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tA graph is planar if it 
an be drawn on the plane with verti
es at unique lo
ationsand no edge interse
tions ex
ept at the vertex endpoints. Due to the wealth of interestfrom the 
omputer s
ien
e 
ommunity, there are a number of remarkable but 
omplexO(n) planar embedding algorithms. This paper presents an O(n) planar embeddingalgorithm that avoids a number of the 
omplexities of prior approa
hes (an early versionof this work was presented at the January 1999 Symposium on Dis
rete Algorithms).In July 1999, Shih and Hsu published a new planarity algorithm based on a datastru
ture they 
all a PC-tree, whi
h is a simpli�
ation of a PQ-tree that utilizes someresults also used in our planarity algorithms. This paper also dis
usses some errorsin the PC-tree formulation that prevent it from being 
orre
t and O(n) as published.Finally, our new formulation is easy to prove 
orre
t and O(n), and it extends wellto related problems. This paper also presents a simpli�ed O(n) Kuratowski subgraphisolator, and further extensions will be presented in future papers (a number of whi
h
an be found 
urrently in Boyer's dissertation).1 Introdu
tionAn undire
ted graph G 
ontains a set V of n verti
es and a set E of m edges, ea
h of whi
h
orresponds to an unordered pair of verti
es. In an undire
ted graph, the verti
es asso
iatedwith an edge are 
alled the endpoints of the edge, and an edge is in
ident to its endpoints.An edge with endpoints u and v is denoted (u; v). A loop is an edge of the form (u; u), and amultiple edge is an edge that o

urs more than on
e in E (if there are multiple edges, then Eis not a set but rather a multiset). A multigraph is a graph that permits loops and multipleedges (some texts forbid loops [8℄), and a simple graph is a graph that forbids loops andmultiple edges. In this paper, graphs are undire
ted and simple unless stated otherwise.In a graph G, vertex u is adja
ent to vertex v, or equivalently v is a neighbor of u, if (u; v)is an edge in E(G). The subset of verti
es adja
ent to a vertex u is 
alled the neighborhoodof u. The degree of a vertex u is the number of non-loop edges 
ontaining u as an endpointplus twi
e the number of loops of the form (u; u). In a simple, undire
ted graph, the degreeof a vertex u is equal to the size of its neighborhood, and ea
h neighbor v of a vertex u isalso adja
ent to u. A walk of length k is a sequen
e P = (v0, e0, v1, e1, v2, . . . , ek�1, vk) of�Supported by NSERC. 1



alternating verti
es and edges from a graph G, with ei = (vi�1; vi) an edge of G for i from 1to k. A 
y
le is a walk of length greater than two with no repeated verti
es ex
ept v0 = vk.A path is a walk with no repeated vertex.A graph is often drawn using points for the verti
es and lines (possibly 
urved) for theedges. A planar representation is a drawing of a graph on a plane su
h that the verti
es arepla
ed in distin
t positions and no two edges interse
t ex
ept at 
ommon vertex endpoints.A planar representation of a graph divides the plane into 
onne
ted regions, 
alled fa
es,ea
h bounded by edges of the graph [8, p. 68℄. A region of �nite area is 
alled a proper fa
eand is bound by a 
y
le. The external fa
e is the plane less the union of the proper fa
esand the points o

upied by the planar representation of the graph. In general, the boundaryof the external fa
e is a walk, and the term external fa
e is often used to refer to the verti
esand edges along the bounding walk. Figure 1(a) shows an example graph with four verti
esand six edges. Figure 1(b) shows a planar representation of the same graph.
Figure 1: An Example Graph and a Planar Representation of the GraphA graph is planar if it is possible to 
reate a planar representation of the graph, anda non-planar graph is a graph for whi
h there is no planar representation. A planaritytesting algorithm determines if a graph has a planar representation. A planar embeddingalgorithm not only tests planarity but also indi
ates the 
lo
kwise order of the neighbors ofea
h vertex of a planar graph. Generating the spe
i�
 vertex positions and edge shapes in aplanar representation is often viewed as a separate problem, in part be
ause it is appli
ation-dependent. For example, our notion of what 
onstitutes a suitable rendering of a graph maydi�er substantially if the graph represents an ele
troni
 
ir
uit versus a hypertext book.Hen
e, a data stru
ture in whi
h the representation of ea
h vertex 
ontains a 
lo
kwise-ordered list of its neighbors is 
alled a 
ombinatorial planar embedding and is 
onsidered tobe a simple 
erti�
ate of planarity that 
ontains suÆ
ient information for subsequent graphdrawing algorithms and many other planar graph algorithms.While the 
ombinatorial planar embedding provides a simple 
erti�
ate of planarity, the�rst 
hara
terization of planarity by Kuratowski [13℄ shows that it is also possible to 
reatea simple 
erti�
ate of non-planarity for non-planar graphs. A subgraph of a graph G is agraph H su
h that V (H) � V (G) and E(H) � E(G). A graph G is isomorphi
 to a graphH if there exists a bije
tion f : V (G) ! V (H) su
h that (u; v) 2 E(G) if and only if(f(u); f(v)) 2 E(H). An edge subdivision repla
es an edge (u; v) with a degree two vertexw plus the edges (u; w) and (w; v). The inverse operation, a series redu
tion, repla
es adegree two vertex w and its in
ident edges, (u; w) and (w; v), with a single edge (u; v). Agraph G is homeomorphi
 to a graph H if G 
an be made isomorphi
 to H by applying zeroor more subdivisions and series redu
tions. For graphs G and H, we say that G is an Hhomeomorph if G is homeomorphi
 to H. Kuratowski proved that a graph is planar if andonly if it 
ontains no subgraph homeomorphi
 to either of two graphs, whi
h are denoted K5or K3;3 and depi
ted in Figure 2. 2



Figure 2: The Planar Obstru
tions K5 and K3;3In some appli
ations, �nding a Kuratowski subgraph is a �rst step in eliminating problemareas in the graph. For example, in a graph representing an integrated 
ir
uit, an edgeinterse
tion would be indi
ative of a short-
ir
uit, whi
h 
ould be repaired by repla
ing the
rossed edge in an identi�ed Kuratowski subgraph with a sub
ir
uit of ex
lusive-or gates [15℄.Due to Kuratowski's theorem, a non-planar graph must 
ontain a subgraph homeomorphi
 toK5 or K3;3, and a Kuratowski subgraph isolator must return a minimal non-planar subgraph
ontaining only �ve verti
es of degree four or six verti
es of degree three, 
alled imageverti
es, plus distin
t paths 
ontaining zero or more degree two verti
es that 
onne
t theimage verti
es su
h that the resulting graph is a K5 or K3;3 homeomorph.A graph is 
onne
ted if, for every pair of verti
es u and v, there exists a path (u, . . . ,v). A 
onne
ted 
omponent of a graph is a maximal 
onne
ted subgraph. Vertex v is a 
utvertex of graph G if the removal of v and its in
ident edges in
reases the number of 
onne
ted
omponents in the resulting graph. For example, the 
onne
ted graph in Figure 3(a) 
ontainsa 
ut vertex v whose removal, along with its in
ident edges, separates the graph into two
onne
ted 
omponents as shown in Figure 3(b). A graph with no 
ut verti
es is bi
onne
ted.A bi
onne
ted 
omponent of a graph is a maximal bi
onne
ted subgraph. If a graph isnot bi
onne
ted, the bi
onne
ted 
omponents are said to be separable by the 
ut verti
esin the graph. For example, the graph in Figure 3(a) has two bi
onne
ted 
omponents asshown in Figure 3(
). Note that the 
ut vertex v is 
onsidered to be part of ea
h bi
onne
ted
omponent that 
ontains it. As su
h, the bounding walk for the external fa
e of a bi
onne
ted
omponent is a 
y
le (ex
ept of 
ourse for the spe
ial 
ase of a bi
onne
ted 
omponent
ontaining only a single edge).Linear time algorithms for identi�
ation of 
ut verti
es and bi
onne
ted 
omponentsusing the well-known graph pro
essing method of depth �rst sear
h were �rst dis
ussed byTarjan [19℄. Depth �rst sear
h (DFS) on graphs operates in the same way as the well-knownpre-order tree traversal method, ex
ept that DFS on graphs must terminate traversal onedges that lead ba
k to previously visited verti
es. Edges that lead to new verti
es are 
alledtree edges, and edges that lead to previously visited verti
es are 
alled ba
k edges. The treeedges 
olle
tively form a spanning Depth First Sear
h Tree in ea
h 
onne
ted 
omponent ofa graph. Ea
h vertex v is assigned a number, the depth �rst index or DFI, whi
h indi
ateshow many verti
es were visited by the depth �rst sear
h method prior to visiting v. The rootof a DFS tree is the �rst vertex visited in a 
onne
ted 
omponent, so it has the least DFIin the 
onne
ted 
omponent. An an
estor of a vertex v is any vertex on the path of treeedges from v to the root, ex
luding v. A des
endant of a vertex v is any vertex for whi
h v isan an
estor. The endpoints of a ba
k edge share the an
estor-des
endant relationship. Theparent of a vertex v is the an
estor of v adja
ent to v by a tree edge. A 
hild of a vertex v isany vertex for whi
h v is the parent. A subtree is a subgraph of a tree in whi
h a vertex v,3



Figure 3: (a) A Cut Vertex v, (b) Removing v results in more 
onne
ted 
omponents, (
)The bi
onne
ted 
omponents separable by v, (d) Adding edge (u; w) while keeping x and yon the external fa
e bounding 
y
le (v is no longer a 
ut vertex)
alled the subtree root, is a 
ommon an
estor to all other verti
es in the subtree and whi
h
ontains all tree edges having both endpoints in the subtree.Based on a depth �rst sear
h tree, we 
an examine more 
losely an interesting s
enarioinvolving the addition of an edge with endpoints u and w to the graph in Figure 3(a).Suppose u is a DFS an
estor of v, and v is an an
estor of w. Further, suppose that thegraph in Figure 3(a) is a subgraph of a larger graph G that 
ontains a DFS an
estor t of thevertex u. Firstly, sin
e the removal of v would no longer in
rease the number of 
onne
ted
omponents, v would no longer be a 
ut vertex. This example demonstrates the fundamentaloperation performed by our new algorithm, whi
h is to embed one edge e at a time and mergeany bi
onne
ted 
omponents that are no longer separable by a 
ut vertex when e is added.Figure 3(d) depi
ts how our algorithm would perform this fundamental operation under theassumption that x and y are endpoints of ba
k edges from G that are in
ident to t. Ouralgorithm embeds all DFS tree edges �rst, then it embeds the ba
k edges ensuring that allba
k edges with an an
estor endpoint of u are embedded before ba
k edges with an an
estorendpoint that is an an
estor of u. Thus, the ba
k edges (t; x) and (t; y) will not be embeddedat the time that edge (u; w) is embedded. Our algorithm keeps verti
es su
h as x and y onthe external fa
e bounding 
y
les of bi
onne
ted 
omponents. In turn, adheren
e to this
onstraint ne
essitates the ability to `
ip' the embedding of a bi
onne
ted 
omponent beforemerging it with another bi
onne
ted 
omponent. As shown in Figure 3(d), the bi
onne
ted
omponent 
ontaining w is 
ipped before the merging the two 
opies of 
ut vertex v andadding the edge (u; w).Although Kuratowski was the �rst to 
hara
terize planarity, a theorem by Wagner [20℄is more useful for the proof of 
orre
tness of this new approa
h to planarity testing. An edge
ontra
tion of an edge e = (u; v) repla
es u and v and their in
ident edges with a singlevertex w whose in
ident edges are all edges that were in
ident to either u or v (ex
ept e).An edge 
ontra
tion 
an result in multiple edges in
ident to w (e.g., the edges (u; x) and(v; x) are 
hanged to be two instan
es of the edge (w; x)). A graph G 
ontains a graph H4



as a minor if a graph isomorphi
 to H 
an be 
reated from a subgraph of G by applyingzero or more edge 
ontra
tions. Wagner's 
hara
terization of planarity states that a graphis planar if and only if it 
ontains neither K5 nor K3;3 as a minor.The remainder of this paper is divided into the following se
tions. Se
tion 2 reviewssele
ted prior works. Se
tion 3 presents the essential de�nitions and operations of our planarembedder and proves its 
orre
tness by demonstrating that the algorithm 
reates a planarembedding over the edges it embeds, and that failure to embed an edge indi
ates that theinput graph 
ontains K3;3 or K5 as a minor. Se
tion 5 presents additional information aboutour data stru
tures and their initialization and maintenan
e to support an eÆ
ient imple-mentation of our algorithms. Se
tion 6 provides a more detailed version of our embeddingalgorithm as well as a proof that O(n) performan
e is a
hieved. Se
tion 7 presents our newKuratowski subgraph isolator. Se
tion 8 presents some errors that have been found in thePC-tree algorithm. Finally, Se
tion 9 presents 
on
luding remarks, in
luding some 
ommentsabout the brevity of implementation of our O(n) planarity algorithms.2 Review of Sele
ted Prior WorksThe �rst O(n) planarity test algorithm is due to Hop
roft and Tarjan [9℄. The method �rstembeds a 
y
le C of the graph, then it breaks the remainder of the graph into a sequen
e ofpaths that 
an be added either to the inside or outside of the starting 
y
le. Some 
orre
tionsto the algorithm appear in [6℄, and signi�
ant additional details are presented by Williamson[22, 24℄ as well as the text by Reingold, Nievergelt and Deo [17℄.Despite these resour
es, it is diÆ
ult to envision how the tester a
hieves linear time on
ertain key parts, su
h as reversing a prior de
ision about whether to embed 
ertain sets ofpaths on the inside or outside of the 
y
le C. Indeed, Hop
roft and Tarjan 
omment thatthe 
hallenging part of the algorithm is the 
reation of good data stru
tures to eÆ
ientlyimplement this method. Moreover, while their 
on
lusion brie
y sket
hes a method foraugmenting the tester to 
reate a planar embedder, over a de
ade later, Chiba, Nishizeki,Abe, and Ozawa 
omment that modifying the Hop
roft and Tarjan algorithm to yield aplanar representation \looks to be fairly 
ompli
ated; in parti
ular, it is quite diÆ
ult toimplement a part of the algorithm for embedding an intra
table path" [4, p. 55℄.The se
ond method of planarity testing proven to a
hieve linear time began with an O(n2)algorithm due to Lempel, Even and Cederbaum [14℄. The algorithm begins by 
reating ans; t-numbering for a bi
onne
ted input graph. One property of an s; t-numbering is thatthere is a path of higher numbered verti
es leading from every vertex to the vertex t, whi
hhas the highest number. Thus, there must exist an embedding ~Gk of the �rst k verti
essu
h that the remaining verti
es (k + 1 to t) 
an be embedded in a single fa
e of ~Gk. Thisplanarity testing algorithm was optimized to linear time by a pair of 
ontributions. Even andTarjan [7℄ optimized s; t-numbering to linear time, while Booth and Lueker [1℄ developed thePQ-tree data stru
ture, whi
h allows the planarity test to eÆ
iently maintain informationabout the portions of the graph that 
an be permuted or 
ipped before and after embeddingea
h vertex. Chiba, Nishizeki, Abe and Ozawa [4℄ augmented the PQ-tree operations so thata planar embedding is 
omputed as the operations are performed.A
hieving linear time with the vertex addition method is also quite 
omplex [11℄, in partbe
ause Booth and Lueker do not in
lude the 
omplete set of optimized templates requiredto update the PQ-tree qui
kly [1, p. 362℄ but leave them for the reader to derive. There5



are non-trivial rules for restri
ting pro
essing to only the pertinent portion of the PQ-tree,more rules to prune the tree, then still more details to in
rease the eÆ
ien
y of sele
ting andapplying templates sin
e more than one is often applied to pro
ess ea
h vertex.While the two major algorithms appear to approa
h the planarity problem quite dif-ferently, Can�eld and Williamson [3℄ have shown that a few modi�
ations 
an be made tosyn
hronize the behavior of the two algorithms for ea
h vertex. Williamson [23℄ was also the�rst to 
reate an O(n) Kuratowski subgraph isolator based on identifying the non-planarity
onditions that arise in the Hop
roft and Tarjan method. Karabeg [12℄ developed a lin-ear time Kuratowski subgraph isolator by exploiting non-planarity 
onditions that arise inPQ-trees.A planarity 
hara
terization by de Fraysseix and Rosenstiehl [5℄ 
ould lead to O(n) pla-narity algorithms, though the paper 
ontains no development of a linear time methodology.However, the 
hara
terization is important be
ause planarity is explained in terms of 
on
i
tsbetween ba
k edges as seen from a bottom-up view of the depth �rst sear
h tree.A preliminary report 
ontaining some of the results of this dissertation appeared in[2℄. Our work is based on this bottom-up view, though we derived it independently of[5℄ as the result of trying to eliminate PQ-trees and s; t-numbering while retaining theaforementioned property of s; t-numbering that all paths lead to the �nal vertex. Using abottom-up view of the DFS tree, the �nal vertex is the DFS tree root, whi
h suggests abottom-up vertex pro
essing order. While [2℄ 
ontained most of the information ne
essaryto embed the ba
k edges between ea
h vertex and its depth �rst sear
h des
endants and tore
over a 
ombinatorial planar embedding in linear time, as an extended abstra
t it doesnot 
ontain 
omplete information. Spe
i�
ally, it la
ks details that de�ne when the rootof a bi
onne
ted 
omponent should be kept on the external fa
e, and it does not providethe details on how to maintain and use path information for ea
h bi
onne
ted 
omponenten
ountered as the algorithm works bottom-up from des
endants adja
ent by a ba
k edge tothe vertex being pro
essed. This paper improves on the prior work by presenting a simplerformulation that does not even need to maintain this path information nor any external fa
einformation for bi
onne
ted 
omponent roots.More re
ently, a new planarity test was presented by Shih and Hsu [18℄. They developa simpli�
ation of a PQ-tree that is 
riti
ally dependent on a number of the same resultsthat appeared earlier in Boyer and Myrvold [2℄. However, sin
e their date of submission wassigni�
antly before the publi
ation of [2℄, there is 
learly a 
ase of simultaneous independentdis
overy of somewhat similar algorithms. However, the results of Shih and Hsu stated in[18℄ 
ontain several errors, whi
h will be dis
ussed in Se
tion 8.3 New Planar Embedder3.1 Terminology and Top-Level AlgorithmIn Se
tion 1, we introdu
ed the fundamental operation performed by our new planarity algo-rithm, whi
h is the addition of an edge that may bi
onne
t previously separable bi
onne
ted
omponents. Our embedding data stru
ture, denoted ~G, is designed to maintain a 
olle
tionof 
ombinatorial planar embeddings of the bi
onne
ted 
omponents that develop as ea
hedge of the input graph G is added to ~G. Although an O(n) implementation of our algo-rithm 
an be 
reated by 
a
hing a few extra pie
es of information for ea
h vertex and edge,6



in this se
tion we fo
us on a minimal representation for ~G. As mentioned in Se
tion 1, arepresentation for a 
ut vertex must appear in ea
h bi
onne
ted 
omponent 
ontaining the
ut vertex. Other than maintaining additional adja
en
y lists for extra 
opies of 
ut verti
es,a standard adja
en
y list format is suÆ
ient for representing ~G if optimal performan
e isnot required. Thus, the algorithm development and proof of 
orre
tness 
an pro
eed in astandard graph theoreti
 
ontext with implementation details to follow in Se
tions 5 and 6.The new embedding algorithm begins by 
reating a depth �rst sear
h tree for the inputgraph G. Observe that a 
ut vertex appears in every path between its DFS 
hildren and itsan
estors, ex
ept for 
ut verti
es that are DFS tree roots, whi
h have no an
estors. Whetheror not a 
ut vertex is a DFS tree root, a 
ut vertex is the �rst vertex visited by depth �rstsear
h in a bi
onne
ted 
omponent 
ontaining the 
ut vertex and a DFS 
hild of the 
utvertex. Moreover, a bi
onne
ted 
omponent B with depth �rst sear
h entry point v 
annot
ontain more than one DFS 
hild 
 of v. The assumption of a se
ond DFS 
hild 
2 of vin B 
ontradi
ts the bi
onne
tedness of B sin
e the depth �rst sear
h �nds no path from
 to 
2 ex
ept through v. For these reasons, following de�nitions spe
ify the nature of theextra 
opies of verti
es that must be maintained in order to represent ea
h 
ut vertex in ea
hbi
onne
ted 
omponent 
ontaining it. A virtual vertex is the vertex with the least depth �rstindex in a bi
onne
ted 
omponent. A virtual vertex representing vertex v in a bi
onne
ted
omponent B is denoted v0, or v
 if it is ne
essary to identify the DFS 
hild 
 of v in B. Thevirtual vertex in a bi
onne
ted 
omponent is the root of the bi
onne
ted 
omponent. A rootedge is a DFS tree edge in
ident to a virtual vertex (and the DFS 
hild of the virtual vertex).A root edge is denoted (v
; 
) or simply (v0; 
) sin
e the 
hild 
 is known. A 
hild bi
onne
ted
omponent of a vertex v is a bi
onne
ted 
omponent in ~G that 
ontains the virtual vertexv
 for some DFS 
hild 
 of v.On
e the depth �rst sear
h ofG has been performed (along with a few other prepro
essingsteps that 
a
he information useful in a
hieving O(n) performan
e), the algorithm embeds in~G a root edge 
orresponding to ea
h tree edge of G. Ea
h root edge is a singleton bi
onne
ted
omponent 
onsisting of a vertex 
 and a virtual vertex representing the DFS parent of 
.The �nal step of the top-level algorithm, pseudo-
ode for whi
h appears in Figure 4, is toembed the ba
k edges from ea
h vertex to its des
endants, 
ipping and merging bi
onne
ted
omponents as ne
essary. The number of edges is restri
ted to 3n � 5 sin
e planar graphshave no more than 3n�6 edges (we allow one extra edge so that a Kuratowski subgraph 
anbe found if the input graph is not planar; a higher edge limit 
an be imposed at implementerdis
retion). The rationale for pro
essing the verti
es in reverse DFI order is simply that, forany step v, a partial embedding 
an be 
reated in whi
h the remaining unpro
essed verti
es
an be embedded in the external fa
e be
ause ea
h has a path of DFS tree edges leading tothe DFS tree root.The order in whi
h ba
k edges are embedded and the details of the bi
onne
ted 
om-ponent 
ip and merge operations are sele
ted su
h that all verti
es with unembedded ba
kedges to v or its an
estors remain on the external fa
es of bi
onne
ted 
omponents in ~G.The following de�nitions support the ability to make appropriate de
isions about these op-erations. Given a vertex x in ~G that is a des
endant of the 
urrent vertex v being pro
essedby the main algorithm loop, x is externally a
tive if the input graph G 
ontains a ba
k edge(u; x) where u is an an
estor of v, or if x has a 
hild bi
onne
ted 
omponent that 
ontainsat least one externally a
tive vertex. An externally a
tive bi
onne
ted 
omponent in ~G is abi
onne
ted 
omponent that 
ontains at least one externally a
tive vertex. A bi
onne
ted7



Figure 4: High-Level Outline of New Planarity Algorithm(1) Re
eive graph G with n > 2 verti
es and m � 3n� 5 edges(2) Perform depth �rst sear
h on G and other prepro
essing(3) Based on G, 
reate and initialize embedding ~G(4) Add ea
h DFS tree edge of G to ~G as a singletonbi
onne
ted 
omponent(5) For ea
h vertex v of G in reverse DFI order(6) Embed in ~G ea
h ba
k edge in G from v to aDFS des
endant of v. For ea
h su
h ba
k edge (v, w),embed (v, w) su
h that:a) all bi
onne
ted 
omponents are merged together thatwill no longer be separable when (v, w) is addedb) any vertex x with unembedded ba
k edges to v orDFS an
estors of v is kept on the external fa
e(along with 
ut verti
es separating x from v).If embedding (v, w) requires violation of 6b,break the loop(7) If one or more ba
k edges were not embedded,Isolate a Kuratowski subgraph
omponent in ~G with root r
 is pertinent at step v if the input graph G 
ontains at least oneba
k edge (v; w) not embedded in ~G, where w is in the DFS subtree rooted by 
. A vertex win ~G is pertinent in step v if the input graph G 
ontains a ba
k edge (v; w) not embedded in~G or if w has a pertinent 
hild bi
onne
ted 
omponent. A vertex w in ~G is internally a
tiveif it is pertinent but not externally a
tive. An internally a
tive bi
onne
ted 
omponent isa bi
onne
ted 
omponent in ~G that 
ontains one or more internally a
tive verti
es and noexternally a
tive verti
es. A vertex in ~G is ina
tive if it is neither externally nor internallya
tive.There are a 
ouple of notable aspe
ts of these de�nitions. First, they apply only toverti
es, not virtual verti
es. Se
ond, sin
e the de�nition of a 
hild bi
onne
ted 
omponentstates that it must be rooted by a virtual vertex, the a
tivity or pertinen
e of a vertex wis a�e
ted only by unembedded ba
k edges to the an
estors of w either dire
tly from w orfrom only those verti
es in DFS subtrees rooted by 
hildren of w that are not in the samebi
onne
ted 
omponent as w.In Figure 4, the main algorithm loop body is not spe
i�ed in Line 6. Rather, we haveso far only said what must be done but not how. The obvious �rst step is to set up thepertinen
e and a
tivity 
onditions de�ned above, but without the requirement of linear timeperforman
e, it is easy to 
reate ineÆ
ient but trivially simple implementations for these8



de�nitions (and eÆ
ient methods are presented in Se
tion 5).To pro
ess the ba
k edges from v to its des
endants, our algorithm performs a routine
alled `Walkdown' on ea
h bi
onne
ted 
omponent rooted by a virtual vertex v0. Sin
e noba
k edges to an
estors of v have been embedded, ea
h su
h bi
onne
ted 
omponent is asingle root edge when the Walkdown is �rst invoked, but ea
h one that is pertinent be
omeslarger as the Walkdown embeds ba
k edges.3.2 The Walkdown RoutineAn invo
ation of the Walkdown routine on a singleton bi
onne
ted 
omponent B with rootedge (v0; 
) embeds all ba
k edges between v and the des
endants of 
 ex
ept when a non-planarity 
ondition is dis
overed, the details of whi
h are 
overed in the proof of 
orre
tnessin Se
tion 4. Ea
h su
h ba
k edge to a des
endant of 
 is embedded along the external fa
e ofB in
ident to the des
endant and the virtual vertex v0 = v
. Child bi
onne
ted 
omponentsof 
 and its des
endants are merged into B as ne
essary su
h that both endpoints of ea
hembedded ba
k edge are in B.The Walkdown pro
edure begins with a 
ounter
lo
kwise traversal of the external fa
eof B starting at v0. Sin
e B 
ontains a single edge, there appears at �rst to be no di�er-en
e between 
ounter
lo
kwise versus 
lo
kwise traversal, but the distin
tion be
omes 
learalmost immediately when the root of a 
hild bi
onne
ted 
omponent is merged with 
. Inthe 
ounter
lo
kwise traversal, pertinent bi
onne
ted 
omponents are merged as ne
essaryduring the traversal in order to embed the ba
k edges. These a
tions atta
h more verti
esand edges to B su
h that its external fa
e 
onsists of more than the original root edge. Ifthe �rst traversal pro
esses all verti
es on the external fa
e of B, returning to v0, then theWalkdown terminates. However, the �rst traversal also stops if it en
ounters a stopping ver-tex, whi
h is a non-pertinent externally a
tive vertex. In this 
ase, the Walkdown performsa se
ond traversal of the external fa
e of B starting at v0 and pro
eeding 
lo
kwise. Again,the traversal pro
eeds to embed ba
k edges and merge pertinent bi
onne
ted 
omponentsuntil a stopping vertex is again en
ountered.When a Walkdown traversal visits a vertex w, it performs two tasks. The �rst task isto determine whether a ba
k edge to w must be embedded based on whether the ba
k edge(v; w) exists in G and not in ~G. If so, then any 
hild bi
onne
ted 
omponent roots betweenv0 and w (obtained in the manner des
ribed below) are merged and the new ba
k edge (v0; w)is embedded su
h that the external fa
e paths traversed from v0 to w form a proper fa
e withthe new ba
k edge. The se
ond task performed when visiting w is to determine whether whas any pertinent 
hild bi
onne
ted 
omponents. If not, then w is ina
tive, so the Walkdownobtains the su

essor s of w along the external fa
e. On the other hand, if w has a pertinent
hild bi
onne
ted 
omponent, then the Walkdown obtains the root w0 of a pertinent 
hildbi
onne
ted 
omponent with preferen
e for the root of an internally a
tive 
hild bi
onne
ted
omponent, if any.Traversal 
ontinues from w to the sele
ted 
hild bi
onne
ted 
omponent root w0, and adire
tion to 
ontinue traversal from w0 must be 
hosen. Both external fa
e paths originatingfrom w0 are s
anned to �nd the �rst verti
es x and y in both dire
tions that are not ina
tive.The path to an internally a
tive vertex is sele
ted. If both x and y are internally a
tive, thenthe 
hoi
e is arbitrary. If both x and y are externally a
tive, then the path to a pertinentvertex is sele
ted. If both are pertinent, then the 
hoi
e is arbitrary. If neither are pertinent9



(i.e. if x and y are stopping verti
es), then the 
hoi
e is also arbitrary be
ause a non-planarity
ondition dis
ussed in Se
tion 4 has been dis
overed and will soon 
ause the termination ofthe Walkdown.On
e a new non-virtual vertex in a 
hild bi
onne
ted 
omponent has been sele
ted forvisitation a

ording to the rules above, then w and w0 as well as indi
ators of the dire
tion bywhi
h w was entered and w0 was exited are pushed onto a merge queue. The pro
essing of thenext vertex then begins. The merge queue will 
ontinue to grow until the next vertex dire
tlyadja
ent to v by an unembedded ba
k edge is en
ountered, at whi
h point the merge queuewill be pro
essed so that all virtual verti
es are merged with their non-virtual 
ounterpartsprior to embedding the new ba
k edge.Perhaps the simplest way to 
ommuni
ate the result of merge queue pro
essing is to
onsider how its 
ontents would be pro
essed if it were a sta
k, i.e. 
onsider pro
essing itfrom the last element to the �rst. Ea
h virtual vertex w0 and 
orresponding non-virtualvertex w are popped from the sta
k, along with the dire
tional information. Immediatelyprior to merging w0 and w, w0 is the root of either a bi
onne
ted 
omponent or of a 
onne
ted
omponent formed by prior merge operations. In either 
ase, the orientations of all verti
esin the 
omponent rooted by w0 must be inverted, essentially 
ipping the 
omponent, if thedire
tion of entry into w opposes the dire
tion of exit from w0.Pro
essing the merge queue as a sta
k 
an obviously be very 
ostly. Although we deferremarks on linear time performan
e until Se
tion 5, we 
an give a hint of the optimization nowwhile also 
learing up the issue that our prior explanations have only mentioned bi
onne
ted
omponent 
ipping, not 
onne
ted 
omponent 
ipping. Consider pro
essing the merge queuein order. For ea
h pair w and w0, let win be one if w was entered from a 
ounter
lo
kwisedire
tion and zero otherwise, and let w0out be zero if w0 was exited in a 
ounter
lo
kwisedire
tion and one otherwise. Also, we augment the pro
essing of the merge queue with avariable named sign, whi
h is initially 1 and 
hanges between 1 and -1 whenever a bi
onne
ted
omponent 
ip o

urs. For ea
h 4-tuple (w, win, w0, w0out) pulled from the merge queue, thefollowing steps are performed. First, if the sign is 
urrently -1, then win is inverted (i.e.assigned the value 1 xor win) be
ause the -1 sign indi
ates that the bi
onne
ted 
omponent
ontaining w was 
ipped relative to when the 4-tuple was pushed onto the merge queue.Se
ond, we 
ip the bi
onne
ted 
omponent rooted by w0 if win and w0out are equal. Sin
ewin and w0out have opposite meanings, their equality signi�es opposition in the dire
tions ofentry and exit. Third, if we 
ipped the bi
onne
ted 
omponent, then its value is reversed(assigned -1 if it is 1, or 1 if it is -1). Fourth, we merge the adja
en
y list of w0 into theadja
en
y list of w between the two external fa
e edges in
ident to w. Then, we reiteratethese steps with the next 4-tuple from the merge queue until it is empty.It is easy to see that this strategy performs 
ip operations only on bi
onne
ted 
om-ponents, yet it a
hieves the same results as the 
onne
ted 
omponent 
ip. Although thisstrategy typi
ally does less work, it 
an still do too mu
h work over the entire embeddingpro
ess. However, we needed the strategy so the 
ip operation 
ould be restri
ted to bi-
onne
ted 
omponents, and it is still a helpful introdu
tion to the fully optimized versionappearing in Se
tion 5.
10



3.3 Example of Walkdown Pro
essingThis se
tion presents an example that demonstrates the key pro
essing rules of the Walkdownroutine. Figure 5(a) presents a partial embedding of a graph at the beginning of step v andwith the following edges still to embed: (u; d), (u; s), (u; x), (u; y), (v; p), (v; q), (v; t), (v; x),and (v; y). Note that the vertex i is ina
tive and the bi
onne
ted 
omponent rooted by w0is not pertinent. The square verti
es are externally a
tive. Now we will dis
uss the a
tionsperformed by the Walkdown to embed the ba
k edges from v to its des
endants.

Figure 5: An Example of the Walkdown for Step v. Square verti
es are externally a
tive dueto unembedded edges (u; d), (u; s), (u; x), and (u; y). Edges (v; p), (v; q), (v; t), (v; x), and(v; y) are to be added in step v. a) Embedding at the start of step v. b) Merge at 
 to add(v; x), then stop 
ounter
lo
kwise traversal. 
) Clo
kwise traversal visits p and embeds (v; p).d) Merge p and p0 and embed (v; q). e) Flip bi
onne
ted 
omponent rooted by p00, merge pand p00, merge r and r0, then embed (v; t). f) Embed (v; y) and stop 
lo
kwise traversal.The �rst traversal in the 
ounter
lo
kwise dire
tion begins at v0, travels to 
, then de-11



s
ends to 
0. The �rst a
tive verti
es along the two external fa
e paths are x and p, bothof whi
h are externally a
tive and pertinent. The de
ision to pro
eed in the dire
tion of xis therefore made arbitrarily. At x, there is a ba
k edge to embed, so the Walkdown �rstmerges 
 and 
0 with no 
ip operation sin
e we happened to 
onsistently travel 
ounter
lo
k-wise when entering 
 and exiting 
0. The result of the merge and the embedding of (v; x)appears in Figure 5(b).On
e the ba
k edge to x has been embedded, the Walkdown determines that x has nopertinent 
hild bi
onne
ted 
omponents and is therefore a stopping vertex that terminatesthe 
ounter
lo
kwise traversal. The se
ond traversal 
ommen
es in a 
lo
kwise dire
tionfrom v0 to 
. Note that as soon as 
 and 
0 were merged in the �rst traversal, 
 was no longerexternally a
tive be
ause it has no dire
t edge to an an
estor of v and it has no separatedDFS 
hild with a lowpoint less than v. Thus, it is now possible to pro
eed beyond 
 to p inthe se
ond traversal.At p, the Walkdown �rst embeds the ba
k edge (v; p), the result of whi
h is shownin Figure 5(
). Then, the Walkdown determines that p has pertinent 
hild bi
onne
ted
omponents. The Walkdown sele
ts p0 be
ause it is the root of an internally a
tive 
hildbi
onne
ted 
omponent. The Walkdown des
ends to p0 and �nds that both paths lead to q,whi
h is internally a
tive. Next, p and p0 are merged and the ba
k edge (v; q) is embeddedas shown in Figure 5(d). Sin
e q be
omes ina
tive as a result, the Walkdown pro
eeds fromq to its su

essor on the external fa
e, whi
h is p.In this se
ond visitation of p, the Walkdown again tests whether a ba
k edge to p mustbe embedded, but sin
e the ba
k edge has already been embedded, the result is negative.The Walkdown again tests for pertinent 
hild bi
onne
ted 
omponents, but this time thereare no internally a
tive ones, so the Walkdown des
ends to p00. The two external fa
e pathsfrom p00 lead to externally a
tive verti
es r and s, but r is pertinent and s is not, so theWalkdown pro
eeds in a 
ounter
lo
kwise dire
tion from p00 to r (
ontrary to the 
lo
kwisedire
tion by whi
h the Walkdown entered p). At r, the Walkdown determines that there isno ba
k edge to embed, but r does have a pertinent 
hild bi
onne
ted 
omponent, so theWalkdown des
ends to r0. The two external fa
e paths from r0 lead to y and t. While y ispertinent, it is also externally a
tive, whereas t is internally a
tive. Thus, the 
lo
kwise pathto t is sele
ted, in opposition to the 
ounter
lo
kwise dire
tion used to enter r.At t, the Walkdown determines that a ba
k edge must be embedded. Based on the �rst4-tuple on the merge queue, the bi
onne
ted 
omponent rooted at p00 is 
ipped, the mergequeue sign is 
hanged to -1, and p00 merged with p. Now the se
ond 4-tuple is pulled fromthe merge queue. Although the dire
tion indi
ators asso
iated with exiting r and enteringr0 were in opposition when the 4-tuple was 
reated, the orientation of r has been inverted,whi
h we dete
t by the merge queue sign of -1. Thus, the value of rin is inverted, thebi
onne
ted 
omponent rooted at r0 is not 
ipped, and r0 is merged with r. Finally, the ba
kedge (v; t) is embedded. The result of these operations is shown in Figure 5(e).The 
lo
kwise traversal then 
ontinues from vertex t, whi
h is now ina
tive, to vertexy. The ba
k edge (v; y) is embedded as shown in Figure 5(f). On
e the ba
k edge to y isembedded, y is no longer pertinent sin
e it has no pertinent 
hild bi
onne
ted 
omponents.Thus, y is a stopping vertex that terminates the 
lo
kwise traversal of the Walkdown.
12



Figure 6: Walkdown Halting Conditions4 Proof of Corre
tnessThe Walkdown operations des
ribed in the example of the previous se
tion embedded all ofthe ba
k edges from v to its des
endants in the given input graph, but 
onsider what wouldhappen if the input graph also 
ontained the ba
k edge (v; w). Based on the pro
essingrules, the Walkdown 
learly 
annot traverse to w, so the Walkdown would terminate withoutembedding (v; w). For a given bi
onne
ted 
omponent B rooted by v
, if the two Walkdowntraversals embed all ba
k edges between v and des
endants of 
, then it is easy to see thatB remains planar and the algorithm 
ontinues. However, if some of the ba
k edges todes
endants of 
 are not embedded, then we show that the input graph is non-planar.The Walkdown may halt if it en
ounters two stopping verti
es while trying to determinethe dire
tion of traversal from the root of a pertinent 
hild bi
onne
ted 
omponent. This
ondition is depi
ted in Figure 6(a). Otherwise, if the Walkdown halts on a bi
onne
ted
omponent B without embedding all ba
k edges to des
endants of a virtual 
opy of v, thenboth Walkdown traversals were terminated by stopping verti
es appearing along the externalfa
e of B. This 
ondition is depi
ted by Figure 6(b).In Figure 6(a), u represents all unpro
essed an
estors of v, and (u; v) represents the DFStree path from v to its an
estors. The edge (v, r) represents the path of des
ent from vto a pertinent 
hild bi
onne
ted 
omponent rooted by a virtual 
opy of r. The Walkdowntraversal is prevented from visiting a pertinent vertex w by stopping verti
es x and y onboth external fa
e paths emanating from r. The 
y
le (r; x; w; y; r) represents the externalfa
e of the bi
onne
ted 
omponent. The dotted edges (u; x), (u; y) and (v; w) represent
onne
tions from a des
endant (x, y or w) to an an
estor (u or v) 
onsisting of either asingle unembedded ba
k edge or a path 
ontaining a tree edge to a separated DFS 
hild ofthe des
endant, zero or more additional tree edges, and an unembedded ba
k edge to thean
estor. Similarly, Figure 6(b) shows stopping verti
es x and y that prevent traversal fromrea
hing a pertinent vertex w in a bi
onne
ted 
omponent rooted by a virtual 
opy of v.Both diagrams depi
t minors of the input graph. Sin
e Figure 6(a) depi
ts a K3;3, theinput graph is non-planar. However, Figure 6(b) appears to be planar, so it is natural to askwhy the edge (v; w) was not embedded inside B, whi
h the Walkdown 
ould do by embedding(v; w) along the external fa
e, then embedding (v; x) su
h that (v; w) is surrounded inside the13



bounding 
y
le of B. In short, there is either some aspe
t of the 
onne
tion represented byedge (v; w) or some aspe
t of the verti
es embedded within B that prevents the Walkdownfrom embedding the 
onne
tion from w to v inside B. An examination of the possibilitiesrelated to these aspe
ts yields four additional non-planarity minors, or �ve in total, whi
hare depi
ted in Figure 7. Theorem 4.1 argues the 
orre
tness of our algorithm by showingthat one of the non-planarity minors must exist if the Walkdown fails to embed a ba
k edge,and the absen
e of the 
onditions that give rise to the non-planarity minors 
ontradi
ts theassumption that the Walkdown failed to embed a ba
k edge.

Figure 7: Non-planarity Minors of the Input GraphTheorem 4.1 Given a bi
onne
ted 
onne
ted 
omponent B with root v
, if the Walkdownfails to embed one or more ba
k edges from v to des
endants of 
, then the input graph G isnot planar.Proof. Figure 7(a) results if the merge queue is non-empty when either of the two Walkdowntraversals is halted by a stopping vertex. The input graph is non-planar sin
e Figure 7(a) isa K3;3.Figure 7(b) results if the pertinent vertex w has an externally a
tive pertinent 
hildbi
onne
ted 
omponent su
h that embedding the 
onne
tion from w to v inside B wouldpla
e an externally a
tive vertex z inside B. If the Walkdown halts without embedding the14



ba
k edge that would 
lear the pertinen
e of w, then the input graph is non-planar sin
eFigure 7(b) 
ontains a K3;3.Otherwise we 
onsider 
onditions related to having an obstru
ting path inside B that
ontains only internal verti
es of B ex
ept for two points of atta
hment along the externalfa
e: one along the path v, . . . , x, . . . , w, and the other along the path v, . . . , y, . . . , w.The obstru
ting path, whi
h is 
alled an x-y path, 
ontains neither v nor w. If su
h an x-ypath exists, then the 
onne
tion from w to v would 
ross it if the 
onne
tion were embeddedinside B. We use px and py to denote the points of atta
hment of the obstru
ting x-y path.Figure 7(
) depi
ts the 
ondition of having an x-y path in whi
h px atta
hed 
loser tov than x. Note that py 
an also be atta
hed 
loser to v than y. In fa
t, Figure 7(
) alsorepresents the symmetri
 
ondition in whi
h py is atta
hed 
loser to v than y (but px isatta
hed at x or farther from v than x). In all of these 
ases, the input graph is non-planarsin
e Figure 7(
) 
ontains a K3;3.Figure 7(d) depi
ts the 
ondition of having a se
ond path of verti
es atta
hed to v that(other than v) 
ontains verti
es internal to B that lead to an atta
hment point z alongthe x-y path. If this se
ond path exists, then input graph is non-planar sin
e Figure 7(d)
ontains a K3;3.Figure 7(e) depi
ts the 
ondition of having an externally a
tive vertex (possibly distin
tfrom w) along the lower external fa
e path stri
tly between px and py. If this 
onditiono

urs, then input graph is non-planar sin
e Figure 7(e) represents a K5 minor.Finally, suppose for the purpose of 
ontradi
tion that the Walkdown has failed to embed aba
k edge and none of the non-planarity 
onditions des
ribed above exist. The merge queuemust be empty due to the absen
e of the 
ondition of Figure 7(a). By the 
ontradi
tiveassumption, a bi
onne
ted 
omponent rooted by a virtual 
opy of v has a pertinent vertex walong the lower external fa
e path between stopping verti
es x and y. We address two 
asesbased on whether or not there is an obstru
ting x-y path.If there is no obstru
ting x-y path, then at the beginning of step v all paths between xand y in the embedding 
ontain w. Thus, w is a DFS an
estor of x or y (or both), and itbe
omes a merge point when its des
endants (x or y or both) are in
orporated into B. Whenthe Walkdown �rst visits w, it embeds a dire
t ba
k edge from w to v if one is required, so thepertinen
e of w must be the result of a pertinent 
hild bi
onne
ted 
omponent. However, theWalkdown preferentially sele
ts and pro
esses internally a
tive 
hild bi
onne
ted 
omponentsof w prior to atta
hing an externally a
tive pertinent 
hild bi
onne
ted 
omponent leadingto x or y. Thus, the pertinen
e of w must be due to an externally a
tive 
hild bi
onne
ted
omponent, whi
h 
ontradi
ts the pertinen
e of w sin
e the 
ondition of Figure 7(b) doesnot exist.On the other hand, suppose there is an obstru
ting x-y path, but none of the remainingnon-planarity minors apply. The highest x-y path is the x-y path that would be 
ontained bya proper fa
e 
y
le if the internal edges to v0 were removed, along with any resulting separable
omponents. At the beginning of step v, the highest x-y path and the lower external fa
epath from px to py formed the external fa
e of a bi
onne
ted 
omponent. Let r denotewhi
hever of px or py had a virtual vertex that was the root of that bi
onne
ted 
omponent,and let s denote one of px or py su
h that s 6= r. Sin
e the 
ondition of Figure 7(
) doesnot exist, s is equal to or an an
estor of x or y and was therefore externally a
tive whenthe Walkdown des
ended to r0. Moreover, when the Walkdown des
ended to r0, the �rsta
tive vertex along the path that is now the highest x-y path is s be
ause the 
ondition of15



Figure 7(d) does not exist. Des
ending from r0 along the path that is now the lower externalfa
e path between px and py, the existen
e of a pertinent vertex w implies that there are noexternally a
tive verti
es along the path due to the absen
e of the 
ondition of Figure 7(e).Thus, we rea
h a 
ontradi
tion to the pertinen
e of w sin
e the Walkdown preferentiallysele
ts the path of traversal leading from the root of a 
hild bi
onne
ted 
omponent to aninternally a
tive vertex. 2Figure 8 exempli�es the 
onditions des
ribed by the �nal 
ontradi
tion in the proof ofTheorem 4.1 for the 
ase r = py, s = px. In the example, px 6= x and py 6= y to promote
larity. At the beginning of step v, verti
es x and y must have been externally a
tive be
ausethey are stopping verti
es for the Walkdown on v0. Note that px is depi
ted as an an
estorof x and y is an an
estor of py be
ause the x-y path is atta
hed low (if there were a highpoint of atta
hment, then Figure 7(
) would apply). We let w be the �rst a
tive vertex alongthe 
lo
kwise external fa
e path des
ending from p0y, and we have assumed for the sake of
ontradi
tion that w is pertinent. Sin
e Figure 7(d) does not apply, px is the �rst a
tivevertex found along the 
ounter
lo
kwise external fa
e path des
ending from p0y. Finally, w isnot externally a
tive be
ause Figure 7(e) does not apply. In this 
ase, the Walkdown sele
tsw as the next vertex to pro
ess, but the assumption that w is pertinent at the end of step vimplies that px was sele
ted.

Figure 8: An Example for Theorem 4.15 Data Stru
tures and Optimizations5.1 DFS Parent and Lowpoint Cal
ulationsEa
h vertex in ~G is represented by a vertex stru
ture 
ontaining important information aboutthe vertex su
h as its adja
en
y list. Non-virtual vertex stru
tures 
ontain a few memberswhose values are obtained during the prepro
essing of the input graph G. The DFSParentmember indi
ates the depth �rst sear
h tree parent of a vertex (ex
ept that for a DFS treeroot, the value nil sin
e it has no parent). The leastAn
estor indi
ates the an
estor withthe least DFI adja
ent to the vertex by a ba
k edge in the input graph. The lowpoint of avertex is the minimum of its leastAn
estor and the lowpoint values of its DFS 
hildren. Thelowpoint is a well-known and simple vertex parameter that 
an be 
omputed by a post-order16



traversal of the depth �rst sear
h tree, or it 
an be 
omputed during the initial depth �rstsear
h [19℄.5.2 Vertex Array and Virtual Verti
esIn ~G, verti
es (virtual and non-virtual) are represented by an array of 2n vertex stru
tures.Using zero-based array indexing, verti
es are stored in lo
ations 0 to n � 1 and virtualverti
es are stored in lo
ations n to 2n� 1. More spe
i�
ally, a non-virtual vertex is storedat a lo
ation equal to its DFI, and a virtual vertex v
 is stored at lo
ation n+ 
. Thus, givena virtual vertex v
, its non-virtual 
ounterpart 
an be obtained in 
onstant time by obtainingthe DFSParent �eld in the vertex stru
ture for 
, where 
 is obtained by subtra
ting n fromthe lo
ation of v
.5.3 Externally A
tive Bi
onne
ted Components and Verti
esGiven a virtual vertex w
, it is possible to determine whether the bi
onne
ted 
omponent B
ontaining w
 is externally a
tive in 
onstant time. First, we obtain 
 by subtra
ting n fromw
, then we test the lowpoint of 
. If the lowpoint of 
 is less than v, then B is externallya
tive be
ause the DFS subtree rooted at 
 has at least one ba
k edge 
onne
tion to one ormore an
estors of v.To determine whether a given vertex w is pertinent, two additional members are added toea
h non-virtual vertex. The separatedDFSChildList 
ontains a 
ir
ular doubly linked list ofthe DFS 
hildren of a vertex that appear in separate bi
onne
ted 
omponents. Prior to theembedding of any ba
k edges, the separatedDFSChildList of a vertex 
ontains all of its DFS
hildren, sorted by their lowpoint values. The sort 
an be performed in worst-
ase lineartime by bu
ket sorting the verti
es based on their lowpoint values, then adding ea
h vertexin lowpoint order to the separatedDFSChildList of its DFSParent. Ea
h vertex re
eives amember named repInParentList to store a pointer to the representative of the vertex in theseparatedDFSChildList of its DFS parent. When the virtual vertex w
 is merged with itsnon-virtual 
ounterpart w, the repInParentList member of the 
hild 
 is used to remove 
from the separatedDFSChildList of its DFS parent w, whi
h 
an be done in 
onstant timesin
e the separateDFSChildList is doubly linked.A vertex w is externally a
tive in step v of the main algorithm loop if its leastAn
estor ofw is less than v or if the �rst vertex in the separatedDFSChildList of w has a lowpoint thatis less than v. The �rst test determines whether w has an unembedded ba
k edge dire
tly toan an
estor of v, and the se
ond test determines whether any 
hild bi
onne
ted 
omponentsof w are externally a
tive.5.4 Pertinen
e and the Walkup RoutineIn Se
tion 5.2, we dis
ussed how to obtain the non-virtual 
ounterpart of a given virtualvertex. However, it is too 
ostly to maintain su
h a dire
t 
onne
tion from a non-virtualvertex to all of its virtual verti
es. Instead, at the beginning of ea
h step v of the mainalgorithm loop (see Figure 4), the algorithm 
omputes a list of virtual verti
es that must bemerged with their respe
tive non-virtual 
ounterparts during the embedding of the ba
k edgesfrom v to its des
endants. Ea
h non-virtual vertex has a 
ir
ular doubly linked list 
alledpertinentBi
ompList that is initially empty. When a pertinent 
hild bi
onne
ted 
omponent17




ontaining the virtual vertex w
 is found, then w
 is added to the pertinentBi
ompList of w.When w
 is merged with w, w
 is removed from the pertinentBi
ompList of w (in 
onstanttime). At the end of step v, all pertinentBi
ompList members are returned to the emptystate, ex
ept of 
ourse if the Walkdown halts with a non-planarity 
ondition.When a virtual vertex w
 is added to the pertinentBi
ompList of w, it is either prependedor appended. Let B denote the pertinent 
hild bi
onne
ted 
omponent 
ontaining w
. If Bis externally a
tive, then w
 is appended; otherwise w
 is prepended. Sin
e the internallya
tive 
hild bi
onne
ted 
omponents appear �rst in the pertinentBi
ompList, the Walkdown
an preferentially sele
t an internally a
tive 
hild bi
onne
ted 
omponent, if one is available,in 
onstant time.To 
omplete the eÆ
ient implementation of the de�nition of pertinen
e, ea
h non-virtualvertex has an additional member 
alled adja
entTo and ea
h vertex stru
ture (in
ludingthose for virtual verti
es) has a member 
alled visited. All visited and adja
entTo membersare initially set equal to n and are used like 
ags. In a step v, the 
ag is set if it is equal tov and 
lear otherwise. The adja
entTo 
ag of a des
endant w of v is set equal to v at thebeginning of step v if there exists a ba
k edge (v; w) in the input graph. The adja
entTo
ag of w is 
leared as soon as the ba
k edge is embedded (so the Walkdown does not embedthe edge again if it revisits w). All visited 
ags are 
leared when the main algorithm loopde
rements v. The visited 
ag is only set by the Walkup routine des
ribed below.The Walkup routine is invoked at the beginning of step v on
e for ea
h ba
k edge (v; w)in the input graph, where w is a DFS des
endant of v. It �rst sets the adja
entTo 
ag of w.Then, the Walkup performs a loop that begins at w and simultaneously traverses both pathsoriginating from w around the external fa
e of the bi
onne
ted 
omponent Bw 
ontaining wuntil the root vertex r0 of Bw is en
ountered. If r0 is a virtual 
opy of v, then the Walkupterminates su

essfully. Otherwise, r0 is stored in the pertinentBi
ompList of the non-virtualvertex stru
ture r. The virtual 
opy is appended if Bw is externally a
tive and prependedotherwise. Then, the Walkup loop reiterates starting at r.Within ea
h bi
onne
ted 
omponent visited by Walkup, one of the two external fa
e pathsbetween r0 and w be
omes part of a new proper fa
e on
e the ba
k edge (v; w) is embedded.The Walkup performs external fa
e traversal in parallel to ensure that ea
h bi
onne
ted
omponent root is found with a 
ost not ex
eeding twi
e the size of the shortest path aroundthe external fa
e. This helps to ensure that the total 
ost of all Walkup operations is a
onstant fa
tor of the sum of degrees of proper fa
es in the embedding.The Walkup loop also sets the visited member of ea
h virtual and non-virtual vertex iten
ounters. Any future Walkup invo
ation in step v terminates immediately if it en
ountersa visited vertex stru
ture. The purposes of this optimization is to ensure that the 
umulativework done by all Walkup 
alls for the ba
k edges of v does not ex
eed a 
onstant fa
tor ofthe number of bounding edges in new proper fa
es formed during step v.5.5 Short-
ir
uit EdgesUnlike the Walkup, the Walkdown 
annot simply 
hoose the shortest path when it des
endsto a bi
onne
ted 
omponent root r0 and sele
ts a path to the next vertex to visit. TheWalkdown must �nd the �rst a
tive vertex along both external fa
e paths emanating fromr0, regardless of their length. It is possible to 
reate input graphs on whi
h the Walkdowntraverses an O(n) length path O(n) times. To re
tify this problem, the Walkdown 
an be18



modi�ed to eliminate the paths of ina
tive verti
es su
h that the immediate neighbors of avirtual vertex along the external fa
e are always a
tive.When the Walkdown is visiting a vertex w, it may be ina
tive or may be
ome ina
tiveafter adding a ba
k edge to w. The Walkdown simply obtains the su

essor s along theexternal fa
e and reiterates, visiting s. Before the Walkdown reiterates, we augment thepro
essing of an ina
tive vertex w by adding a spe
ial `short-
ir
uit' edge between s and theroot v0 of the bi
onne
ted 
omponent B, removing w from the external fa
e. However, toensure that we do not ex
eed the total edge limit of 3n � 5, the short-
ir
uit edge is notembedded if the adja
entTo member of s equals v, if B is not externally a
tive, or if B doesnot 
ontains s. Finally, sin
e ea
h short-
ir
uit edge is spe
ially marked, they are easy toremove after the main loop in Figure 4 is �nished.5.6 Edge RepresentationEa
h edge (u, v) is represented by a pair of edge re
ords that are inserted into the adja
en
ylists of u and v. The edge re
ord in the adja
en
y list of u indi
ates v as a neighbor andvi
e versa. The neighbor �eld of an edge re
ord indi
ates either a virtual or non-virtualvertex. An edge re
ord also 
arries a type member to indi
ate whether it is part of a treeedge, ba
k edge or short-
ir
uit edge. Ea
h edge re
ord has a sign member that is initially1 but 
hanged to -1 in a tree edge (w
; 
) if the bi
onne
ted 
omponent rooted by w
 mustbe 
ipped before w
 is merged with w.The edge re
ords for all edges are stored in an array of size k(3n � 5) for any 
onstantk � 2. The two edge re
ords representing an edge are stored at 
onse
utive lo
ations su
hthat traversal of an edge in either dire
tion is a 
onstant time operation. Given the positionp of an edge re
ord, the asso
iated edge re
ord is at position p+ 1 if p is even or at p� 1 ifp is odd. We refer to this 
al
ulated 
onne
tion between edge re
ords as the twin link.5.7 Adja
en
y Lists and Maintaining the External Fa
eThe adja
en
y list of ea
h virtual and non-virtual vertex is a doubly linked 
ir
ular list thatin
lude the vertex stru
ture plus the list of edge re
ords indi
ating ea
h neighbor. Thus, ea
hvertex stru
ture and edge re
ord 
ontains two pointers, denoted link[0℄ and link[1℄. Moreover,sin
e an edge re
ord link 
an indi
ate either another edge re
ord or a vertex stru
ture, itis ne
essary to be able to identify the type of obje
t at whi
h a link points. One way todo this is to 
reate a 
ommon stru
ture 
apable of representing either a vertex stru
ture oredge re
ord. Then, a single array 
an be used to store �rst the 2n vertex stru
tures then theedge re
ords, the links 
an be represented as indi
es into the array, and edge re
ords 
an bedistinguished by having a lo
ation of 2n or greater.The purpose of linking a vertex stru
ture into its adja
en
y list is two-fold. Firstly, ifthe vertex is on the external fa
e, then the vertex stru
ture's link[0℄ and link[1℄ pointersindi
ate edge re
ords of edges that join the vertex to the bounding 
y
le of the external fa
e.Se
ondly, if we have an edge re
ord of an edge on the bounding 
y
le of the external fa
e,then it is possible to obtain the vertex whose adja
en
y list 
ontains the edge re
ord be
auseeither link[0℄ or link[1℄ points to a vertex stru
ture (or both if the edge is the only one in asingleton bi
onne
ted 
omponent). 19



5.8 Merging and Flipping a Child Bi
onne
ted ComponentIn Se
tion 1, a 
ombinatorial planar embedding is de�ned to provide a 
lo
kwise ordered listof the neighbors of ea
h vertex. Sin
e it is easy to 
reate graphs that would require O(n)verti
es to be inverted O(n) times, we 
annot a�ord to dire
tly maintain a 
onsistent vertexorientation throughout the embedding pro
ess. Our solution is to relax the requirementthat a 
onsistent vertex orientation be maintained during embedding. Our data stru
turesmaintain a 
y
li
 order of the embedded edges of ea
h vertex, but individual verti
es 
anhave a 
lo
kwise or 
ounter
lo
kwise orientation. Te
hni
ally, we do not violate the de�nitionsin
e a 
onsistent orientation for all verti
es is well-de�ned and easy to re
over at any timeusing a depth �rst sear
h within ea
h bi
onne
ted 
omponent.Sin
e we need only maintain the 
y
li
 edge order of ea
h vertex, the bi
onne
ted 
om-ponent 
ip operation 
an be redu
ed to a simple augmentation of our pro
ess for merging avirtual vertex with its non-virtual 
ounterpart. When the Walkdown des
ends from a vertexw to a virtual vertex w0, four integers are pushed into the merge queue, whi
h are denotedw, win, w0 and w0out. The meaning of w and w0 have already been explained. The link in windi
ating the edge re
ord the Walkdown used to enter w is denoted win, and w0out denotesthe link in w0 indi
ating the edge re
ord the Walkdown used to exit w0 toward the nextvertex. When the Walkdown �nds a ba
k edge to embed, it embeds the edge, but it alsopro
esses the queue to merge all bi
onne
ted 
omponents it has en
ountered sin
e the lastedge embedding. The merge of w and w0 must o

ur su
h that the edge re
ords indi
atedby win and w0out be
ome 
onse
utive in the adja
en
y list of w and su
h that they lie on theproper fa
e 
reated by the ba
k edge being embedded.Merging w
 with w 
onsists of the following operations. First, w
 is removed from thehead of the pertinentBi
ompList of w, and 
 is removed from the separatedDFSChildListof w. Then, all settings in the edge re
ords of edges in
ident to w
 are 
hanged to indi
atein
iden
e with w. Then, a 
ir
ular list union of the adja
en
y lists of w and w0 o

urs. Thelink[win℄ edge re
ord of w and the link[w0out℄ edge re
ord of w0 are joined, and the link[1 xorw0out℄ edge re
ord of w0 be
omes the new link[win℄ edge re
ord of w.The bi
onne
ted 
omponent 
ip operation o

urs impli
itly as a part of 
orre
tly per-forming the 
ir
ular list union. Note that if win and w0out are equal, then the links in ea
hedge re
ord of the adja
en
y list of w0 must be swapped before the join operations des
ribedabove 
an result in a 
onsistent adja
en
y list. The swapping of the links in ea
h adja
en
ylist node inverts the orientation of w0 to be 
onsistent with w, but the orientations of alldes
endants of w0 are not 
hanged (be
ause it would take too long). Instead, the root edgein
ident to w0 is marked with a sign of -1 so that a post-pro
essing operation des
ribedbelow 
an re
over the proper orientation of the des
endants of w0. Note that the 
ippingoperation impli
itly inverts the orientation of all des
endants of w0, not just the verti
es inthe bi
onne
ted 
omponent with root w0.The details of these pro
esses are illustrated in Figures 9, 10, and 11. In Figure 9, wehave an overview of the embedding of ba
k edge (1, 7). Figure 9(a) shows the state ofthe data stru
tures during step 1 after embedding ba
k edges (1, 3) and (1, 4). Be
ausevertex 4 is externally a
tive, the �rst Walkdown traversal returns and the se
ond Walkdowntraversal begins at 10 su
h that ba
k edge (1, 7) will be embedded around the right hand side.However, sin
e vertex 8 is also externally a
tive, the bi
onne
ted 
omponent rooted at 20must be 
ipped so that vertex 8 remains on the external fa
e when edge (1, 7) is embedded.The result is shown in Figure 9(b). 20



Figure 9: Overview of Data Stru
tures for Flip OperationAn elaboration of Figure 9(a) appears in Figure 10. The rounded re
tangles are edgere
ords, and the double lines 
onne
ting them are twin links. The 
ir
les represent vertexstru
tures, ex
ept that verti
es 4 and 8 are represented by squares to indi
ate their externala
tivity. The single lines with bla
k and white dots for endpoints represent the links thatbind the adja
en
y list and the vertex stru
ture into a 
ir
ular doubly linked list.At this point of the embedding, all verti
es still have the same orientation. The edgere
ords in the adja
en
y list of any vertex 
an be traversed in 
ounter
lo
kwise order bytraversing the bla
k dot links to exit the vertex stru
ture and ea
h edge re
ord in the adja-
en
y list.As stated previously, the �rst Walkdown traversal embeds edges (1; 3) and (1; 4), thenstops at vertex 4. The se
ond Walkdown traversal restarts along the right side of edge (10; 2).Then, it des
ends to the pertinent 
hild bi
onne
ted 
omponent rooted at 20. Sin
e vertex7 is internally a
tive, the bi
onne
ted 
omponent must be 
ipped before merging so thatvertex 8 remains on the external fa
e.The results of the merge operation 
an be seen in Figure 11. The merge operation beginsby 
hanging all edge re
ords that 
ontain 20 so that they 
ontain 2. Then, we 
ip thebi
onne
ted 
omponent by inverting the 
ir
ular list union. Edge re
ord (2, 7) is joined with(2, 1), and edge re
ord (2, 8) is joined with vertex stru
ture 2. Note that the links of the edgere
ords formerly in 20 must be inverted in this 
ase so that the adja
en
y list of vertex 2 is
onsistent, i.e. a traversal of the adja
en
y list of vertex 2 
an be performed by 
onsistentlyusing the same 
olored dot link to exit the vertex stru
ture and ea
h edge re
ord.The inverted 
ir
ular list union has, however, impli
itly inverted the orientations of allof the des
endants of vertex 20. No other work was a
tually performed on the links in thesedes
endants, and the result is that the bla
k dots links now result in a 
lo
kwise ordering oftheir adja
en
y lists. Our algorithm a

ounts for this by marking the tree edge (2, 5) witha sign of -1.The �nal 
hange made in Figure 11 is the addition of the ba
k edge (1, 7). Sin
e weexited vertex 10 using edge re
ord (10; 2), the new edge re
ord (10; 7) is added between vertex21



Figure 10: Elaboration of Data Stru
tures Before Flip Operationstru
ture 10 and edge re
ord (10; 2). Sin
e the Walkdown entered vertex 7 using the edgere
ord (7; 20), the new edge re
ord (7; 10) is added between the vertex stru
ture for 7 and theedge re
ord for (7, 2). Thus, edge (1, 7) is on the external fa
e and has formed a new properfa
e in the embedding that in
ludes verti
es 1, 2, and 7.Based on the detail in Figure 11, it is evident that our strategy of bi
onne
ted 
omponent
ipping introdu
es a small wrinkle in how we traverse the external fa
e of bi
onne
ted
omponents. A 
ounter
lo
kwise walk of the external fa
e of the bi
onne
ted 
omponentnow rooted at 10 begins with vertex 10 then verti
es 4, 2, 8, 6, 7 and ba
k to 10. In detail,we exit vertex 10 using a bla
k dot link, then we exit vertex 4 using its bla
k dot link, thenwe exit vertex 2 using a bla
k dot link. This is be
ause verti
es 10, 4 and 2 have the sameorientation. However, if we exit vertex 8 using the bla
k dot link, this takes us ba
k to vertex2. This is be
ause vertex 8 has an opposing orientation as des
ribed above.To solve this problem, we swit
h fo
us from the link used to exit a vertex w and insteadmaintain the link used to enter its su

essor s (whi
h is determined spe
ially for singletonbi
onne
ted 
omponents, as des
ribed in Se
tion 5.9). Then, our algorithms simply exit avertex s from the opposing link. In the 
ase of vertex 8 in Figure 11, we enter from the edgere
ord (8, 2), whi
h 
orresponds to the bla
k dot link for vertex 8, so we exit from the whitedot link of vertex 8. Similarly, we rea
h verti
es 6 and 7 through bla
k dot links, so we exitea
h through their respe
tive white dot links, whi
h returns properly to vertex 10.22



Figure 11: Data Stru
tures After Flip and Ba
k Edge Embedding5.9 Traversing the External Fa
eDue to our bi
onne
ted 
omponent `
ip' strategy, an orientation for a vertex w that is
onsistent with the orientation of the root r0 of the bi
onne
ted 
omponent 
ontaining w isobtained by inverting w if the produ
t of the signs of the edges on the tree path from w tor is -1. This optimization does not te
hni
ally violate the de�nition of 
ombinatorial planarembedding be
ause 
onsistent vertex orientations are well-de�ned and easily re
overable bya depth �rst sear
h of ea
h bi
onne
ted 
omponent. However, the method of traversingthe external fa
e of a bi
onne
ted 
omponent be
omes slightly more involved than a simpletraversal of a 
y
le of verti
es and edges.During a traversal, suppose we have arrived at a vertex w from an edge 
ontaining theedge re
ord indi
ated by the link[win℄ member of w (where win is 0 or 1), and suppose wewould now like to travel to the su

essor s of w on the external fa
e. Let e denote the edgere
ord indi
ated by the link[wout℄ member of w, where wout = 1xorwin, and let etwin denotethe edge re
ord asso
iated with e by the twinLink. Either link[0℄ or link[1℄ of etwin indi
atesa vertex stru
ture, whi
h represents the su

essor vertex s. Finally, let sin be equal to 0 or1 su
h that link[sin℄ in s indi
ates etwin (or let sin equal win if s is degree one). Note thatwe tra
k the 0 or 1 link of an edge re
ord and not the edge re
ord itself be
ause it simpli�esthe task of keeping tra
k of the dire
tion of travel while des
ending through bi
onne
ted23




omponents 
ontaining a single tree edge.5.10 Re
overing an EmbeddingAfter the main algorithm loop (Figure 4), a simple post-pro
essing operation 
an be usedto impose a 
onsistent orientation on all verti
es in ea
h bi
onne
ted 
omponent of theembedding. The orientation of a vertex w relative to the root of the bi
onne
ted 
omponentis determined by the produ
t of the signs of the tree edges in the DFS tree path from w up tothe root of the bi
onne
ted 
omponent. If the produ
t equals -1, then w must be inverted byswapping the links in its vertex stru
ture and in ea
h edge re
ord of its adja
en
y list. Therequired produ
t for ea
h vertex 
an be 
omputed in an orderly fashion using a pre-ordertraversal of the portion of the depth �rst sear
h tree in the bi
onne
ted 
omponent.On
e ea
h bi
onne
ted 
omponent is oriented, any remaining virtual verti
es are mergedwith their non-virtual 
ounterparts (with no 
ipping operations). Virtual verti
es in the�nal embedding are representative of DFS tree roots and 
ut verti
es.6 Linear Time Implementation6.1 Walkup Pseudo-
odeAt the beginning of ea
h step v, the Walkup routine is invoked on
e per ba
k edge of G thatis in
ident to v and a des
endant w. As a result of all Walkup invo
ations, all pertinentverti
es and bi
onne
ted 
omponents are identi�ed. Pseudo-
ode for the Walkup appears inFigure 12, whi
h is an elaboration of the Walkup des
ription given in Se
tion 5.4.The adja
entTo 
ag in the des
endant vertex w is set in Line 1 of the pseudo-
ode inFigure 12. A traversal 
ontext 
onsists of a vertex and a dire
tion indi
ator, whi
h is a 0 or1 identifying whether the vertex was entered by the link[0℄ or link[1℄ edge re
ord. Lines 2and 3 initialize two traversal 
ontexts for the simultaneous walk around the external fa
es ofbi
onne
ted 
omponents. Sin
e the simultaneous traversal is being initialized to start withthe bi
onne
ted 
omponent 
ontaining w, both traversal 
ontexts start at vertex w and areassigned opposing dire
tion indi
ators.The loop beginning in Line 4 of the pseudo-
ode in Figure 12 terminates if traversalrea
hes v or, a

ording to Line 5, if a prior Walkup in step v has visited either of the verti
esx or y indi
ated by the two traversal 
ontexts. If a prior Walkup in step v has visited x ory, then the remaining virtual verti
es on the an
estor path from x or y up to v have alreadybeen re
orded in the pertinentBi
ompList members of their non-virtual 
ounterparts. Ifneither x nor y have been visited by the Walkup in step v, then they are marked as visitedin Line 6. Note that this in
ludes marking virtual verti
es as visited.Line 7 to 10 of the pseudo-
ode in Figure 12 determine whether either traversal 
ontexthas found the virtual vertex at the root of the bi
onne
ted 
omponent being traversed. Ifso, then Lines 11 to 18 add the virtual vertex, denoted z0, to the pertinentBi
ompList of itsnon-virtual 
ounterpart z and then transfer both traversal 
ontexts to z. Given z0, lines 11and 12 determine the lo
ation of z a

ording to the method des
ribed in Se
tion 5.2. Line13 ensures that the virtual vertex z0 is not added to the pertinentBi
ompList of z if z isequal to v be
ause v does not be
ome a merge point in step v. Line 14 tests whether thebi
onne
ted 
omponent rooted by z0 is externally a
tive a

ording to the method des
ribed24



Figure 12: The Walkup RoutinePro
edure: Walkupthis: Embedding Stru
ture ~Gin: A vertex w (a des
endant of the 
urrent vertex v being pro
essed)(1) Set the adja
entTo member of w equal to v(2) (x, xin)  (w, 1)(3) (y, yin)  (w, 0)(4) while x 6= v(5) if the visited member of x or y is equal to v, break the loop(6) Set the visited members of x and y equal to v(7) if x is a virtual vertex, z0  x(8) else if y is a virtual vertex, z0  y(9) else z0  nil(10) if z0 6= nil(11) 
  z0 � n(12) Set z equal to the DFSParent of 
(13) if z 6= v(14) if the lowpoint of 
 is less than v(15) Append z0 to the pertinentBi
ompList of z(16) else Prepend z0 to the pertinentBi
ompList of z(17) (x, xin)  (z, 1)(18) (y, yin)  (z, 0)(19) else (x; xin)  GetSu

essorOnExternalFa
e(x, xin)(20) (y; yin)  GetSu

essorOnExternalFa
e(y, yin)
in Se
tion 5.3. Lines 15 and 16 ensure that internally a
tive bi
onne
ted 
omponents appearearlier in a pertinentBi
ompList than those that are externally a
tive. Finally, Lines 17 and18 restart the simultaneous external fa
e traversal on the bi
onne
ted 
omponent 
ontainingz (or Line 4 terminates the pro
ess if z equals v).On the other hand, if Lines 7 to 10 of the pseudo-
ode in Figure 12 determine that neithertraversal 
ontext found the bi
onne
ted 
omponent root, then Lines 19 and 20 simply advan
eboth traversal 
ontexts to the next verti
es along the external fa
e by invo
ations of a simplelow-level routine 
alled GetSu

essorOnExternalFa
e, whi
h implements the traversal logi
des
ribed in Se
tion 5.9.Lemma 6.1 The Walkup routine a
hieves 
onstant amortized time per vertex of the inputgraph G. 25



Proof. Every line of the Walkup pseudo-
ode in Figure 12 expresses a 
onstant time oper-ation. The loop in Lines 4 to 20 operates over the shorter external fa
e path from a startingvertex to the root of ea
h bi
onne
ted 
omponent visited. Sin
e ea
h Walkup terminates assoon as it en
ounters a path traversed by a prior Walkup in step v, the 
onstant work ofthe loop body in Lines 5 to 20 is applied to paths that are no longer than the degrees of theproper fa
es formed as the ba
k edges are embedded that initiated the Walkup invo
ations.If the Walkdown fails to embed a ba
k edge in step v, then the planarity algorithm haltsin step v, so the 
ost of the Walkup invo
ations in step v 
an be asso
iated as a one-timeadditional O(n) 
ost. 26.2 Walkdown Pseudo-
odeOn
e all Walkup invo
ations have been performed in step v, the Walkdown routine is invokedon
e per tree edge of G that is in
ident to v and a 
hild 
. The Walkdown embeds ea
hba
k edge from v to a des
endant of 
. Pseudo-
ode for the Walkdown appears in Figure 13,whi
h is an elaboration of the Walkdown des
ription given in Se
tion 3.2.In Line 1 of the pseudo-
ode in Figure 13, the merge queue is 
reated (or 
leared if theimplementation 
reates it outside of the Walkdown routine). Line 2 iterates over the remain-ing pseudo-
ode to perform the 
ounter
lo
kwise and 
lo
kwise edge embedding traversals.Line 3 obtains the su

essor of v0 based on the dire
tion sele
ted by the Line 2 loop variablev0out. Line 4 begins a loop that advan
es the traversal 
ontext (w;win) until it returns to v0,though the loop may be stopped before this o

urs, as des
ribed below.When visiting a vertex w, the �rst task is to determine whether a ba
k edge should beembedded between w and v0, whi
h is tested by Line 5 of the pseudo-
ode in Figure 13. If so,then Lines 6 to 9 merge bi
onne
ted 
omponents and embed the ba
k edge. Spe
i�
ally, Line6 iterates while the merge queue is not empty, and Line 7 invokes a routine that pulls ea
h4-tuple (r; rin; r0; r0out) from the merge queue and performs the merge of r and r0 des
ribedin Se
tion 5.8, whi
h in
ludes the 
ip operation if needed as well as removing the ne
essaryelements from the pertinentBi
ompList and separatedDFSChildList of r. On
e this is done,Line 8 embeds the ba
k edge (v0; w) su
h that its edge re
ords are indi
ated by link[v0out℄ inv0 and link[win℄ in w. Finally, Line 9 
lears the adja
entTo 
ag of w so that another ba
kedge to w is not embedded if the Walkdown revisits w.On
e the ba
k edge embedding task is done, the se
ond task of the Walkdown is to deter-mine whether a vertex w has any pertinent 
hild bi
onne
ted 
omponents to be pro
essed,whi
h is tested in Line 10 of the pseudo-
ode in Figure 13. If so, the Lines 11 to 21 push a new4-tuple onto the merge queue and des
end the traversal to a 
hild bi
onne
ted 
omponent ofw. Line 11 pushes vertex w and the dire
tion of entry win onto Q. Line 12 sele
ts the �rstelement of the pertinentBi
ompList of w, whi
h is guaranteed to be the root of an internallya
tive 
hild bi
onne
ted 
omponent if any exist in the list (i.e. the roots of internally a
tive
hild bi
onne
ted 
omponents are at the beginning of the pertinentBi
ompList be
ause theyare prepended by the Walkup). Lines 13 and 14 
reate two traversal 
ontexts to �nd the �rsta
tive vertex along both external fa
e paths emanating from w0. When short-
ir
uit edgesare used, the desired a
tive verti
es are guaranteed to be neighbors of w0. Lines 15 to 18implement the de
ision logi
 about whi
h path to take from w0, and Lines 19 to 21 pushesw0 and an indi
ator w0out of the 
hosen dire
tion to the next vertex to be visited.26



Figure 13: The Walkdown RoutinePro
edure: Walkdownthis: Embedding Stru
ture ~Gin: A virtual vertex v0 asso
iated with DFS 
hild 
(1) Create an empty merge queue Q(2) for v0out in f0; 1g(3) (w;win)  GetSu

essorOnExternalFa
e(v0, 1 xor v0out)(4) while w 6= v0(5) if the adja
entTo member of w is equal to v,(6) while Q is not empty,(7) MergeBi
onne
tedComponent(Q)(8) EmbedBa
kEdge(v0, v0out, w, win)(9) Set the adja
entTo member of w equal to n(10) if the pertinentBi
ompList of w is non-empty,(11) Push (w;win) into Q(12) w0  value of �rst element of pertinentBi
ompList of w(13) (x; xin)  GetA
tiveSu

essorOnExternalFa
e(w0, 1)(14) (y; yin)  GetA
tiveSu

essorOnExternalFa
e(w0, 0)(15) if x is internally a
tive, (w;win)  (x; xin)(16) else if y is internally a
tive, (w;win)  (y; yin)(17) else if x is pertinent, (w;win)  (x; xin)(18) else (w;win)  (y; yin)(19) if w equals x, w0out  0(20) else w0out  1(21) Push (w0; w0out) into Q(22) else if w is ina
tive,(23) (w;win)  GetSu

essorOnExternalFa
e(w, win)(24) if the lowpoint of 
 = v0 � n is less than vand the adja
entTo member of w is not equal to v,(25) EmbedShortCir
uitEdge(v0, v0out, w, win)(26) else break the `while' loop(27) if Q is non-empty, break the `for' loopIf, on the other hand, Line 10 determined that the vertex w had no pertinent 
hildbi
onne
ted 
omponents, then w is not pertinent sin
e a ba
k edge to w was embedded by27



Lines 5 to 9 if needed. Thus, w is either ina
tive or externally a
tive. A vertex is externallya
tive if its leastAn
estor member is less than v or if the lowpoint of the �rst 
hild in itsseparatedDFSChildList is less than v (the list is sorted by lowpoint, so the �rst 
hild has theleast lowpoint). If Line 22 determines that w is ina
tive, then Line 23 obtains the su

essoralong the external fa
e, and Lines 24 and 25 embed a short-
ir
uit edge if one is required.Note that an ina
tive vertex is only en
ountered if it is in the same bi
onne
ted 
omponentas v0, so a test to ensure that Q is empty is not needed. The �rst test of Line 24 ensuresthat the bi
onne
ted 
omponent 
ontaining the ina
tive vertex is externally a
tive so that ifthe addition of a short-
ir
uit edge results in having only two edges along the external fa
e,then the fa
e is guaranteed to be bise
ted in a later step. The se
ond test in Line 24 ensuresthat a short-
ir
uit edge will not be embedded if the next loop iteration will embed a ba
kedge. Thus, the use of short-
ir
uit edges does not result in any fa
es of degree 2 in the �nalplanar embedding (so the planar graph edge limit is not violated by the use of short-
ir
uitedges). If these 
riteria are met, then Line 25 embeds the short-
ir
uit edge in the samemanner as a ba
k edge ex
ept that it is marked as a short-
ir
uit edge to fa
ilitate removalafter the algorithm �nishes embedding edges.Finally, if the vertex w being visited is neither pertinent nor ina
tive, then it must be anexternally a
tive stopping vertex, so Line 26 stops the traversal for the dire
tion indi
ated byv0out. Line 27 breaks the outer loop, potentially stopping it from making the se
ond traversalfor v0out = 1 if a stopping vertex was en
ountered on Line 26 when Q was non-empty. Itis not stri
tly ne
essary to perform this a
tion, but it is useful if Q must be preserved andreturned by the Walkdown, as is the 
ase for Kuratowski subgraph isolation (see Se
tion 7).Lemma 6.2 The Walkdown routine a
hieves 
onstant amortized time per vertex of the inputgraph G.Proof. Ea
h line of the Walkdown pseudo-
ode in Figure 13 expresses a 
onstant timeoperation ex
ept Line 7, 12 and 13. In Line 7, merging a virtual vertex performs 
onstantwork on the virtual vertex and its non-virtual 
ounterpart plus 
onstant work per edgein
ident to the virtual vertex. Sin
e a merge never performs work on a virtual vertex or anedge more than on
e, the total 
ost is O(n), or 
onstant amortized time per vertex. As forLines 12 and 13, ea
h desired vertex is found after traversing a single edge due to short-
ir
uit edges embedded in prior steps (greater than v). Thus, the while loop in Lines 4 to 26a
hieves 
onstant amortized time in ea
h iteration. Ea
h time a ba
k edge or short-
ir
uitedge is embedded, the number of iterations performed sin
e the last edge was embedded orsin
e the loop started is limited to the length of the 
y
le bounding the proper fa
e thatis formed when the new edge is added. Thus, the total 
ost of all while loop iterations isO(n), or 
onstant amortized time per vertex, ex
ept the iterations that o

ur after the lastedge is embedded by the while loop. Sin
e the while loop �nds a stopping vertex in at mostone iteration after the last edge is embedded, the 
ost of �nding stopping verti
es 
an beasso
iated with the tree edge on whi
h the Walkdown was invoked. If the while loop stopsdue to the 
ondition of Line 4, then the bi
onne
ted 
omponent being pro
essed has be
omeina
tive, so the 
ost of traversing its external fa
e 
an be 
harged as a one-time extra 
ostper vertex and edge on the external fa
e (an ina
tive bi
onne
ted 
omponent is never visitedagain by the Walkdown). Finally, additional 
onstant time 
osts of Lines 1 to 3 and 27 
anbe asso
iated with the tree edge on whi
h the Walkdown was invoked. 228



6.3 Planarity by Edge AdditionThis se
tion presents the top-level routine of our new planarity algorithm. The pseudo-
odein Figure 14 is an elaboration of the high-level algorithm in Figure 4 that 
an a
hieve O(n)performan
e using the data stru
tures and optimizations in Se
tion 5 as well as the optimizedversions of Walkup and Walkdown appearing in Se
tions 6.1 and 6.2.Figure 14: The Edge Addition Planarity AlgorithmPro
edure: Planarityin: Simple undire
ted graph G with n � 2 verti
es and m � 3n� 5 edgesout: An indi
ation of whether or not G is planar and an embedding stru
ture~G 
ontaining either a planar embedding of G or a Kuratowskisubgraph of G.(1) Perform depth �rst sear
h and lowpoint 
al
ulations for G(2) Create and initialize ~G based on G, in
luding 
reation ofseparatedDFSChildList for ea
h vertex, sorted by 
hild lowpoint(3) for ea
h vertex v 2 G(4) for ea
h DFS 
hild 
 of v in G,(5) Embed tree edge (v
; 
) in ~G(6) for ea
h vertex v from n� 1 to 0 in des
ending order(7) for ea
h ba
k edge of G in
ident to v and a des
endant w(8) ~G.Walkup(w)(9) for ea
h DFS 
hild 
 of v in G(10) v0  
+ n(11) ~G.Walkdown(v0)(12) for ea
h ba
k edge of G in
ident to v and a des
endant w(13) if the adja
entTo member of w in ~G equals v(14) ~G.IsolateKuratowskiSubgraph(G, v)(15) return (NONPLANAR, ~G)(16) Delete short-
ir
uit edges(17) for ea
h bi
onne
ted 
omponent B rooted by a virtual vertex r0(18) Impart 
onsistent orientation to verti
es in B(19) Merge ea
h remaining virtual vertex with its non-virtual 
ounterpart(20) return (PLANAR, ~G)In the pseudo-
ode of Figure 14, Line 1 performs the depth �rst sear
h that assigns adepth �rst index (DFI) and depth �rst sear
h parent to ea
h vertex and that partitions theedges into tree edges and ba
k edges. Line 2 
reates a data stru
ture ~G with 2n vertexstru
tures and 3n � 5 pairs of edge re
ords. The members of vertex stru
tures and edgere
ords are initialized in the manner des
ribed in Se
tion 5. Lines 3 to 5 embed in ~G a29



singleton bi
onne
ted 
omponent for ea
h tree edge of G. Lines 6 to 16 embed the ba
kedges (or dis
over that G is not planar). Line 6 begins a loop that iterates through ea
hvertex in reverse DFI order. Lines 7 and 8 invoke the Walkup routine of Se
tion 6.1 for ea
hba
k edge from v to a des
endant w. Lines 9 to 11 invoke the Walkdown routine of Se
tion6.2 for ea
h tree edge from v to a 
hild 
. After 
ompleting all Walkdown invo
ations,, Lines12 and 13 test for non-planarity by determining if the Walkdown failed to embed any ba
kedges. If so, then Lines 14 and 15 isolate a Kuratowski subgraph with a routine des
ribed inSe
tion 7 and return the result along with an indi
ation that G is not planar. On the otherhand, if the loop in Lines 6 to 15 of the pseudo-
ode in Figure 14 embeds all ba
k edgesof G in ~G, then a few post pro
essing steps are performed in Lines 16 to 20 to re
over theembedding. The short-
ir
uit edges are removed in Line 16, Lines 17 to 19 obtain a 
onsistentorientation for all verti
es (see Se
tion 5.10), and Line 20 returns the 
ombinatorial planarembedding of G in ~G along with an indi
ation that G is planar. Theorem 6.3 asserts thatthis algorithm produ
es a 
ombinatorial planar embedding in linear time.Theorem 6.3 The Planarity algorithm in Figure 14 (in
luding the optimized data stru
turesand subordinate routines de�ned in this paper) produ
es a 
ombinatorial planar embedding~G of a planar graph G in O(n) time.Proof. The depth �rst sear
h and lowpoint 
al
ulations in Line 1 are O(n) [19℄. Theinitialization in Line 2 is O(n) by the methods des
ribed in Se
tion 5. Lines 3 to 5 examineea
h edge of G and perform a 
onstant time pro
ess for ea
h tree edge to 
reate a singletonbi
onne
ted 
omponent in ~G. Sin
e the number of edges is O(n), Lines 3 to 5 have an O(n)
ost in total. Line 6 performs n iterations. The loop on Line 7 examines ea
h edge of a givenvertex v to �nd ba
k edges leading to des
endants of v. This results in a total 
ost that isa 
onstant fa
tor of the number of edges, whi
h is O(n). Line 8 invokes the Walkup, whi
ha
hieves 
onstant amortized time by Lemma 6.1. Line 9 examines ea
h edge of a vertex vto �nd tree edges leading to 
hildren of v, whi
h again has an O(n) total 
ost. Line 10 isa 
onstant time operation per tree edge, or O(n) in total. Line 11 invokes the Walkdownroutine, whi
h a
hieves 
onstant amortized time by Lemma 6.2 for an O(n) total 
ost. Theloop on Line 12 again examines all edges of v, for a total O(n) 
ost, and Line 13 exe
utesa 
onstant time operation on ea
h ba
k edge from v to a des
endant, again resulting in anO(n) total 
ost. Lines 14 and 15 are not appli
able to planar graphs (but will also be shownto a
hieve O(n) performan
e by Theorem 7.1). Line 16, the loop in Lines 17 and 18, andLine 19 are ea
h simple O(n) operations, and Line 20 is a 
onstant time operation. 27 Kuratowski Subgraph Isolator7.1 Determining the Non-planarity MinorAfter performing a few prepro
essing steps to delete the short-
ir
uit edges and impart a
onsistent orientation to the verti
es in ea
h bi
onne
ted 
omponent of the partial embedding~G, the pro
ess of isolating a Kuratowski subgraph begins by taking steps to sele
t a non-planarity minor from those in Theorem 4.1 (see Figure 7) to be used as a basis for �ndinga K3;3 or K5 homeomorph. We �rst �nd an unembedded ba
k edge (v; z) (i.e., a vertexz whose adja
entTo member still equals v at the end of step v), then we sear
h the DFS30



tree path from z until a vertex 
 is found whose DFSParent is v (thus, v
 is the root of abi
onne
ted 
omponent on whi
h the Walkdown failed). The �rst a
tive verti
es x and yalong both external fa
e paths emanating from v
 are then obtained (note that x and y arenot ne
essarily neighbors of v
 be
ause the short-
ir
uit edges have been removed). If x ory is not a stopping vertex (i.e. if either has a non-empty pertinentBi
ompList), then theWalkdown on v
 must have been halted with a non-empty merge queue. The Walkdown 
anbe 
alled again to re
onstru
t the merge queue and obtain the last entry, whi
h 
ontains thebi
onne
ted 
omponent root r0 whose non-virtual 
ounterpart r is depi
ted in non-planarityminor A. Note that invoking the Walkdown again 
ould result in more short-
ir
uit edges,but these are deleted later be
ause they are not used when isolating a K3;3 homeomorphbased on minor A. Alternately, one 
ould simply postpone the short-
ir
uit edge deletionuntil after the Walkdown invo
ation. Either way, the values of x and y must then be 
hangedto the �rst a
tive verti
es both external fa
e paths emanating from r0 (again, note that xand y are not ne
essarily neighbors of r0 on
e the short-
ir
uit edges have been removed).Next, a pertinent vertex w is obtained on the lower external fa
e path between x and y(i.e. the external fa
e path stri
tly between x and y that ex
ludes the bi
onne
ted 
omponentroot). If we have not already identi�ed non-planarity minor A above, then non-planarityminor B 
an be used to isolate a Kuratowski subgraph if w has an externally a
tive pertinent
hild bi
onne
ted 
omponent, whi
h o

urs when w has a non-empty pertinentBi
ompListin whi
h the last element is a virtual vertex wd, where the lowpoint of d is less than v.The failure of this test indi
ates that one of non-planarity minors C, D or E is appli
able(a

ording to Theorem 4.1), and ea
h has an x-y path.The highest x-y path is obtained by temporarily removing the internal edges in
ident tov
, then traversing the proper fa
e bordered by v
 and its two remaining in
ident edges. Dueto the removal of the edges, the proper fa
e may have a number of 
omponents separable by
ut verti
es. These are easily dete
ted by the fa
t that the traversal arrives at verti
es it haspreviously visited. The proper fa
e traversal starts at v
 and moves toward x, pushing ea
hvisited vertex onto a sta
k. Ea
h time a vertex on the external fa
e path (v
, . . . , x, . . . ,w) is found, the sta
k is emptied the newly found vertex is pushed. Ea
h time a previouslyvisited vertex is en
ountered, the sta
k is popped up to the last o

urren
e of that vertex.As soon as a vertex along the external fa
e path (v
, . . . , y, . . . , w) is visited (and pushed),then the sta
k 
ontains the list of verti
es in the x-y path, with py on the top and px on thebottom. If either px or py is atta
hed high (i.e. px is between v
 and x or py is between v
and y), then non-planarity minor C 
an be used to isolate a Kuratowski subgraph.If both px and py are atta
hed low, then the internal edges of v
 are restored, and a test ismade for non-planarity minor D by s
anning the internal verti
es of the x-y path for a vertexz whose x-y path edges are not 
onse
utive (ignoring the possible inter
ession of the vertexstru
ture for z). If an intervening edge exists, then it 
an be used by the proper fa
e walkroutine to traverse from z to v
 now that the internal edges of v
 have been restored. On theother hand, if the desired path for non-planarity minor D is not found, then Theorem 4.1guarantees that non-planarity minor E is appli
able, so an externally a
tive vertex, possiblyw but not px or py, exists along the lower external fa
e path (px, . . . , w, . . . , py).
31



7.2 Marking a K3;3 Homeomorph Based on Minors A, B, C and DSin
e non-planarity minors A through D 
ontain K3;3, a subgraph homeomorphi
 to K3;3 isisolated when one of those minors is found. Marking the edges and verti
es asso
iated witha Kuratowski subgraph 
onsists mainly of traversing tree paths and external fa
e 
y
les.A few umembedded ba
k edges must also be added (and marked, in
luding endpoints) to
omplete the Kuratowski subgraph.In ea
h minor, the dotted edge (u; x) may represent an unembedded ba
k edge betweenan an
estor u of the 
urrent vertex v and a vertex x, or it may represent an unembeddedba
k edge from u to a des
endant of x plus the tree path from the des
endant to x. Theformer 
ase o

urs if the leastAn
estor member of x is less than v. In the latter 
ase, ux isthe lowpoint of the �rst element 
 in the separatedDFSChildList of x, and the des
endant dxof x is the neighbor of ux in G with the least DFI greater than or equal to 
 (su
h that dx isin the DFS subtree rooted by 
). If (u; x) represents a single unembedded ba
k edge, then itis added and marked. Otherwise, the DFS tree path from dx to x is marked by traversing theDFS tree path (for ea
h vertex, the edge to the parent must be found so it 
an be marked),and the unembedded ba
k edge (ux; dx) is added and marked.The same routines apply to (u; y) and similar routines apply to (v; w). If the adja
entTomember of w is set, then (v; w) represents a single unembedded edge. Otherwise, we obtainthe last element w
 in the pertinentBi
ompList of w, then we obtain the des
endant dw ofw by s
anning the adja
en
y list of v in G to obtain the neighbor with the least DFI greaterthan or equal to 
 (su
h that dw is in the DFS subtree rooted by 
). If (v; w) represents asingle unembedded ba
k edge, then it is added and marked. Otherwise, the tree path fromdw to w is marked in the same way as the path from dx to x, and the ba
k edge from dw tov is added and marked.Given the above simple operations, marking the edges and verti
es of a Kuratowskisubgraph based on non-planarity minor A 
an be 
ompleted as follows. Traverse the externalfa
e of the bi
onne
ted 
omponent rooted by r0, marking all edges and verti
es visited. Then,stopping verti
es x and y and a pertinent vertex w 
an be found given the bi
onne
ted
omponent root r0 in the same manner as they are found for a bi
onne
ted 
omponent withroot v
 in Se
tion 7.1. Then, add the unembedded edges and mark paths 
orrespondingto (u; x), (u; y) and (v; w) as des
ribed above. Finally, mark the DFS tree path from r towhi
hever of ux and uy has the lower DFI.Marking the edges and verti
es of a Kuratowski subgraph based on non-planarity minorB is quite similar. Traverse the external fa
e of the bi
onne
ted 
omponent rooted by v
,marking all edges and verti
es visited. Then, mark the edges and verti
es 
orresponding to(u; x), (u; y) as before. The last element wz of the pertinentBi
ompList of w is obtained. Letuz denote the lowpoint of z, let dz denote the neighbor of uz with the least DFI greater thanor equal to z, and let dw denote the neighbor of v with the least DFI greater than or equalto z. Mark the DFS tree paths from dw to w, from dz to z, and add and mark the edges(uz; dz) and (v; dw). Finally, mark the DFS tree path from max(ux; uy; uz) to min(ux; uy; uz).Although the endpoints v and max(ux; uy; uz) are marked by other operations, the path fromv to max(ux; uy; uz) is not marked be
ause the 
orresponding edge in non-planarity minorB, (u; v), is not needed to form a K3;3.Non-planarity minor C represents two symmetri
 
ases. If px is a high point of atta
h-ment, then the path 
orresponding to edge (v; y) is not required to form a K3;3, so we removethe external fa
e path from v
 to the nearer of y and py. On the other hand, if px is not32



atta
hed high, then py must be atta
hed high, so instead we remove the path between v
 andx. Thus, if both px and py are atta
hed high, then the path (v
, . . . , x, . . . , w, . . . , y, . . . ,py) is marked. If only px is atta
hed high, then the path (v
, . . . , x, . . . , w, . . . , y). If onlypy is atta
hed high and the path (x, . . . , w, . . . , y, . . . , v
) is marked. The implementation isotherwise straightforward. The edges and verti
es 
orresponding to (u; x), (u; y) and (v; w)are marked as des
ribed above, the DFS tree path from v to the minimum of ux and uy ismarked, and the x-y path, found by the pro
ess des
ribed in Se
tion 7.1, is marked.In non-planarity minor D, the edges (v; x) and (v; y) are not required to form a K3;3.Marking the edges and verti
es of a Kuratowski subgraph based on non-planarity minor Dpro
eeds as follows. Mark the lower external fa
e path (x; : : : ; w; : : : ; y). Mark the x-y pathand se
ond internal path, whi
h are found by the pro
ess des
ribed in Se
tion 7.1. Finally,the edges and verti
es 
orresponding to (u; x), (u; y) and (v; w) are marked as des
ribedabove, and the DFS tree path from v to the minimum of ux and uy is marked.7.3 Marking a K3;3 or K5 Homeomorph Based on Minor ENon-planarity minor E represents a K5 minor, so the te
hniques to be used are quite similarto the prior isolators. However, before a Kuratowski subgraph 
an be isolated based onminor E, some additional 
ases must be 
onsidered sin
e a K5 minor often 
orresponds toa K3;3 homeomorph rather than a K5 homeomorph. Figure 15 depi
ts four additional K3;3minors. Minor E1 o

urs if the pertinent vertex w is not externally a
tive (i.e. a se
ondvertex z is externally a
tive along the lower external fa
e path stri
tly between px and py).If this 
ondition fails, then w = z. Minor E2 o

urs if the external a
tivity 
onne
tion fromw to an an
estor of v, denoted uw, is a des
endant of ux and uy. Minor E3 o

urs if ux anduy are distin
t and at least one is a des
endant of uw. If none of these 
onditions o

ur, thenwe sele
t minor E4 if either px 6= x or py 6= y. Finally, if none of the 
onditions for minorsE1 to E4 o

ur, then a K5 homeomorph 
an be obtained based on minor E.As with minors A to D, there are symmetries to 
ontend with and some edges of ea
hminor are not needed to form aK3;3. For minorsE1 and E2 it is easy to handle the symmetriesbe
ause, with a few assignments, they 
an be redu
ed to minors C and A, respe
tively. MinorE3 does not require the edges (x, w) and (y, v) to form a K3;3, and minor E4 does not requirethe edges (u, v) and (w, y) to form a K3;3. Moreover, note that the omission of edges fromthe external fa
e of the bi
onne
ted 
omponent rooted by v must a

ount for the fa
t that pxor py may have been edge 
ontra
ted into x or y in the depi
tion of the minor. For example,eliminating the edge (w; y) in minor E4 
orresponds to eliminating the path between w andpy but not the path from py to y.As for symmetries, minor E1 in Figure 15(a) depi
ts z between x and w along the path(x, . . . , z, . . . , w, . . . , y), but there is a symmetri
 
ase in whi
h z appears between w andy along the path (x, . . . , w, . . . , z, . . . , y). Also, Figure 15(
) depi
ts minor E3 with ux anan
estor of uy, but there is a symmetri
 
ase in whi
h uy is an an
estor of ux. For minorE4, Figure 15(d) depi
ts px distin
t from x (and py 
an be equal to or distin
t from y), butif px = x, then py must be distin
t from y. Finally, note that the symmetri
 
ases havedi�erent edges that have to be deleted to form a K3;3.Marking the edges and verti
es of a Kuratowski subgraph based on non-planarity minorE1 pro
eeds as follows. If the externally a
tive vertex z is between px and w (as depi
ted inFigure 15(a)), then redu
e to minor C after setting x equal to z su
h that px is a high point33



Figure 15: More K3;3 Minors from Minor E. (a) Minor E1, (b) Minor E2, (
) Minor E3, (d)Minor E4of atta
hment for the x-y path. For the symmetri
 
ase in whi
h z is between w and py,then redu
e to minor C after setting y equal to z su
h that py is a high point of atta
hmentfor the x-y path.Marking a Kuratowski subgraph based on non-planarity minor E2 pro
eeds as follows.If the x-y path was previously marked by the implementation, then remove the markings.If the leastAn
estor of w is less than v, then let uw denote the leastAn
estor of w andlet dw be equal to w. Otherwise, let uw denote the lowpoint of the �rst 
hild 
 in theseparatedDFSChildList of w, and let dw denote the the neighbor of uw in G with the leastDFI greater than or equal to 
 (su
h that dw is in the DFS subtree rooted by 
). Set thestep variable v to uw. If dw equals w, then set the adja
entTo 
ag of w; otherwise, set thepertinentBi
ompList of w equal to the list 
ontaining only 
. As a result, w satis�es thede�nition of pertinen
e for step uw. Moreover, x and y are still externally a
tive be
ause uxand uy are an
estors of uw. Thus, a redu
tion to minor A 
an now be performed.It is interesting to note that while the planarity algorithm halts at the end of step v dueto an unembedded ba
k edge e from v to w or a des
endant of w, the ba
k edge e is notembedded and marked by the minor E2 isolator des
ribed above. An isolator for minor E234



that in
ludes e 
an be 
onstru
ted, but the method given is simpler to implement and stillresults in the isolation of a K3;3 homeomorph.Marking a Kuratowski subgraph based on non-planarity minor E3 pro
eeds as follows. Ifux is an an
estor of uy (i.e., ux < uy), then mark the edges and verti
es along the externalfa
e path (v0, . . . , px) that ex
ludes w, and mark the edges and verti
es along the externalfa
e path (w, . . . , y) that ex
ludes v0. For the symmetri
 
ase in whi
h uy is an an
estor ofux, mark the edges and verti
es along the external fa
e path (py, . . . , v0) that ex
ludes w,and mark the edges and verti
es along the external fa
e path (x, . . . , w) that ex
ludes v0.The remaining steps are 
ommon to both 
ases. Add the unembedded ba
k edges and markthe paths 
orresponding to edges (u; x), (u; y) and (v; w) using the te
hniques previouslydes
ribed. Then, obtain uw and dw in the same manner as des
ribed for minor E2. Add theedge (uw; dw) and mark the DFS tree path (dw, . . . , w). Finally, mark the edges and verti
esalong the DFS tree path from v to the minimum of uw, ux, and uy.Marking a Kuratowski subgraph based on non-planarity minor E4 pro
eeds as follows.If px 6= x, then mark the external fa
e path (v0, . . . , x, . . . , w), and mark the external fa
epath (py, . . . , v0) that ex
ludes w. For the symmetri
 
ase in whi
h px equals x but py 6= y,mark the external fa
e path (v0, . . . , y, . . . , w) and mark the external fa
e path (v0, . . . ,px) that ex
ludes w. The remaining steps are 
ommon to both 
ases. Add the unembeddedba
k edges and mark the paths 
orresponding to edges (u; x), (u; y) and (v; w) using thete
hniques previously des
ribed. Then, obtain uw and dw in the same manner as des
ribedfor minor E2. Add the edge (uw; dw) and mark the DFS tree path (dw, . . . , w). Finally,mark the edges and verti
es along the DFS tree path from the minimum of uw, ux, and uyto the maximum of uw, ux, and uy.As mentioned above, if the 
onditions for minors E1 to E4 do not o

ur, then the edgesand verti
es of a K5 homeomorph 
an be marked based on minor E as follows. Mark all edgesand verti
es along the external fa
e 
y
le rooted by v0. Add unembedded the ba
k edgesand mark the paths 
orresponding to edges (u; x), (u; y) and (v; w) using the te
hniquespreviously des
ribed. Then, obtain uw and dw in the same manner as des
ribed for minorE2. Add the edge (uw; dw) and mark the DFS tree path (dw, . . . , w). Finally, mark theedges and verti
es along the DFS tree path from v to the minimum of uw, ux, and uy.7.4 Kuratowski Subgraph Isolation in Linear TimeThe pro
ess of isolating a Kuratowski subgraph of the input graph G is performed on theembedding stru
ture ~G on
e the Walkdown fails to embed a ba
k edge in a step v of the ba
kedge embedding loop in pro
edure Planarity (see Figure 14). The pro
ess begins by removingshort-
ir
uit edges and imparting a 
onsistent orientation to all verti
es of ea
h bi
onne
ted
omponent in ~G. Then, one of the non-planarity minors is 
hosen, and a subgraph ofG homeomorphi
 to K3;3 or K5 is marked in ~G based on the sele
ted non-planarity minor.Finally, the virtual verti
es are merged with their non-virtual 
ounterparts, and all unmarkedverti
es and edges are removed. Theorem 7.1 asserts that these a
tions 
onstitute a lineartime algorithm for Kuratowski subgraph isolation.Theorem 7.1 The Planarity algorithm isolates a Kuratowski subgraph in a non-planargraph G in O(n) time.Proof. The planarity operations prior to the 
all of the Kuratowski subgraph isolator areO(n) by Lemma 6.1 and Theorem 6.3. The prepro
essing steps for Kuratowski subgraph35



isolation to remove short-
ir
uit edges and impart a 
onsistent orientation to ea
h vertex ofea
h bi
onne
ted 
omponent are O(n), and the post-pro
essing steps to merge any remainingvirtual verti
es and remove unmarked edges and verti
es are also O(n).The sele
tion of a non-planarity minor involves an O(n) invo
ation of Walkdown todetermine whether the merge queue is empty. Also, simple O(n) loops are used to �ndstopping verti
es x and y and a pertinent vertex w. On
e these operations are performed,the tests that sele
t minors A and B are 
onstant time. If neither is sele
ted, then the internaledges of v
 are removed and a proper fa
e walk performed to �nd an x-y path and determineswhether minor C 
an be sele
ted. If not, then the internal edges of v
 are restored, and aportion of the proper fa
e walk is 
ondu
ted again to sear
h for a se
ond internal path fornon-planarity minor D. The proper fa
e walks are O(n), and v
 has fewer than n in
identedges. If minors A through D are not sele
ted, then minor E is veri�ed by a simple O(n)loop that �nds an externally a
tive vertex along the path (px; : : : ; w; : : : ; py).Constant time tests are used to distinguish symmetri
 
ases among the non-planarityminors and to sele
t whi
h se
ondary non-planarity minor to use in the 
ase of minor E.Within ea
h isolator, there are a 
onstant number of simple O(n) operations that mark edgesand verti
es along DFS tree paths and the external fa
e of a bi
onne
ted 
omponent. Theonly non-trivial parts of the pro
ess are �nding the x-y path and the se
ond internal pathfor non-planarity minor D and �nding the spe
i�
 paths that map to edges (u; x), (u; y),and (v; w) as well as edges (v; z) and (u; z) in non-planarity minor B. The internal paths arefound in O(n) time by the aforementioned strategy of temporary edge removal and properfa
e walking. The paths are easy to handle as DFS tree path traversals on
e the properdes
endants are found, whi
h is optimized by a strategy that exploits the DFS numbering toqui
kly �nd an edge from an an
estor to any vertex in a DFS subtree by performing 
onstantwork per edge of the an
estor, for a total O(n) 
ost. 28 PC-tree ProblemsRe
ently, a new planarity test was presented by Shih and Hsu [18℄. They develop the notionof a PC-Tree (des
ribed below) as a simpli�
ation of a PQ-tree. The algorithm has a numberof similarities with our new planarity algorithms. The starting PC-tree is the depth �rstsear
h tree, whi
h is then pro
essed in a bottom up fashion to embed the ba
k edges fromthe 
urrent vertex, denoted i for a PC-tree (v in our algorithms), to the des
endants of i.Unfortunately, the results of Shih and Hsu stated in [18℄ 
ontain several errors that negatethe proof of 
orre
tness of the planarity test, the 
laim of linear time performan
e and the
laim of a fully de�ned Kuratowski subgraph isolator.For example, Figure 16(a) depi
ts the K5 minor pattern appearing in Figure 6(
) of[2℄ (with a few 
osmeti
 
hanges), and Figure 16(b) depi
ts the 
orresponding PC-tree.The darkened triangles, 
alled i-subtrees, represent subtrees rooted at x and y that haveyet to be 
onne
ted to v by unembedded ba
k edges. Likewise, the whitened triangles,
alled i�-subtrees, represent subtrees rooted at r, x, and y that have yet to be 
onne
tedto an an
estor of v by unembedded ba
k edges. The node labeled C is representative of abi
onne
ted 
omponent, and its neighbors represent the essential nodes along the externalfa
e of the bi
onne
ted 
omponent. In PC-tree parlan
e, the nodes x and y are terminalnodes (i.e. they have at least one i-subtree, one i�-subtree, and no des
endant with the same36



property [18, p. 181℄).

Figure 16: The K5 non-planarity minor from [2℄, and the 
orresponding PC-tree at thebeginning of step vIn [18℄, the only PC-tree pattern for dete
ting K5 homeomorphs appears to only dete
tsome K5 minors. A

ording to [18, p. 185℄ \we 
ould have three terminal nodes beingneighbors of a C-node, in whi
h 
ase we would get a subgraph homeomorphi
 to K5 asillustrated in Fig. 6". However, in Figure 16(b), node r is not a terminal node sin
e x andy are its des
endants. Thus, the C-node does not have three terminal nodes as neighbors inthis 
ase. Sin
e [18℄ 
ontains no other patterns for re
ognizing K5 homeomorphs, one must
on
lude that an unde�ned non-planarity 
ondition exists in the Shih-Hsu planarity test.In this 
ase, an implementation would dis
over the non-planarity 
ondition due to the testsuggested by Lemma 2.5 in [18℄, but sin
e the proof of that Lemma states that the resultis a K3;3 homeomorph, a Kuratowski subgraph isolator based on the results in [18℄ would
learly fail.A more 
riti
al problem pertains to the 
orre
tness of the planarity testing algorithmitself. Corollary 2.8 and the prose on p. 187 of [18℄ 
learly indi
ate how to 
ontinue pro
essingunder the 
on�guration given in Figure 10 of [18℄, yet their planarity test should halt on this
on�guration if a des
endant of i (the vertex being pro
essed) that is also an an
estor of theC-node labeledW is 
onne
ted by a ba
k edge to an an
estor of vertex i (has an i�-subtree).This 
ondition arises in graphs su
h as the non-planarity minor in Figure 6(b) of [2℄, whi
his depi
ted (with a few 
osmeti
 
hanges) in Figure 17(a). The dashed lines represent, atleast in part, unembedded ba
k edges. Our algorithm would 
urrently be pro
essing theba
k edges from v to its des
endants. The 
orresponding PC-tree at the beginning of step vappears in Figure 17(b). In this example, x and y have i-subtrees, w and r have i�-subtrees,and the C-node is a terminal node. Moreover, it is the only terminal node, and the workof Shih and Hsu [18℄ 
ontains no theorem, lemma or 
orollary that dete
ts a non-planarity
ondition in this 
on�guration.In essen
e, the non-planarity pattern depi
ted in Figure 17 is a 
ounterexample to theproof of 
orre
tness appearing in Theorem 4.1 of [18℄. Any redu
tion of the PC-tree in Figure17(b) must retain r on the external fa
e due to its i�-subtree, whi
h is infeasible sin
e w mustalso be kept on the boundary 
y
le of a bi
onne
ted 
omponent due to its i�-subtree. Thisproblem negates the 
laim on p. 188 of Shih and Hsu [18℄ that the 
onditions established by\Lemma 2.5, Corollary 2.6 and Lemmas 3.1 and 3.2 . . . imply a feasible internal embedding37



Figure 17: (a) A K3;3 non-planarity minor from [2℄, (b) A 
orresponding PC-tree at thebeginning of step v, (
) Another example of the PC-tree problem with two terminal nodesfor ea
h bi
onne
ted 
omponent." As su
h, Theorem 4.1 does not establish the Shih-Hsualgorithm as a 
orre
t planarity tester. In 
ollaboration with graduate student Roland Wieseof the Eberhard-Karls University of T�ubingen [21℄, this problem was determined to also beappli
able when there are two terminal nodes, as depi
ted in Figure 17(
), be
ause Lemma3.1 does not apply to the terminal nodes. The problem appears to be an in
orre
t assumptionin extending Lemma 2.7 and Corollary 2.8 to the 
ase of having terminal nodes that are C-nodes, whose 
hildren 
annot be arbitrarily permuted but must instead adhere to the ordergiven by the representative bounding 
y
le (RBC).It is easy to see that these 
ases have been missed in the pro
essing model for PC-treeredu
tion, whi
h is shown in Figure 11 of [18℄. This �gure shows how to redu
e the PC-treeon
e it has been determined that a feasible internal embedding is possible a

ording to the
onditions established by Lemma 2.5, Corollary 2.6 and Lemmas 3.1 and 3.2. In Figure11(i) and (ii), the �rst 
hild of u in 
lo
kwise dire
tion below the 
riti
al path P leads toan i�-subtree. If it were 
hanged to an i-subtree (a darkened subtree), then the resultingPC-tree is not redu
ible.These additional non-planarity 
onditions and the non-planarity 
ondition des
ribed byLemma 3.1 of [18℄ also have an e�e
t on the 
omplexity analysis. In a

ounting for Lemma3.1, p. 190 of [18℄ states that \determining whi
h side of an intermediate C-node w 
ontainsi-subtrees (let v, v0 be two neighbors of w in P ) we only have to 
he
k the two neighborsof v (or v0) in the 
y
li
 list to see whi
h one has the label i." This may be true under theassumption that the input graph is planar, but the point of a planarity test (and of Lemma3.1 in parti
ular) is to determine whether the graph is planar, so some form of additionalwork must be done to determine whether the forbidden i-i� subtree pattern has o

urred.In terms of 
omplexity analysis, there are additional 
on
erns pertaining to the lineartime performan
e of the algorithm as stated in [18℄. For example, the 
laim that the \RBCwill be stored as a 
ir
ular doubly linked list" [18, p. 184℄ 
annot be supported. Whenthe representative bounding 
y
les of C-nodes must be joined together, the dire
tion oftraversal of two 
onse
utive C-nodes may be reversed depending on whi
h path 
ontainedthe i-subtrees in ea
h C-node. Joining the RBCs of two su
h C-nodes into a 
ir
ular doublylinked list would require the inversion of links in the RBC nodes of one of the two C-nodes.38



It is easy to 
reate planar graphs in whi
h O(n2) link inversions o

ur in total. It is thereforene
essary to represent the RBC with a list that permits arbitrary link inversions as is donein the algorithms of this dissertation and as is depi
ted in Figure 1 of [2℄.As a �nal 
on
ern, it appears that, in order to avoid O(n2) performan
e on PC-trees,one must not 
reate PC-trees, at least not in the manner spe
i�ed by [18, p. 184℄: \we shallrepresent the 2-
onne
ted 
omponent by a C-node whose parent is i . . . ". Unfortunately, ifevery C-node (or P-node) indi
ated its a
tual parent in the PC-tree, then it is easy to 
reateplanar graphs on whi
h O(n2) reparenting operations are performed on a set of C-nodeswhenever their parent be
omes part of a new C-node during a PC-tree redu
tion. Instead,it is ne
essary to let the parent of any P-node or C-node indi
ate a node in the RBC of itsparent. The PC-tree parent of a node 
an be found by �rst following the parent link to somenode in the RBC of the parent, then traversing the RBC until a node with a parent link isfound. Thus, one is led repeatedly and inexorably to the methods of this paper and of [2℄ inorder to 
reate an algorithm that a
hieves linear time while exploiting those graph-theoreti
properties that are 
ommon to both algorithms.9 Con
lusion and Related SolutionsThis paper dis
ussed the essential details of a new O(n) planarity tester/embedder, as wellas identifying some diÆ
ulties with the 
urrent formulation of PC-trees. A straightforwardalgorithm for isolating Kuratowski subgraphs was presented based on the non-planarityminors identi�ed in the proof of 
orre
tness of the embedding algorithm. The �rst four non-planarity minors 
ontain K3;3, so marking the a K3;3 homeomorph requires little more thantraversal of external fa
es, tree paths and the addition of a few unembedded ba
k edges.The unmarked verti
es and edges are simply deleted. The �fth non-planarity minor is a K5minor, so four simple tests are performed to determine whether a K3;3 or K5 homeomorph
an be isolated.An O(n) referen
e implementation of the new planarity algorithms des
ribed in this paperwas 
reated in three days for preliminary programming, four days for the planarity testingand embedding algorithms, and another three days for the Kuratowski subgraph isolator.The implementation was then tested on hundreds of millions of randomly generated graphsof up to 100 verti
es plus well over a billion graphs generated with the aid of M
Kay'snauty program [16℄ (spe
i�
ally, all 
onne
ted graphs with 11 or fewer verti
es). For ea
hgraph, the integrity of the resulting 
ombinatorial planar embedding or minimal non-planarsubgraph was tested.Extending this work to outerplanar graph embedding 
an literally be as simple as de�ningall verti
es to be externally a
tive at all times. A simpli�ed version of our planarity proofof 
orre
tness yields K2;3 and K4 minors for outerplanarity obstru
tion isolation. Finally,little e�ort is required to modify the outerplanarity obstru
tion isolator so that it only �ndsK2;3 homeomorphs. This is done by ignoring o

urren
es of K4 ex
ept those in whi
h aK2;3 
an also be found. Likewise, relatively little e�ort is required to modify the Kuratowskisubgraph isolator so that it only �nds K3;3 homeomorphs. The result is O(n) on graphs only
ontaining a 
onstant number of K5 homeomorphs to ignore, and O(n) in general if appliedseparately to the tri
onne
ted 
omponents of a graph. These algorithms will be presentedin up
oming papers.In terms of future work, we would like to reexamine the 
onse
utive ones problem, whi
h39



was the original problem for whi
h the PQ-tree was developed. A (0, 1)-matrix has the
onse
utive ones property for 
olumns if and only if its rows 
an be permuted so that inea
h 
olumn all of the ones are 
onse
utive. It may be possible to 
reate a redu
tion to thegraph planarity problem based on a further examination of our data stru
tures and detailedoperations. Also, while graph drawing may often have appli
ation-spe
i�
 requirements, asimple drawing method is often desirable as a starting point. An example is the HorVertdiagram, whi
h is a planar representation in whi
h every vertex is represented by a horizontalline (or re
tangle) and every edge is represented by a verti
al line. While [10℄ presentsan augmentation to the PQ-tree algorithm to 
reate a HorVert diagram, their method is
riti
ally dependent on the single sour
e aspe
t of the underlying st-numbering. We wouldalso like to examine augmentations of our data stru
tures that yield simpli�ed methods forobtaining tri
onne
ted 
omponents as well as for enumerating, ranking and unranking planarembeddings. Finally, our algorithms may provide new insights that yield an O(n) isolatorfor K5 homeomorphs or a simpli�ed O(n) embedding algorithm for the proje
tive plane.A
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