
Simpli�ed O(n) Planarity AlgorithmsJohn M. BoyerPureEdge Solutions In.jboyer�PureEdge.om; jboyer�am.org Wendy Myrvold �University of Vitoriawendym�sr.UVi.aDeember 3, 2001AbstratA graph is planar if it an be drawn on the plane with verties at unique loationsand no edge intersetions exept at the vertex endpoints. Due to the wealth of interestfrom the omputer siene ommunity, there are a number of remarkable but omplexO(n) planar embedding algorithms. This paper presents an O(n) planar embeddingalgorithm that avoids a number of the omplexities of prior approahes (an early versionof this work was presented at the January 1999 Symposium on Disrete Algorithms).In July 1999, Shih and Hsu published a new planarity algorithm based on a datastruture they all a PC-tree, whih is a simpli�ation of a PQ-tree that utilizes someresults also used in our planarity algorithms. This paper also disusses some errorsin the PC-tree formulation that prevent it from being orret and O(n) as published.Finally, our new formulation is easy to prove orret and O(n), and it extends wellto related problems. This paper also presents a simpli�ed O(n) Kuratowski subgraphisolator, and further extensions will be presented in future papers (a number of whihan be found urrently in Boyer's dissertation).1 IntrodutionAn undireted graph G ontains a set V of n verties and a set E of m edges, eah of whihorresponds to an unordered pair of verties. In an undireted graph, the verties assoiatedwith an edge are alled the endpoints of the edge, and an edge is inident to its endpoints.An edge with endpoints u and v is denoted (u; v). A loop is an edge of the form (u; u), and amultiple edge is an edge that ours more than one in E (if there are multiple edges, then Eis not a set but rather a multiset). A multigraph is a graph that permits loops and multipleedges (some texts forbid loops [8℄), and a simple graph is a graph that forbids loops andmultiple edges. In this paper, graphs are undireted and simple unless stated otherwise.In a graph G, vertex u is adjaent to vertex v, or equivalently v is a neighbor of u, if (u; v)is an edge in E(G). The subset of verties adjaent to a vertex u is alled the neighborhoodof u. The degree of a vertex u is the number of non-loop edges ontaining u as an endpointplus twie the number of loops of the form (u; u). In a simple, undireted graph, the degreeof a vertex u is equal to the size of its neighborhood, and eah neighbor v of a vertex u isalso adjaent to u. A walk of length k is a sequene P = (v0, e0, v1, e1, v2, . . . , ek�1, vk) of�Supported by NSERC. 1

alternating verties and edges from a graph G, with ei = (vi�1; vi) an edge of G for i from 1to k. A yle is a walk of length greater than two with no repeated verties exept v0 = vk.A path is a walk with no repeated vertex.A graph is often drawn using points for the verties and lines (possibly urved) for theedges. A planar representation is a drawing of a graph on a plane suh that the verties areplaed in distint positions and no two edges interset exept at ommon vertex endpoints.A planar representation of a graph divides the plane into onneted regions, alled faes,eah bounded by edges of the graph [8, p. 68℄. A region of �nite area is alled a proper faeand is bound by a yle. The external fae is the plane less the union of the proper faesand the points oupied by the planar representation of the graph. In general, the boundaryof the external fae is a walk, and the term external fae is often used to refer to the vertiesand edges along the bounding walk. Figure 1(a) shows an example graph with four vertiesand six edges. Figure 1(b) shows a planar representation of the same graph.
Figure 1: An Example Graph and a Planar Representation of the GraphA graph is planar if it is possible to reate a planar representation of the graph, anda non-planar graph is a graph for whih there is no planar representation. A planaritytesting algorithm determines if a graph has a planar representation. A planar embeddingalgorithm not only tests planarity but also indiates the lokwise order of the neighbors ofeah vertex of a planar graph. Generating the spei� vertex positions and edge shapes in aplanar representation is often viewed as a separate problem, in part beause it is appliation-dependent. For example, our notion of what onstitutes a suitable rendering of a graph maydi�er substantially if the graph represents an eletroni iruit versus a hypertext book.Hene, a data struture in whih the representation of eah vertex ontains a lokwise-ordered list of its neighbors is alled a ombinatorial planar embedding and is onsidered tobe a simple erti�ate of planarity that ontains suÆient information for subsequent graphdrawing algorithms and many other planar graph algorithms.While the ombinatorial planar embedding provides a simple erti�ate of planarity, the�rst haraterization of planarity by Kuratowski [13℄ shows that it is also possible to reatea simple erti�ate of non-planarity for non-planar graphs. A subgraph of a graph G is agraph H suh that V (H) � V (G) and E(H) � E(G). A graph G is isomorphi to a graphH if there exists a bijetion f : V (G) ! V (H) suh that (u; v) 2 E(G) if and only if(f(u); f(v)) 2 E(H). An edge subdivision replaes an edge (u; v) with a degree two vertexw plus the edges (u; w) and (w; v). The inverse operation, a series redution, replaes adegree two vertex w and its inident edges, (u; w) and (w; v), with a single edge (u; v). Agraph G is homeomorphi to a graph H if G an be made isomorphi to H by applying zeroor more subdivisions and series redutions. For graphs G and H, we say that G is an Hhomeomorph if G is homeomorphi to H. Kuratowski proved that a graph is planar if andonly if it ontains no subgraph homeomorphi to either of two graphs, whih are denoted K5or K3;3 and depited in Figure 2. 2

Figure 2: The Planar Obstrutions K5 and K3;3In some appliations, �nding a Kuratowski subgraph is a �rst step in eliminating problemareas in the graph. For example, in a graph representing an integrated iruit, an edgeintersetion would be indiative of a short-iruit, whih ould be repaired by replaing therossed edge in an identi�ed Kuratowski subgraph with a subiruit of exlusive-or gates [15℄.Due to Kuratowski's theorem, a non-planar graph must ontain a subgraph homeomorphi toK5 or K3;3, and a Kuratowski subgraph isolator must return a minimal non-planar subgraphontaining only �ve verties of degree four or six verties of degree three, alled imageverties, plus distint paths ontaining zero or more degree two verties that onnet theimage verties suh that the resulting graph is a K5 or K3;3 homeomorph.A graph is onneted if, for every pair of verties u and v, there exists a path (u, . . . ,v). A onneted omponent of a graph is a maximal onneted subgraph. Vertex v is a utvertex of graph G if the removal of v and its inident edges inreases the number of onnetedomponents in the resulting graph. For example, the onneted graph in Figure 3(a) ontainsa ut vertex v whose removal, along with its inident edges, separates the graph into twoonneted omponents as shown in Figure 3(b). A graph with no ut verties is bionneted.A bionneted omponent of a graph is a maximal bionneted subgraph. If a graph isnot bionneted, the bionneted omponents are said to be separable by the ut vertiesin the graph. For example, the graph in Figure 3(a) has two bionneted omponents asshown in Figure 3(). Note that the ut vertex v is onsidered to be part of eah bionnetedomponent that ontains it. As suh, the bounding walk for the external fae of a bionnetedomponent is a yle (exept of ourse for the speial ase of a bionneted omponentontaining only a single edge).Linear time algorithms for identi�ation of ut verties and bionneted omponentsusing the well-known graph proessing method of depth �rst searh were �rst disussed byTarjan [19℄. Depth �rst searh (DFS) on graphs operates in the same way as the well-knownpre-order tree traversal method, exept that DFS on graphs must terminate traversal onedges that lead bak to previously visited verties. Edges that lead to new verties are alledtree edges, and edges that lead to previously visited verties are alled bak edges. The treeedges olletively form a spanning Depth First Searh Tree in eah onneted omponent ofa graph. Eah vertex v is assigned a number, the depth �rst index or DFI, whih indiateshow many verties were visited by the depth �rst searh method prior to visiting v. The rootof a DFS tree is the �rst vertex visited in a onneted omponent, so it has the least DFIin the onneted omponent. An anestor of a vertex v is any vertex on the path of treeedges from v to the root, exluding v. A desendant of a vertex v is any vertex for whih v isan anestor. The endpoints of a bak edge share the anestor-desendant relationship. Theparent of a vertex v is the anestor of v adjaent to v by a tree edge. A hild of a vertex v isany vertex for whih v is the parent. A subtree is a subgraph of a tree in whih a vertex v,3

Figure 3: (a) A Cut Vertex v, (b) Removing v results in more onneted omponents, ()The bionneted omponents separable by v, (d) Adding edge (u; w) while keeping x and yon the external fae bounding yle (v is no longer a ut vertex)alled the subtree root, is a ommon anestor to all other verties in the subtree and whihontains all tree edges having both endpoints in the subtree.Based on a depth �rst searh tree, we an examine more losely an interesting senarioinvolving the addition of an edge with endpoints u and w to the graph in Figure 3(a).Suppose u is a DFS anestor of v, and v is an anestor of w. Further, suppose that thegraph in Figure 3(a) is a subgraph of a larger graph G that ontains a DFS anestor t of thevertex u. Firstly, sine the removal of v would no longer inrease the number of onnetedomponents, v would no longer be a ut vertex. This example demonstrates the fundamentaloperation performed by our new algorithm, whih is to embed one edge e at a time and mergeany bionneted omponents that are no longer separable by a ut vertex when e is added.Figure 3(d) depits how our algorithm would perform this fundamental operation under theassumption that x and y are endpoints of bak edges from G that are inident to t. Ouralgorithm embeds all DFS tree edges �rst, then it embeds the bak edges ensuring that allbak edges with an anestor endpoint of u are embedded before bak edges with an anestorendpoint that is an anestor of u. Thus, the bak edges (t; x) and (t; y) will not be embeddedat the time that edge (u; w) is embedded. Our algorithm keeps verties suh as x and y onthe external fae bounding yles of bionneted omponents. In turn, adherene to thisonstraint neessitates the ability to `ip' the embedding of a bionneted omponent beforemerging it with another bionneted omponent. As shown in Figure 3(d), the bionnetedomponent ontaining w is ipped before the merging the two opies of ut vertex v andadding the edge (u; w).Although Kuratowski was the �rst to haraterize planarity, a theorem by Wagner [20℄is more useful for the proof of orretness of this new approah to planarity testing. An edgeontration of an edge e = (u; v) replaes u and v and their inident edges with a singlevertex w whose inident edges are all edges that were inident to either u or v (exept e).An edge ontration an result in multiple edges inident to w (e.g., the edges (u; x) and(v; x) are hanged to be two instanes of the edge (w; x)). A graph G ontains a graph H4

as a minor if a graph isomorphi to H an be reated from a subgraph of G by applyingzero or more edge ontrations. Wagner's haraterization of planarity states that a graphis planar if and only if it ontains neither K5 nor K3;3 as a minor.The remainder of this paper is divided into the following setions. Setion 2 reviewsseleted prior works. Setion 3 presents the essential de�nitions and operations of our planarembedder and proves its orretness by demonstrating that the algorithm reates a planarembedding over the edges it embeds, and that failure to embed an edge indiates that theinput graph ontains K3;3 or K5 as a minor. Setion 5 presents additional information aboutour data strutures and their initialization and maintenane to support an eÆient imple-mentation of our algorithms. Setion 6 provides a more detailed version of our embeddingalgorithm as well as a proof that O(n) performane is ahieved. Setion 7 presents our newKuratowski subgraph isolator. Setion 8 presents some errors that have been found in thePC-tree algorithm. Finally, Setion 9 presents onluding remarks, inluding some ommentsabout the brevity of implementation of our O(n) planarity algorithms.2 Review of Seleted Prior WorksThe �rst O(n) planarity test algorithm is due to Hoproft and Tarjan [9℄. The method �rstembeds a yle C of the graph, then it breaks the remainder of the graph into a sequene ofpaths that an be added either to the inside or outside of the starting yle. Some orretionsto the algorithm appear in [6℄, and signi�ant additional details are presented by Williamson[22, 24℄ as well as the text by Reingold, Nievergelt and Deo [17℄.Despite these resoures, it is diÆult to envision how the tester ahieves linear time onertain key parts, suh as reversing a prior deision about whether to embed ertain sets ofpaths on the inside or outside of the yle C. Indeed, Hoproft and Tarjan omment thatthe hallenging part of the algorithm is the reation of good data strutures to eÆientlyimplement this method. Moreover, while their onlusion briey skethes a method foraugmenting the tester to reate a planar embedder, over a deade later, Chiba, Nishizeki,Abe, and Ozawa omment that modifying the Hoproft and Tarjan algorithm to yield aplanar representation \looks to be fairly ompliated; in partiular, it is quite diÆult toimplement a part of the algorithm for embedding an intratable path" [4, p. 55℄.The seond method of planarity testing proven to ahieve linear time began with an O(n2)algorithm due to Lempel, Even and Cederbaum [14℄. The algorithm begins by reating ans; t-numbering for a bionneted input graph. One property of an s; t-numbering is thatthere is a path of higher numbered verties leading from every vertex to the vertex t, whihhas the highest number. Thus, there must exist an embedding ~Gk of the �rst k vertiessuh that the remaining verties (k + 1 to t) an be embedded in a single fae of ~Gk. Thisplanarity testing algorithm was optimized to linear time by a pair of ontributions. Even andTarjan [7℄ optimized s; t-numbering to linear time, while Booth and Lueker [1℄ developed thePQ-tree data struture, whih allows the planarity test to eÆiently maintain informationabout the portions of the graph that an be permuted or ipped before and after embeddingeah vertex. Chiba, Nishizeki, Abe and Ozawa [4℄ augmented the PQ-tree operations so thata planar embedding is omputed as the operations are performed.Ahieving linear time with the vertex addition method is also quite omplex [11℄, in partbeause Booth and Lueker do not inlude the omplete set of optimized templates requiredto update the PQ-tree quikly [1, p. 362℄ but leave them for the reader to derive. There5

are non-trivial rules for restriting proessing to only the pertinent portion of the PQ-tree,more rules to prune the tree, then still more details to inrease the eÆieny of seleting andapplying templates sine more than one is often applied to proess eah vertex.While the two major algorithms appear to approah the planarity problem quite dif-ferently, Can�eld and Williamson [3℄ have shown that a few modi�ations an be made tosynhronize the behavior of the two algorithms for eah vertex. Williamson [23℄ was also the�rst to reate an O(n) Kuratowski subgraph isolator based on identifying the non-planarityonditions that arise in the Hoproft and Tarjan method. Karabeg [12℄ developed a lin-ear time Kuratowski subgraph isolator by exploiting non-planarity onditions that arise inPQ-trees.A planarity haraterization by de Fraysseix and Rosenstiehl [5℄ ould lead to O(n) pla-narity algorithms, though the paper ontains no development of a linear time methodology.However, the haraterization is important beause planarity is explained in terms of onitsbetween bak edges as seen from a bottom-up view of the depth �rst searh tree.A preliminary report ontaining some of the results of this dissertation appeared in[2℄. Our work is based on this bottom-up view, though we derived it independently of[5℄ as the result of trying to eliminate PQ-trees and s; t-numbering while retaining theaforementioned property of s; t-numbering that all paths lead to the �nal vertex. Using abottom-up view of the DFS tree, the �nal vertex is the DFS tree root, whih suggests abottom-up vertex proessing order. While [2℄ ontained most of the information neessaryto embed the bak edges between eah vertex and its depth �rst searh desendants and toreover a ombinatorial planar embedding in linear time, as an extended abstrat it doesnot ontain omplete information. Spei�ally, it laks details that de�ne when the rootof a bionneted omponent should be kept on the external fae, and it does not providethe details on how to maintain and use path information for eah bionneted omponentenountered as the algorithm works bottom-up from desendants adjaent by a bak edge tothe vertex being proessed. This paper improves on the prior work by presenting a simplerformulation that does not even need to maintain this path information nor any external faeinformation for bionneted omponent roots.More reently, a new planarity test was presented by Shih and Hsu [18℄. They developa simpli�ation of a PQ-tree that is ritially dependent on a number of the same resultsthat appeared earlier in Boyer and Myrvold [2℄. However, sine their date of submission wassigni�antly before the publiation of [2℄, there is learly a ase of simultaneous independentdisovery of somewhat similar algorithms. However, the results of Shih and Hsu stated in[18℄ ontain several errors, whih will be disussed in Setion 8.3 New Planar Embedder3.1 Terminology and Top-Level AlgorithmIn Setion 1, we introdued the fundamental operation performed by our new planarity algo-rithm, whih is the addition of an edge that may bionnet previously separable bionnetedomponents. Our embedding data struture, denoted ~G, is designed to maintain a olletionof ombinatorial planar embeddings of the bionneted omponents that develop as eahedge of the input graph G is added to ~G. Although an O(n) implementation of our algo-rithm an be reated by ahing a few extra piees of information for eah vertex and edge,6

in this setion we fous on a minimal representation for ~G. As mentioned in Setion 1, arepresentation for a ut vertex must appear in eah bionneted omponent ontaining theut vertex. Other than maintaining additional adjaeny lists for extra opies of ut verties,a standard adjaeny list format is suÆient for representing ~G if optimal performane isnot required. Thus, the algorithm development and proof of orretness an proeed in astandard graph theoreti ontext with implementation details to follow in Setions 5 and 6.The new embedding algorithm begins by reating a depth �rst searh tree for the inputgraph G. Observe that a ut vertex appears in every path between its DFS hildren and itsanestors, exept for ut verties that are DFS tree roots, whih have no anestors. Whetheror not a ut vertex is a DFS tree root, a ut vertex is the �rst vertex visited by depth �rstsearh in a bionneted omponent ontaining the ut vertex and a DFS hild of the utvertex. Moreover, a bionneted omponent B with depth �rst searh entry point v annotontain more than one DFS hild of v. The assumption of a seond DFS hild 2 of vin B ontradits the bionnetedness of B sine the depth �rst searh �nds no path from to 2 exept through v. For these reasons, following de�nitions speify the nature of theextra opies of verties that must be maintained in order to represent eah ut vertex in eahbionneted omponent ontaining it. A virtual vertex is the vertex with the least depth �rstindex in a bionneted omponent. A virtual vertex representing vertex v in a bionnetedomponent B is denoted v0, or v if it is neessary to identify the DFS hild of v in B. Thevirtual vertex in a bionneted omponent is the root of the bionneted omponent. A rootedge is a DFS tree edge inident to a virtual vertex (and the DFS hild of the virtual vertex).A root edge is denoted (v;) or simply (v0;) sine the hild is known. A hild bionnetedomponent of a vertex v is a bionneted omponent in ~G that ontains the virtual vertexv for some DFS hild of v.One the depth �rst searh ofG has been performed (along with a few other preproessingsteps that ahe information useful in ahieving O(n) performane), the algorithm embeds in~G a root edge orresponding to eah tree edge of G. Eah root edge is a singleton bionnetedomponent onsisting of a vertex and a virtual vertex representing the DFS parent of .The �nal step of the top-level algorithm, pseudo-ode for whih appears in Figure 4, is toembed the bak edges from eah vertex to its desendants, ipping and merging bionnetedomponents as neessary. The number of edges is restrited to 3n � 5 sine planar graphshave no more than 3n�6 edges (we allow one extra edge so that a Kuratowski subgraph anbe found if the input graph is not planar; a higher edge limit an be imposed at implementerdisretion). The rationale for proessing the verties in reverse DFI order is simply that, forany step v, a partial embedding an be reated in whih the remaining unproessed vertiesan be embedded in the external fae beause eah has a path of DFS tree edges leading tothe DFS tree root.The order in whih bak edges are embedded and the details of the bionneted om-ponent ip and merge operations are seleted suh that all verties with unembedded bakedges to v or its anestors remain on the external faes of bionneted omponents in ~G.The following de�nitions support the ability to make appropriate deisions about these op-erations. Given a vertex x in ~G that is a desendant of the urrent vertex v being proessedby the main algorithm loop, x is externally ative if the input graph G ontains a bak edge(u; x) where u is an anestor of v, or if x has a hild bionneted omponent that ontainsat least one externally ative vertex. An externally ative bionneted omponent in ~G is abionneted omponent that ontains at least one externally ative vertex. A bionneted7

Figure 4: High-Level Outline of New Planarity Algorithm(1) Reeive graph G with n > 2 verties and m � 3n� 5 edges(2) Perform depth �rst searh on G and other preproessing(3) Based on G, reate and initialize embedding ~G(4) Add eah DFS tree edge of G to ~G as a singletonbionneted omponent(5) For eah vertex v of G in reverse DFI order(6) Embed in ~G eah bak edge in G from v to aDFS desendant of v. For eah suh bak edge (v, w),embed (v, w) suh that:a) all bionneted omponents are merged together thatwill no longer be separable when (v, w) is addedb) any vertex x with unembedded bak edges to v orDFS anestors of v is kept on the external fae(along with ut verties separating x from v).If embedding (v, w) requires violation of 6b,break the loop(7) If one or more bak edges were not embedded,Isolate a Kuratowski subgraphomponent in ~G with root r is pertinent at step v if the input graph G ontains at least onebak edge (v; w) not embedded in ~G, where w is in the DFS subtree rooted by . A vertex win ~G is pertinent in step v if the input graph G ontains a bak edge (v; w) not embedded in~G or if w has a pertinent hild bionneted omponent. A vertex w in ~G is internally ativeif it is pertinent but not externally ative. An internally ative bionneted omponent isa bionneted omponent in ~G that ontains one or more internally ative verties and noexternally ative verties. A vertex in ~G is inative if it is neither externally nor internallyative.There are a ouple of notable aspets of these de�nitions. First, they apply only toverties, not virtual verties. Seond, sine the de�nition of a hild bionneted omponentstates that it must be rooted by a virtual vertex, the ativity or pertinene of a vertex wis a�eted only by unembedded bak edges to the anestors of w either diretly from w orfrom only those verties in DFS subtrees rooted by hildren of w that are not in the samebionneted omponent as w.In Figure 4, the main algorithm loop body is not spei�ed in Line 6. Rather, we haveso far only said what must be done but not how. The obvious �rst step is to set up thepertinene and ativity onditions de�ned above, but without the requirement of linear timeperformane, it is easy to reate ineÆient but trivially simple implementations for these8

de�nitions (and eÆient methods are presented in Setion 5).To proess the bak edges from v to its desendants, our algorithm performs a routinealled `Walkdown' on eah bionneted omponent rooted by a virtual vertex v0. Sine nobak edges to anestors of v have been embedded, eah suh bionneted omponent is asingle root edge when the Walkdown is �rst invoked, but eah one that is pertinent beomeslarger as the Walkdown embeds bak edges.3.2 The Walkdown RoutineAn invoation of the Walkdown routine on a singleton bionneted omponent B with rootedge (v0;) embeds all bak edges between v and the desendants of exept when a non-planarity ondition is disovered, the details of whih are overed in the proof of orretnessin Setion 4. Eah suh bak edge to a desendant of is embedded along the external fae ofB inident to the desendant and the virtual vertex v0 = v. Child bionneted omponentsof and its desendants are merged into B as neessary suh that both endpoints of eahembedded bak edge are in B.The Walkdown proedure begins with a ounterlokwise traversal of the external faeof B starting at v0. Sine B ontains a single edge, there appears at �rst to be no di�er-ene between ounterlokwise versus lokwise traversal, but the distintion beomes learalmost immediately when the root of a hild bionneted omponent is merged with . Inthe ounterlokwise traversal, pertinent bionneted omponents are merged as neessaryduring the traversal in order to embed the bak edges. These ations attah more vertiesand edges to B suh that its external fae onsists of more than the original root edge. Ifthe �rst traversal proesses all verties on the external fae of B, returning to v0, then theWalkdown terminates. However, the �rst traversal also stops if it enounters a stopping ver-tex, whih is a non-pertinent externally ative vertex. In this ase, the Walkdown performsa seond traversal of the external fae of B starting at v0 and proeeding lokwise. Again,the traversal proeeds to embed bak edges and merge pertinent bionneted omponentsuntil a stopping vertex is again enountered.When a Walkdown traversal visits a vertex w, it performs two tasks. The �rst task isto determine whether a bak edge to w must be embedded based on whether the bak edge(v; w) exists in G and not in ~G. If so, then any hild bionneted omponent roots betweenv0 and w (obtained in the manner desribed below) are merged and the new bak edge (v0; w)is embedded suh that the external fae paths traversed from v0 to w form a proper fae withthe new bak edge. The seond task performed when visiting w is to determine whether whas any pertinent hild bionneted omponents. If not, then w is inative, so the Walkdownobtains the suessor s of w along the external fae. On the other hand, if w has a pertinenthild bionneted omponent, then the Walkdown obtains the root w0 of a pertinent hildbionneted omponent with preferene for the root of an internally ative hild bionnetedomponent, if any.Traversal ontinues from w to the seleted hild bionneted omponent root w0, and adiretion to ontinue traversal from w0 must be hosen. Both external fae paths originatingfrom w0 are sanned to �nd the �rst verties x and y in both diretions that are not inative.The path to an internally ative vertex is seleted. If both x and y are internally ative, thenthe hoie is arbitrary. If both x and y are externally ative, then the path to a pertinentvertex is seleted. If both are pertinent, then the hoie is arbitrary. If neither are pertinent9

(i.e. if x and y are stopping verties), then the hoie is also arbitrary beause a non-planarityondition disussed in Setion 4 has been disovered and will soon ause the termination ofthe Walkdown.One a new non-virtual vertex in a hild bionneted omponent has been seleted forvisitation aording to the rules above, then w and w0 as well as indiators of the diretion bywhih w was entered and w0 was exited are pushed onto a merge queue. The proessing of thenext vertex then begins. The merge queue will ontinue to grow until the next vertex diretlyadjaent to v by an unembedded bak edge is enountered, at whih point the merge queuewill be proessed so that all virtual verties are merged with their non-virtual ounterpartsprior to embedding the new bak edge.Perhaps the simplest way to ommuniate the result of merge queue proessing is toonsider how its ontents would be proessed if it were a stak, i.e. onsider proessing itfrom the last element to the �rst. Eah virtual vertex w0 and orresponding non-virtualvertex w are popped from the stak, along with the diretional information. Immediatelyprior to merging w0 and w, w0 is the root of either a bionneted omponent or of a onnetedomponent formed by prior merge operations. In either ase, the orientations of all vertiesin the omponent rooted by w0 must be inverted, essentially ipping the omponent, if thediretion of entry into w opposes the diretion of exit from w0.Proessing the merge queue as a stak an obviously be very ostly. Although we deferremarks on linear time performane until Setion 5, we an give a hint of the optimization nowwhile also learing up the issue that our prior explanations have only mentioned bionnetedomponent ipping, not onneted omponent ipping. Consider proessing the merge queuein order. For eah pair w and w0, let win be one if w was entered from a ounterlokwisediretion and zero otherwise, and let w0out be zero if w0 was exited in a ounterlokwisediretion and one otherwise. Also, we augment the proessing of the merge queue with avariable named sign, whih is initially 1 and hanges between 1 and -1 whenever a bionnetedomponent ip ours. For eah 4-tuple (w, win, w0, w0out) pulled from the merge queue, thefollowing steps are performed. First, if the sign is urrently -1, then win is inverted (i.e.assigned the value 1 xor win) beause the -1 sign indiates that the bionneted omponentontaining w was ipped relative to when the 4-tuple was pushed onto the merge queue.Seond, we ip the bionneted omponent rooted by w0 if win and w0out are equal. Sinewin and w0out have opposite meanings, their equality signi�es opposition in the diretions ofentry and exit. Third, if we ipped the bionneted omponent, then its value is reversed(assigned -1 if it is 1, or 1 if it is -1). Fourth, we merge the adjaeny list of w0 into theadjaeny list of w between the two external fae edges inident to w. Then, we reiteratethese steps with the next 4-tuple from the merge queue until it is empty.It is easy to see that this strategy performs ip operations only on bionneted om-ponents, yet it ahieves the same results as the onneted omponent ip. Although thisstrategy typially does less work, it an still do too muh work over the entire embeddingproess. However, we needed the strategy so the ip operation ould be restrited to bi-onneted omponents, and it is still a helpful introdution to the fully optimized versionappearing in Setion 5.
10

3.3 Example of Walkdown ProessingThis setion presents an example that demonstrates the key proessing rules of the Walkdownroutine. Figure 5(a) presents a partial embedding of a graph at the beginning of step v andwith the following edges still to embed: (u; d), (u; s), (u; x), (u; y), (v; p), (v; q), (v; t), (v; x),and (v; y). Note that the vertex i is inative and the bionneted omponent rooted by w0is not pertinent. The square verties are externally ative. Now we will disuss the ationsperformed by the Walkdown to embed the bak edges from v to its desendants.

Figure 5: An Example of the Walkdown for Step v. Square verties are externally ative dueto unembedded edges (u; d), (u; s), (u; x), and (u; y). Edges (v; p), (v; q), (v; t), (v; x), and(v; y) are to be added in step v. a) Embedding at the start of step v. b) Merge at to add(v; x), then stop ounterlokwise traversal.) Clokwise traversal visits p and embeds (v; p).d) Merge p and p0 and embed (v; q). e) Flip bionneted omponent rooted by p00, merge pand p00, merge r and r0, then embed (v; t). f) Embed (v; y) and stop lokwise traversal.The �rst traversal in the ounterlokwise diretion begins at v0, travels to , then de-11

sends to 0. The �rst ative verties along the two external fae paths are x and p, bothof whih are externally ative and pertinent. The deision to proeed in the diretion of xis therefore made arbitrarily. At x, there is a bak edge to embed, so the Walkdown �rstmerges and 0 with no ip operation sine we happened to onsistently travel ounterlok-wise when entering and exiting 0. The result of the merge and the embedding of (v; x)appears in Figure 5(b).One the bak edge to x has been embedded, the Walkdown determines that x has nopertinent hild bionneted omponents and is therefore a stopping vertex that terminatesthe ounterlokwise traversal. The seond traversal ommenes in a lokwise diretionfrom v0 to . Note that as soon as and 0 were merged in the �rst traversal, was no longerexternally ative beause it has no diret edge to an anestor of v and it has no separatedDFS hild with a lowpoint less than v. Thus, it is now possible to proeed beyond to p inthe seond traversal.At p, the Walkdown �rst embeds the bak edge (v; p), the result of whih is shownin Figure 5(). Then, the Walkdown determines that p has pertinent hild bionnetedomponents. The Walkdown selets p0 beause it is the root of an internally ative hildbionneted omponent. The Walkdown desends to p0 and �nds that both paths lead to q,whih is internally ative. Next, p and p0 are merged and the bak edge (v; q) is embeddedas shown in Figure 5(d). Sine q beomes inative as a result, the Walkdown proeeds fromq to its suessor on the external fae, whih is p.In this seond visitation of p, the Walkdown again tests whether a bak edge to p mustbe embedded, but sine the bak edge has already been embedded, the result is negative.The Walkdown again tests for pertinent hild bionneted omponents, but this time thereare no internally ative ones, so the Walkdown desends to p00. The two external fae pathsfrom p00 lead to externally ative verties r and s, but r is pertinent and s is not, so theWalkdown proeeds in a ounterlokwise diretion from p00 to r (ontrary to the lokwisediretion by whih the Walkdown entered p). At r, the Walkdown determines that there isno bak edge to embed, but r does have a pertinent hild bionneted omponent, so theWalkdown desends to r0. The two external fae paths from r0 lead to y and t. While y ispertinent, it is also externally ative, whereas t is internally ative. Thus, the lokwise pathto t is seleted, in opposition to the ounterlokwise diretion used to enter r.At t, the Walkdown determines that a bak edge must be embedded. Based on the �rst4-tuple on the merge queue, the bionneted omponent rooted at p00 is ipped, the mergequeue sign is hanged to -1, and p00 merged with p. Now the seond 4-tuple is pulled fromthe merge queue. Although the diretion indiators assoiated with exiting r and enteringr0 were in opposition when the 4-tuple was reated, the orientation of r has been inverted,whih we detet by the merge queue sign of -1. Thus, the value of rin is inverted, thebionneted omponent rooted at r0 is not ipped, and r0 is merged with r. Finally, the bakedge (v; t) is embedded. The result of these operations is shown in Figure 5(e).The lokwise traversal then ontinues from vertex t, whih is now inative, to vertexy. The bak edge (v; y) is embedded as shown in Figure 5(f). One the bak edge to y isembedded, y is no longer pertinent sine it has no pertinent hild bionneted omponents.Thus, y is a stopping vertex that terminates the lokwise traversal of the Walkdown.
12

Figure 6: Walkdown Halting Conditions4 Proof of CorretnessThe Walkdown operations desribed in the example of the previous setion embedded all ofthe bak edges from v to its desendants in the given input graph, but onsider what wouldhappen if the input graph also ontained the bak edge (v; w). Based on the proessingrules, the Walkdown learly annot traverse to w, so the Walkdown would terminate withoutembedding (v; w). For a given bionneted omponent B rooted by v, if the two Walkdowntraversals embed all bak edges between v and desendants of , then it is easy to see thatB remains planar and the algorithm ontinues. However, if some of the bak edges todesendants of are not embedded, then we show that the input graph is non-planar.The Walkdown may halt if it enounters two stopping verties while trying to determinethe diretion of traversal from the root of a pertinent hild bionneted omponent. Thisondition is depited in Figure 6(a). Otherwise, if the Walkdown halts on a bionnetedomponent B without embedding all bak edges to desendants of a virtual opy of v, thenboth Walkdown traversals were terminated by stopping verties appearing along the externalfae of B. This ondition is depited by Figure 6(b).In Figure 6(a), u represents all unproessed anestors of v, and (u; v) represents the DFStree path from v to its anestors. The edge (v, r) represents the path of desent from vto a pertinent hild bionneted omponent rooted by a virtual opy of r. The Walkdowntraversal is prevented from visiting a pertinent vertex w by stopping verties x and y onboth external fae paths emanating from r. The yle (r; x; w; y; r) represents the externalfae of the bionneted omponent. The dotted edges (u; x), (u; y) and (v; w) representonnetions from a desendant (x, y or w) to an anestor (u or v) onsisting of either asingle unembedded bak edge or a path ontaining a tree edge to a separated DFS hild ofthe desendant, zero or more additional tree edges, and an unembedded bak edge to theanestor. Similarly, Figure 6(b) shows stopping verties x and y that prevent traversal fromreahing a pertinent vertex w in a bionneted omponent rooted by a virtual opy of v.Both diagrams depit minors of the input graph. Sine Figure 6(a) depits a K3;3, theinput graph is non-planar. However, Figure 6(b) appears to be planar, so it is natural to askwhy the edge (v; w) was not embedded inside B, whih the Walkdown ould do by embedding(v; w) along the external fae, then embedding (v; x) suh that (v; w) is surrounded inside the13

bounding yle of B. In short, there is either some aspet of the onnetion represented byedge (v; w) or some aspet of the verties embedded within B that prevents the Walkdownfrom embedding the onnetion from w to v inside B. An examination of the possibilitiesrelated to these aspets yields four additional non-planarity minors, or �ve in total, whihare depited in Figure 7. Theorem 4.1 argues the orretness of our algorithm by showingthat one of the non-planarity minors must exist if the Walkdown fails to embed a bak edge,and the absene of the onditions that give rise to the non-planarity minors ontradits theassumption that the Walkdown failed to embed a bak edge.

Figure 7: Non-planarity Minors of the Input GraphTheorem 4.1 Given a bionneted onneted omponent B with root v, if the Walkdownfails to embed one or more bak edges from v to desendants of , then the input graph G isnot planar.Proof. Figure 7(a) results if the merge queue is non-empty when either of the two Walkdowntraversals is halted by a stopping vertex. The input graph is non-planar sine Figure 7(a) isa K3;3.Figure 7(b) results if the pertinent vertex w has an externally ative pertinent hildbionneted omponent suh that embedding the onnetion from w to v inside B wouldplae an externally ative vertex z inside B. If the Walkdown halts without embedding the14

bak edge that would lear the pertinene of w, then the input graph is non-planar sineFigure 7(b) ontains a K3;3.Otherwise we onsider onditions related to having an obstruting path inside B thatontains only internal verties of B exept for two points of attahment along the externalfae: one along the path v, . . . , x, . . . , w, and the other along the path v, . . . , y, . . . , w.The obstruting path, whih is alled an x-y path, ontains neither v nor w. If suh an x-ypath exists, then the onnetion from w to v would ross it if the onnetion were embeddedinside B. We use px and py to denote the points of attahment of the obstruting x-y path.Figure 7() depits the ondition of having an x-y path in whih px attahed loser tov than x. Note that py an also be attahed loser to v than y. In fat, Figure 7() alsorepresents the symmetri ondition in whih py is attahed loser to v than y (but px isattahed at x or farther from v than x). In all of these ases, the input graph is non-planarsine Figure 7() ontains a K3;3.Figure 7(d) depits the ondition of having a seond path of verties attahed to v that(other than v) ontains verties internal to B that lead to an attahment point z alongthe x-y path. If this seond path exists, then input graph is non-planar sine Figure 7(d)ontains a K3;3.Figure 7(e) depits the ondition of having an externally ative vertex (possibly distintfrom w) along the lower external fae path stritly between px and py. If this onditionours, then input graph is non-planar sine Figure 7(e) represents a K5 minor.Finally, suppose for the purpose of ontradition that the Walkdown has failed to embed abak edge and none of the non-planarity onditions desribed above exist. The merge queuemust be empty due to the absene of the ondition of Figure 7(a). By the ontraditiveassumption, a bionneted omponent rooted by a virtual opy of v has a pertinent vertex walong the lower external fae path between stopping verties x and y. We address two asesbased on whether or not there is an obstruting x-y path.If there is no obstruting x-y path, then at the beginning of step v all paths between xand y in the embedding ontain w. Thus, w is a DFS anestor of x or y (or both), and itbeomes a merge point when its desendants (x or y or both) are inorporated into B. Whenthe Walkdown �rst visits w, it embeds a diret bak edge from w to v if one is required, so thepertinene of w must be the result of a pertinent hild bionneted omponent. However, theWalkdown preferentially selets and proesses internally ative hild bionneted omponentsof w prior to attahing an externally ative pertinent hild bionneted omponent leadingto x or y. Thus, the pertinene of w must be due to an externally ative hild bionnetedomponent, whih ontradits the pertinene of w sine the ondition of Figure 7(b) doesnot exist.On the other hand, suppose there is an obstruting x-y path, but none of the remainingnon-planarity minors apply. The highest x-y path is the x-y path that would be ontained bya proper fae yle if the internal edges to v0 were removed, along with any resulting separableomponents. At the beginning of step v, the highest x-y path and the lower external faepath from px to py formed the external fae of a bionneted omponent. Let r denotewhihever of px or py had a virtual vertex that was the root of that bionneted omponent,and let s denote one of px or py suh that s 6= r. Sine the ondition of Figure 7() doesnot exist, s is equal to or an anestor of x or y and was therefore externally ative whenthe Walkdown desended to r0. Moreover, when the Walkdown desended to r0, the �rstative vertex along the path that is now the highest x-y path is s beause the ondition of15

Figure 7(d) does not exist. Desending from r0 along the path that is now the lower externalfae path between px and py, the existene of a pertinent vertex w implies that there are noexternally ative verties along the path due to the absene of the ondition of Figure 7(e).Thus, we reah a ontradition to the pertinene of w sine the Walkdown preferentiallyselets the path of traversal leading from the root of a hild bionneted omponent to aninternally ative vertex. 2Figure 8 exempli�es the onditions desribed by the �nal ontradition in the proof ofTheorem 4.1 for the ase r = py, s = px. In the example, px 6= x and py 6= y to promotelarity. At the beginning of step v, verties x and y must have been externally ative beausethey are stopping verties for the Walkdown on v0. Note that px is depited as an anestorof x and y is an anestor of py beause the x-y path is attahed low (if there were a highpoint of attahment, then Figure 7() would apply). We let w be the �rst ative vertex alongthe lokwise external fae path desending from p0y, and we have assumed for the sake ofontradition that w is pertinent. Sine Figure 7(d) does not apply, px is the �rst ativevertex found along the ounterlokwise external fae path desending from p0y. Finally, w isnot externally ative beause Figure 7(e) does not apply. In this ase, the Walkdown seletsw as the next vertex to proess, but the assumption that w is pertinent at the end of step vimplies that px was seleted.

Figure 8: An Example for Theorem 4.15 Data Strutures and Optimizations5.1 DFS Parent and Lowpoint CalulationsEah vertex in ~G is represented by a vertex struture ontaining important information aboutthe vertex suh as its adjaeny list. Non-virtual vertex strutures ontain a few memberswhose values are obtained during the preproessing of the input graph G. The DFSParentmember indiates the depth �rst searh tree parent of a vertex (exept that for a DFS treeroot, the value nil sine it has no parent). The leastAnestor indiates the anestor withthe least DFI adjaent to the vertex by a bak edge in the input graph. The lowpoint of avertex is the minimum of its leastAnestor and the lowpoint values of its DFS hildren. Thelowpoint is a well-known and simple vertex parameter that an be omputed by a post-order16

traversal of the depth �rst searh tree, or it an be omputed during the initial depth �rstsearh [19℄.5.2 Vertex Array and Virtual VertiesIn ~G, verties (virtual and non-virtual) are represented by an array of 2n vertex strutures.Using zero-based array indexing, verties are stored in loations 0 to n � 1 and virtualverties are stored in loations n to 2n� 1. More spei�ally, a non-virtual vertex is storedat a loation equal to its DFI, and a virtual vertex v is stored at loation n+ . Thus, givena virtual vertex v, its non-virtual ounterpart an be obtained in onstant time by obtainingthe DFSParent �eld in the vertex struture for , where is obtained by subtrating n fromthe loation of v.5.3 Externally Ative Bionneted Components and VertiesGiven a virtual vertex w, it is possible to determine whether the bionneted omponent Bontaining w is externally ative in onstant time. First, we obtain by subtrating n fromw, then we test the lowpoint of . If the lowpoint of is less than v, then B is externallyative beause the DFS subtree rooted at has at least one bak edge onnetion to one ormore anestors of v.To determine whether a given vertex w is pertinent, two additional members are added toeah non-virtual vertex. The separatedDFSChildList ontains a irular doubly linked list ofthe DFS hildren of a vertex that appear in separate bionneted omponents. Prior to theembedding of any bak edges, the separatedDFSChildList of a vertex ontains all of its DFShildren, sorted by their lowpoint values. The sort an be performed in worst-ase lineartime by buket sorting the verties based on their lowpoint values, then adding eah vertexin lowpoint order to the separatedDFSChildList of its DFSParent. Eah vertex reeives amember named repInParentList to store a pointer to the representative of the vertex in theseparatedDFSChildList of its DFS parent. When the virtual vertex w is merged with itsnon-virtual ounterpart w, the repInParentList member of the hild is used to remove from the separatedDFSChildList of its DFS parent w, whih an be done in onstant timesine the separateDFSChildList is doubly linked.A vertex w is externally ative in step v of the main algorithm loop if its leastAnestor ofw is less than v or if the �rst vertex in the separatedDFSChildList of w has a lowpoint thatis less than v. The �rst test determines whether w has an unembedded bak edge diretly toan anestor of v, and the seond test determines whether any hild bionneted omponentsof w are externally ative.5.4 Pertinene and the Walkup RoutineIn Setion 5.2, we disussed how to obtain the non-virtual ounterpart of a given virtualvertex. However, it is too ostly to maintain suh a diret onnetion from a non-virtualvertex to all of its virtual verties. Instead, at the beginning of eah step v of the mainalgorithm loop (see Figure 4), the algorithm omputes a list of virtual verties that must bemerged with their respetive non-virtual ounterparts during the embedding of the bak edgesfrom v to its desendants. Eah non-virtual vertex has a irular doubly linked list alledpertinentBiompList that is initially empty. When a pertinent hild bionneted omponent17

ontaining the virtual vertex w is found, then w is added to the pertinentBiompList of w.When w is merged with w, w is removed from the pertinentBiompList of w (in onstanttime). At the end of step v, all pertinentBiompList members are returned to the emptystate, exept of ourse if the Walkdown halts with a non-planarity ondition.When a virtual vertex w is added to the pertinentBiompList of w, it is either prependedor appended. Let B denote the pertinent hild bionneted omponent ontaining w. If Bis externally ative, then w is appended; otherwise w is prepended. Sine the internallyative hild bionneted omponents appear �rst in the pertinentBiompList, the Walkdownan preferentially selet an internally ative hild bionneted omponent, if one is available,in onstant time.To omplete the eÆient implementation of the de�nition of pertinene, eah non-virtualvertex has an additional member alled adjaentTo and eah vertex struture (inludingthose for virtual verties) has a member alled visited. All visited and adjaentTo membersare initially set equal to n and are used like ags. In a step v, the ag is set if it is equal tov and lear otherwise. The adjaentTo ag of a desendant w of v is set equal to v at thebeginning of step v if there exists a bak edge (v; w) in the input graph. The adjaentToag of w is leared as soon as the bak edge is embedded (so the Walkdown does not embedthe edge again if it revisits w). All visited ags are leared when the main algorithm loopderements v. The visited ag is only set by the Walkup routine desribed below.The Walkup routine is invoked at the beginning of step v one for eah bak edge (v; w)in the input graph, where w is a DFS desendant of v. It �rst sets the adjaentTo ag of w.Then, the Walkup performs a loop that begins at w and simultaneously traverses both pathsoriginating from w around the external fae of the bionneted omponent Bw ontaining wuntil the root vertex r0 of Bw is enountered. If r0 is a virtual opy of v, then the Walkupterminates suessfully. Otherwise, r0 is stored in the pertinentBiompList of the non-virtualvertex struture r. The virtual opy is appended if Bw is externally ative and prependedotherwise. Then, the Walkup loop reiterates starting at r.Within eah bionneted omponent visited by Walkup, one of the two external fae pathsbetween r0 and w beomes part of a new proper fae one the bak edge (v; w) is embedded.The Walkup performs external fae traversal in parallel to ensure that eah bionnetedomponent root is found with a ost not exeeding twie the size of the shortest path aroundthe external fae. This helps to ensure that the total ost of all Walkup operations is aonstant fator of the sum of degrees of proper faes in the embedding.The Walkup loop also sets the visited member of eah virtual and non-virtual vertex itenounters. Any future Walkup invoation in step v terminates immediately if it enountersa visited vertex struture. The purposes of this optimization is to ensure that the umulativework done by all Walkup alls for the bak edges of v does not exeed a onstant fator ofthe number of bounding edges in new proper faes formed during step v.5.5 Short-iruit EdgesUnlike the Walkup, the Walkdown annot simply hoose the shortest path when it desendsto a bionneted omponent root r0 and selets a path to the next vertex to visit. TheWalkdown must �nd the �rst ative vertex along both external fae paths emanating fromr0, regardless of their length. It is possible to reate input graphs on whih the Walkdowntraverses an O(n) length path O(n) times. To retify this problem, the Walkdown an be18

modi�ed to eliminate the paths of inative verties suh that the immediate neighbors of avirtual vertex along the external fae are always ative.When the Walkdown is visiting a vertex w, it may be inative or may beome inativeafter adding a bak edge to w. The Walkdown simply obtains the suessor s along theexternal fae and reiterates, visiting s. Before the Walkdown reiterates, we augment theproessing of an inative vertex w by adding a speial `short-iruit' edge between s and theroot v0 of the bionneted omponent B, removing w from the external fae. However, toensure that we do not exeed the total edge limit of 3n � 5, the short-iruit edge is notembedded if the adjaentTo member of s equals v, if B is not externally ative, or if B doesnot ontains s. Finally, sine eah short-iruit edge is speially marked, they are easy toremove after the main loop in Figure 4 is �nished.5.6 Edge RepresentationEah edge (u, v) is represented by a pair of edge reords that are inserted into the adjaenylists of u and v. The edge reord in the adjaeny list of u indiates v as a neighbor andvie versa. The neighbor �eld of an edge reord indiates either a virtual or non-virtualvertex. An edge reord also arries a type member to indiate whether it is part of a treeedge, bak edge or short-iruit edge. Eah edge reord has a sign member that is initially1 but hanged to -1 in a tree edge (w;) if the bionneted omponent rooted by w mustbe ipped before w is merged with w.The edge reords for all edges are stored in an array of size k(3n � 5) for any onstantk � 2. The two edge reords representing an edge are stored at onseutive loations suhthat traversal of an edge in either diretion is a onstant time operation. Given the positionp of an edge reord, the assoiated edge reord is at position p+ 1 if p is even or at p� 1 ifp is odd. We refer to this alulated onnetion between edge reords as the twin link.5.7 Adjaeny Lists and Maintaining the External FaeThe adjaeny list of eah virtual and non-virtual vertex is a doubly linked irular list thatinlude the vertex struture plus the list of edge reords indiating eah neighbor. Thus, eahvertex struture and edge reord ontains two pointers, denoted link[0℄ and link[1℄. Moreover,sine an edge reord link an indiate either another edge reord or a vertex struture, itis neessary to be able to identify the type of objet at whih a link points. One way todo this is to reate a ommon struture apable of representing either a vertex struture oredge reord. Then, a single array an be used to store �rst the 2n vertex strutures then theedge reords, the links an be represented as indies into the array, and edge reords an bedistinguished by having a loation of 2n or greater.The purpose of linking a vertex struture into its adjaeny list is two-fold. Firstly, ifthe vertex is on the external fae, then the vertex struture's link[0℄ and link[1℄ pointersindiate edge reords of edges that join the vertex to the bounding yle of the external fae.Seondly, if we have an edge reord of an edge on the bounding yle of the external fae,then it is possible to obtain the vertex whose adjaeny list ontains the edge reord beauseeither link[0℄ or link[1℄ points to a vertex struture (or both if the edge is the only one in asingleton bionneted omponent). 19

5.8 Merging and Flipping a Child Bionneted ComponentIn Setion 1, a ombinatorial planar embedding is de�ned to provide a lokwise ordered listof the neighbors of eah vertex. Sine it is easy to reate graphs that would require O(n)verties to be inverted O(n) times, we annot a�ord to diretly maintain a onsistent vertexorientation throughout the embedding proess. Our solution is to relax the requirementthat a onsistent vertex orientation be maintained during embedding. Our data struturesmaintain a yli order of the embedded edges of eah vertex, but individual verties anhave a lokwise or ounterlokwise orientation. Tehnially, we do not violate the de�nitionsine a onsistent orientation for all verties is well-de�ned and easy to reover at any timeusing a depth �rst searh within eah bionneted omponent.Sine we need only maintain the yli edge order of eah vertex, the bionneted om-ponent ip operation an be redued to a simple augmentation of our proess for merging avirtual vertex with its non-virtual ounterpart. When the Walkdown desends from a vertexw to a virtual vertex w0, four integers are pushed into the merge queue, whih are denotedw, win, w0 and w0out. The meaning of w and w0 have already been explained. The link in windiating the edge reord the Walkdown used to enter w is denoted win, and w0out denotesthe link in w0 indiating the edge reord the Walkdown used to exit w0 toward the nextvertex. When the Walkdown �nds a bak edge to embed, it embeds the edge, but it alsoproesses the queue to merge all bionneted omponents it has enountered sine the lastedge embedding. The merge of w and w0 must our suh that the edge reords indiatedby win and w0out beome onseutive in the adjaeny list of w and suh that they lie on theproper fae reated by the bak edge being embedded.Merging w with w onsists of the following operations. First, w is removed from thehead of the pertinentBiompList of w, and is removed from the separatedDFSChildListof w. Then, all settings in the edge reords of edges inident to w are hanged to indiateinidene with w. Then, a irular list union of the adjaeny lists of w and w0 ours. Thelink[win℄ edge reord of w and the link[w0out℄ edge reord of w0 are joined, and the link[1 xorw0out℄ edge reord of w0 beomes the new link[win℄ edge reord of w.The bionneted omponent ip operation ours impliitly as a part of orretly per-forming the irular list union. Note that if win and w0out are equal, then the links in eahedge reord of the adjaeny list of w0 must be swapped before the join operations desribedabove an result in a onsistent adjaeny list. The swapping of the links in eah adjaenylist node inverts the orientation of w0 to be onsistent with w, but the orientations of alldesendants of w0 are not hanged (beause it would take too long). Instead, the root edgeinident to w0 is marked with a sign of -1 so that a post-proessing operation desribedbelow an reover the proper orientation of the desendants of w0. Note that the ippingoperation impliitly inverts the orientation of all desendants of w0, not just the verties inthe bionneted omponent with root w0.The details of these proesses are illustrated in Figures 9, 10, and 11. In Figure 9, wehave an overview of the embedding of bak edge (1, 7). Figure 9(a) shows the state ofthe data strutures during step 1 after embedding bak edges (1, 3) and (1, 4). Beausevertex 4 is externally ative, the �rst Walkdown traversal returns and the seond Walkdowntraversal begins at 10 suh that bak edge (1, 7) will be embedded around the right hand side.However, sine vertex 8 is also externally ative, the bionneted omponent rooted at 20must be ipped so that vertex 8 remains on the external fae when edge (1, 7) is embedded.The result is shown in Figure 9(b). 20

Figure 9: Overview of Data Strutures for Flip OperationAn elaboration of Figure 9(a) appears in Figure 10. The rounded retangles are edgereords, and the double lines onneting them are twin links. The irles represent vertexstrutures, exept that verties 4 and 8 are represented by squares to indiate their externalativity. The single lines with blak and white dots for endpoints represent the links thatbind the adjaeny list and the vertex struture into a irular doubly linked list.At this point of the embedding, all verties still have the same orientation. The edgereords in the adjaeny list of any vertex an be traversed in ounterlokwise order bytraversing the blak dot links to exit the vertex struture and eah edge reord in the adja-eny list.As stated previously, the �rst Walkdown traversal embeds edges (1; 3) and (1; 4), thenstops at vertex 4. The seond Walkdown traversal restarts along the right side of edge (10; 2).Then, it desends to the pertinent hild bionneted omponent rooted at 20. Sine vertex7 is internally ative, the bionneted omponent must be ipped before merging so thatvertex 8 remains on the external fae.The results of the merge operation an be seen in Figure 11. The merge operation beginsby hanging all edge reords that ontain 20 so that they ontain 2. Then, we ip thebionneted omponent by inverting the irular list union. Edge reord (2, 7) is joined with(2, 1), and edge reord (2, 8) is joined with vertex struture 2. Note that the links of the edgereords formerly in 20 must be inverted in this ase so that the adjaeny list of vertex 2 isonsistent, i.e. a traversal of the adjaeny list of vertex 2 an be performed by onsistentlyusing the same olored dot link to exit the vertex struture and eah edge reord.The inverted irular list union has, however, impliitly inverted the orientations of allof the desendants of vertex 20. No other work was atually performed on the links in thesedesendants, and the result is that the blak dots links now result in a lokwise ordering oftheir adjaeny lists. Our algorithm aounts for this by marking the tree edge (2, 5) witha sign of -1.The �nal hange made in Figure 11 is the addition of the bak edge (1, 7). Sine weexited vertex 10 using edge reord (10; 2), the new edge reord (10; 7) is added between vertex21

Figure 10: Elaboration of Data Strutures Before Flip Operationstruture 10 and edge reord (10; 2). Sine the Walkdown entered vertex 7 using the edgereord (7; 20), the new edge reord (7; 10) is added between the vertex struture for 7 and theedge reord for (7, 2). Thus, edge (1, 7) is on the external fae and has formed a new properfae in the embedding that inludes verties 1, 2, and 7.Based on the detail in Figure 11, it is evident that our strategy of bionneted omponentipping introdues a small wrinkle in how we traverse the external fae of bionnetedomponents. A ounterlokwise walk of the external fae of the bionneted omponentnow rooted at 10 begins with vertex 10 then verties 4, 2, 8, 6, 7 and bak to 10. In detail,we exit vertex 10 using a blak dot link, then we exit vertex 4 using its blak dot link, thenwe exit vertex 2 using a blak dot link. This is beause verties 10, 4 and 2 have the sameorientation. However, if we exit vertex 8 using the blak dot link, this takes us bak to vertex2. This is beause vertex 8 has an opposing orientation as desribed above.To solve this problem, we swith fous from the link used to exit a vertex w and insteadmaintain the link used to enter its suessor s (whih is determined speially for singletonbionneted omponents, as desribed in Setion 5.9). Then, our algorithms simply exit avertex s from the opposing link. In the ase of vertex 8 in Figure 11, we enter from the edgereord (8, 2), whih orresponds to the blak dot link for vertex 8, so we exit from the whitedot link of vertex 8. Similarly, we reah verties 6 and 7 through blak dot links, so we exiteah through their respetive white dot links, whih returns properly to vertex 10.22

Figure 11: Data Strutures After Flip and Bak Edge Embedding5.9 Traversing the External FaeDue to our bionneted omponent `ip' strategy, an orientation for a vertex w that isonsistent with the orientation of the root r0 of the bionneted omponent ontaining w isobtained by inverting w if the produt of the signs of the edges on the tree path from w tor is -1. This optimization does not tehnially violate the de�nition of ombinatorial planarembedding beause onsistent vertex orientations are well-de�ned and easily reoverable bya depth �rst searh of eah bionneted omponent. However, the method of traversingthe external fae of a bionneted omponent beomes slightly more involved than a simpletraversal of a yle of verties and edges.During a traversal, suppose we have arrived at a vertex w from an edge ontaining theedge reord indiated by the link[win℄ member of w (where win is 0 or 1), and suppose wewould now like to travel to the suessor s of w on the external fae. Let e denote the edgereord indiated by the link[wout℄ member of w, where wout = 1xorwin, and let etwin denotethe edge reord assoiated with e by the twinLink. Either link[0℄ or link[1℄ of etwin indiatesa vertex struture, whih represents the suessor vertex s. Finally, let sin be equal to 0 or1 suh that link[sin℄ in s indiates etwin (or let sin equal win if s is degree one). Note thatwe trak the 0 or 1 link of an edge reord and not the edge reord itself beause it simpli�esthe task of keeping trak of the diretion of travel while desending through bionneted23

omponents ontaining a single tree edge.5.10 Reovering an EmbeddingAfter the main algorithm loop (Figure 4), a simple post-proessing operation an be usedto impose a onsistent orientation on all verties in eah bionneted omponent of theembedding. The orientation of a vertex w relative to the root of the bionneted omponentis determined by the produt of the signs of the tree edges in the DFS tree path from w up tothe root of the bionneted omponent. If the produt equals -1, then w must be inverted byswapping the links in its vertex struture and in eah edge reord of its adjaeny list. Therequired produt for eah vertex an be omputed in an orderly fashion using a pre-ordertraversal of the portion of the depth �rst searh tree in the bionneted omponent.One eah bionneted omponent is oriented, any remaining virtual verties are mergedwith their non-virtual ounterparts (with no ipping operations). Virtual verties in the�nal embedding are representative of DFS tree roots and ut verties.6 Linear Time Implementation6.1 Walkup Pseudo-odeAt the beginning of eah step v, the Walkup routine is invoked one per bak edge of G thatis inident to v and a desendant w. As a result of all Walkup invoations, all pertinentverties and bionneted omponents are identi�ed. Pseudo-ode for the Walkup appears inFigure 12, whih is an elaboration of the Walkup desription given in Setion 5.4.The adjaentTo ag in the desendant vertex w is set in Line 1 of the pseudo-ode inFigure 12. A traversal ontext onsists of a vertex and a diretion indiator, whih is a 0 or1 identifying whether the vertex was entered by the link[0℄ or link[1℄ edge reord. Lines 2and 3 initialize two traversal ontexts for the simultaneous walk around the external faes ofbionneted omponents. Sine the simultaneous traversal is being initialized to start withthe bionneted omponent ontaining w, both traversal ontexts start at vertex w and areassigned opposing diretion indiators.The loop beginning in Line 4 of the pseudo-ode in Figure 12 terminates if traversalreahes v or, aording to Line 5, if a prior Walkup in step v has visited either of the vertiesx or y indiated by the two traversal ontexts. If a prior Walkup in step v has visited x ory, then the remaining virtual verties on the anestor path from x or y up to v have alreadybeen reorded in the pertinentBiompList members of their non-virtual ounterparts. Ifneither x nor y have been visited by the Walkup in step v, then they are marked as visitedin Line 6. Note that this inludes marking virtual verties as visited.Line 7 to 10 of the pseudo-ode in Figure 12 determine whether either traversal ontexthas found the virtual vertex at the root of the bionneted omponent being traversed. Ifso, then Lines 11 to 18 add the virtual vertex, denoted z0, to the pertinentBiompList of itsnon-virtual ounterpart z and then transfer both traversal ontexts to z. Given z0, lines 11and 12 determine the loation of z aording to the method desribed in Setion 5.2. Line13 ensures that the virtual vertex z0 is not added to the pertinentBiompList of z if z isequal to v beause v does not beome a merge point in step v. Line 14 tests whether thebionneted omponent rooted by z0 is externally ative aording to the method desribed24

Figure 12: The Walkup RoutineProedure: Walkupthis: Embedding Struture ~Gin: A vertex w (a desendant of the urrent vertex v being proessed)(1) Set the adjaentTo member of w equal to v(2) (x, xin) (w, 1)(3) (y, yin) (w, 0)(4) while x 6= v(5) if the visited member of x or y is equal to v, break the loop(6) Set the visited members of x and y equal to v(7) if x is a virtual vertex, z0 x(8) else if y is a virtual vertex, z0 y(9) else z0 nil(10) if z0 6= nil(11) z0 � n(12) Set z equal to the DFSParent of (13) if z 6= v(14) if the lowpoint of is less than v(15) Append z0 to the pertinentBiompList of z(16) else Prepend z0 to the pertinentBiompList of z(17) (x, xin) (z, 1)(18) (y, yin) (z, 0)(19) else (x; xin) GetSuessorOnExternalFae(x, xin)(20) (y; yin) GetSuessorOnExternalFae(y, yin)
in Setion 5.3. Lines 15 and 16 ensure that internally ative bionneted omponents appearearlier in a pertinentBiompList than those that are externally ative. Finally, Lines 17 and18 restart the simultaneous external fae traversal on the bionneted omponent ontainingz (or Line 4 terminates the proess if z equals v).On the other hand, if Lines 7 to 10 of the pseudo-ode in Figure 12 determine that neithertraversal ontext found the bionneted omponent root, then Lines 19 and 20 simply advaneboth traversal ontexts to the next verties along the external fae by invoations of a simplelow-level routine alled GetSuessorOnExternalFae, whih implements the traversal logidesribed in Setion 5.9.Lemma 6.1 The Walkup routine ahieves onstant amortized time per vertex of the inputgraph G. 25

Proof. Every line of the Walkup pseudo-ode in Figure 12 expresses a onstant time oper-ation. The loop in Lines 4 to 20 operates over the shorter external fae path from a startingvertex to the root of eah bionneted omponent visited. Sine eah Walkup terminates assoon as it enounters a path traversed by a prior Walkup in step v, the onstant work ofthe loop body in Lines 5 to 20 is applied to paths that are no longer than the degrees of theproper faes formed as the bak edges are embedded that initiated the Walkup invoations.If the Walkdown fails to embed a bak edge in step v, then the planarity algorithm haltsin step v, so the ost of the Walkup invoations in step v an be assoiated as a one-timeadditional O(n) ost. 26.2 Walkdown Pseudo-odeOne all Walkup invoations have been performed in step v, the Walkdown routine is invokedone per tree edge of G that is inident to v and a hild . The Walkdown embeds eahbak edge from v to a desendant of . Pseudo-ode for the Walkdown appears in Figure 13,whih is an elaboration of the Walkdown desription given in Setion 3.2.In Line 1 of the pseudo-ode in Figure 13, the merge queue is reated (or leared if theimplementation reates it outside of the Walkdown routine). Line 2 iterates over the remain-ing pseudo-ode to perform the ounterlokwise and lokwise edge embedding traversals.Line 3 obtains the suessor of v0 based on the diretion seleted by the Line 2 loop variablev0out. Line 4 begins a loop that advanes the traversal ontext (w;win) until it returns to v0,though the loop may be stopped before this ours, as desribed below.When visiting a vertex w, the �rst task is to determine whether a bak edge should beembedded between w and v0, whih is tested by Line 5 of the pseudo-ode in Figure 13. If so,then Lines 6 to 9 merge bionneted omponents and embed the bak edge. Spei�ally, Line6 iterates while the merge queue is not empty, and Line 7 invokes a routine that pulls eah4-tuple (r; rin; r0; r0out) from the merge queue and performs the merge of r and r0 desribedin Setion 5.8, whih inludes the ip operation if needed as well as removing the neessaryelements from the pertinentBiompList and separatedDFSChildList of r. One this is done,Line 8 embeds the bak edge (v0; w) suh that its edge reords are indiated by link[v0out℄ inv0 and link[win℄ in w. Finally, Line 9 lears the adjaentTo ag of w so that another bakedge to w is not embedded if the Walkdown revisits w.One the bak edge embedding task is done, the seond task of the Walkdown is to deter-mine whether a vertex w has any pertinent hild bionneted omponents to be proessed,whih is tested in Line 10 of the pseudo-ode in Figure 13. If so, the Lines 11 to 21 push a new4-tuple onto the merge queue and desend the traversal to a hild bionneted omponent ofw. Line 11 pushes vertex w and the diretion of entry win onto Q. Line 12 selets the �rstelement of the pertinentBiompList of w, whih is guaranteed to be the root of an internallyative hild bionneted omponent if any exist in the list (i.e. the roots of internally ativehild bionneted omponents are at the beginning of the pertinentBiompList beause theyare prepended by the Walkup). Lines 13 and 14 reate two traversal ontexts to �nd the �rstative vertex along both external fae paths emanating from w0. When short-iruit edgesare used, the desired ative verties are guaranteed to be neighbors of w0. Lines 15 to 18implement the deision logi about whih path to take from w0, and Lines 19 to 21 pushesw0 and an indiator w0out of the hosen diretion to the next vertex to be visited.26

Figure 13: The Walkdown RoutineProedure: Walkdownthis: Embedding Struture ~Gin: A virtual vertex v0 assoiated with DFS hild (1) Create an empty merge queue Q(2) for v0out in f0; 1g(3) (w;win) GetSuessorOnExternalFae(v0, 1 xor v0out)(4) while w 6= v0(5) if the adjaentTo member of w is equal to v,(6) while Q is not empty,(7) MergeBionnetedComponent(Q)(8) EmbedBakEdge(v0, v0out, w, win)(9) Set the adjaentTo member of w equal to n(10) if the pertinentBiompList of w is non-empty,(11) Push (w;win) into Q(12) w0 value of �rst element of pertinentBiompList of w(13) (x; xin) GetAtiveSuessorOnExternalFae(w0, 1)(14) (y; yin) GetAtiveSuessorOnExternalFae(w0, 0)(15) if x is internally ative, (w;win) (x; xin)(16) else if y is internally ative, (w;win) (y; yin)(17) else if x is pertinent, (w;win) (x; xin)(18) else (w;win) (y; yin)(19) if w equals x, w0out 0(20) else w0out 1(21) Push (w0; w0out) into Q(22) else if w is inative,(23) (w;win) GetSuessorOnExternalFae(w, win)(24) if the lowpoint of = v0 � n is less than vand the adjaentTo member of w is not equal to v,(25) EmbedShortCiruitEdge(v0, v0out, w, win)(26) else break the `while' loop(27) if Q is non-empty, break the `for' loopIf, on the other hand, Line 10 determined that the vertex w had no pertinent hildbionneted omponents, then w is not pertinent sine a bak edge to w was embedded by27

Lines 5 to 9 if needed. Thus, w is either inative or externally ative. A vertex is externallyative if its leastAnestor member is less than v or if the lowpoint of the �rst hild in itsseparatedDFSChildList is less than v (the list is sorted by lowpoint, so the �rst hild has theleast lowpoint). If Line 22 determines that w is inative, then Line 23 obtains the suessoralong the external fae, and Lines 24 and 25 embed a short-iruit edge if one is required.Note that an inative vertex is only enountered if it is in the same bionneted omponentas v0, so a test to ensure that Q is empty is not needed. The �rst test of Line 24 ensuresthat the bionneted omponent ontaining the inative vertex is externally ative so that ifthe addition of a short-iruit edge results in having only two edges along the external fae,then the fae is guaranteed to be biseted in a later step. The seond test in Line 24 ensuresthat a short-iruit edge will not be embedded if the next loop iteration will embed a bakedge. Thus, the use of short-iruit edges does not result in any faes of degree 2 in the �nalplanar embedding (so the planar graph edge limit is not violated by the use of short-iruitedges). If these riteria are met, then Line 25 embeds the short-iruit edge in the samemanner as a bak edge exept that it is marked as a short-iruit edge to failitate removalafter the algorithm �nishes embedding edges.Finally, if the vertex w being visited is neither pertinent nor inative, then it must be anexternally ative stopping vertex, so Line 26 stops the traversal for the diretion indiated byv0out. Line 27 breaks the outer loop, potentially stopping it from making the seond traversalfor v0out = 1 if a stopping vertex was enountered on Line 26 when Q was non-empty. Itis not stritly neessary to perform this ation, but it is useful if Q must be preserved andreturned by the Walkdown, as is the ase for Kuratowski subgraph isolation (see Setion 7).Lemma 6.2 The Walkdown routine ahieves onstant amortized time per vertex of the inputgraph G.Proof. Eah line of the Walkdown pseudo-ode in Figure 13 expresses a onstant timeoperation exept Line 7, 12 and 13. In Line 7, merging a virtual vertex performs onstantwork on the virtual vertex and its non-virtual ounterpart plus onstant work per edgeinident to the virtual vertex. Sine a merge never performs work on a virtual vertex or anedge more than one, the total ost is O(n), or onstant amortized time per vertex. As forLines 12 and 13, eah desired vertex is found after traversing a single edge due to short-iruit edges embedded in prior steps (greater than v). Thus, the while loop in Lines 4 to 26ahieves onstant amortized time in eah iteration. Eah time a bak edge or short-iruitedge is embedded, the number of iterations performed sine the last edge was embedded orsine the loop started is limited to the length of the yle bounding the proper fae thatis formed when the new edge is added. Thus, the total ost of all while loop iterations isO(n), or onstant amortized time per vertex, exept the iterations that our after the lastedge is embedded by the while loop. Sine the while loop �nds a stopping vertex in at mostone iteration after the last edge is embedded, the ost of �nding stopping verties an beassoiated with the tree edge on whih the Walkdown was invoked. If the while loop stopsdue to the ondition of Line 4, then the bionneted omponent being proessed has beomeinative, so the ost of traversing its external fae an be harged as a one-time extra ostper vertex and edge on the external fae (an inative bionneted omponent is never visitedagain by the Walkdown). Finally, additional onstant time osts of Lines 1 to 3 and 27 anbe assoiated with the tree edge on whih the Walkdown was invoked. 228

6.3 Planarity by Edge AdditionThis setion presents the top-level routine of our new planarity algorithm. The pseudo-odein Figure 14 is an elaboration of the high-level algorithm in Figure 4 that an ahieve O(n)performane using the data strutures and optimizations in Setion 5 as well as the optimizedversions of Walkup and Walkdown appearing in Setions 6.1 and 6.2.Figure 14: The Edge Addition Planarity AlgorithmProedure: Planarityin: Simple undireted graph G with n � 2 verties and m � 3n� 5 edgesout: An indiation of whether or not G is planar and an embedding struture~G ontaining either a planar embedding of G or a Kuratowskisubgraph of G.(1) Perform depth �rst searh and lowpoint alulations for G(2) Create and initialize ~G based on G, inluding reation ofseparatedDFSChildList for eah vertex, sorted by hild lowpoint(3) for eah vertex v 2 G(4) for eah DFS hild of v in G,(5) Embed tree edge (v;) in ~G(6) for eah vertex v from n� 1 to 0 in desending order(7) for eah bak edge of G inident to v and a desendant w(8) ~G.Walkup(w)(9) for eah DFS hild of v in G(10) v0 + n(11) ~G.Walkdown(v0)(12) for eah bak edge of G inident to v and a desendant w(13) if the adjaentTo member of w in ~G equals v(14) ~G.IsolateKuratowskiSubgraph(G, v)(15) return (NONPLANAR, ~G)(16) Delete short-iruit edges(17) for eah bionneted omponent B rooted by a virtual vertex r0(18) Impart onsistent orientation to verties in B(19) Merge eah remaining virtual vertex with its non-virtual ounterpart(20) return (PLANAR, ~G)In the pseudo-ode of Figure 14, Line 1 performs the depth �rst searh that assigns adepth �rst index (DFI) and depth �rst searh parent to eah vertex and that partitions theedges into tree edges and bak edges. Line 2 reates a data struture ~G with 2n vertexstrutures and 3n � 5 pairs of edge reords. The members of vertex strutures and edgereords are initialized in the manner desribed in Setion 5. Lines 3 to 5 embed in ~G a29

singleton bionneted omponent for eah tree edge of G. Lines 6 to 16 embed the bakedges (or disover that G is not planar). Line 6 begins a loop that iterates through eahvertex in reverse DFI order. Lines 7 and 8 invoke the Walkup routine of Setion 6.1 for eahbak edge from v to a desendant w. Lines 9 to 11 invoke the Walkdown routine of Setion6.2 for eah tree edge from v to a hild . After ompleting all Walkdown invoations,, Lines12 and 13 test for non-planarity by determining if the Walkdown failed to embed any bakedges. If so, then Lines 14 and 15 isolate a Kuratowski subgraph with a routine desribed inSetion 7 and return the result along with an indiation that G is not planar. On the otherhand, if the loop in Lines 6 to 15 of the pseudo-ode in Figure 14 embeds all bak edgesof G in ~G, then a few post proessing steps are performed in Lines 16 to 20 to reover theembedding. The short-iruit edges are removed in Line 16, Lines 17 to 19 obtain a onsistentorientation for all verties (see Setion 5.10), and Line 20 returns the ombinatorial planarembedding of G in ~G along with an indiation that G is planar. Theorem 6.3 asserts thatthis algorithm produes a ombinatorial planar embedding in linear time.Theorem 6.3 The Planarity algorithm in Figure 14 (inluding the optimized data struturesand subordinate routines de�ned in this paper) produes a ombinatorial planar embedding~G of a planar graph G in O(n) time.Proof. The depth �rst searh and lowpoint alulations in Line 1 are O(n) [19℄. Theinitialization in Line 2 is O(n) by the methods desribed in Setion 5. Lines 3 to 5 examineeah edge of G and perform a onstant time proess for eah tree edge to reate a singletonbionneted omponent in ~G. Sine the number of edges is O(n), Lines 3 to 5 have an O(n)ost in total. Line 6 performs n iterations. The loop on Line 7 examines eah edge of a givenvertex v to �nd bak edges leading to desendants of v. This results in a total ost that isa onstant fator of the number of edges, whih is O(n). Line 8 invokes the Walkup, whihahieves onstant amortized time by Lemma 6.1. Line 9 examines eah edge of a vertex vto �nd tree edges leading to hildren of v, whih again has an O(n) total ost. Line 10 isa onstant time operation per tree edge, or O(n) in total. Line 11 invokes the Walkdownroutine, whih ahieves onstant amortized time by Lemma 6.2 for an O(n) total ost. Theloop on Line 12 again examines all edges of v, for a total O(n) ost, and Line 13 exeutesa onstant time operation on eah bak edge from v to a desendant, again resulting in anO(n) total ost. Lines 14 and 15 are not appliable to planar graphs (but will also be shownto ahieve O(n) performane by Theorem 7.1). Line 16, the loop in Lines 17 and 18, andLine 19 are eah simple O(n) operations, and Line 20 is a onstant time operation. 27 Kuratowski Subgraph Isolator7.1 Determining the Non-planarity MinorAfter performing a few preproessing steps to delete the short-iruit edges and impart aonsistent orientation to the verties in eah bionneted omponent of the partial embedding~G, the proess of isolating a Kuratowski subgraph begins by taking steps to selet a non-planarity minor from those in Theorem 4.1 (see Figure 7) to be used as a basis for �ndinga K3;3 or K5 homeomorph. We �rst �nd an unembedded bak edge (v; z) (i.e., a vertexz whose adjaentTo member still equals v at the end of step v), then we searh the DFS30

tree path from z until a vertex is found whose DFSParent is v (thus, v is the root of abionneted omponent on whih the Walkdown failed). The �rst ative verties x and yalong both external fae paths emanating from v are then obtained (note that x and y arenot neessarily neighbors of v beause the short-iruit edges have been removed). If x ory is not a stopping vertex (i.e. if either has a non-empty pertinentBiompList), then theWalkdown on v must have been halted with a non-empty merge queue. The Walkdown anbe alled again to reonstrut the merge queue and obtain the last entry, whih ontains thebionneted omponent root r0 whose non-virtual ounterpart r is depited in non-planarityminor A. Note that invoking the Walkdown again ould result in more short-iruit edges,but these are deleted later beause they are not used when isolating a K3;3 homeomorphbased on minor A. Alternately, one ould simply postpone the short-iruit edge deletionuntil after the Walkdown invoation. Either way, the values of x and y must then be hangedto the �rst ative verties both external fae paths emanating from r0 (again, note that xand y are not neessarily neighbors of r0 one the short-iruit edges have been removed).Next, a pertinent vertex w is obtained on the lower external fae path between x and y(i.e. the external fae path stritly between x and y that exludes the bionneted omponentroot). If we have not already identi�ed non-planarity minor A above, then non-planarityminor B an be used to isolate a Kuratowski subgraph if w has an externally ative pertinenthild bionneted omponent, whih ours when w has a non-empty pertinentBiompListin whih the last element is a virtual vertex wd, where the lowpoint of d is less than v.The failure of this test indiates that one of non-planarity minors C, D or E is appliable(aording to Theorem 4.1), and eah has an x-y path.The highest x-y path is obtained by temporarily removing the internal edges inident tov, then traversing the proper fae bordered by v and its two remaining inident edges. Dueto the removal of the edges, the proper fae may have a number of omponents separable byut verties. These are easily deteted by the fat that the traversal arrives at verties it haspreviously visited. The proper fae traversal starts at v and moves toward x, pushing eahvisited vertex onto a stak. Eah time a vertex on the external fae path (v, . . . , x, . . . ,w) is found, the stak is emptied the newly found vertex is pushed. Eah time a previouslyvisited vertex is enountered, the stak is popped up to the last ourrene of that vertex.As soon as a vertex along the external fae path (v, . . . , y, . . . , w) is visited (and pushed),then the stak ontains the list of verties in the x-y path, with py on the top and px on thebottom. If either px or py is attahed high (i.e. px is between v and x or py is between vand y), then non-planarity minor C an be used to isolate a Kuratowski subgraph.If both px and py are attahed low, then the internal edges of v are restored, and a test ismade for non-planarity minor D by sanning the internal verties of the x-y path for a vertexz whose x-y path edges are not onseutive (ignoring the possible interession of the vertexstruture for z). If an intervening edge exists, then it an be used by the proper fae walkroutine to traverse from z to v now that the internal edges of v have been restored. On theother hand, if the desired path for non-planarity minor D is not found, then Theorem 4.1guarantees that non-planarity minor E is appliable, so an externally ative vertex, possiblyw but not px or py, exists along the lower external fae path (px, . . . , w, . . . , py).
31

7.2 Marking a K3;3 Homeomorph Based on Minors A, B, C and DSine non-planarity minors A through D ontain K3;3, a subgraph homeomorphi to K3;3 isisolated when one of those minors is found. Marking the edges and verties assoiated witha Kuratowski subgraph onsists mainly of traversing tree paths and external fae yles.A few umembedded bak edges must also be added (and marked, inluding endpoints) toomplete the Kuratowski subgraph.In eah minor, the dotted edge (u; x) may represent an unembedded bak edge betweenan anestor u of the urrent vertex v and a vertex x, or it may represent an unembeddedbak edge from u to a desendant of x plus the tree path from the desendant to x. Theformer ase ours if the leastAnestor member of x is less than v. In the latter ase, ux isthe lowpoint of the �rst element in the separatedDFSChildList of x, and the desendant dxof x is the neighbor of ux in G with the least DFI greater than or equal to (suh that dx isin the DFS subtree rooted by). If (u; x) represents a single unembedded bak edge, then itis added and marked. Otherwise, the DFS tree path from dx to x is marked by traversing theDFS tree path (for eah vertex, the edge to the parent must be found so it an be marked),and the unembedded bak edge (ux; dx) is added and marked.The same routines apply to (u; y) and similar routines apply to (v; w). If the adjaentTomember of w is set, then (v; w) represents a single unembedded edge. Otherwise, we obtainthe last element w in the pertinentBiompList of w, then we obtain the desendant dw ofw by sanning the adjaeny list of v in G to obtain the neighbor with the least DFI greaterthan or equal to (suh that dw is in the DFS subtree rooted by). If (v; w) represents asingle unembedded bak edge, then it is added and marked. Otherwise, the tree path fromdw to w is marked in the same way as the path from dx to x, and the bak edge from dw tov is added and marked.Given the above simple operations, marking the edges and verties of a Kuratowskisubgraph based on non-planarity minor A an be ompleted as follows. Traverse the externalfae of the bionneted omponent rooted by r0, marking all edges and verties visited. Then,stopping verties x and y and a pertinent vertex w an be found given the bionnetedomponent root r0 in the same manner as they are found for a bionneted omponent withroot v in Setion 7.1. Then, add the unembedded edges and mark paths orrespondingto (u; x), (u; y) and (v; w) as desribed above. Finally, mark the DFS tree path from r towhihever of ux and uy has the lower DFI.Marking the edges and verties of a Kuratowski subgraph based on non-planarity minorB is quite similar. Traverse the external fae of the bionneted omponent rooted by v,marking all edges and verties visited. Then, mark the edges and verties orresponding to(u; x), (u; y) as before. The last element wz of the pertinentBiompList of w is obtained. Letuz denote the lowpoint of z, let dz denote the neighbor of uz with the least DFI greater thanor equal to z, and let dw denote the neighbor of v with the least DFI greater than or equalto z. Mark the DFS tree paths from dw to w, from dz to z, and add and mark the edges(uz; dz) and (v; dw). Finally, mark the DFS tree path from max(ux; uy; uz) to min(ux; uy; uz).Although the endpoints v and max(ux; uy; uz) are marked by other operations, the path fromv to max(ux; uy; uz) is not marked beause the orresponding edge in non-planarity minorB, (u; v), is not needed to form a K3;3.Non-planarity minor C represents two symmetri ases. If px is a high point of attah-ment, then the path orresponding to edge (v; y) is not required to form a K3;3, so we removethe external fae path from v to the nearer of y and py. On the other hand, if px is not32

attahed high, then py must be attahed high, so instead we remove the path between v andx. Thus, if both px and py are attahed high, then the path (v, . . . , x, . . . , w, . . . , y, . . . ,py) is marked. If only px is attahed high, then the path (v, . . . , x, . . . , w, . . . , y). If onlypy is attahed high and the path (x, . . . , w, . . . , y, . . . , v) is marked. The implementation isotherwise straightforward. The edges and verties orresponding to (u; x), (u; y) and (v; w)are marked as desribed above, the DFS tree path from v to the minimum of ux and uy ismarked, and the x-y path, found by the proess desribed in Setion 7.1, is marked.In non-planarity minor D, the edges (v; x) and (v; y) are not required to form a K3;3.Marking the edges and verties of a Kuratowski subgraph based on non-planarity minor Dproeeds as follows. Mark the lower external fae path (x; : : : ; w; : : : ; y). Mark the x-y pathand seond internal path, whih are found by the proess desribed in Setion 7.1. Finally,the edges and verties orresponding to (u; x), (u; y) and (v; w) are marked as desribedabove, and the DFS tree path from v to the minimum of ux and uy is marked.7.3 Marking a K3;3 or K5 Homeomorph Based on Minor ENon-planarity minor E represents a K5 minor, so the tehniques to be used are quite similarto the prior isolators. However, before a Kuratowski subgraph an be isolated based onminor E, some additional ases must be onsidered sine a K5 minor often orresponds toa K3;3 homeomorph rather than a K5 homeomorph. Figure 15 depits four additional K3;3minors. Minor E1 ours if the pertinent vertex w is not externally ative (i.e. a seondvertex z is externally ative along the lower external fae path stritly between px and py).If this ondition fails, then w = z. Minor E2 ours if the external ativity onnetion fromw to an anestor of v, denoted uw, is a desendant of ux and uy. Minor E3 ours if ux anduy are distint and at least one is a desendant of uw. If none of these onditions our, thenwe selet minor E4 if either px 6= x or py 6= y. Finally, if none of the onditions for minorsE1 to E4 our, then a K5 homeomorph an be obtained based on minor E.As with minors A to D, there are symmetries to ontend with and some edges of eahminor are not needed to form aK3;3. For minorsE1 and E2 it is easy to handle the symmetriesbeause, with a few assignments, they an be redued to minors C and A, respetively. MinorE3 does not require the edges (x, w) and (y, v) to form a K3;3, and minor E4 does not requirethe edges (u, v) and (w, y) to form a K3;3. Moreover, note that the omission of edges fromthe external fae of the bionneted omponent rooted by v must aount for the fat that pxor py may have been edge ontrated into x or y in the depition of the minor. For example,eliminating the edge (w; y) in minor E4 orresponds to eliminating the path between w andpy but not the path from py to y.As for symmetries, minor E1 in Figure 15(a) depits z between x and w along the path(x, . . . , z, . . . , w, . . . , y), but there is a symmetri ase in whih z appears between w andy along the path (x, . . . , w, . . . , z, . . . , y). Also, Figure 15() depits minor E3 with ux ananestor of uy, but there is a symmetri ase in whih uy is an anestor of ux. For minorE4, Figure 15(d) depits px distint from x (and py an be equal to or distint from y), butif px = x, then py must be distint from y. Finally, note that the symmetri ases havedi�erent edges that have to be deleted to form a K3;3.Marking the edges and verties of a Kuratowski subgraph based on non-planarity minorE1 proeeds as follows. If the externally ative vertex z is between px and w (as depited inFigure 15(a)), then redue to minor C after setting x equal to z suh that px is a high point33

Figure 15: More K3;3 Minors from Minor E. (a) Minor E1, (b) Minor E2, () Minor E3, (d)Minor E4of attahment for the x-y path. For the symmetri ase in whih z is between w and py,then redue to minor C after setting y equal to z suh that py is a high point of attahmentfor the x-y path.Marking a Kuratowski subgraph based on non-planarity minor E2 proeeds as follows.If the x-y path was previously marked by the implementation, then remove the markings.If the leastAnestor of w is less than v, then let uw denote the leastAnestor of w andlet dw be equal to w. Otherwise, let uw denote the lowpoint of the �rst hild in theseparatedDFSChildList of w, and let dw denote the the neighbor of uw in G with the leastDFI greater than or equal to (suh that dw is in the DFS subtree rooted by). Set thestep variable v to uw. If dw equals w, then set the adjaentTo ag of w; otherwise, set thepertinentBiompList of w equal to the list ontaining only . As a result, w satis�es thede�nition of pertinene for step uw. Moreover, x and y are still externally ative beause uxand uy are anestors of uw. Thus, a redution to minor A an now be performed.It is interesting to note that while the planarity algorithm halts at the end of step v dueto an unembedded bak edge e from v to w or a desendant of w, the bak edge e is notembedded and marked by the minor E2 isolator desribed above. An isolator for minor E234

that inludes e an be onstruted, but the method given is simpler to implement and stillresults in the isolation of a K3;3 homeomorph.Marking a Kuratowski subgraph based on non-planarity minor E3 proeeds as follows. Ifux is an anestor of uy (i.e., ux < uy), then mark the edges and verties along the externalfae path (v0, . . . , px) that exludes w, and mark the edges and verties along the externalfae path (w, . . . , y) that exludes v0. For the symmetri ase in whih uy is an anestor ofux, mark the edges and verties along the external fae path (py, . . . , v0) that exludes w,and mark the edges and verties along the external fae path (x, . . . , w) that exludes v0.The remaining steps are ommon to both ases. Add the unembedded bak edges and markthe paths orresponding to edges (u; x), (u; y) and (v; w) using the tehniques previouslydesribed. Then, obtain uw and dw in the same manner as desribed for minor E2. Add theedge (uw; dw) and mark the DFS tree path (dw, . . . , w). Finally, mark the edges and vertiesalong the DFS tree path from v to the minimum of uw, ux, and uy.Marking a Kuratowski subgraph based on non-planarity minor E4 proeeds as follows.If px 6= x, then mark the external fae path (v0, . . . , x, . . . , w), and mark the external faepath (py, . . . , v0) that exludes w. For the symmetri ase in whih px equals x but py 6= y,mark the external fae path (v0, . . . , y, . . . , w) and mark the external fae path (v0, . . . ,px) that exludes w. The remaining steps are ommon to both ases. Add the unembeddedbak edges and mark the paths orresponding to edges (u; x), (u; y) and (v; w) using thetehniques previously desribed. Then, obtain uw and dw in the same manner as desribedfor minor E2. Add the edge (uw; dw) and mark the DFS tree path (dw, . . . , w). Finally,mark the edges and verties along the DFS tree path from the minimum of uw, ux, and uyto the maximum of uw, ux, and uy.As mentioned above, if the onditions for minors E1 to E4 do not our, then the edgesand verties of a K5 homeomorph an be marked based on minor E as follows. Mark all edgesand verties along the external fae yle rooted by v0. Add unembedded the bak edgesand mark the paths orresponding to edges (u; x), (u; y) and (v; w) using the tehniquespreviously desribed. Then, obtain uw and dw in the same manner as desribed for minorE2. Add the edge (uw; dw) and mark the DFS tree path (dw, . . . , w). Finally, mark theedges and verties along the DFS tree path from v to the minimum of uw, ux, and uy.7.4 Kuratowski Subgraph Isolation in Linear TimeThe proess of isolating a Kuratowski subgraph of the input graph G is performed on theembedding struture ~G one the Walkdown fails to embed a bak edge in a step v of the bakedge embedding loop in proedure Planarity (see Figure 14). The proess begins by removingshort-iruit edges and imparting a onsistent orientation to all verties of eah bionnetedomponent in ~G. Then, one of the non-planarity minors is hosen, and a subgraph ofG homeomorphi to K3;3 or K5 is marked in ~G based on the seleted non-planarity minor.Finally, the virtual verties are merged with their non-virtual ounterparts, and all unmarkedverties and edges are removed. Theorem 7.1 asserts that these ations onstitute a lineartime algorithm for Kuratowski subgraph isolation.Theorem 7.1 The Planarity algorithm isolates a Kuratowski subgraph in a non-planargraph G in O(n) time.Proof. The planarity operations prior to the all of the Kuratowski subgraph isolator areO(n) by Lemma 6.1 and Theorem 6.3. The preproessing steps for Kuratowski subgraph35

isolation to remove short-iruit edges and impart a onsistent orientation to eah vertex ofeah bionneted omponent are O(n), and the post-proessing steps to merge any remainingvirtual verties and remove unmarked edges and verties are also O(n).The seletion of a non-planarity minor involves an O(n) invoation of Walkdown todetermine whether the merge queue is empty. Also, simple O(n) loops are used to �ndstopping verties x and y and a pertinent vertex w. One these operations are performed,the tests that selet minors A and B are onstant time. If neither is seleted, then the internaledges of v are removed and a proper fae walk performed to �nd an x-y path and determineswhether minor C an be seleted. If not, then the internal edges of v are restored, and aportion of the proper fae walk is onduted again to searh for a seond internal path fornon-planarity minor D. The proper fae walks are O(n), and v has fewer than n inidentedges. If minors A through D are not seleted, then minor E is veri�ed by a simple O(n)loop that �nds an externally ative vertex along the path (px; : : : ; w; : : : ; py).Constant time tests are used to distinguish symmetri ases among the non-planarityminors and to selet whih seondary non-planarity minor to use in the ase of minor E.Within eah isolator, there are a onstant number of simple O(n) operations that mark edgesand verties along DFS tree paths and the external fae of a bionneted omponent. Theonly non-trivial parts of the proess are �nding the x-y path and the seond internal pathfor non-planarity minor D and �nding the spei� paths that map to edges (u; x), (u; y),and (v; w) as well as edges (v; z) and (u; z) in non-planarity minor B. The internal paths arefound in O(n) time by the aforementioned strategy of temporary edge removal and properfae walking. The paths are easy to handle as DFS tree path traversals one the properdesendants are found, whih is optimized by a strategy that exploits the DFS numbering toquikly �nd an edge from an anestor to any vertex in a DFS subtree by performing onstantwork per edge of the anestor, for a total O(n) ost. 28 PC-tree ProblemsReently, a new planarity test was presented by Shih and Hsu [18℄. They develop the notionof a PC-Tree (desribed below) as a simpli�ation of a PQ-tree. The algorithm has a numberof similarities with our new planarity algorithms. The starting PC-tree is the depth �rstsearh tree, whih is then proessed in a bottom up fashion to embed the bak edges fromthe urrent vertex, denoted i for a PC-tree (v in our algorithms), to the desendants of i.Unfortunately, the results of Shih and Hsu stated in [18℄ ontain several errors that negatethe proof of orretness of the planarity test, the laim of linear time performane and thelaim of a fully de�ned Kuratowski subgraph isolator.For example, Figure 16(a) depits the K5 minor pattern appearing in Figure 6() of[2℄ (with a few osmeti hanges), and Figure 16(b) depits the orresponding PC-tree.The darkened triangles, alled i-subtrees, represent subtrees rooted at x and y that haveyet to be onneted to v by unembedded bak edges. Likewise, the whitened triangles,alled i�-subtrees, represent subtrees rooted at r, x, and y that have yet to be onnetedto an anestor of v by unembedded bak edges. The node labeled C is representative of abionneted omponent, and its neighbors represent the essential nodes along the externalfae of the bionneted omponent. In PC-tree parlane, the nodes x and y are terminalnodes (i.e. they have at least one i-subtree, one i�-subtree, and no desendant with the same36

property [18, p. 181℄).

Figure 16: The K5 non-planarity minor from [2℄, and the orresponding PC-tree at thebeginning of step vIn [18℄, the only PC-tree pattern for deteting K5 homeomorphs appears to only detetsome K5 minors. Aording to [18, p. 185℄ \we ould have three terminal nodes beingneighbors of a C-node, in whih ase we would get a subgraph homeomorphi to K5 asillustrated in Fig. 6". However, in Figure 16(b), node r is not a terminal node sine x andy are its desendants. Thus, the C-node does not have three terminal nodes as neighbors inthis ase. Sine [18℄ ontains no other patterns for reognizing K5 homeomorphs, one mustonlude that an unde�ned non-planarity ondition exists in the Shih-Hsu planarity test.In this ase, an implementation would disover the non-planarity ondition due to the testsuggested by Lemma 2.5 in [18℄, but sine the proof of that Lemma states that the resultis a K3;3 homeomorph, a Kuratowski subgraph isolator based on the results in [18℄ wouldlearly fail.A more ritial problem pertains to the orretness of the planarity testing algorithmitself. Corollary 2.8 and the prose on p. 187 of [18℄ learly indiate how to ontinue proessingunder the on�guration given in Figure 10 of [18℄, yet their planarity test should halt on thison�guration if a desendant of i (the vertex being proessed) that is also an anestor of theC-node labeledW is onneted by a bak edge to an anestor of vertex i (has an i�-subtree).This ondition arises in graphs suh as the non-planarity minor in Figure 6(b) of [2℄, whihis depited (with a few osmeti hanges) in Figure 17(a). The dashed lines represent, atleast in part, unembedded bak edges. Our algorithm would urrently be proessing thebak edges from v to its desendants. The orresponding PC-tree at the beginning of step vappears in Figure 17(b). In this example, x and y have i-subtrees, w and r have i�-subtrees,and the C-node is a terminal node. Moreover, it is the only terminal node, and the workof Shih and Hsu [18℄ ontains no theorem, lemma or orollary that detets a non-planarityondition in this on�guration.In essene, the non-planarity pattern depited in Figure 17 is a ounterexample to theproof of orretness appearing in Theorem 4.1 of [18℄. Any redution of the PC-tree in Figure17(b) must retain r on the external fae due to its i�-subtree, whih is infeasible sine w mustalso be kept on the boundary yle of a bionneted omponent due to its i�-subtree. Thisproblem negates the laim on p. 188 of Shih and Hsu [18℄ that the onditions established by\Lemma 2.5, Corollary 2.6 and Lemmas 3.1 and 3.2 . . . imply a feasible internal embedding37

Figure 17: (a) A K3;3 non-planarity minor from [2℄, (b) A orresponding PC-tree at thebeginning of step v, () Another example of the PC-tree problem with two terminal nodesfor eah bionneted omponent." As suh, Theorem 4.1 does not establish the Shih-Hsualgorithm as a orret planarity tester. In ollaboration with graduate student Roland Wieseof the Eberhard-Karls University of T�ubingen [21℄, this problem was determined to also beappliable when there are two terminal nodes, as depited in Figure 17(), beause Lemma3.1 does not apply to the terminal nodes. The problem appears to be an inorret assumptionin extending Lemma 2.7 and Corollary 2.8 to the ase of having terminal nodes that are C-nodes, whose hildren annot be arbitrarily permuted but must instead adhere to the ordergiven by the representative bounding yle (RBC).It is easy to see that these ases have been missed in the proessing model for PC-treeredution, whih is shown in Figure 11 of [18℄. This �gure shows how to redue the PC-treeone it has been determined that a feasible internal embedding is possible aording to theonditions established by Lemma 2.5, Corollary 2.6 and Lemmas 3.1 and 3.2. In Figure11(i) and (ii), the �rst hild of u in lokwise diretion below the ritial path P leads toan i�-subtree. If it were hanged to an i-subtree (a darkened subtree), then the resultingPC-tree is not reduible.These additional non-planarity onditions and the non-planarity ondition desribed byLemma 3.1 of [18℄ also have an e�et on the omplexity analysis. In aounting for Lemma3.1, p. 190 of [18℄ states that \determining whih side of an intermediate C-node w ontainsi-subtrees (let v, v0 be two neighbors of w in P) we only have to hek the two neighborsof v (or v0) in the yli list to see whih one has the label i." This may be true under theassumption that the input graph is planar, but the point of a planarity test (and of Lemma3.1 in partiular) is to determine whether the graph is planar, so some form of additionalwork must be done to determine whether the forbidden i-i� subtree pattern has ourred.In terms of omplexity analysis, there are additional onerns pertaining to the lineartime performane of the algorithm as stated in [18℄. For example, the laim that the \RBCwill be stored as a irular doubly linked list" [18, p. 184℄ annot be supported. Whenthe representative bounding yles of C-nodes must be joined together, the diretion oftraversal of two onseutive C-nodes may be reversed depending on whih path ontainedthe i-subtrees in eah C-node. Joining the RBCs of two suh C-nodes into a irular doublylinked list would require the inversion of links in the RBC nodes of one of the two C-nodes.38

It is easy to reate planar graphs in whih O(n2) link inversions our in total. It is thereforeneessary to represent the RBC with a list that permits arbitrary link inversions as is donein the algorithms of this dissertation and as is depited in Figure 1 of [2℄.As a �nal onern, it appears that, in order to avoid O(n2) performane on PC-trees,one must not reate PC-trees, at least not in the manner spei�ed by [18, p. 184℄: \we shallrepresent the 2-onneted omponent by a C-node whose parent is i . . . ". Unfortunately, ifevery C-node (or P-node) indiated its atual parent in the PC-tree, then it is easy to reateplanar graphs on whih O(n2) reparenting operations are performed on a set of C-nodeswhenever their parent beomes part of a new C-node during a PC-tree redution. Instead,it is neessary to let the parent of any P-node or C-node indiate a node in the RBC of itsparent. The PC-tree parent of a node an be found by �rst following the parent link to somenode in the RBC of the parent, then traversing the RBC until a node with a parent link isfound. Thus, one is led repeatedly and inexorably to the methods of this paper and of [2℄ inorder to reate an algorithm that ahieves linear time while exploiting those graph-theoretiproperties that are ommon to both algorithms.9 Conlusion and Related SolutionsThis paper disussed the essential details of a new O(n) planarity tester/embedder, as wellas identifying some diÆulties with the urrent formulation of PC-trees. A straightforwardalgorithm for isolating Kuratowski subgraphs was presented based on the non-planarityminors identi�ed in the proof of orretness of the embedding algorithm. The �rst four non-planarity minors ontain K3;3, so marking the a K3;3 homeomorph requires little more thantraversal of external faes, tree paths and the addition of a few unembedded bak edges.The unmarked verties and edges are simply deleted. The �fth non-planarity minor is a K5minor, so four simple tests are performed to determine whether a K3;3 or K5 homeomorphan be isolated.An O(n) referene implementation of the new planarity algorithms desribed in this paperwas reated in three days for preliminary programming, four days for the planarity testingand embedding algorithms, and another three days for the Kuratowski subgraph isolator.The implementation was then tested on hundreds of millions of randomly generated graphsof up to 100 verties plus well over a billion graphs generated with the aid of MKay'snauty program [16℄ (spei�ally, all onneted graphs with 11 or fewer verties). For eahgraph, the integrity of the resulting ombinatorial planar embedding or minimal non-planarsubgraph was tested.Extending this work to outerplanar graph embedding an literally be as simple as de�ningall verties to be externally ative at all times. A simpli�ed version of our planarity proofof orretness yields K2;3 and K4 minors for outerplanarity obstrution isolation. Finally,little e�ort is required to modify the outerplanarity obstrution isolator so that it only �ndsK2;3 homeomorphs. This is done by ignoring ourrenes of K4 exept those in whih aK2;3 an also be found. Likewise, relatively little e�ort is required to modify the Kuratowskisubgraph isolator so that it only �nds K3;3 homeomorphs. The result is O(n) on graphs onlyontaining a onstant number of K5 homeomorphs to ignore, and O(n) in general if appliedseparately to the trionneted omponents of a graph. These algorithms will be presentedin upoming papers.In terms of future work, we would like to reexamine the onseutive ones problem, whih39

was the original problem for whih the PQ-tree was developed. A (0, 1)-matrix has theonseutive ones property for olumns if and only if its rows an be permuted so that ineah olumn all of the ones are onseutive. It may be possible to reate a redution to thegraph planarity problem based on a further examination of our data strutures and detailedoperations. Also, while graph drawing may often have appliation-spei� requirements, asimple drawing method is often desirable as a starting point. An example is the HorVertdiagram, whih is a planar representation in whih every vertex is represented by a horizontalline (or retangle) and every edge is represented by a vertial line. While [10℄ presentsan augmentation to the PQ-tree algorithm to reate a HorVert diagram, their method isritially dependent on the single soure aspet of the underlying st-numbering. We wouldalso like to examine augmentations of our data strutures that yield simpli�ed methods forobtaining trionneted omponents as well as for enumerating, ranking and unranking planarembeddings. Finally, our algorithms may provide new insights that yield an O(n) isolatorfor K5 homeomorphs or a simpli�ed O(n) embedding algorithm for the projetive plane.Aknowledgements The authors are grateful to Paulette Lieby for providing valuablefeedbak on the �rst draft of this paper based on her implementation experiene with thesealgorithms for the Magma Computational Algebra System (produed by the ComputationalAlgebra Group within the Shool of Mathematis and Statistis of the University of Syd-ney). Roland Wiese of the Eberhard-Karls University of T�ubingen also provided valuableommentary on the problems with the PC-tree formulation.Referenes[1℄ K. S. Booth and G. S. Lueker. Testing for the onseutive ones property, interval graphs,and graph planarity using PQ{tree algorithms. Journal of Computer and Systems Si-enes, 13:335{379, 1976.[2℄ J. Boyer and W. Myrvold. Stop minding your P's and Q's: A simpli�ed O(n) planarembedding algorithm. Proeedings of the Tenth Annual ACM-SIAM Symposium onDisrete Algorithms, pages 140{146, 1999.[3℄ E. R. Can�eld and S. G. Williamson. The two basi linear time planarity algorithms:Are they the same? Linear and Multilinear Algebra, 26:243{265, 1990.[4℄ N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for embedding planargraphs using PQ{trees. Journal of Computer and Systems Sienes, 30:54{76, 1985.[5℄ H. de Fraysseix and P. Rosenstiehl. A haraterization of planar graphs by tr�emauxorders. Combinatoria, 5(2):127{135, 1985.[6℄ N. Deo. Note on Hoproft and Tarjan planarity algorithm. Journal of the Assoiationfor Computing Mahinery, 23:74{75, 1976.[7℄ S. Even and R. E. Tarjan. Computing an st-numbering. Theoretial Computer Siene,2:339{344, 1976.[8℄ Alan Gibbons. Algorithmi Graph Theory. Cambridge University Press, 1985.40

[9℄ J. Hoproft and R. Tarjan. EÆient planarity testing. Journal of the Assoiation forComputing Mahinery, 21(4):549{568, 1974.[10℄ R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. Planar embedding: Linear-timealgorithms for vertex plaement and edge ordering. IEEE Transations on Ciruits andSystems, 35(3):334{344, 1988.[11℄ M. J�unger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in automati graphdrawing. In G. Di Battista, editor, Pro. 5th International Symposium on Graph Draw-ing `97, volume 1353 of Leture Notes in Computer Siene, pages 193{204. SpringerVerlag, Sept. 1997.[12℄ A. Karabeg. Classi�ation and detetion of obstrutions to planarity. Linear and Mul-tilinear Algebra, 26:15{38, 1990.[13℄ K. Kuratowski. Sur le probl�eme des ourbes gauhes en topologie. Fund. Math., 15:271{283, 1930.[14℄ A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.In P. Rosenstiehl, editor, Theory of Graphs, pages 215{232, New York, 1967. (Pro. Int.Symp. Rome, July 1966), Gordon and Breah.[15℄ R. J. Lipton and R. E. Tarjan. Appliations of a planar separator theorem. SIAMJournal of Computing, 9(3):615{627, 1980.[16℄ B. D. MKay. Pratial graph isomorphism. Congressus Numerantium, 30:45{87, 1981.[17℄ E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory andPratie. Prentie-Hall, In., Englewood Cli�s, New Jersey, 1977.[18℄ W.-K. Shih and W.-L. Hsu. A new planarity test. Theoretial Computer Siene,223:179{191, 1999.[19℄ R. E. Tarjan. Depth-�rst searh and linear graph algorithms. SIAM Journal of Com-puting, 1(2):146{160, 1972.[20℄ K. Wagner. �Uber einer eigenshaft der ebener omplexe. Math. Ann., 14:570{590, 1937.[21℄ R. Wiese. Personal Communiation. June 6, 2001.[22℄ S. G. Williamson. Embedding graphs in the plane- algorithmi aspets. Ann. Dis.Math., 6:349{384, 1980.[23℄ S. G. Williamson. Depth-�rst searh and Kuratowski subgraphs. Journal of the Asso-iation for Computing Mahinery, 31(4):681{693, 1984.[24℄ S. G. Williamson. Combinatoris for Computer Siene. Computer Siene Press,Rokville, Maryland, 1985.
41

