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Abstract

A graph is planar if it can be drawn on the plane with vertices at unique locations
and no edge intersections except at the vertex endpoints. Due to the wealth of interest
from the computer science community, there are a number of remarkable but complex
O(n) planar embedding algorithms. This paper presents an O(n) planar embedding
algorithm that avoids a number of the complexities of prior approaches (an early version
of this work was presented at the January 1999 Symposium on Discrete Algorithms).
In July 1999, Shih and Hsu published a new planarity algorithm based on a data
structure they call a PC-tree, which is a simplification of a PQ-tree that utilizes some
results also used in our planarity algorithms. This paper also discusses some errors
in the PC-tree formulation that prevent it from being correct and O(n) as published.
Finally, our new formulation is easy to prove correct and O(n), and it extends well
to related problems. This paper also presents a simplified O(n) Kuratowski subgraph
isolator, and further extensions will be presented in future papers (a number of which
can be found currently in Boyer’s dissertation).

1 Introduction

An undirected graph G contains a set V' of n vertices and a set E of m edges, each of which
corresponds to an unordered pair of vertices. In an undirected graph, the vertices associated
with an edge are called the endpoints of the edge, and an edge is incident to its endpoints.
An edge with endpoints u and v is denoted (u,v). A loop is an edge of the form (u,u), and a
multiple edge is an edge that occurs more than once in F (if there are multiple edges, then
is not a set but rather a multiset). A multigraph is a graph that permits loops and multiple
edges (some texts forbid loops [8]), and a simple graph is a graph that forbids loops and
multiple edges. In this paper, graphs are undirected and simple unless stated otherwise.

In a graph G, vertex u is adjacent to vertex v, or equivalently v is a neighbor of u, if (u, v)
is an edge in E(G). The subset of vertices adjacent to a vertex u is called the neighborhood
of u. The degree of a vertex u is the number of non-loop edges containing u as an endpoint
plus twice the number of loops of the form (u,u). In a simple, undirected graph, the degree
of a vertex u is equal to the size of its neighborhood, and each neighbor v of a vertex u is
also adjacent to u. A walk of length k is a sequence P = (vy, eg, v1, €1, Vg, ..., €1, Ug) Of
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alternating vertices and edges from a graph G, with e; = (v; 1, v;) an edge of G for i from 1
to k. A cycle is a walk of length greater than two with no repeated vertices except vy = v.
A path is a walk with no repeated vertex.

A graph is often drawn using points for the vertices and lines (possibly curved) for the
edges. A planar representation is a drawing of a graph on a plane such that the vertices are
placed in distinct positions and no two edges intersect except at common vertex endpoints.
A planar representation of a graph divides the plane into connected regions, called faces,
each bounded by edges of the graph [8, p. 68]. A region of finite area is called a proper face
and is bound by a cycle. The external face is the plane less the union of the proper faces
and the points occupied by the planar representation of the graph. In general, the boundary
of the external face is a walk, and the term external face is often used to refer to the vertices
and edges along the bounding walk. Figure 1(a) shows an example graph with four vertices
and six edges. Figure 1(b) shows a planar representation of the same graph.

(a) (b)
Figure 1: An Example Graph and a Planar Representation of the Graph

A graph is planar if it is possible to create a planar representation of the graph, and
a non-planar graph is a graph for which there is no planar representation. A planarity
testing algorithm determines if a graph has a planar representation. A planar embedding
algorithm not only tests planarity but also indicates the clockwise order of the neighbors of
each vertex of a planar graph. Generating the specific vertex positions and edge shapes in a
planar representation is often viewed as a separate problem, in part because it is application-
dependent. For example, our notion of what constitutes a suitable rendering of a graph may
differ substantially if the graph represents an electronic circuit versus a hypertext book.
Hence, a data structure in which the representation of each vertex contains a clockwise-
ordered list of its neighbors is called a combinatorial planar embedding and is considered to
be a simple certificate of planarity that contains sufficient information for subsequent graph
drawing algorithms and many other planar graph algorithms.

While the combinatorial planar embedding provides a simple certificate of planarity, the
first characterization of planarity by Kuratowski [13] shows that it is also possible to create
a simple certificate of non-planarity for non-planar graphs. A subgraph of a graph G is a
graph H such that V(H) C V(G) and E(H) C E(G). A graph G is isomorphic to a graph
H if there exists a bijection f : V(G) — V(H) such that (u,v) € E(G) if and only if
(f(u), f(v)) € E(H). An edge subdivision replaces an edge (u,v) with a degree two vertex
w plus the edges (u,w) and (w,v). The inverse operation, a series reduction, replaces a
degree two vertex w and its incident edges, (u,w) and (w,v), with a single edge (u,v). A
graph G is homeomorphic to a graph H if G can be made isomorphic to H by applying zero
or more subdivisions and series reductions. For graphs G and H, we say that GG is an H
homeomorph if GG is homeomorphic to H. Kuratowski proved that a graph is planar if and
only if it contains no subgraph homeomorphic to either of two graphs, which are denoted Kj
or K33 and depicted in Figure 2.



(a) K5 (b) Kj 3
Figure 2: The Planar Obstructions K5 and K33

In some applications, finding a Kuratowski subgraph is a first step in eliminating problem
areas in the graph. For example, in a graph representing an integrated circuit, an edge
intersection would be indicative of a short-circuit, which could be repaired by replacing the
crossed edge in an identified Kuratowski subgraph with a subcircuit of exclusive-or gates [15].
Due to Kuratowski’s theorem, a non-planar graph must contain a subgraph homeomorphic to
K5 or K33, and a Kuratowski subgraph isolator must return a minimal non-planar subgraph
containing only five vertices of degree four or six vertices of degree three, called image
vertices, plus distinct paths containing zero or more degree two vertices that connect the
image vertices such that the resulting graph is a K5 or K33 homeomorph.

A graph is connected if, for every pair of vertices u and v, there exists a path (u, ...,
v). A connected component of a graph is a maximal connected subgraph. Vertex v is a cut
verter of graph G if the removal of v and its incident edges increases the number of connected
components in the resulting graph. For example, the connected graph in Figure 3(a) contains
a cut vertex v whose removal, along with its incident edges, separates the graph into two
connected components as shown in Figure 3(b). A graph with no cut vertices is biconnected.
A biconnected component of a graph is a maximal biconnected subgraph. If a graph is
not biconnected, the biconnected components are said to be separable by the cut vertices
in the graph. For example, the graph in Figure 3(a) has two biconnected components as
shown in Figure 3(c). Note that the cut vertex v is considered to be part of each biconnected
component that contains it. As such, the bounding walk for the external face of a biconnected
component is a cycle (except of course for the special case of a biconnected component
containing only a single edge).

Linear time algorithms for identification of cut vertices and biconnected components
using the well-known graph processing method of depth first search were first discussed by
Tarjan [19]. Depth first search (DFS) on graphs operates in the same way as the well-known
pre-order tree traversal method, except that DFS on graphs must terminate traversal on
edges that lead back to previously visited vertices. Edges that lead to new vertices are called
tree edges, and edges that lead to previously visited vertices are called back edges. The tree
edges collectively form a spanning Depth First Search Tree in each connected component of
a graph. Each vertex v is assigned a number, the depth first index or DFI, which indicates
how many vertices were visited by the depth first search method prior to visiting v. The root
of a DFS tree is the first vertex visited in a connected component, so it has the least DFI
in the connected component. An ancestor of a vertex v is any vertex on the path of tree
edges from v to the root, excluding v. A descendant of a vertex v is any vertex for which v is
an ancestor. The endpoints of a back edge share the ancestor-descendant relationship. The
parent of a vertex v is the ancestor of v adjacent to v by a tree edge. A child of a vertex v is
any vertex for which v is the parent. A subtree is a subgraph of a tree in which a vertex v,
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Figure 3: (a) A Cut Vertex v, (b) Removing v results in more connected components, (c)
The biconnected components separable by v, (d) Adding edge (u,w) while keeping x and y
on the external face bounding cycle (v is no longer a cut vertex)

called the subtree root, is a common ancestor to all other vertices in the subtree and which
contains all tree edges having both endpoints in the subtree.

Based on a depth first search tree, we can examine more closely an interesting scenario
involving the addition of an edge with endpoints u and w to the graph in Figure 3(a).
Suppose u is a DFS ancestor of v, and v is an ancestor of w. Further, suppose that the
graph in Figure 3(a) is a subgraph of a larger graph G that contains a DFS ancestor ¢ of the
vertex u. Firstly, since the removal of v would no longer increase the number of connected
components, v would no longer be a cut vertex. This example demonstrates the fundamental
operation performed by our new algorithm, which is to embed one edge e at a time and merge
any biconnected components that are no longer separable by a cut vertex when e is added.
Figure 3(d) depicts how our algorithm would perform this fundamental operation under the
assumption that x and y are endpoints of back edges from G that are incident to ¢. Our
algorithm embeds all DF'S tree edges first, then it embeds the back edges ensuring that all
back edges with an ancestor endpoint of u are embedded before back edges with an ancestor
endpoint that is an ancestor of u. Thus, the back edges (¢, ) and (¢, y) will not be embedded
at the time that edge (u,w) is embedded. Our algorithm keeps vertices such as x and y on
the external face bounding cycles of biconnected components. In turn, adherence to this
constraint necessitates the ability to ‘flip’ the embedding of a biconnected component before
merging it with another biconnected component. As shown in Figure 3(d), the biconnected
component containing w is flipped before the merging the two copies of cut vertex » and
adding the edge (u,w).

Although Kuratowski was the first to characterize planarity, a theorem by Wagner [20]
is more useful for the proof of correctness of this new approach to planarity testing. An edge
contraction of an edge e = (u,v) replaces v and v and their incident edges with a single
vertex w whose incident edges are all edges that were incident to either u or v (except e).
An edge contraction can result in multiple edges incident to w (e.g., the edges (u,z) and
(v, x) are changed to be two instances of the edge (w,z)). A graph G contains a graph H



as a minor if a graph isomorphic to H can be created from a subgraph of G by applying
zero or more edge contractions. Wagner’s characterization of planarity states that a graph
is planar if and only if it contains neither K5 nor K33 as a minor.

The remainder of this paper is divided into the following sections. Section 2 reviews
selected prior works. Section 3 presents the essential definitions and operations of our planar
embedder and proves its correctness by demonstrating that the algorithm creates a planar
embedding over the edges it embeds, and that failure to embed an edge indicates that the
input graph contains K33 or K5 as a minor. Section 5 presents additional information about
our data structures and their initialization and maintenance to support an efficient imple-
mentation of our algorithms. Section 6 provides a more detailed version of our embedding
algorithm as well as a proof that O(n) performance is achieved. Section 7 presents our new
Kuratowski subgraph isolator. Section 8 presents some errors that have been found in the
PC-tree algorithm. Finally, Section 9 presents concluding remarks, including some comments
about the brevity of implementation of our O(n) planarity algorithms.

2 Review of Selected Prior Works

The first O(n) planarity test algorithm is due to Hopcroft and Tarjan [9]. The method first
embeds a cycle C' of the graph, then it breaks the remainder of the graph into a sequence of
paths that can be added either to the inside or outside of the starting cycle. Some corrections
to the algorithm appear in [6], and significant additional details are presented by Williamson
[22, 24] as well as the text by Reingold, Nievergelt and Deo [17].

Despite these resources, it is difficult to envision how the tester achieves linear time on
certain key parts, such as reversing a prior decision about whether to embed certain sets of
paths on the inside or outside of the cycle C. Indeed, Hopcroft and Tarjan comment that
the challenging part of the algorithm is the creation of good data structures to efficiently
implement this method. Moreover, while their conclusion briefly sketches a method for
augmenting the tester to create a planar embedder, over a decade later, Chiba, Nishizeki,
Abe, and Ozawa comment that modifying the Hopcroft and Tarjan algorithm to yield a
planar representation “looks to be fairly complicated; in particular, it is quite difficult to
implement a part of the algorithm for embedding an intractable path” [4, p. 55].

The second method of planarity testing proven to achieve linear time began with an O(n?)
algorithm due to Lempel, Even and Cederbaum [14]. The algorithm begins by creating an
s, t-numbering for a biconnected input graph. One property of an s,?t-numbering is that
there is a path of higher numbered vertices leading from every vertex to the vertex ¢, which
has the highest number. Thus, there must exist an embedding G, of the first k vertices
such that the remaining vertices (k + 1 to t) can be embedded in a single face of G}. This
planarity testing algorithm was optimized to linear time by a pair of contributions. Even and
Tarjan [7] optimized s, --numbering to linear time, while Booth and Lueker [1] developed the
PQ-tree data structure, which allows the planarity test to efficiently maintain information
about the portions of the graph that can be permuted or flipped before and after embedding
each vertex. Chiba, Nishizeki, Abe and Ozawa [4] augmented the PQ-tree operations so that
a planar embedding is computed as the operations are performed.

Achieving linear time with the vertex addition method is also quite complex [11], in part
because Booth and Lueker do not include the complete set of optimized templates required
to update the PQ-tree quickly [1, p. 362] but leave them for the reader to derive. There



are non-trivial rules for restricting processing to only the pertinent portion of the PQ-tree,
more rules to prune the tree, then still more details to increase the efficiency of selecting and
applying templates since more than one is often applied to process each vertex.

While the two major algorithms appear to approach the planarity problem quite dif-
ferently, Canfield and Williamson [3] have shown that a few modifications can be made to
synchronize the behavior of the two algorithms for each vertex. Williamson [23] was also the
first to create an O(n) Kuratowski subgraph isolator based on identifying the non-planarity
conditions that arise in the Hopcroft and Tarjan method. Karabeg [12] developed a lin-
ear time Kuratowski subgraph isolator by exploiting non-planarity conditions that arise in
PQ-trees.

A planarity characterization by de Fraysseix and Rosenstiehl [5] could lead to O(n) pla-
narity algorithms, though the paper contains no development of a linear time methodology.
However, the characterization is important because planarity is explained in terms of conflicts
between back edges as seen from a bottom-up view of the depth first search tree.

A preliminary report containing some of the results of this dissertation appeared in
[2]. Our work is based on this bottom-up view, though we derived it independently of
[5] as the result of trying to eliminate P(Q-trees and s,t-numbering while retaining the
aforementioned property of s, t-numbering that all paths lead to the final vertex. Using a
bottom-up view of the DFS tree, the final vertex is the DFS tree root, which suggests a
bottom-up vertex processing order. While [2] contained most of the information necessary
to embed the back edges between each vertex and its depth first search descendants and to
recover a combinatorial planar embedding in linear time, as an extended abstract it does
not contain complete information. Specifically, it lacks details that define when the root
of a biconnected component should be kept on the external face, and it does not provide
the details on how to maintain and use path information for each biconnected component
encountered as the algorithm works bottom-up from descendants adjacent by a back edge to
the vertex being processed. This paper improves on the prior work by presenting a simpler
formulation that does not even need to maintain this path information nor any external face
information for biconnected component roots.

More recently, a new planarity test was presented by Shih and Hsu [18]. They develop
a simplification of a PQ-tree that is critically dependent on a number of the same results
that appeared earlier in Boyer and Myrvold [2]. However, since their date of submission was
significantly before the publication of [2], there is clearly a case of simultaneous independent
discovery of somewhat similar algorithms. However, the results of Shih and Hsu stated in
[18] contain several errors, which will be discussed in Section 8.

3 New Planar Embedder

3.1 Terminology and Top-Level Algorithm

In Section 1, we introduced the fundamental operation performed by our new planarity algo-
rithm, which is the addition of an edge that may biconnect previously separable biconnected
components. Our embedding data structure, denoted G’, is designed to maintain a collection
of combinatorial planar embeddings of the biconnected components that develop as each
edge of the input graph G is added to G. Although an O(n) implementation of our algo-
rithm can be created by caching a few extra pieces of information for each vertex and edge,



in this section we focus on a minimal representation for G. As mentioned in Section 1, a
representation for a cut vertex must appear in each biconnected component containing the
cut vertex. Other than maintaining additional adjacency lists for extra copies of cut vertices,
a standard adjacency list format is sufficient for representing G if optimal performance is
not required. Thus, the algorithm development and proof of correctness can proceed in a
standard graph theoretic context with implementation details to follow in Sections 5 and 6.

The new embedding algorithm begins by creating a depth first search tree for the input
graph GG. Observe that a cut vertex appears in every path between its DFS children and its
ancestors, except for cut vertices that are DFS tree roots, which have no ancestors. Whether
or not a cut vertex is a DFS tree root, a cut vertex is the first vertex visited by depth first
search in a biconnected component containing the cut vertex and a DFS child of the cut
vertex. Moreover, a biconnected component B with depth first search entry point v cannot
contain more than one DFS child ¢ of v. The assumption of a second DFS child ¢y of v
in B contradicts the biconnectedness of B since the depth first search finds no path from
¢ to ¢y except through v. For these reasons, following definitions specify the nature of the
extra copies of vertices that must be maintained in order to represent each cut vertex in each
biconnected component containing it. A wvirtual vertez is the vertex with the least depth first
index in a biconnected component. A virtual vertex representing vertex v in a biconnected
component B is denoted v', or v° if it is necessary to identify the DFS child ¢ of v in B. The
virtual vertex in a biconnected component is the root of the biconnected component. A root
edge is a DF'S tree edge incident to a virtual vertex (and the DFS child of the virtual vertex).
A root edge is denoted (v°, ¢) or simply (v', ¢) since the child ¢ is known. A child biconnected
component of a vertex v is a biconnected component in G that contains the virtual vertex
v°¢ for some DFS child ¢ of v.

Once the depth first search of G has been performed (along with a few other preprocessing
steps that cache information useful in achieving O(n) performance), the algorithm embeds in
G a root edge corresponding to each tree edge of G. Bach root edge is a singleton biconnected
component consisting of a vertex ¢ and a virtual vertex representing the DF'S parent of c.

The final step of the top-level algorithm, pseudo-code for which appears in Figure 4, is to
embed the back edges from each vertex to its descendants, flipping and merging biconnected
components as necessary. The number of edges is restricted to 3n — 5 since planar graphs
have no more than 3n — 6 edges (we allow one extra edge so that a Kuratowski subgraph can
be found if the input graph is not planar; a higher edge limit can be imposed at implementer
discretion). The rationale for processing the vertices in reverse DFI order is simply that, for
any step v, a partial embedding can be created in which the remaining unprocessed vertices
can be embedded in the external face because each has a path of DFS tree edges leading to
the DF'S tree root.

The order in which back edges are embedded and the details of the biconnected com-
ponent flip and merge operations are selected such that all vertices with unembedded back
edges to v or its ancestors remain on the external faces of biconnected components in G.
The following definitions support the ability to make appropriate decisions about these op-
erations. Given a vertex = in G that is a descendant of the current vertex v being processed
by the main algorithm loop, x is externally active if the input graph G contains a back edge
(u, z) where u is an ancestor of v, or if z has a child biconnected component that contains
at least one externally active vertex. An externally active biconnected component in G is a
biconnected component that contains at least one externally active vertex. A biconnected



Figure 4: High-Level Outline of New Planarity Algorithm

(1) Receive graph G with n > 2 vertices and m < 3n — 5 edges
(2) Perform depth first search on G and other preprocessing
(3) Based on G, create and initialize embedding G

(4) Add each DFS tree edge of G to G as a singleton
biconnected component

(5) For each vertex v of G in reverse DFI order

(6) Embed in G each back edge in G from v to a
DFS descendant of v. For each such back edge (v, w),
embed (v, w) such that:

a) all biconnected components are merged together that
will no longer be separable when (v, w) is added

b) any vertex = with unembedded back edges to v or
DFS ancestors of v is kept on the external face
(along with cut vertices separating = from v).

If embedding (v, w) requires violation of 6b,
break the loop

(7) If one or more back edges were not embedded,
Isolate a Kuratowski subgraph

component in G with root ¢ is pertinent at step v if the input graph GG contains at least one
back edge (v, w) not embedded in G, where w is in the DFS subtree rooted by ¢. A vertex w
in G is pertinent in step v if the input graph G contains a back edge (v, w) not embedded in
G or if w has a pertinent child biconnected component. A vertex w in G is internally active
if it is pertinent but not externally active. An internally active biconnected component is
a biconnected component in G that contains one or more internally active vertices and no
externally active vertices. A vertex in G is inactive if it is neither externally nor internally
active.

There are a couple of notable aspects of these definitions. First, they apply only to
vertices, not virtual vertices. Second, since the definition of a child biconnected component
states that it must be rooted by a virtual vertex, the activity or pertinence of a vertex w
is affected only by unembedded back edges to the ancestors of w either directly from w or
from only those vertices in DFS subtrees rooted by children of w that are not in the same
biconnected component as w.

In Figure 4, the main algorithm loop body is not specified in Line 6. Rather, we have
so far only said what must be done but not how. The obvious first step is to set up the
pertinence and activity conditions defined above, but without the requirement of linear time
performance, it is easy to create inefficient but trivially simple implementations for these



definitions (and efficient methods are presented in Section 5).

To process the back edges from v to its descendants, our algorithm performs a routine
called ‘Walkdown’ on each biconnected component rooted by a virtual vertex v'. Since no
back edges to ancestors of v have been embedded, each such biconnected component is a
single root edge when the Walkdown is first invoked, but each one that is pertinent becomes
larger as the Walkdown embeds back edges.

3.2 The Walkdown Routine

An invocation of the Walkdown routine on a singleton biconnected component B with root
edge (v',¢) embeds all back edges between v and the descendants of ¢ except when a non-
planarity condition is discovered, the details of which are covered in the proof of correctness
in Section 4. Each such back edge to a descendant of ¢ is embedded along the external face of
B incident to the descendant and the virtual vertex ' = v°. Child biconnected components
of ¢ and its descendants are merged into B as necessary such that both endpoints of each
embedded back edge are in B.

The Walkdown procedure begins with a counterclockwise traversal of the external face
of B starting at v’. Since B contains a single edge, there appears at first to be no differ-
ence between counterclockwise versus clockwise traversal, but the distinction becomes clear
almost immediately when the root of a child biconnected component is merged with ¢. In
the counterclockwise traversal, pertinent biconnected components are merged as necessary
during the traversal in order to embed the back edges. These actions attach more vertices
and edges to B such that its external face consists of more than the original root edge. If
the first traversal processes all vertices on the external face of B, returning to ', then the
Walkdown terminates. However, the first traversal also stops if it encounters a stopping ver-
texr, which is a non-pertinent externally active vertex. In this case, the Walkdown performs
a second traversal of the external face of B starting at v' and proceeding clockwise. Again,
the traversal proceeds to embed back edges and merge pertinent biconnected components
until a stopping vertex is again encountered.

When a Walkdown traversal visits a vertex w, it performs two tasks. The first task is
to determine whether a back edge to w must be embedded based on whether the back edge
(v,w) exists in G and not in G. If so, then any child biconnected component roots between
v" and w (obtained in the manner described below) are merged and the new back edge (v', w)
is embedded such that the external face paths traversed from v’ to w form a proper face with
the new back edge. The second task performed when visiting w is to determine whether w
has any pertinent child biconnected components. If not, then w is inactive, so the Walkdown
obtains the successor s of w along the external face. On the other hand, if w has a pertinent
child biconnected component, then the Walkdown obtains the root w’ of a pertinent child
biconnected component with preference for the root of an internally active child biconnected
component, if any.

Traversal continues from w to the selected child biconnected component root w’, and a
direction to continue traversal from w' must be chosen. Both external face paths originating
from w' are scanned to find the first vertices  and y in both directions that are not inactive.
The path to an internally active vertex is selected. If both x and y are internally active, then
the choice is arbitrary. If both x and y are externally active, then the path to a pertinent
vertex is selected. If both are pertinent, then the choice is arbitrary. If neither are pertinent



(i.e. if z and y are stopping vertices), then the choice is also arbitrary because a non-planarity
condition discussed in Section 4 has been discovered and will soon cause the termination of
the Walkdown.

Once a new non-virtual vertex in a child biconnected component has been selected for
visitation according to the rules above, then w and w' as well as indicators of the direction by
which w was entered and w’ was exited are pushed onto a merge queue. The processing of the
next vertex then begins. The merge queue will continue to grow until the next vertex directly
adjacent to v by an unembedded back edge is encountered, at which point the merge queue
will be processed so that all virtual vertices are merged with their non-virtual counterparts
prior to embedding the new back edge.

Perhaps the simplest way to communicate the result of merge queue processing is to
consider how its contents would be processed if it were a stack, i.e. consider processing it
from the last element to the first. Fach virtual vertex w' and corresponding non-virtual
vertex w are popped from the stack, along with the directional information. Immediately
prior to merging w’ and w, w' is the root of either a biconnected component or of a connected
component formed by prior merge operations. In either case, the orientations of all vertices
in the component rooted by w’ must be inverted, essentially flipping the component, if the
direction of entry into w opposes the direction of exit from w’.

Processing the merge queue as a stack can obviously be very costly. Although we defer
remarks on linear time performance until Section 5, we can give a hint of the optimization now
while also clearing up the issue that our prior explanations have only mentioned biconnected
component flipping, not connected component flipping. Consider processing the merge queue
in order. For each pair w and w’, let w;, be one if w was entered from a counterclockwise
direction and zero otherwise, and let w!,, be zero if w' was exited in a counterclockwise
direction and one otherwise. Also, we augment the processing of the merge queue with a
variable named sign, which is initially 1 and changes between 1 and -1 whenever a biconnected
component flip occurs. For each 4-tuple (w, w;,, w', w!,,) pulled from the merge queue, the
following steps are performed. First, if the sign is currently -1, then w;, is inverted (i.e.
assigned the value 1 xor w;,) because the -1 sign indicates that the biconnected component
containing w was flipped relative to when the 4-tuple was pushed onto the merge queue.
Second, we flip the biconnected component rooted by w' if w;, and w! , are equal. Since
w;, and w, , have opposite meanings, their equality signifies opposition in the directions of
entry and exit. Third, if we flipped the biconnected component, then its value is reversed
(assigned -1 if it is 1, or 1 if it is -1). Fourth, we merge the adjacency list of w’ into the
adjacency list of w between the two external face edges incident to w. Then, we reiterate
these steps with the next 4-tuple from the merge queue until it is empty.

It is easy to see that this strategy performs flip operations only on biconnected com-
ponents, yet it achieves the same results as the connected component flip. Although this
strategy typically does less work, it can still do too much work over the entire embedding
process. However, we needed the strategy so the flip operation could be restricted to bi-
connected components, and it is still a helpful introduction to the fully optimized version
appearing in Section 5.
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3.3 Example of Walkdown Processing

This section presents an example that demonstrates the key processing rules of the Walkdown
routine. Figure 5(a) presents a partial embedding of a graph at the beginning of step v and
with the following edges still to embed: (u,d), (u, s), (u, z), (u,y), (v,p), (v,q), (v,1), (v, ),
and (v,y). Note that the vertex i is inactive and the biconnected component rooted by w'
is not pertinent. The square vertices are externally active. Now we will discuss the actions
performed by the Walkdown to embed the back edges from v to its descendants.

Figure 5: An Example of the Walkdown for Step v. Square vertices are externally active due
to unembedded edges (u,d), (u,s), (u,z), and (u,y). Edges (v,p), (v,q), (v,t), (v,z), and
(v,y) are to be added in step v. a) Embedding at the start of step v. b) Merge at ¢ to add
(v, x), then stop counterclockwise traversal. ¢) Clockwise traversal visits p and embeds (v, p).
d) Merge p and p’ and embed (v, q). e) Flip biconnected component rooted by p”, merge p
and p”, merge r and 7', then embed (v,?). f) Embed (v,y) and stop clockwise traversal.

The first traversal in the counterclockwise direction begins at v’, travels to ¢, then de-
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scends to ¢’. The first active vertices along the two external face paths are x and p, both
of which are externally active and pertinent. The decision to proceed in the direction of z
is therefore made arbitrarily. At z, there is a back edge to embed, so the Walkdown first
merges ¢ and ¢ with no flip operation since we happened to consistently travel counterclock-
wise when entering ¢ and exiting ¢’. The result of the merge and the embedding of (v, z)
appears in Figure 5(b).

Once the back edge to x has been embedded, the Walkdown determines that = has no
pertinent child biconnected components and is therefore a stopping vertex that terminates
the counterclockwise traversal. The second traversal commences in a clockwise direction
from v’ to ¢. Note that as soon as ¢ and ¢’ were merged in the first traversal, ¢ was no longer
externally active because it has no direct edge to an ancestor of v and it has no separated
DFS child with a lowpoint less than ». Thus, it is now possible to proceed beyond ¢ to p in
the second traversal.

At p, the Walkdown first embeds the back edge (v,p), the result of which is shown
in Figure 5(c). Then, the Walkdown determines that p has pertinent child biconnected
components. The Walkdown selects p’ because it is the root of an internally active child
biconnected component. The Walkdown descends to p' and finds that both paths lead to ¢,
which is internally active. Next, p and p’ are merged and the back edge (v, q) is embedded
as shown in Figure 5(d). Since ¢ becomes inactive as a result, the Walkdown proceeds from
g to its successor on the external face, which is p.

In this second visitation of p, the Walkdown again tests whether a back edge to p must
be embedded, but since the back edge has already been embedded, the result is negative.
The Walkdown again tests for pertinent child biconnected components, but this time there
are no internally active ones, so the Walkdown descends to p”. The two external face paths
from p” lead to externally active vertices r and s, but r is pertinent and s is not, so the
Walkdown proceeds in a counterclockwise direction from p” to r (contrary to the clockwise
direction by which the Walkdown entered p). At r, the Walkdown determines that there is
no back edge to embed, but r does have a pertinent child biconnected component, so the
Walkdown descends to r'. The two external face paths from 7’ lead to y and . While y is
pertinent, it is also externally active, whereas ¢ is internally active. Thus, the clockwise path
to t is selected, in opposition to the counterclockwise direction used to enter r.

At ¢, the Walkdown determines that a back edge must be embedded. Based on the first
4-tuple on the merge queue, the biconnected component rooted at p” is flipped, the merge
queue sign is changed to -1, and p"” merged with p. Now the second 4-tuple is pulled from
the merge queue. Although the direction indicators associated with exiting r and entering
r' were in opposition when the 4-tuple was created, the orientation of r has been inverted,
which we detect by the merge queue sign of -1. Thus, the value of r;, is inverted, the
biconnected component rooted at r' is not flipped, and " is merged with r. Finally, the back
edge (v,t) is embedded. The result of these operations is shown in Figure 5(e).

The clockwise traversal then continues from vertex ¢, which is now inactive, to vertex
y. The back edge (v,y) is embedded as shown in Figure 5(f). Once the back edge to y is
embedded, y is no longer pertinent since it has no pertinent child biconnected components.
Thus, y is a stopping vertex that terminates the clockwise traversal of the Walkdown.
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Figure 6: Walkdown Halting Conditions

4 Proof of Correctness

The Walkdown operations described in the example of the previous section embedded all of
the back edges from v to its descendants in the given input graph, but consider what would
happen if the input graph also contained the back edge (v, w). Based on the processing
rules, the Walkdown clearly cannot traverse to w, so the Walkdown would terminate without
embedding (v, w). For a given biconnected component B rooted by v, if the two Walkdown
traversals embed all back edges between v and descendants of ¢, then it is easy to see that
B remains planar and the algorithm continues. However, if some of the back edges to
descendants of ¢ are not embedded, then we show that the input graph is non-planar.

The Walkdown may halt if it encounters two stopping vertices while trying to determine
the direction of traversal from the root of a pertinent child biconnected component. This
condition is depicted in Figure 6(a). Otherwise, if the Walkdown halts on a biconnected
component B without embedding all back edges to descendants of a virtual copy of v, then
both Walkdown traversals were terminated by stopping vertices appearing along the external
face of B. This condition is depicted by Figure 6(b).

In Figure 6(a), u represents all unprocessed ancestors of v, and (u, v) represents the DFS
tree path from v to its ancestors. The edge (v, r) represents the path of descent from v
to a pertinent child biconnected component rooted by a virtual copy of r. The Walkdown
traversal is prevented from visiting a pertinent vertex w by stopping vertices x and y on
both external face paths emanating from r. The cycle (r,z,w,y, ) represents the external
face of the biconnected component. The dotted edges (u,z), (u,y) and (v,w) represent
connections from a descendant (x, y or w) to an ancestor (u or v) consisting of either a
single unembedded back edge or a path containing a tree edge to a separated DFS child of
the descendant, zero or more additional tree edges, and an unembedded back edge to the
ancestor. Similarly, Figure 6(b) shows stopping vertices z and y that prevent traversal from
reaching a pertinent vertex w in a biconnected component rooted by a virtual copy of v.

Both diagrams depict minors of the input graph. Since Figure 6(a) depicts a K33, the
input graph is non-planar. However, Figure 6(b) appears to be planar, so it is natural to ask
why the edge (v, w) was not embedded inside B, which the Walkdown could do by embedding
(v, w) along the external face, then embedding (v, z) such that (v, w) is surrounded inside the
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bounding cycle of B. In short, there is either some aspect of the connection represented by
edge (v, w) or some aspect of the vertices embedded within B that prevents the Walkdown
from embedding the connection from w to v inside B. An examination of the possibilities
related to these aspects yields four additional non-planarity minors, or five in total, which
are depicted in Figure 7. Theorem 4.1 argues the correctness of our algorithm by showing
that one of the non-planarity minors must exist if the Walkdown fails to embed a back edge,
and the absence of the conditions that give rise to the non-planarity minors contradicts the
assumption that the Walkdown failed to embed a back edge.

(c) (d) (e)

Figure 7: Non-planarity Minors of the Input Graph

Theorem 4.1 Given a biconnected connected component B with root v, if the Walkdown
fails to embed one or more back edges from v to descendants of ¢, then the input graph G is
not planar.

Proof. Figure 7(a) results if the merge queue is non-empty when either of the two Walkdown
traversals is halted by a stopping vertex. The input graph is non-planar since Figure 7(a) is
a Ks3.

Figure 7(b) results if the pertinent vertex w has an externally active pertinent child
biconnected component such that embedding the connection from w to v inside B would
place an externally active vertex z inside B. If the Walkdown halts without embedding the
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back edge that would clear the pertinence of w, then the input graph is non-planar since
Figure 7(b) contains a Kj 3.

Otherwise we consider conditions related to having an obstructing path inside B that
contains only internal vertices of B except for two points of attachment along the external
face: one along the path v, ..., =, ..., w, and the other along the path v, ..., y, ..., w.
The obstructing path, which is called an z-y path, contains neither v nor w. If such an -y
path exists, then the connection from w to v would cross it if the connection were embedded
inside B. We use p, and p, to denote the points of attachment of the obstructing z-y path.

Figure 7(c) depicts the condition of having an z-y path in which p, attached closer to
v than z. Note that p, can also be attached closer to v than y. In fact, Figure 7(c) also
represents the symmetric condition in which p, is attached closer to v than y (but p, is
attached at x or farther from v than ). In all of these cases, the input graph is non-planar
since Figure 7(c) contains a Kj 3.

Figure 7(d) depicts the condition of having a second path of vertices attached to v that
(other than ») contains vertices internal to B that lead to an attachment point z along
the z-y path. If this second path exists, then input graph is non-planar since Figure 7(d)
contains a K 3.

Figure 7(e) depicts the condition of having an externally active vertex (possibly distinct
from w) along the lower external face path strictly between p, and p,. If this condition
occurs, then input graph is non-planar since Figure 7(e) represents a K5 minor.

Finally, suppose for the purpose of contradiction that the Walkdown has failed to embed a
back edge and none of the non-planarity conditions described above exist. The merge queue
must be empty due to the absence of the condition of Figure 7(a). By the contradictive
assumption, a biconnected component rooted by a virtual copy of v has a pertinent vertex w
along the lower external face path between stopping vertices z and y. We address two cases
based on whether or not there is an obstructing x-y path.

If there is no obstructing z-y path, then at the beginning of step v all paths between z
and y in the embedding contain w. Thus, w is a DFS ancestor of = or y (or both), and it
becomes a merge point when its descendants (x or y or both) are incorporated into B. When
the Walkdown first visits w, it embeds a direct back edge from w to v if one is required, so the
pertinence of w must be the result of a pertinent child biconnected component. However, the
Walkdown preferentially selects and processes internally active child biconnected components
of w prior to attaching an externally active pertinent child biconnected component leading
to x or y. Thus, the pertinence of w must be due to an externally active child biconnected
component, which contradicts the pertinence of w since the condition of Figure 7(b) does
not exist.

On the other hand, suppose there is an obstructing z-y path, but none of the remaining
non-planarity minors apply. The highest -y path is the z-y path that would be contained by
a proper face cycle if the internal edges to v' were removed, along with any resulting separable
components. At the beginning of step v, the highest x-y path and the lower external face
path from p, to p, formed the external face of a biconnected component. Let r denote
whichever of p, or p, had a virtual vertex that was the root of that biconnected component,
and let s denote one of p, or p, such that s # r. Since the condition of Figure 7(c) does
not exist, s is equal to or an ancestor of x or y and was therefore externally active when
the Walkdown descended to r’. Moreover, when the Walkdown descended to r’, the first
active vertex along the path that is now the highest xz-y path is s because the condition of
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Figure 7(d) does not exist. Descending from 7’ along the path that is now the lower external
face path between p, and p,, the existence of a pertinent vertex w implies that there are no
externally active vertices along the path due to the absence of the condition of Figure 7(e).
Thus, we reach a contradiction to the pertinence of w since the Walkdown preferentially
selects the path of traversal leading from the root of a child biconnected component to an
internally active vertex. O

Figure 8 exemplifies the conditions described by the final contradiction in the proof of
Theorem 4.1 for the case r = p,, s = p,. In the example, p, # z and p, # y to promote
clarity. At the beginning of step v, vertices x and y must have been externally active because
they are stopping vertices for the Walkdown on v'. Note that p, is depicted as an ancestor
of x and y is an ancestor of p, because the z-y path is attached low (if there were a high
point of attachment, then Figure 7(c) would apply). We let w be the first active vertex along
the clockwise external face path descending from pj, and we have assumed for the sake of
contradiction that w is pertinent. Since Figure 7(d) does not apply, p, is the first active
vertex found along the counterclockwise external face path descending from p; . Finally, w is
not externally active because Figure 7(e) does not apply. In this case, the Walkdown selects
w as the next vertex to process, but the assumption that w is pertinent at the end of step v
implies that p, was selected.

Figure 8: An Example for Theorem 4.1

5 Data Structures and Optimizations

5.1 DFS Parent and Lowpoint Calculations

Each vertex in G is represented by a vertex structure containing important information about
the vertex such as its adjacency list. Non-virtual vertex structures contain a few members
whose values are obtained during the preprocessing of the input graph G. The DFSParent
member indicates the depth first search tree parent of a vertex (except that for a DFS tree
root, the value nil since it has no parent). The leastAncestor indicates the ancestor with
the least DFI adjacent to the vertex by a back edge in the input graph. The lowpoint of a
vertex is the minimum of its least Ancestor and the lowpoint values of its DFS children. The
lowpoint is a well-known and simple vertex parameter that can be computed by a post-order
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traversal of the depth first search tree, or it can be computed during the initial depth first
search [19].

5.2 Vertex Array and Virtual Vertices

In G, vertices (virtual and non-virtual) are represented by an array of 2n vertex structures.
Using zero-based array indexing, vertices are stored in locations 0 to m — 1 and virtual
vertices are stored in locations n to 2n — 1. More specifically, a non-virtual vertex is stored
at a location equal to its DFI, and a virtual vertex v¢ is stored at location n+ ¢. Thus, given
a virtual vertex v, its non-virtual counterpart can be obtained in constant time by obtaining
the DFSParent field in the vertex structure for ¢, where ¢ is obtained by subtracting n from
the location of v°.

5.3 Externally Active Biconnected Components and Vertices

Given a virtual vertex w¢, it is possible to determine whether the biconnected component B
containing w¢ is externally active in constant time. First, we obtain ¢ by subtracting n from
wC, then we test the lowpoint of ¢. If the lowpoint of ¢ is less than v, then B is externally
active because the DFS subtree rooted at ¢ has at least one back edge connection to one or
more ancestors of v.

To determine whether a given vertex w is pertinent, two additional members are added to
each non-virtual vertex. The separated DFSChildList contains a circular doubly linked list of
the DFS children of a vertex that appear in separate biconnected components. Prior to the
embedding of any back edges, the separated DF'SChildList of a vertex contains all of its DFS
children, sorted by their lowpoint values. The sort can be performed in worst-case linear
time by bucket sorting the vertices based on their lowpoint values, then adding each vertex
in lowpoint order to the separated DFSChildList of its DFSParent. Each vertex receives a
member named repInParentList to store a pointer to the representative of the vertex in the
separated DFSChildList of its DFS parent. When the virtual vertex w® is merged with its
non-virtual counterpart w, the repInParentList member of the child ¢ is used to remove ¢
from the separatedDFSChildList of its DF'S parent w, which can be done in constant time
since the separateDFSChildList is doubly linked.

A vertex w is externally active in step v of the main algorithm loop if its least Ancestor of
w is less than v or if the first vertex in the separated DF'SChildList of w has a lowpoint that
is less than v. The first test determines whether w has an unembedded back edge directly to
an ancestor of v, and the second test determines whether any child biconnected components
of w are externally active.

5.4 Pertinence and the Walkup Routine

In Section 5.2, we discussed how to obtain the non-virtual counterpart of a given virtual
vertex. However, it is too costly to maintain such a direct connection from a non-virtual
vertex to all of its virtual vertices. Instead, at the beginning of each step v of the main
algorithm loop (see Figure 4), the algorithm computes a list of virtual vertices that must be
merged with their respective non-virtual counterparts during the embedding of the back edges
from v to its descendants. Fach non-virtual vertex has a circular doubly linked list called
pertinentBicomp List that is initially empty. When a pertinent child biconnected component
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containing the virtual vertex w® is found, then w* is added to the pertinentBicompList of w.
When w¢ is merged with w, w® is removed from the pertinentBicompList of w (in constant
time). At the end of step v, all pertinentBicompList members are returned to the empty
state, except of course if the Walkdown halts with a non-planarity condition.

When a virtual vertex w® is added to the pertinentBicompList of w, it is either prepended
or appended. Let B denote the pertinent child biconnected component containing w¢. If B
is externally active, then w¢ is appended; otherwise w® is prepended. Since the internally
active child biconnected components appear first in the pertinentBicompList, the Walkdown
can preferentially select an internally active child biconnected component, if one is available,
in constant time.

To complete the efficient implementation of the definition of pertinence, each non-virtual
vertex has an additional member called adjacentTo and each vertex structure (including
those for virtual vertices) has a member called wisited. All visited and adjacentTo members
are initially set equal to n and are used like flags. In a step v, the flag is set if it is equal to
v and clear otherwise. The adjacentTo flag of a descendant w of v is set equal to v at the
beginning of step v if there exists a back edge (v, w) in the input graph. The adjacentTo
flag of w is cleared as soon as the back edge is embedded (so the Walkdown does not embed
the edge again if it revisits w). All visited flags are cleared when the main algorithm loop
decrements v. The visited flag is only set by the Walkup routine described below.

The Walkup routine is invoked at the beginning of step v once for each back edge (v, w)
in the input graph, where w is a DFS descendant of v. It first sets the adjacentTo flag of w.
Then, the Walkup performs a loop that begins at w and simultaneously traverses both paths
originating from w around the external face of the biconnected component B,, containing w
until the root vertex ' of B, is encountered. If »' is a virtual copy of v, then the Walkup
terminates successfully. Otherwise, r’ is stored in the pertinentBicompList of the non-virtual
vertex structure r. The virtual copy is appended if B, is externally active and prepended
otherwise. Then, the Walkup loop reiterates starting at r.

Within each biconnected component visited by Walkup, one of the two external face paths
between r' and w becomes part of a new proper face once the back edge (v, w) is embedded.
The Walkup performs external face traversal in parallel to ensure that each biconnected
component root is found with a cost not exceeding twice the size of the shortest path around
the external face. This helps to ensure that the total cost of all Walkup operations is a
constant factor of the sum of degrees of proper faces in the embedding.

The Walkup loop also sets the wvisited member of each virtual and non-virtual vertex it
encounters. Any future Walkup invocation in step v terminates immediately if it encounters
a visited vertex structure. The purposes of this optimization is to ensure that the cumulative
work done by all Walkup calls for the back edges of v does not exceed a constant factor of
the number of bounding edges in new proper faces formed during step v.

5.5 Short-circuit Edges

Unlike the Walkup, the Walkdown cannot simply choose the shortest path when it descends
to a biconnected component root r’ and selects a path to the next vertex to visit. The
Walkdown must find the first active vertex along both external face paths emanating from
r', regardless of their length. It is possible to create input graphs on which the Walkdown
traverses an O(n) length path O(n) times. To rectify this problem, the Walkdown can be
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modified to eliminate the paths of inactive vertices such that the immediate neighbors of a
virtual vertex along the external face are always active.

When the Walkdown is visiting a vertex w, it may be inactive or may become inactive
after adding a back edge to w. The Walkdown simply obtains the successor s along the
external face and reiterates, visiting s. Before the Walkdown reiterates, we augment the
processing of an inactive vertex w by adding a special ‘short-circuit’ edge between s and the
root v’ of the biconnected component B, removing w from the external face. However, to
ensure that we do not exceed the total edge limit of 3n — 5, the short-circuit edge is not
embedded if the adjacentTo member of s equals v, if B is not externally active, or if B does
not contains s. Finally, since each short-circuit edge is specially marked, they are easy to
remove after the main loop in Figure 4 is finished.

5.6 Edge Representation

Each edge (u, v) is represented by a pair of edge records that are inserted into the adjacency
lists of uw and v. The edge record in the adjacency list of u indicates v as a neighbor and
vice versa. The neighbor field of an edge record indicates either a virtual or non-virtual
vertex. An edge record also carries a type member to indicate whether it is part of a tree
edge, back edge or short-circuit edge. Each edge record has a sign member that is initially
1 but changed to -1 in a tree edge (w®, ¢) if the biconnected component rooted by w® must
be flipped before w® is merged with w.

The edge records for all edges are stored in an array of size k(3n — 5) for any constant
k > 2. The two edge records representing an edge are stored at consecutive locations such
that traversal of an edge in either direction is a constant time operation. Given the position
p of an edge record, the associated edge record is at position p + 1 if p is even or at p — 1 if
p is odd. We refer to this calculated connection between edge records as the twin link.

5.7 Adjacency Lists and Maintaining the External Face

The adjacency list of each virtual and non-virtual vertex is a doubly linked circular list that
include the vertex structure plus the list of edge records indicating each neighbor. Thus, each
vertex structure and edge record contains two pointers, denoted link[0] and link[1]. Moreover,
since an edge record link can indicate either another edge record or a vertex structure, it
is necessary to be able to identify the type of object at which a link points. One way to
do this is to create a common structure capable of representing either a vertex structure or
edge record. Then, a single array can be used to store first the 2n vertex structures then the
edge records, the links can be represented as indices into the array, and edge records can be
distinguished by having a location of 2n or greater.

The purpose of linking a vertex structure into its adjacency list is two-fold. Firstly, if
the vertex is on the external face, then the vertex structure’s link[0] and link[1] pointers
indicate edge records of edges that join the vertex to the bounding cycle of the external face.
Secondly, if we have an edge record of an edge on the bounding cycle of the external face,
then it is possible to obtain the vertex whose adjacency list contains the edge record because
either link[0] or link[1] points to a vertex structure (or both if the edge is the only one in a
singleton biconnected component).
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5.8 Merging and Flipping a Child Biconnected Component

In Section 1, a combinatorial planar embedding is defined to provide a clockwise ordered list
of the neighbors of each vertex. Since it is easy to create graphs that would require O(n)
vertices to be inverted O(n) times, we cannot afford to directly maintain a consistent vertex
orientation throughout the embedding process. Our solution is to relax the requirement
that a consistent vertex orientation be maintained during embedding. Our data structures
maintain a cyclic order of the embedded edges of each vertex, but individual vertices can
have a clockwise or counterclockwise orientation. Technically, we do not violate the definition
since a consistent orientation for all vertices is well-defined and easy to recover at any time
using a depth first search within each biconnected component.

Since we need only maintain the cyclic edge order of each vertex, the biconnected com-
ponent flip operation can be reduced to a simple augmentation of our process for merging a
virtual vertex with its non-virtual counterpart. When the Walkdown descends from a vertex
w to a virtual vertex w’', four integers are pushed into the merge queue, which are denoted
w, Wi, w' and w! ,. The meaning of w and w' have already been explained. The link in w
indicating the edge record the Walkdown used to enter w is denoted w;,, and w, , denotes
the link in w’ indicating the edge record the Walkdown used to exit w’ toward the next
vertex. When the Walkdown finds a back edge to embed, it embeds the edge, but it also
processes the queue to merge all biconnected components it has encountered since the last
edge embedding. The merge of w and w' must occur such that the edge records indicated
by w;, and w!,,, become consecutive in the adjacency list of w and such that they lie on the
proper face created by the back edge being embedded.

Merging w® with w consists of the following operations. First, w® is removed from the
head of the pertinentBicompList of w, and ¢ is removed from the separatedDFSChildList
of w. Then, all settings in the edge records of edges incident to w® are changed to indicate
incidence with w. Then, a circular list union of the adjacency lists of w and w’ occurs. The
link[w;,,] edge record of w and the link[w! | edge record of w' are joined, and the link[1 xor
w'..] edge record of w' becomes the new link[w;,] edge record of w.

The biconnected component flip operation occurs implicitly as a part of correctly per-
forming the circular list union. Note that if w;, and w! , are equal, then the links in each
edge record of the adjacency list of w’ must be swapped before the join operations described
above can result in a consistent adjacency list. The swapping of the links in each adjacency
list node inverts the orientation of w’ to be consistent with w, but the orientations of all
descendants of w' are not changed (because it would take too long). Instead, the root edge
incident to w' is marked with a sign of -1 so that a post-processing operation described
below can recover the proper orientation of the descendants of w’. Note that the flipping
operation implicitly inverts the orientation of all descendants of w’, not just the vertices in
the biconnected component with root w'.

The details of these processes are illustrated in Figures 9, 10, and 11. In Figure 9, we
have an overview of the embedding of back edge (1, 7). Figure 9(a) shows the state of
the data structures during step 1 after embedding back edges (1, 3) and (1, 4). Because
vertex 4 is externally active, the first Walkdown traversal returns and the second Walkdown
traversal begins at 1’ such that back edge (1, 7) will be embedded around the right hand side.
However, since vertex 8 is also externally active, the biconnected component rooted at 2’
must be flipped so that vertex 8 remains on the external face when edge (1, 7) is embedded.
The result is shown in Figure 9(b).

c
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(a) (b)

Figure 9: Overview of Data Structures for Flip Operation

An elaboration of Figure 9(a) appears in Figure 10. The rounded rectangles are edge
records, and the double lines connecting them are twin links. The circles represent vertex
structures, except that vertices 4 and 8 are represented by squares to indicate their external
activity. The single lines with black and white dots for endpoints represent the links that
bind the adjacency list and the vertex structure into a circular doubly linked list.

At this point of the embedding, all vertices still have the same orientation. The edge
records in the adjacency list of any vertex can be traversed in counterclockwise order by
traversing the black dot links to exit the vertex structure and each edge record in the adja-
cency list.

As stated previously, the first Walkdown traversal embeds edges (1,3) and (1,4), then
stops at vertex 4. The second Walkdown traversal restarts along the right side of edge (1',2).
Then, it descends to the pertinent child biconnected component rooted at 2’. Since vertex
7 is internally active, the biconnected component must be flipped before merging so that
vertex 8 remains on the external face.

The results of the merge operation can be seen in Figure 11. The merge operation begins
by changing all edge records that contain 2’ so that they contain 2. Then, we flip the
biconnected component by inverting the circular list union. Edge record (2, 7) is joined with
(2, 1), and edge record (2, 8) is joined with vertex structure 2. Note that the links of the edge
records formerly in 2’ must be inverted in this case so that the adjacency list of vertex 2 is
consistent, i.e. a traversal of the adjacency list of vertex 2 can be performed by consistently
using the same colored dot link to exit the vertex structure and each edge record.

The inverted circular list union has, however, implicitly inverted the orientations of all
of the descendants of vertex 2'. No other work was actually performed on the links in these
descendants, and the result is that the black dots links now result in a clockwise ordering of
their adjacency lists. Our algorithm accounts for this by marking the tree edge (2, 5) with
a sign of -1.

The final change made in Figure 11 is the addition of the back edge (1, 7). Since we
exited vertex 1’ using edge record (1',2), the new edge record (1, 7) is added between vertex
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Figure 10: Elaboration of Data Structures Before Flip Operation

structure 1" and edge record (1',2). Since the Walkdown entered vertex 7 using the edge
record (7,2'), the new edge record (7,1') is added between the vertex structure for 7 and the
edge record for (7, 2). Thus, edge (1, 7) is on the external face and has formed a new proper
face in the embedding that includes vertices 1, 2, and 7.

Based on the detail in Figure 11, it is evident that our strategy of biconnected component
flipping introduces a small wrinkle in how we traverse the external face of biconnected
components. A counterclockwise walk of the external face of the biconnected component
now rooted at 1’ begins with vertex 1’ then vertices 4, 2, 8, 6, 7 and back to 1'. In detail,
we exit vertex 1’ using a black dot link, then we exit vertex 4 using its black dot link, then
we exit vertex 2 using a black dot link. This is because vertices 1, 4 and 2 have the same
orientation. However, if we exit vertex 8 using the black dot link, this takes us back to vertex
2. This is because vertex 8 has an opposing orientation as described above.

To solve this problem, we switch focus from the link used to exit a vertex w and instead
maintain the link used to enter its successor s (which is determined specially for singleton
biconnected components, as described in Section 5.9). Then, our algorithms simply exit a
vertex s from the opposing link. In the case of vertex 8 in Figure 11, we enter from the edge
record (8, 2), which corresponds to the black dot link for vertex 8, so we exit from the white
dot link of vertex 8. Similarly, we reach vertices 6 and 7 through black dot links, so we exit
each through their respective white dot links, which returns properly to vertex 1'.
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Figure 11: Data Structures After Flip and Back Edge Embedding

5.9 Traversing the External Face

Due to our biconnected component ‘flip’ strategy, an orientation for a vertex w that is
consistent with the orientation of the root ' of the biconnected component containing w is
obtained by inverting w if the product of the signs of the edges on the tree path from w to
r is -1. This optimization does not technically violate the definition of combinatorial planar
embedding because consistent vertex orientations are well-defined and easily recoverable by
a depth first search of each biconnected component. However, the method of traversing
the external face of a biconnected component becomes slightly more involved than a simple
traversal of a cycle of vertices and edges.

During a traversal, suppose we have arrived at a vertex w from an edge containing the
edge record indicated by the link[w;,] member of w (where wy, is 0 or 1), and suppose we
would now like to travel to the successor s of w on the external face. Let e denote the edge
record indicated by the link[w,,;] member of w, where w,,; = lxorw;,, and let ey,;, denote
the edge record associated with e by the twinLink. Either link[0] or link[1] of €4, indicates
a vertex structure, which represents the successor vertex s. Finally, let s;, be equal to 0 or
1 such that link[s;,] in s indicates ey, (or let s;, equal w;, if s is degree one). Note that
we track the 0 or 1 link of an edge record and not the edge record itself because it simplifies
the task of keeping track of the direction of travel while descending through biconnected
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components containing a single tree edge.

5.10 Recovering an Embedding

After the main algorithm loop (Figure 4), a simple post-processing operation can be used
to impose a consistent orientation on all vertices in each biconnected component of the
embedding. The orientation of a vertex w relative to the root of the biconnected component
is determined by the product of the signs of the tree edges in the DFS tree path from w up to
the root of the biconnected component. If the product equals -1, then w must be inverted by
swapping the links in its vertex structure and in each edge record of its adjacency list. The
required product for each vertex can be computed in an orderly fashion using a pre-order
traversal of the portion of the depth first search tree in the biconnected component.

Once each biconnected component is oriented, any remaining virtual vertices are merged
with their non-virtual counterparts (with no flipping operations). Virtual vertices in the
final embedding are representative of DFS tree roots and cut vertices.

6 Linear Time Implementation

6.1 Walkup Pseudo-code

At the beginning of each step v, the Walkup routine is invoked once per back edge of G that
is incident to v and a descendant w. As a result of all Walkup invocations, all pertinent
vertices and biconnected components are identified. Pseudo-code for the Walkup appears in
Figure 12, which is an elaboration of the Walkup description given in Section 5.4.

The adjacentTo flag in the descendant vertex w is set in Line 1 of the pseudo-code in
Figure 12. A traversal context consists of a vertex and a direction indicator, which is a 0 or
1 identifying whether the vertex was entered by the link[0] or link[1] edge record. Lines 2
and 3 initialize two traversal contexts for the simultaneous walk around the external faces of
biconnected components. Since the simultaneous traversal is being initialized to start with
the biconnected component containing w, both traversal contexts start at vertex w and are
assigned opposing direction indicators.

The loop beginning in Line 4 of the pseudo-code in Figure 12 terminates if traversal
reaches v or, according to Line 5, if a prior Walkup in step v has visited either of the vertices
x or gy indicated by the two traversal contexts. If a prior Walkup in step v has visited x or
y, then the remaining virtual vertices on the ancestor path from x or y up to v have already
been recorded in the pertinentBicompList members of their non-virtual counterparts. If
neither z nor y have been visited by the Walkup in step v, then they are marked as visited
in Line 6. Note that this includes marking virtual vertices as visited.

Line 7 to 10 of the pseudo-code in Figure 12 determine whether either traversal context
has found the virtual vertex at the root of the biconnected component being traversed. If
so, then Lines 11 to 18 add the virtual vertex, denoted z’, to the pertinentBicompList of its
non-virtual counterpart z and then transfer both traversal contexts to z. Given 2', lines 11
and 12 determine the location of z according to the method described in Section 5.2. Line
13 ensures that the virtual vertex 2’ is not added to the pertinentBicompList of z if z is
equal to v because v does not become a merge point in step v. Line 14 tests whether the
biconnected component rooted by 2z’ is externally active according to the method described
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Figure 12: The Walkup Routine

Procedure: Walkup
this: Embedding Structure G
in: A vertex w (a descendant of the current vertex v being processed)

(1) Set the adjacentTo member of w equal to v

(2) (@, zin) + (w, 1)
(3) (4, Yin) < (w, 0)

(4) while z # v
if the visited member of z or y is equal to v, break the loop
Set the visited members of x and y equal to v

— —~
~I S Ot
~ ~— —

if x is a virtual vertex, 2’ <+ x
8) else if y is a virtual vertex, 2/ <y
) else 2/ < nil

(10) if 2/ # nil

(11) c+—z2 —n

(12) Set z equal to the DFSParent of ¢

(13) if z# v

(14) if the lowpoint of ¢ is less than v

(15) Append z' to the pertinentBicompList of z
(16) else Prepend 2’ to the pertinentBicompList of z
(17) (, i) < (2, 1)

18)  (u v ¢ (= 0)

(19) else (z, x;,) < GetSuccessorOnExternalFace(z, x;,)
(20) (y, yin) < GetSuccessorOnExternalFace(y, yin)

in Section 5.3. Lines 15 and 16 ensure that internally active biconnected components appear
earlier in a pertinentBicompList than those that are externally active. Finally, Lines 17 and
18 restart the simultaneous external face traversal on the biconnected component containing
z (or Line 4 terminates the process if z equals v).

On the other hand, if Lines 7 to 10 of the pseudo-code in Figure 12 determine that neither
traversal context found the biconnected component root, then Lines 19 and 20 simply advance
both traversal contexts to the next vertices along the external face by invocations of a simple
low-level routine called GetSuccessorOnExternalFace, which implements the traversal logic
described in Section 5.9.

Lemma 6.1 The Walkup routine achieves constant amortized time per vertex of the input
graph G.
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Proof. Every line of the Walkup pseudo-code in Figure 12 expresses a constant time oper-
ation. The loop in Lines 4 to 20 operates over the shorter external face path from a starting
vertex to the root of each biconnected component visited. Since each Walkup terminates as
soon as it encounters a path traversed by a prior Walkup in step v, the constant work of
the loop body in Lines 5 to 20 is applied to paths that are no longer than the degrees of the
proper faces formed as the back edges are embedded that initiated the Walkup invocations.
If the Walkdown fails to embed a back edge in step v, then the planarity algorithm halts
in step v, so the cost of the Walkup invocations in step v can be associated as a one-time
additional O(n) cost. O

6.2 Walkdown Pseudo-code

Once all Walkup invocations have been performed in step v, the Walkdown routine is invoked
once per tree edge of G that is incident to v and a child ¢. The Walkdown embeds each
back edge from v to a descendant of ¢. Pseudo-code for the Walkdown appears in Figure 13,
which is an elaboration of the Walkdown description given in Section 3.2.

In Line 1 of the pseudo-code in Figure 13, the merge queue is created (or cleared if the
implementation creates it outside of the Walkdown routine). Line 2 iterates over the remain-
ing pseudo-code to perform the counterclockwise and clockwise edge embedding traversals.
Line 3 obtains the successor of v’ based on the direction selected by the Line 2 loop variable
vl Line 4 begins a loop that advances the traversal context (w, w;,) until it returns to v’,
though the loop may be stopped before this occurs, as described below.

When visiting a vertex w, the first task is to determine whether a back edge should be
embedded between w and v’, which is tested by Line 5 of the pseudo-code in Figure 13. If so,
then Lines 6 to 9 merge biconnected components and embed the back edge. Specifically, Line
6 iterates while the merge queue is not empty, and Line 7 invokes a routine that pulls each
4-tuple (r,ri,,r’',r! ) from the merge queue and performs the merge of r and 7’ described
in Section 5.8, which includes the flip operation if needed as well as removing the necessary
elements from the pertinentBicompList and separatedDFSChildList of . Once this is done,
Line 8 embeds the back edge (v', w) such that its edge records are indicated by link[v] ] in
v" and link[w;,] in w. Finally, Line 9 clears the adjacentTo flag of w so that another back
edge to w is not embedded if the Walkdown revisits w.

Once the back edge embedding task is done, the second task of the Walkdown is to deter-
mine whether a vertex w has any pertinent child biconnected components to be processed,
which is tested in Line 10 of the pseudo-code in Figure 13. If so, the Lines 11 to 21 push a new
4-tuple onto the merge queue and descend the traversal to a child biconnected component of
w. Line 11 pushes vertex w and the direction of entry w;, onto . Line 12 selects the first
element of the pertinentBicompList of w, which is guaranteed to be the root of an internally
active child biconnected component if any exist in the list (i.e. the roots of internally active
child biconnected components are at the beginning of the pertinentBicompList because they
are prepended by the Walkup). Lines 13 and 14 create two traversal contexts to find the first
active vertex along both external face paths emanating from w’. When short-circuit edges
are used, the desired active vertices are guaranteed to be neighbors of w'. Lines 15 to 18
implement the decision logic about which path to take from w’, and Lines 19 to 21 pushes
w' and an indicator w’ , of the chosen direction to the next vertex to be visited.
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Figure 13: The Walkdown Routine

Procedure: Walkdown
this: Embedding Structure G
in: A virtual vertex o' associated with DFS child ¢

(1) Create an empty merge queue )

(w, w;,) + GetSuccessorOnExternalFace(v’, 1 xor v/ ;)

(2)

(3)

(4)  while w # '

(5) if the adjacentTo member of w is equal to v,
(6) while () is not empty,

(7) MergeBiconnectedComponent(Q)

(8) EmbedBackEdge(v', v/, w, wiy)

(9) Set the adjacentTo member of w equal to n

(10) if the pertinentBicompList of w is non-empty,

(11) Push (w, w;y,) into @

(12) w' < value of first element of pertinentBicompList of w
(13) (,2in) < GetActiveSuccessorOnExternalFace(w', 1)
(14) (Y, yin) < GetActiveSuccessorOnExternalFace(w’, 0)

(15) if x is internally active, (w, w;,) < (2, Zin)
(16) else if y is internally active, (w, w;,) < (Y, Yin)
(17) else if z is pertinent, (w,w;,) < (z, Ti,)
(18) else (w, wi,) < (Y, Yin)
(19) if w equals z, w! , <0
(20) else w! , <1
(21) Push (w', w!,,) into @
(22) else if w is inactive,
(23) (w, w;,) < GetSuccessorOnExternalFace(w, w;y,)
(24) if the lowpoint of ¢ = v' — n is less than v
and the adjacentTo member of w is not equal to v,
(25) EmbedShortCircuitEdge(v', v/, w, wiy,)
(26) else break the ‘while’ loop

(27) if @ is non-empty, break the ‘for’ loop

If, on the other hand, Line 10 determined that the vertex w had no pertinent child
biconnected components, then w is not pertinent since a back edge to w was embedded by
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Lines 5 to 9 if needed. Thus, w is either inactive or externally active. A vertex is externally
active if its leastAncestor member is less than v or if the lowpoint of the first child in its
separated DFSChildList is less than » (the list is sorted by lowpoint, so the first child has the
least lowpoint). If Line 22 determines that w is inactive, then Line 23 obtains the successor
along the external face, and Lines 24 and 25 embed a short-circuit edge if one is required.
Note that an inactive vertex is only encountered if it is in the same biconnected component
as v', so a test to ensure that () is empty is not needed. The first test of Line 24 ensures
that the biconnected component containing the inactive vertex is externally active so that if
the addition of a short-circuit edge results in having only two edges along the external face,
then the face is guaranteed to be bisected in a later step. The second test in Line 24 ensures
that a short-circuit edge will not be embedded if the next loop iteration will embed a back
edge. Thus, the use of short-circuit edges does not result in any faces of degree 2 in the final
planar embedding (so the planar graph edge limit is not violated by the use of short-circuit
edges). If these criteria are met, then Line 25 embeds the short-circuit edge in the same
manner as a back edge except that it is marked as a short-circuit edge to facilitate removal
after the algorithm finishes embedding edges.

Finally, if the vertex w being visited is neither pertinent nor inactive, then it must be an
externally active stopping vertex, so Line 26 stops the traversal for the direction indicated by
vl Line 27 breaks the outer loop, potentially stopping it from making the second traversal
for v, = 1 if a stopping vertex was encountered on Line 26 when () was non-empty. It
is not strictly necessary to perform this action, but it is useful if () must be preserved and
returned by the Walkdown, as is the case for Kuratowski subgraph isolation (see Section 7).

Lemma 6.2 The Walkdown routine achieves constant amortized time per vertex of the input
graph G.

Proof. FEach line of the Walkdown pseudo-code in Figure 13 expresses a constant time
operation except Line 7, 12 and 13. In Line 7, merging a virtual vertex performs constant
work on the virtual vertex and its non-virtual counterpart plus constant work per edge
incident to the virtual vertex. Since a merge never performs work on a virtual vertex or an
edge more than once, the total cost is O(n), or constant amortized time per vertex. As for
Lines 12 and 13, each desired vertex is found after traversing a single edge due to short-
circuit edges embedded in prior steps (greater than v). Thus, the while loop in Lines 4 to 26
achieves constant amortized time in each iteration. Each time a back edge or short-circuit
edge is embedded, the number of iterations performed since the last edge was embedded or
since the loop started is limited to the length of the cycle bounding the proper face that
is formed when the new edge is added. Thus, the total cost of all while loop iterations is
O(n), or constant amortized time per vertex, except the iterations that occur after the last
edge is embedded by the while loop. Since the while loop finds a stopping vertex in at most
one iteration after the last edge is embedded, the cost of finding stopping vertices can be
associated with the tree edge on which the Walkdown was invoked. If the while loop stops
due to the condition of Line 4, then the biconnected component being processed has become
inactive, so the cost of traversing its external face can be charged as a one-time extra cost
per vertex and edge on the external face (an inactive biconnected component is never visited
again by the Walkdown). Finally, additional constant time costs of Lines 1 to 3 and 27 can
be associated with the tree edge on which the Walkdown was invoked. O
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6.3 Planarity by Edge Addition

This section presents the top-level routine of our new planarity algorithm. The pseudo-code
in Figure 14 is an elaboration of the high-level algorithm in Figure 4 that can achieve O(n)
performance using the data structures and optimizations in Section 5 as well as the optimized
versions of Walkup and Walkdown appearing in Sections 6.1 and 6.2.

Figure 14: The Edge Addition Planarity Algorithm

Procedure: Planarity
in: Simple undirected graph G with n > 2 vertices and m < 3n — 5 edges
out: An indication of whether or not GG is planar and an embedding structure
G containing either a planar embedding of G or a Kuratowski
subgraph of G.

(1) Perform depth first search and lowpoint calculations for G
(2) Create and initialize G based on G, including creation of
separated DFSChildList for each vertex, sorted by child lowpoint

(3) for each vertex v € G
(4)  for each DFS child ¢ of v in G,

(5) Embed tree edge (v°,¢) in G

(6) for each vertex v from n — 1 to 0 in descending order

(7) for each back edge of G incident to v and a descendant w
(8) G.Walkup(w)

(9)  for each DFS child ¢ of v in G

(10) v —c+n

(11) G.Walkdown (v')

(12)  for each back edge of G incident to v and a descendant w
(13) if the adjacentTo member of w in G equals v

(14) G'IsolateKuratowskiSubgraph(G, v)

(15) return (NONPLANAR, G)

) Delete short-circuit edges

) for each biconnected component B rooted by a virtual vertex r’
) Impart consistent orientation to vertices in B
)
)

In the pseudo-code of Figure 14, Line 1 performs the depth first search that assigns a
depth first index (DFI) and depth first search parent to each vertex and that partitions the
edges into tree edges and back edges. Line 2 creates a data structure G with 2n vertex
structures and 3n — 5 pairs of edge records. The members of vertex structures and edge
records are initialized in the manner described in Section 5. Lines 3 to 5 embed in G a
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singleton biconnected component for each tree edge of G. Lines 6 to 16 embed the back
edges (or discover that G is not planar). Line 6 begins a loop that iterates through each
vertex in reverse DFI order. Lines 7 and 8 invoke the Walkup routine of Section 6.1 for each
back edge from v to a descendant w. Lines 9 to 11 invoke the Walkdown routine of Section
6.2 for each tree edge from v to a child ¢. After completing all Walkdown invocations,, Lines
12 and 13 test for non-planarity by determining if the Walkdown failed to embed any back
edges. If so, then Lines 14 and 15 isolate a Kuratowski subgraph with a routine described in
Section 7 and return the result along with an indication that G is not planar. On the other
hand, if the loop in Lines 6 to 15 of the pseudo-code in Figure 14 embeds all back edges
of G in G, then a few post processing steps are performed in Lines 16 to 20 to recover the
embedding. The short-circuit edges are removed in Line 16, Lines 17 to 19 obtain a consistent
orientation for all vertices (see Section 5.10), and Line 20 returns the combinatorial planar
embedding of G in G along with an indication that G is planar. Theorem 6.3 asserts that
this algorithm produces a combinatorial planar embedding in linear time.

Theorem 6.3 The Planarity algorithm in Figure 14 (including the optimized data structures
and subordinate routines defined in this paper) produces a combinatorial planar embedding
G of a planar graph G in O(n) time.

Proof. The depth first search and lowpoint calculations in Line 1 are O(n) [19]. The
initialization in Line 2 is O(n) by the methods described in Section 5. Lines 3 to 5 examine
each edge of G and perform a constant time process for each tree edge to create a singleton
biconnected component in G. Since the number of edges is O(n), Lines 3 to 5 have an O(n)
cost in total. Line 6 performs n iterations. The loop on Line 7 examines each edge of a given
vertex v to find back edges leading to descendants of ». This results in a total cost that is
a constant factor of the number of edges, which is O(n). Line 8 invokes the Walkup, which
achieves constant amortized time by Lemma 6.1. Line 9 examines each edge of a vertex v
to find tree edges leading to children of v, which again has an O(n) total cost. Line 10 is
a constant time operation per tree edge, or O(n) in total. Line 11 invokes the Walkdown
routine, which achieves constant amortized time by Lemma 6.2 for an O(n) total cost. The
loop on Line 12 again examines all edges of v, for a total O(n) cost, and Line 13 executes
a constant time operation on each back edge from v to a descendant, again resulting in an
O(n) total cost. Lines 14 and 15 are not applicable to planar graphs (but will also be shown
to achieve O(n) performance by Theorem 7.1). Line 16, the loop in Lines 17 and 18, and
Line 19 are each simple O(n) operations, and Line 20 is a constant time operation. O

7 Kuratowski Subgraph Isolator

7.1 Determining the Non-planarity Minor

After performing a few preprocessing steps to delete the short-circuit edges and impart a
consistent orientation to the vertices in each biconnected component of the partial embedding
G, the process of isolating a Kuratowski subgraph begins by taking steps to select a non-
planarity minor from those in Theorem 4.1 (see Figure 7) to be used as a basis for finding
a K33 or K5 homeomorph. We first find an unembedded back edge (v,z) (i.e., a vertex
z whose adjacentTo member still equals v at the end of step v), then we search the DFS
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tree path from z until a vertex ¢ is found whose DFSParent is v (thus, v¢ is the root of a
biconnected component on which the Walkdown failed). The first active vertices x and y
along both external face paths emanating from v are then obtained (note that = and y are
not necessarily neighbors of v° because the short-circuit edges have been removed). If = or
y is not a stopping vertex (i.e. if either has a non-empty pertinentBicompList), then the
Walkdown on v¢ must have been halted with a non-empty merge queue. The Walkdown can
be called again to reconstruct the merge queue and obtain the last entry, which contains the
biconnected component root ' whose non-virtual counterpart r is depicted in non-planarity
minor A. Note that invoking the Walkdown again could result in more short-circuit edges,
but these are deleted later because they are not used when isolating a K33 homeomorph
based on minor A. Alternately, one could simply postpone the short-circuit edge deletion
until after the Walkdown invocation. Either way, the values of x and y must then be changed
to the first active vertices both external face paths emanating from 7’ (again, note that x
and y are not necessarily neighbors of 7" once the short-circuit edges have been removed).

Next, a pertinent vertex w is obtained on the lower external face path between x and y
(i.e. the external face path strictly between z and y that excludes the biconnected component
root). If we have not already identified non-planarity minor A above, then non-planarity
minor B can be used to isolate a Kuratowski subgraph if w has an externally active pertinent
child biconnected component, which occurs when w has a non-empty pertinentBicompList
in which the last element is a virtual vertex w? where the lowpoint of d is less than wv.
The failure of this test indicates that one of non-planarity minors C, D or E is applicable
(according to Theorem 4.1), and each has an z-y path.

The highest z-y path is obtained by temporarily removing the internal edges incident to
v¢, then traversing the proper face bordered by v¢ and its two remaining incident edges. Due
to the removal of the edges, the proper face may have a number of components separable by
cut vertices. These are easily detected by the fact that the traversal arrives at vertices it has
previously visited. The proper face traversal starts at v and moves toward x, pushing each
visited vertex onto a stack. Each time a vertex on the external face path (v, ..., =, ...,
w) is found, the stack is emptied the newly found vertex is pushed. Each time a previously
visited vertex is encountered, the stack is popped up to the last occurrence of that vertex.
As soon as a vertex along the external face path (v°, ..., y, ..., w) is visited (and pushed),
then the stack contains the list of vertices in the z-y path, with p, on the top and p, on the
bottom. If either p, or p, is attached high (i.e. p, is between v and z or p, is between v°
and y), then non-planarity minor C can be used to isolate a Kuratowski subgraph.

If both p, and p, are attached low, then the internal edges of v are restored, and a test is
made for non-planarity minor D by scanning the internal vertices of the x-y path for a vertex
z whose x-y path edges are not consecutive (ignoring the possible intercession of the vertex
structure for z). If an intervening edge exists, then it can be used by the proper face walk
routine to traverse from z to v now that the internal edges of v have been restored. On the
other hand, if the desired path for non-planarity minor D is not found, then Theorem 4.1
guarantees that non-planarity minor E is applicable, so an externally active vertex, possibly
w but not p, or p,, exists along the lower external face path (p,, ..., w, ..., p,).
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7.2 Marking a K33 Homeomorph Based on Minors A, B, C and D

Since non-planarity minors A through D contain K33, a subgraph homeomorphic to Kj 3 is
isolated when one of those minors is found. Marking the edges and vertices associated with
a Kuratowski subgraph consists mainly of traversing tree paths and external face cycles.
A few umembedded back edges must also be added (and marked, including endpoints) to
complete the Kuratowski subgraph.

In each minor, the dotted edge (u,x) may represent an unembedded back edge between
an ancestor u of the current vertex v and a vertex x, or it may represent an unembedded
back edge from u to a descendant of x plus the tree path from the descendant to x. The
former case occurs if the least Ancestor member of x is less than v. In the latter case, u, is
the lowpoint of the first element ¢ in the separated DFSChildList of x, and the descendant d,,
of x is the neighbor of u, in G with the least DFI greater than or equal to ¢ (such that d, is
in the DFS subtree rooted by ¢). If (u, x) represents a single unembedded back edge, then it
is added and marked. Otherwise, the DFS tree path from d, to x is marked by traversing the
DFS tree path (for each vertex, the edge to the parent must be found so it can be marked),
and the unembedded back edge (u,,d,) is added and marked.

The same routines apply to (u,y) and similar routines apply to (v, w). If the adjacentTo
member of w is set, then (v, w) represents a single unembedded edge. Otherwise, we obtain
the last element w® in the pertinentBicompList of w, then we obtain the descendant d, of
w by scanning the adjacency list of v in G to obtain the neighbor with the least DFI greater
than or equal to ¢ (such that d,, is in the DFS subtree rooted by ¢). If (v, w) represents a
single unembedded back edge, then it is added and marked. Otherwise, the tree path from
d,, to w is marked in the same way as the path from d, to z, and the back edge from d,, to
v is added and marked.

Given the above simple operations, marking the edges and vertices of a Kuratowski
subgraph based on non-planarity minor A can be completed as follows. Traverse the external
face of the biconnected component rooted by ', marking all edges and vertices visited. Then,
stopping vertices z and y and a pertinent vertex w can be found given the biconnected
component root r’ in the same manner as they are found for a biconnected component with
root v in Section 7.1. Then, add the unembedded edges and mark paths corresponding
to (u,x), (u,y) and (v, w) as described above. Finally, mark the DFS tree path from r to
whichever of u, and u, has the lower DFI.

Marking the edges and vertices of a Kuratowski subgraph based on non-planarity minor
B is quite similar. Traverse the external face of the biconnected component rooted by v,
marking all edges and vertices visited. Then, mark the edges and vertices corresponding to
(u,z), (u,y) as before. The last element w? of the pertinentBicompList of w is obtained. Let
u, denote the lowpoint of 2, let d, denote the neighbor of u, with the least DFI greater than
or equal to z, and let d,, denote the neighbor of v with the least DFI greater than or equal
to z. Mark the DFS tree paths from d, to w, from d, to z, and add and mark the edges
(u,,d,) and (v,d,). Finally, mark the DFS tree path from max(u,, u,, u,) to min(u,, u,, u,).
Although the endpoints v and max(u,, u,, u,) are marked by other operations, the path from
v to max(uy, u,, u,) is not marked because the corresponding edge in non-planarity minor
B, (u,v), is not needed to form a Kj 3.

Non-planarity minor C represents two symmetric cases. If p, is a high point of attach-
ment, then the path corresponding to edge (v, y) is not required to form a K3 3, so we remove
the external face path from v¢ to the nearer of y and p,. On the other hand, if p, is not
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attached high, then p, must be attached high, so instead we remove the path between v¢ and

x. Thus, if both p, and p, are attached high, then the path (v¢, ..., =, ..., w, ..., y, ...,
py) is marked. If only p, is attached high, then the path (v, ..., =, ..., w, ..., y). If only
py is attached high and the path (z, ..., w, ..., y, ..., v°) is marked. The implementation is

otherwise straightforward. The edges and vertices corresponding to (u,x), (u,y) and (v, w)
are marked as described above, the DFS tree path from v to the minimum of u, and u, is
marked, and the z-y path, found by the process described in Section 7.1, is marked.

In non-planarity minor D, the edges (v,z) and (v,y) are not required to form a Kj3.
Marking the edges and vertices of a Kuratowski subgraph based on non-planarity minor D
proceeds as follows. Mark the lower external face path (z,...,w,...,y). Mark the z-y path
and second internal path, which are found by the process described in Section 7.1. Finally,
the edges and vertices corresponding to (u,z), (u,y) and (v, w) are marked as described
above, and the DFS tree path from v to the minimum of u, and u, is marked.

7.3 Marking a K33 or K5 Homeomorph Based on Minor E

Non-planarity minor E represents a K5 minor, so the techniques to be used are quite similar
to the prior isolators. However, before a Kuratowski subgraph can be isolated based on
minor E, some additional cases must be considered since a K5 minor often corresponds to
a K33 homeomorph rather than a K; homeomorph. Figure 15 depicts four additional Kj 3
minors. Minor E; occurs if the pertinent vertex w is not externally active (i.e. a second
vertex z is externally active along the lower external face path strictly between p, and p,).
If this condition fails, then w = z. Minor Fy occurs if the external activity connection from
w to an ancestor of v, denoted u,,, is a descendant of u, and u,. Minor Ej3 occurs if u, and
u,, are distinct and at least one is a descendant of u,,. If none of these conditions occur, then
we select minor Fy if either p, # x or p, # y. Finally, if none of the conditions for minors
F4 to E4 occur, then a K5 homeomorph can be obtained based on minor E.

As with minors A to D, there are symmetries to contend with and some edges of each
minor are not needed to form a K3 3. For minors F; and Ej it is easy to handle the symmetries
because, with a few assignments, they can be reduced to minors C and A, respectively. Minor
E; does not require the edges (z, w) and (y, v) to form a K3 3, and minor E4 does not require
the edges (u, v) and (w, y) to form a K33. Moreover, note that the omission of edges from
the external face of the biconnected component rooted by v must account for the fact that p,
or p, may have been edge contracted into = or y in the depiction of the minor. For example,
eliminating the edge (w,y) in minor F4 corresponds to eliminating the path between w and
py but not the path from p, to y.

As for symmetries, minor F; in Figure 15(a) depicts z between z and w along the path
(x, ..., 2z, ..., w, ..., y), but there is a symmetric case in which z appears between w and
y along the path (z, ..., w, ..., z, ..., y). Also, Figure 15(c) depicts minor F3 with u, an
ancestor of u,, but there is a symmetric case in which u, is an ancestor of u,. For minor
Ey, Figure 15(d) depicts p, distinct from = (and p, can be equal to or distinct from y), but
if p, = x, then p, must be distinct from y. Finally, note that the symmetric cases have
different edges that have to be deleted to form a Kj ;.

Marking the edges and vertices of a Kuratowski subgraph based on non-planarity minor
E, proceeds as follows. If the externally active vertex z is between p, and w (as depicted in
Figure 15(a)), then reduce to minor C after setting x equal to z such that p, is a high point
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Figure 15: More K33 Minors from Minor E. (a) Minor E;, (b) Minor Es, (¢) Minor Ej, (d)
Minor E4

of attachment for the z-y path. For the symmetric case in which z is between w and p,,
then reduce to minor C after setting y equal to z such that p, is a high point of attachment
for the z-y path.

Marking a Kuratowski subgraph based on non-planarity minor Fy proceeds as follows.
If the z-y path was previously marked by the implementation, then remove the markings.
If the leastAncestor of w is less than v, then let u, denote the leastAncestor of w and
let d,, be equal to w. Otherwise, let u,, denote the lowpoint of the first child ¢ in the
separated DFSChildList of w, and let d,, denote the the neighbor of u,, in G with the least
DFI greater than or equal to ¢ (such that d,, is in the DFS subtree rooted by ¢). Set the
step variable v to wu,. If d, equals w, then set the adjacentTo flag of w; otherwise, set the
pertinentBicompList of w equal to the list containing only ¢. As a result, w satisfies the
definition of pertinence for step u,,. Moreover, x and y are still externally active because u,
and u, are ancestors of w,,. Thus, a reduction to minor A can now be performed.

It is interesting to note that while the planarity algorithm halts at the end of step v due
to an unembedded back edge e from v to w or a descendant of w, the back edge e is not
embedded and marked by the minor Es isolator described above. An isolator for minor Ej
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that includes e can be constructed, but the method given is simpler to implement and still
results in the isolation of a K33 homeomorph.

Marking a Kuratowski subgraph based on non-planarity minor E5 proceeds as follows. If
u, is an ancestor of u, (i.e., u, < u,), then mark the edges and vertices along the external
face path (v, ..., p;) that excludes w, and mark the edges and vertices along the external
face path (w, ..., y) that excludes v'. For the symmetric case in which w, is an ancestor of
u,, mark the edges and vertices along the external face path (p,, ..., v) that excludes w,
and mark the edges and vertices along the external face path (x, ..., w) that excludes v'.
The remaining steps are common to both cases. Add the unembedded back edges and mark
the paths corresponding to edges (u,x), (u,y) and (v,w) using the techniques previously
described. Then, obtain u, and d,, in the same manner as described for minor F,. Add the
edge (u,, d,) and mark the DFS tree path (d,,, ..., w). Finally, mark the edges and vertices
along the DF'S tree path from v to the minimum of w,,, u,, and u,.

Marking a Kuratowski subgraph based on non-planarity minor F4 proceeds as follows.
If p, # x, then mark the external face path (v', ..., x, ..., w), and mark the external face
path (p,, ..., v') that excludes w. For the symmetric case in which p, equals x but p, # v,
mark the external face path (v, ..., y, ..., w) and mark the external face path (v', ...,
p.) that excludes w. The remaining steps are common to both cases. Add the unembedded
back edges and mark the paths corresponding to edges (u,x), (u,y) and (v, w) using the
techniques previously described. Then, obtain u,, and d,, in the same manner as described
for minor E,. Add the edge (uy,d,) and mark the DFS tree path (d, ..., w). Finally,
mark the edges and vertices along the DFS tree path from the minimum of u,, u,, and wu,
to the maximum of w,,, u,, and u,.

As mentioned above, if the conditions for minors F; to E4 do not occur, then the edges
and vertices of a K5 homeomorph can be marked based on minor E as follows. Mark all edges
and vertices along the external face cycle rooted by v'. Add unembedded the back edges
and mark the paths corresponding to edges (u,x), (u,y) and (v, w) using the techniques
previously described. Then, obtain u, and d, in the same manner as described for minor
E,. Add the edge (uy,d,) and mark the DFS tree path (d,, ..., w). Finally, mark the
edges and vertices along the DFS tree path from v to the minimum of u,,, u,, and w,,.

7.4 Kuratowski Subgraph Isolation in Linear Time

The process of isolating a Kuratowski subgraph of the input graph G is performed on the
embedding structure G once the Walkdown fails to embed a back edge in a step v of the back
edge embedding loop in procedure Planarity (see Figure 14). The process begins by removing
short-circuit edges and imparting a consistent orientation to all vertices of each biconnected
component in G. Then, one of the non-planarity minors is chosen, and a subgraph of
G homeomorphic to K33 or K5 is marked in G based on the selected non-planarity minor.
Finally, the virtual vertices are merged with their non-virtual counterparts, and all unmarked
vertices and edges are removed. Theorem 7.1 asserts that these actions constitute a linear
time algorithm for Kuratowski subgraph isolation.

Theorem 7.1 The Planarity algorithm isolates a Kuratowski subgraph in a non-planar
graph G in O(n) time.

Proof. The planarity operations prior to the call of the Kuratowski subgraph isolator are
O(n) by Lemma 6.1 and Theorem 6.3. The preprocessing steps for Kuratowski subgraph
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isolation to remove short-circuit edges and impart a consistent orientation to each vertex of
each biconnected component are O(n), and the post-processing steps to merge any remaining
virtual vertices and remove unmarked edges and vertices are also O(n).

The selection of a non-planarity minor involves an O(n) invocation of Walkdown to
determine whether the merge queue is empty. Also, simple O(n) loops are used to find
stopping vertices x and y and a pertinent vertex w. Once these operations are performed,
the tests that select minors A and B are constant time. If neither is selected, then the internal
edges of v¢ are removed and a proper face walk performed to find an z-y path and determines
whether minor C can be selected. If not, then the internal edges of v“ are restored, and a
portion of the proper face walk is conducted again to search for a second internal path for
non-planarity minor D. The proper face walks are O(n), and v has fewer than n incident
edges. If minors A through D are not selected, then minor E is verified by a simple O(n)
loop that finds an externally active vertex along the path (p,,...,w,...,p,).

Constant time tests are used to distinguish symmetric cases among the non-planarity
minors and to select which secondary non-planarity minor to use in the case of minor E.
Within each isolator, there are a constant number of simple O(n) operations that mark edges
and vertices along DFS tree paths and the external face of a biconnected component. The
only non-trivial parts of the process are finding the z-y path and the second internal path
for non-planarity minor D and finding the specific paths that map to edges (u,z), (u,y),
and (v, w) as well as edges (v, z) and (u, z) in non-planarity minor B. The internal paths are
found in O(n) time by the aforementioned strategy of temporary edge removal and proper
face walking. The paths are easy to handle as DFS tree path traversals once the proper
descendants are found, which is optimized by a strategy that exploits the DF'S numbering to
quickly find an edge from an ancestor to any vertex in a DFS subtree by performing constant
work per edge of the ancestor, for a total O(n) cost. O

8 PC-tree Problems

Recently, a new planarity test was presented by Shih and Hsu [18]. They develop the notion
of a PC-Tree (described below) as a simplification of a PQ-tree. The algorithm has a number
of similarities with our new planarity algorithms. The starting PC-tree is the depth first
search tree, which is then processed in a bottom up fashion to embed the back edges from
the current vertex, denoted i for a PC-tree (v in our algorithms), to the descendants of i.
Unfortunately, the results of Shih and Hsu stated in [18] contain several errors that negate
the proof of correctness of the planarity test, the claim of linear time performance and the
claim of a fully defined Kuratowski subgraph isolator.

For example, Figure 16(a) depicts the K5 minor pattern appearing in Figure 6(c) of
[2] (with a few cosmetic changes), and Figure 16(b) depicts the corresponding PC-tree.
The darkened triangles, called i-subtrees, represent subtrees rooted at x and y that have
yet to be connected to v by unembedded back edges. Likewise, the whitened triangles,
called 7*-subtrees, represent subtrees rooted at r, x, and y that have yet to be connected
to an ancestor of v by unembedded back edges. The node labeled C' is representative of a
biconnected component, and its neighbors represent the essential nodes along the external
face of the biconnected component. In PC-tree parlance, the nodes x and y are terminal
nodes (i.e. they have at least one i-subtree, one i*-subtree, and no descendant with the same

36



property [18, p. 181)).

(a) (b)

Figure 16: The K5 non-planarity minor from [2], and the corresponding PC-tree at the
beginning of step v

some K3 minors. According to [18, p. 185] “we could have three terminal nodes being
neighbors of a C-node, in which case we would get a subgraph homeomorphic to K5 as
illustrated in Fig. 6”. However, in Figure 16(b), node r is not a terminal node since z and
y are its descendants. Thus, the C-node does not have three terminal nodes as neighbors in
this case. Since [18] contains no other patterns for recognizing K5 homeomorphs, one must
conclude that an undefined non-planarity condition exists in the Shih-Hsu planarity test.
In this case, an implementation would discover the non-planarity condition due to the test
suggested by Lemma 2.5 in [18], but since the proof of that Lemma states that the result
is a K33 homeomorph, a Kuratowski subgraph isolator based on the results in [18] would
clearly fail.

A more critical problem pertains to the correctness of the planarity testing algorithm
itself. Corollary 2.8 and the prose on p. 187 of [18] clearly indicate how to continue processing
under the configuration given in Figure 10 of [18], yet their planarity test should halt on this
configuration if a descendant of i (the vertex being processed) that is also an ancestor of the
C-node labeled W is connected by a back edge to an ancestor of vertex i (has an i*-subtree).
This condition arises in graphs such as the non-planarity minor in Figure 6(b) of [2], which
is depicted (with a few cosmetic changes) in Figure 17(a). The dashed lines represent, at
least in part, unembedded back edges. Our algorithm would currently be processing the
back edges from v to its descendants. The corresponding PC-tree at the beginning of step v
appears in Figure 17(b). In this example,  and y have i-subtrees, w and r have i*-subtrees,
and the C-node is a terminal node. Moreover, it is the only terminal node, and the work
of Shih and Hsu [18] contains no theorem, lemma or corollary that detects a non-planarity
condition in this configuration.

In essence, the non-planarity pattern depicted in Figure 17 is a counterexample to the
proof of correctness appearing in Theorem 4.1 of [18]. Any reduction of the PC-tree in Figure
17(b) must retain r on the external face due to its i*-subtree, which is infeasible since w must
also be kept on the boundary cycle of a biconnected component due to its i*-subtree. This
problem negates the claim on p. 188 of Shih and Hsu [18] that the conditions established by
“Lemma 2.5, Corollary 2.6 and Lemmas 3.1 and 3.2 ...imply a feasible internal embedding
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Figure 17: (a) A K33 non-planarity minor from [2], (b) A corresponding PC-tree at the
beginning of step v, (¢) Another example of the PC-tree problem with two terminal nodes

for each biconnected component.” As such, Theorem 4.1 does not establish the Shih-Hsu
algorithm as a correct planarity tester. In collaboration with graduate student Roland Wiese
of the Eberhard-Karls University of Tiibingen [21], this problem was determined to also be
applicable when there are two terminal nodes, as depicted in Figure 17(c), because Lemma
3.1 does not apply to the terminal nodes. The problem appears to be an incorrect assumption
in extending Lemma 2.7 and Corollary 2.8 to the case of having terminal nodes that are C-
nodes, whose children cannot be arbitrarily permuted but must instead adhere to the order
given by the representative bounding cycle (RBC).

It is easy to see that these cases have been missed in the processing model for PC-tree
reduction, which is shown in Figure 11 of [18]. This figure shows how to reduce the PC-tree
once it has been determined that a feasible internal embedding is possible according to the
conditions established by Lemma 2.5, Corollary 2.6 and Lemmas 3.1 and 3.2. In Figure
11(i) and (ii), the first child of u in clockwise direction below the critical path P leads to
an i*-subtree. If it were changed to an i-subtree (a darkened subtree), then the resulting
PC-tree is not reducible.

These additional non-planarity conditions and the non-planarity condition described by
Lemma 3.1 of [18] also have an effect on the complexity analysis. In accounting for Lemma
3.1, p. 190 of [18] states that “determining which side of an intermediate C-node w contains
i-subtrees (let v, v’ be two neighbors of w in P) we only have to check the two neighbors
of v (or v') in the cyclic list to see which one has the label i.” This may be true under the
assumption that the input graph is planar, but the point of a planarity test (and of Lemma
3.1 in particular) is to determine whether the graph is planar, so some form of additional
work must be done to determine whether the forbidden i-i* subtree pattern has occurred.

In terms of complexity analysis, there are additional concerns pertaining to the linear
time performance of the algorithm as stated in [18]. For example, the claim that the “RBC
will be stored as a circular doubly linked list” [18, p. 184] cannot be supported. When
the representative bounding cycles of C-nodes must be joined together, the direction of
traversal of two consecutive C-nodes may be reversed depending on which path contained
the i-subtrees in each C-node. Joining the RBCs of two such C-nodes into a circular doubly
linked list would require the inversion of links in the RBC nodes of one of the two C-nodes.
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It is easy to create planar graphs in which O(n?) link inversions occur in total. It is therefore
necessary to represent the RBC with a list that permits arbitrary link inversions as is done
in the algorithms of this dissertation and as is depicted in Figure 1 of [2].

As a final concern, it appears that, in order to avoid O(n?) performance on PC-trees,
one must not create PC-trees, at least not in the manner specified by [18, p. 184]: “we shall
represent the 2-connected component by a C-node whose parent is 7 ...”. Unfortunately, if
every C-node (or P-node) indicated its actual parent in the PC-tree, then it is easy to create
planar graphs on which O(n?) reparenting operations are performed on a set of C-nodes
whenever their parent becomes part of a new C-node during a PC-tree reduction. Instead,
it is necessary to let the parent of any P-node or C-node indicate a node in the RBC of its
parent. The PC-tree parent of a node can be found by first following the parent link to some
node in the RBC of the parent, then traversing the RBC until a node with a parent link is
found. Thus, one is led repeatedly and inexorably to the methods of this paper and of [2] in
order to create an algorithm that achieves linear time while exploiting those graph-theoretic
properties that are common to both algorithms.

9 Conclusion and Related Solutions

This paper discussed the essential details of a new O(n) planarity tester/embedder, as well
as identifying some difficulties with the current formulation of PC-trees. A straightforward
algorithm for isolating Kuratowski subgraphs was presented based on the non-planarity
minors identified in the proof of correctness of the embedding algorithm. The first four non-
planarity minors contain K33, so marking the a K33 homeomorph requires little more than
traversal of external faces, tree paths and the addition of a few unembedded back edges.
The unmarked vertices and edges are simply deleted. The fifth non-planarity minor is a Kjx
minor, so four simple tests are performed to determine whether a K33 or K5 homeomorph
can be isolated.

An O(n) reference implementation of the new planarity algorithms described in this paper
was created in three days for preliminary programming, four days for the planarity testing
and embedding algorithms, and another three days for the Kuratowski subgraph isolator.
The implementation was then tested on hundreds of millions of randomly generated graphs
of up to 100 vertices plus well over a billion graphs generated with the aid of McKay’s
nauty program [16] (specifically, all connected graphs with 11 or fewer vertices). For each
graph, the integrity of the resulting combinatorial planar embedding or minimal non-planar
subgraph was tested.

Extending this work to outerplanar graph embedding can literally be as simple as defining
all vertices to be externally active at all times. A simplified version of our planarity proof
of correctness yields Ky 3 and K4 minors for outerplanarity obstruction isolation. Finally,
little effort is required to modify the outerplanarity obstruction isolator so that it only finds
K, 3 homeomorphs. This is done by ignoring occurrences of K, except those in which a
K, 3 can also be found. Likewise, relatively little effort is required to modify the Kuratowski
subgraph isolator so that it only finds K33 homeomorphs. The result is O(n) on graphs only
containing a constant number of K5 homeomorphs to ignore, and O(n) in general if applied
separately to the triconnected components of a graph. These algorithms will be presented
in upcoming papers.

In terms of future work, we would like to reexamine the consecutive ones problem, which
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was the original problem for which the PQ-tree was developed. A (0, 1)-matrix has the
consecutive ones property for columns if and only if its rows can be permuted so that in
each column all of the ones are consecutive. It may be possible to create a reduction to the
graph planarity problem based on a further examination of our data structures and detailed
operations. Also, while graph drawing may often have application-specific requirements, a
simple drawing method is often desirable as a starting point. An example is the HorVert
diagram, which is a planar representation in which every vertex is represented by a horizontal
line (or rectangle) and every edge is represented by a vertical line. While [10] presents
an augmentation to the PQ-tree algorithm to create a HorVert diagram, their method is
critically dependent on the single source aspect of the underlying st-numbering. We would
also like to examine augmentations of our data structures that yield simplified methods for
obtaining triconnected components as well as for enumerating, ranking and unranking planar
embeddings. Finally, our algorithms may provide new insights that yield an O(n) isolator
for K5 homeomorphs or a simplified O(n) embedding algorithm for the projective plane.
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