (Birkedal et al. 1996) is a depth-�rstsearch in a tree, using a predicate to record the path from the root to the presentnode. datatype 'a tree =Lf| Br of 'a * 'a tree * 'a treefun mk_tree 0 = Lf| mk_tree n = let val t = mk_tree(n-1)in Br(n,t,t)endfun search p Lf = false| search p (Br(x,t1,t2)) =if p x then trueelse search (fn y => y=x orelse p y) t163



max inf reg max �n reg max stack �nal(i) (ii) (iii) (iv)fib15 1,600 0 188 0appel1 484,000 2,024 12,240 0appel2 9,600 820 3,508 0reynolds2 8,800 500 1,856 44reynolds3 75,508,000 720 2,188 44string1 35,200 4,052 11,188 6,500string2 156 2,028 7,280 156Figure 4: Memory usage when running sample programs on the ML Kit withRegions, Version 29a3: (i) Maximal space (in bytes) used for variable size regions(one region page is 800 bytes); (ii) Maximal space (in bytes) used for �xed sizeregions; (iii)Maximal stack size during execution (in bytes); (iv) Number of bytesholding values at the end of the computation (regions on stack + data in variablesized regions) orelsesearch (fn y => y=x orelse p y) t2val reynolds2 = search (fn _ => false) (mk_tree 20)Due to the polymorphic recursion, the recursive call of search does not put theclosures for (fn y => y=x orelse p y) in the same region as p, so the spaceusage will be proportional to the depth of the tree. This leads to good memoryutilisation (Figure 4).By contrast, consider the �rst-order variant, called reynolds3, which uses alist to represent the path. It is obtained by replacing the search function ofreynolds2 by:fun member(x,[]) = false| member(x,x'::rest) =x=x' orelse member(x, rest)fun search p Lf = false| search p (Br(x,t1,t2)) =if member(x,p) then trueelse search (x::p) t1 orelsesearch (x::p) t2val reynolds3 = search [] (mk_tree 20)As we saw in Section 11, region inference does not distinguish between a listand its tail, so all cons cells (one for each node in the tree) are put in the sameregion. This gives poor memory utilisation, the di�erence from reynolds2 being64



exponential in the depth of the tree (Figure 4). More generally, in connectionwith a recursive datatype, one should not count on polymorphic recursion toseparate the life-times of a value v of that type and other values of the same typecontained in v.12.1.2 Tail recursionAnother common pattern of computation is iteration. This is best implementedusing a recursive function whose type scheme takes the form 8~�~�~�:(� �:'��!�) (notethat the argument and result types are the same, even after region annotation).Such a function is called a region endomorphism. Here is how to write a simpleloop to sum the numbers 1 to 100:fun sum(p as (acc,0)) = p| sum(acc,n) = sum(n+acc,n-1)val sumit = #1(sum(0,100));In ML, all functions in principle takes one argument, in his case a tuple, andthat is how it is implemented in the ML Kit. One might think that 100 pairswould pile up in one region; however, an analysis called the storage mode analysis(Birkedal et al. 1996) discovers that the region can be reset just before each pairis written, so that in fact the region will only ever contain one pair. Memoryusage is independent of the number of iterations, in this example. By contrast,the non-tail-recursive versionfun sum' 0 = 0| sum' n = n + sum'(n-1)val sum'it = sum' 100uses stack space proportional to the number of iterations.The next program, appel1, is a variant of a program in (Appel 1992).:fun s(0) = nil| s(i) = 0 :: s(i-1)fun length [] = 0| length(x::xs) = 1 + length xsval N = 100fun f(n,x)=let val z = length xin if n=0 then 0 else f(n-1, s N)endval appel1 = f(N,nil)Here f(n; nil) uses space �(N2), although �(N) should be enough. The problemis that at each iteration a list of length N is created, put in a fresh region, and65



then passed to the recursive call, which only uses the list to compute z. The list,however, stays live till the end of the recursive call: Rule 23 and 27 tell us thatthe �-bound x will be allocated throughout the evaluation of the body of f. Thecure in this case is not to use the polymorphic recursion:fun f(p as (n,x))=let val z = length xin if n=0 then 0 else f(if true then (n-1, s N) else p)endval appel2 = f(N,nil)Now the storage mode analysis will discover that the region containing the en-tire list can be reset at each iteration; this is tail call optimisation for recursivedatatypes! The above transformation is a rather indirect way of instructing theregion inference algorithm that one does not want polymorphic recursion and ifthe optimiser eliminated the conditional, it would not even have the desired ef-fect. It would probably be better to allow programmers to state their intentionsdirectly. Memory consumption is in Figure 7.12.1.3 Higher-order functionsIf a function f is lambda-bound, it is not region-polymorphic (Rule 23). Forexample, considerfun foldl f acc [] = acc| foldl f acc (x::xs) = foldl f (f(acc,x)) xsfun concat l = foldl (op ^) "" lfun blanks 0 = []| blanks n = " " :: blanks(n-1)val N = 100val string1 = concat(blanks N)Despite the fact that foldl is region-polymorphic, the lambda-bound f is not, soall applications of the concatenation operator ^ in concat will put their resultsin the same region, leading to �(N2) space usage. To obtain �(N) space usage,one specializes foldl to ^, uncurries the resulting function and turns it into aregion endomorphism:fun concat'(p as (acc,[])) = p| concat'(acc,(x::xs)) = concat'(acc ^ x, xs)fun concat(l) = #1(concat'("", l))fun blanks 0 = []| blanks n = " " :: blanks(n-1)val string2 = concat(blanks 100)66



12.2 Larger BenchmarksA number of benchmarks from the New Jersey Standard ML benchmark suitehave been ported to the Kit and compared (space and time usage) against execu-tion as stand-alone programs under Standard ML of New Jersey, version 93. Thelargest benchmark is Simple (1148 lines), a program which originally used arraysof 
oating point numbers extensively. To make it run on the Kit (which doesnot support arrays) arrays were translated into lists of references, so the portedprogram is probably not indicative of how one would write the program withoutarrays to start with. Life (252 lines) uses lists very extensively; Mandelbrot (170lines) uses 
oating points extensively; Knuth-Bendix (752 lines) does extensivedynamic allocation of data structures that represent terms.Initially, programs often use more space when running on the Kit; for example,Figure 5 shows a region pro�le for the original version of the Knuth-Bendixbenchmark, produced using Hallenberg's region pro�ler (Hallenberg 1996). Theregion pro�ler can also pinpoint the program points which are responsible forspace leaks. The source program is then changed, to make it more region friendly.Interestingly, transformations that are good for region inference often are goodfor SML/NJ too (see Knuth-Bendix in Figure 7 for an example). This is notvery surprising: when the static analysis is able to infer shorter lifetimes, it maywell be because the values actually need to be live for a shorter time, and this isgood for garbage collection too. The region pro�le of the improved Knuth-Bendixcompletion is shown in Figure 6; see Figure 7 for a comparison with SML of NewJersey, version 93.12.3 Automatic Program TransformationApart from functions that are deliberately written as region endomorphisms, thegeneral rule is that the more regions are separated, the better (since it makes moreaggressive re-cycling of memory possible). The Kit performs optimisations whichseparate regions. These include replacing let x = e1 in e2 end by e2[e1=x] incases where e1 is a syntactic value and either x occurs at most once in e2 or thevalue denoted by e1 is not larger than some given constant. Another optimisation,which is implemented, is specialisation of curried functions, as in the string2example above; however, the Kit does not attempt to turn functions into regionendomorphisms (which was the last thing we did in string2). As a matter ofprinciple, the Kit avoids optimisations which can lead to increased memory usage.Also useful is the ability of the region inference to suggest where space leaksmay be expected. If a function has compound type scheme8~�~�~�:�1 �:'��!�2and ' contains an atomic e�ect of the form put(�), where � is not amongst thebound region variables ~�, then one quite possibly has a space leak: every call of67
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Time Time Space SpaceKit SML/NJ Kit SML/NJMandelbrot (orig.) 32.6 22.10 360 937Life (orig.) 7.20 8.76 4,304 1,793Life (impr.) 7.55 6.72 228 1,775Knuth-Bendix (orig.) 30.5 20.92 33,853 6,761Knuth-Bendix (impr.) 29.41 22.34 680 2,253Simple (orig.) 57.58 14,33 1,692 2,136Figure 7: Comparison between stand-alone programs created with the ML Kit(using the HP PA-RISC code generator) and SML of New Jersey, respectively.Here \orig" means original program, while \impr" means improved for regioninference. All times are user time in seconds on an HP 9000 s700, measuredusing the unix time command. Space is maximal resident memory in kilobytes,measured with top, and includes code and runtime system. All values are averageover three runs.the function might put a value into some region which is external to the function.If in addition � does not occur free in �2, that is all the more reason for concern,for the value will not even be part of the result of the function. In other words,the function has a side-e�ect at the implementation level. This can easily happeneven when there are no side-e�ects in the source program.In such cases, the implementation simply issues a short warning. This turnsout to be very useful in practice.Another usage of the inferred information is the ability to detect dead code.Consider the rule for letregion (Rule 27). If put(�) 2 ' and get(�) =2 ' thenwhatever value that was put into � was never used. For example, this can detectthat the functions f and g below are never used:letfun f(x) = x+1fun g(x) = f(f(x))in (fn x => 3)(fn() => g 5)end12.4 ConclusionAs has been shown with the previous examples, it is not the case that every MLprogram automatically runs well on a stack of regions. Often, one has to pro-gram in a region friendly style, aided by pro�ling tools to �nd space leaks. Thus,programming with regions is di�erent from usual ML programming, where one70
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IndexThe index refers to sections where theconcepts are introduced. For exam-ple, the entry \region name (r 2 RegName)2, Figure 1, 4.1" means that the no-tion of region name is introduced inSections 2 and 4.1, appears in Fig-ure 1 and that meta-variable r rangesover region names throughout the pa-per.[ ] (region arguments) 2, 48 (in type schemes) 3.2, 5.1+ (modi�cation of �nite maps) 3.1,4.1# (restriction of �nite map) 3.1nn (restriction of store) 4.1A �n! B (�nite maps) 3.1�ML � �ML (see instance)� (function abstraction) 3� (see type variable)~� (sequence of type variables) 5.1
 (see claim of consistency)� (set of claims) 7�# (maximal �xed point of F) 7� (see e�ect variable)~� (sequence of e�ect variables) 5.1�:' (see arrow e�ect)� (see region variable)~� (sequence of region variables) 5.1� (type) 5.1� (type scheme) 5.1�ML (ML type) 3.2�ML (ML type scheme) 3.2hx; e;Ei, hx; e;E; fi, hx; e0; VE;Ri orh�1����k; x; e; VE;Ri (see clo-sure)TEML ` e : �ML (type rules for source)3.2E ` e ! v (evaluation of source ex-pressions) 3.3

s; VE;R ` e ! v; s0 (evaluation oftarget expression) 4.1TE ` e ) e0 : �;' (region inferencerules) 5.2Addr (see address)address (a or (r; o) 2 Addr = RegName�O�Set) 4.1agreement between region environments6arrow e�ect (�:') 5.1at (allocation directive) 1, 4bv (bound variables of type scheme)5.1c (see integer constant)C (domain for consistency) 7C 6, 7co-induction 7claim of consistency(
) 7closure (in dynamic semantics)source language (hx; e;Ei or hx; e;E; fi)3.3target language (hx; e0; VE;Ri orh�1����k; x; e; VE;Ri) 4.1connecting an e�ect to a store 6consistency 6Dom (domain of �nite map) 3.1E (see environment)E�ect Figure 3E�ectVar (see e�ect variable)e�ect (') 5.1variable (�) 5.1atomic (�) 5.1e�ect substitution (Se) 5.1Env (see environment)environment (see also type environ-ment and region environment)in dynamic semantics of source(E 2 Env = Var �n! Val) 3.374



in dynamic semantics of target (VE 2TargetEnv = Var �n! Addr)4.1equaivalence of type schemes 5.1f (see program variable)F (monotonic operator on sets of claims)7fev (free e�ect variables) 5.1fpv (free program variables) 4.6frv (free region variables) 4.6, 5.1ftv (free type variables) 5.1fv (free type, region and e�ect vari-ables) 5.1get (get e�ect) 5.1instancein source language (�ML � � ) 3.2in target language (� � � ) 5.1integer constant (c) 3letregion 1, 4o (see o�set)of (projection) 3.1o�set (o) 4.1p (see region variable)P (powerset constructor) 7planar domain of a store (Pdom) 4.1program variable (x or f) 3put (put e�ect) 5.1r (see region name)R (see region environment)RegEnv (see region environment)RegName (see region name)Region = O�Set �n! StoreVal (seealso region) 4.1region (see also Region) 1, 4.1region allocation 8.4region environment (R 2 RegEnv =RegVar �n! RegName) 4.1region function closure (h�1����k; x; e; VE;Ri)(see closure)region name (r 2 RegName) 2, Fig-ure 1, 4.1region renaming 8.3

region substitution (Sr) 5.1region variable (� or p) 1, 4Rng (range of �nite map) 3.1SExp (source language) 3TE (type environment) 5.1TEML (ML type environment) 3.2TExp (target language) 4s (see store)s(a) 4.1S (see substitution)Se (see e�ect substitution)Sr (see region substitution)St (see type substitution)Store (see store)store (s 2 Store = RegName �n! Region)4.1StoreVal (see value, storable)substitution (S) 5.1support (Supp) 5.1sv (see value, storable)TargetEnv (see environment)TargetVal (see value)TyVar (see type variable)type (� ) 5.1type with place (� 2 TypeWithPlace =Type�RegVar) 5.1, Figure 3TypeWithPlace (see type with place)type environment (TE 2 Var �n! TypeScheme�RegVar) 5.1TypeScheme Figure 3type scheme (�) 5.1type substitution (St) 5.1type variable (�) 3.2, 5.1type with place (�) 5.1Val (see value)valuesource language (v 2 Val) 3.3storable (sv 2 StoreVal) 4.1target language (v or a 2 TargetVal =Addr) 4.1VE (see environment)target language (v0)75



x (see program variable)yield (Yield) 8.3
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A Appendix: Example Three-Address CodeThe three-address code which the ML Kit produces on the way to HP PA-RISCcode for the example given in Section 1 is shown below. Temporary variables startwith V. Fixed registers are used for the stack pointer (SP), and for function calland return (stdArg, stdClos, stdRes). In this example, the compiler discoversthat all regions can be represented on the stack; in other cases, letregion andend translate into calls of runtime system procedures that resemble lightweightmalloc and free operations.LABEL 1: (* main *)...AllocRegion(V43); (* allocate global region rho1 *)... (* begin LETREGION [rho4 ,rho5 ] *)Move(SP,V46); (* V46:= SP, i.e. rho4 *)Offset(SP,12,SP);Move(SP,V47); (* rho5 *)Offset(SP,12,SP); (* begin APP --- non tail call *)(* begin operator *) ;(* begin LETREGION (rho6 eliminated) *)(* begin LET *)(* begin RECORD *)Move(V47,V54); (* allocate storage for record *)Move(5,V55); (* 5 represents 2 *)StoreIndexL(V55,V54,1); (* store component of record *)Move(7,V55); (* 7 represents 3 *)StoreIndexL(V55,V54,2); (* store component of record *)StoreIndexL(20,V54,0); (* tag *)Move(V54,V51); (* save address of record as result *)(* end of RECORD *)(* LET scope: *)Move(V46,V52); (* allocate storage for closure for FN y => ...*)StoreIndexL(Lab5,V52,0); (* store code pointer in closure *)Move(V51,V53);StoreIndexL(V53,V52,1); (* save free variable x in closure *)FetchVars(V43);Move(V43,V53);StoreIndexL(V53,V52,2); (* save free variable rho1 in closure*)Move(V52,V48); (* save address of closure as result *)(* end LET *)(* end LETREGION (rho6 eliminated)*)(* end operator, begin operand *)Move(11,V49); (* 11 represents 5 *)(* end operand *)77



Push(Lab4); (* push return address *)Move(V48,stdClos);Move(V49,stdArg);FetchIndexL(stdClos,0,V50); (* fetch code address from closure *)Jmp(V50)LABEL 4: (* return address *)Move(stdRes,V45); (* end APP *) ;Offset(SP,~12,SP); (* end LETREGION rho5*)Offset(SP,~12,SP); (* end LETREGION rho4*)HALTLABEL 5: (* code for function FN y => ... *)(* begin RECORD *)FetchVars(V43);Move(V43,V57);AllocMemL(V57,3,V57); (* allocate storage for record at rho1 *)FetchIndexL(stdClos,1,V59); (* access variable: x *)FetchIndexL(V59,1,V58); (* extract component 0 from record. *)StoreIndexL(V58,V57,1); (* store component of record *)Move(stdArg,V58); (* access variable: y *)StoreIndexL(V58,V57,2); (* store component of record *)StoreIndexL(20,V57,0); (* tag *)Move(V57,stdRes); (* save address of record as result *)(* end of RECORD *)(* return: *)Pop(V56);Jmp(V56)
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