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Abstract. In this paper, we consider a large variety of solutions for the
generation of Sierpinski triangles, one of the case studies for the AGTIVE
graph transformation tool contest [15]. A Sierpinski triangle shows a
well-known fractal structure. This case study is mostly a performance
benchmark, involving the construction of all triangles up to a certain
number of iterations. Both time and space performance are involved.
The transformation rules themselves are quite simple.

1 Introduction

The field of graph transformation was set up over 30 years ago, but the develop-
ment of supporting tools started with considerable delay. Currently, a number of
tool environments for different graph transformation approaches is available and
the activity in tool development has increased considerably. Thus, a comparison
of tools with respect to both functional and non-functional issues is becoming
more and more important.

Graph transformation tools can serve very different purposes. The case study
we consider in this paper allows us to compare the efficiency of graph represen-
tations and the performance of repeated rule applications. For this comparison
we have chosen the generation of Sierpinski triangles. Due to its exponential na-
ture, the problem involves graphs which are getting huge within a few generation
steps. Theses graphs need not be typed and attributed; hence very simple graph
models may be used. Furthermore, the generation process is very regular and
can be performed with only a few rules.
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Fig. 1. Initial and first generation of the Sierpinski triangle

In the context of the AGTIVE tool contest, the response to the call for
this case study has been impressive. Twelve solutions with variants have been
submitted, differing heavily in the underlying graph transformation approaches
and tools, the graph representation, and the application control for rules. At the
end of this paper, we categorize the given solutions and compare their runtime
performance.

This paper is structured as follows: The case study used for competition is
presented in Section 2. It comprises the generation of Sierpinski triangles. Section
3 gives an overview on the dimensions of solutions, while Section 4 presents a
variety of concrete solutions. In Section 5, we briefly compare the presented
solutions and draw some conclusions.

2 Case Study “Generation of Sierpinski Triangles”

The goal of this case study is to measure the performance of graph transforma-
tion tools constructing Sierpinski triangles. The Sierpinski triangle is a fractal
named after Waclaw Sierpinski who described it in 1915. Originally constructed
as a mathematical curve, this is one of the basic examples of self-similar sets,
i.e. it is a mathematically generated pattern that can be reproduced at any
magnification or reduction.

An algorithm for obtaining arbitrarily close approximations to the Sierpinski
triangle is as follows:

1. Start with an equilateral triangle with a base parallel to the horizontal axis.

2. Shrink the triangle by %, make two copies, and position the three shrunk
triangles so that each triangle touches each of the two other triangles at a
corner.

3. Repeat step 2 with each of the smaller triangles.
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Fig. 2. Second generation of the Sierpinski triangle

2.1 Sierpinski Triangle as a Graph

For the purpose of the case study the Sierpinski triangle has to be represented as
a (mathematicall®) graph, and the construction rules have to be restated in the
context of graph transformation. As an initial step a triangle has to represented
as a graph: Three nodes connected by three edges (see Figure 1(a)).

Next, an elementary “Sierpinski step” is defined: On every edge of a triangle
a node is placed. These new nodes are connected by edges (see Figure 1(b) in
comparison to 1(a)). This forms a triangle consisting of four smaller triangles.
The inner of the four triangles is considered “dead” and no further “Sierpinski
steps” will be performed there. The other three triangles are candidates for fur-
ther steps. (See Fig. 2 for the next elementary Sierpinski steps.) If all elementary
steps are done for a certain graph (without reconsidering newly created trian-
gles), we call this a generation (Figure 1(a) shows generation zero, Figure 1(b)
shows generation one, and Figure 2(c) shows generation two). It is required for
this case study that a generation is completed before any transformation for the
next generation takes place.

2.2 Goals of the Case

This case study is pretty easy to implement: It uses only small pattern graphs,
simple graph rewrites, and only a few rules. The generated graphs get huge fast.

13'A mathematical graph has no immediate representation on a two dimensional
plane—though embeddings may be computed.



The number of nodes is equal to %(1—!—3") and the number of edges is 3("*1) with
n being the number of generations. So it tests the ability of a tool to represent
large graphs efficiently, and to perform simple rewrites, fast. With growing num-
ber of generations it is possible to sample memory usage and computation time.
Last but not least, we can see how the tools are capable of enabling adequate
meta models, rule sets, and rule applications.

3 Overview on Solutions

The solutions presented in the following differ heavily. For getting a better
overview, we discuss those dimensions of modelling that play a role for this
case study.

3.1 Modelling Choices

The solutions presented below differ heavily concerning the representation of
graphs and modelling of Sierpinski steps. In the following, we list the main
alternatives.

Graph representation In most solutions, graph nodes and edges are typed and
carry information important for the generation process, i.e. they mostly guide
the generation process. Some solutions also use additional nodes or edges to
store data about intermediate steps of the Sierpinski triangle generation. More-
over, also node attributes are used for storing additional information. Clearly,
additional graph elements and attributes may affect the efficiency of graph rep-
resentation.

Modelling of Sierpinski steps All solutions contain one or more rules for per-
forming an elementary Sierpinski step. All generation steps, except the first one,
consist of several applications of the elementary step. The solutions show differ-
ent kinds of controlling rule applications. Basically, we can distinguish parallel
from sequential rule application.

The generation of Sierpinski triangles is well suited for parallel rule applica-
tion and means that the basic Sierpinski step is performed on all triangles being
"alive” simultaneously (compare Sec. 2.1).

Sequential rule application necessarily leads to intermediate graphs where
some atomic triangles of the current generation step are already refined, while
others still have to be considered. For not refining an already refined triangle
again in the same generation step, some application control has to be added
which can be done in different ways. Some solutions add further graph elements
holding information about the generation process and/or add application con-
ditions to their generation rules or even add further rules, while others rely on
external control which is formulated by e.g. regular expressions. Besides just
controlling the selection of rules, some solutions even control the rule matching
explicitly and thus eliminate any kind of non-determinism in rule application.



3.2 Graph Transformation Approaches

A number of different graph transformation approaches are used to perform the
generation of Sierpinski triangles. The solutions proposed differ also according
to offered graph transformation features. In the following, we sketch the most
important features for this case study:

— Nearly all solutions use typed graphs, sometimes even with node type inher-
itance.

— Some solutions are based on attributed graphs. In these cases simple at-
tribute computations are performed only.

— The approaches differ in the ability to visually or textually represent graph
rules.

— While most approaches offer sequential rule application only, there are some
approaches which support parallel rule application (in addition). Here, a rule
is applied to all possible matches in parallel. Note, that parallel refers to
simultaneous rewriting semantics; it has not necessarily to be implemented
by parallel threads of any kind. In fact almost all tools do not support
thread-based or distributed rewriting.

— To further control sequential rule application, additional application con-
ditions for rules are offered by several approaches. These include negative
application conditions, attribute conditions, and type conditions.

— Another form of application control is to put control on top of rules by
using concepts from regular expressions, abstract state machines, activity
diagrams, Java programs, and recursive rule application. Some of these forms
allow to control rule matches in addition.

4 Solutions

In the following, twelve different graph transformation solutions for the gener-
ation of Sierpinski triangles are presented. These solution are available with all
details at the following newly created Web site for graph transformation cases:
http://gtcases.cs.utwente.nl/.

4.1 Tiger EMF Transformation Framework

The Tiger EMF Transformation Framework (EMT) [16] is a tool for modeling
and applying graph transformation rules. The solutions consist of a set of graph
transformation rules on EMF [8] models, that are designed using the Visual
Editor of EMT. The production rules are defined by rule graphs, namely a
left-hand side (LHS) and a right-hand side (RHS). The rule set is compiled
to Java code and run by the Eclipse development platform [7]. This enables the
implementation of control structure to perform the specified changes to the given
model instance.

Two solution were implemented, a deterministic and a non-deterministic one.



Deterministic solution This solution uses a programmed control flow to ap-
ply rules.

For our solution we first define an EMF
model and an initial Sierpinski triangle
as shown on the right. This can be de- T —
fined by using any editor for EMF mod- 0.2/ conn

els, for example the EMF tree editor.

Afterwards we define two rules for
transforming a Sierpinski instance such
that we reach a new Sierpinski gener-
ation. This can be done by using the
graphical rule editor which is part of
EMT. The defined rules are translated
to Java code that changes a given Sier- L s o N el
pinski triangle as described by the rules i A ij{ S
AddTrianglel and AddTriangle2. In our
case we need two rules because EMF - R“‘e"”e:”‘ddTR’f:g"“
requires a containment hierarchy be-

tween all classes and a class can only

be contained in exactly one other class.

Rule AddTrianglel refines left ‘.Lrlangles p— / %
where the upper vertex contains both verr | | [entex s wnex L[ v |
lower vertices, while AddTriangle2 re-
fines right triangles. Here, the upper
vertex contains the lower right vertex
only.

In the next step we define a control structure for the application of our two rules.
AddTrianglel should be applied to the uppermost vertex and if possible to all
left children. AddTriangle2 should be applied to all right children if possible.
Both rules are no longer applicable when attempting to apply AddTrianglel or
AddTriangle2 to the vertices at the bottom of the containment hierarchy. After
the control structure terminates, the resulting model instance is a new Sierpinski
generation.

conn

Rule two: AddTriangle2

Non-Deterministic Approach The non-deterministic solution uses the algo-
rithm from [12] to generate the Sierpinski triangles.

The metamodel shown in Figure 3 was used. There are two types of nodes.
The NormalNode is an ordinary node in the Sierpinski structure, while the Cen-
tralNode is used to mark those triangles that needs unfolding in the next Sier-
pinski step. The Alive property of CentralNode indicates if that triangle is alive
in that step.

The Sierpinski step is implemented with the rule depicted in Figure 4. A
triangle that has an alive CentralNode gets unfolded. The generated triangles
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Fig. 4. Sierpinski Step

are not alive. When all alive triangles have been unfolded, a second aliveRule
revives them for the next step. These two phases form the Sierpinski step.

4.2 Graph Transformation using Two Tapes

Using two tapes in graph transformation has many advantages since the rule
interpreter can apply rules in parallel. During the rule application, the input
graphs stay unchanged while the rule interpreter builds up new graphs. There-
fore, rules can access the input graphs as well as the graphs created so far. In
the case that rules need the result of other rules they form a sequence. Later
applied rules might apply in parallel with other rules in the same state. The
context (conditions) determines the application order of these rules and not an
explicit specification of the order.



We originally developed the approach for Natural Language Processing (NLP)
where we use it for instance to generate texts by mapping text plans to semantic
graphs, semantic graphs to syntactic graphs, and syntactic graphs to topological
graphs, cf. [5]. The demands for the graph transformation language come from
the area of NLP where the rule interpreter can do much in parallel because of the
nature of the application, but not everything. An example for this is the map-
ping of syntactic graphs to topological graphs that we apply to determine the
word order. The words for example of all noun phrases (such as ’the blue car’)
can be ordered independently of other noun phrases and therefore in parallel
whereas distinct complete phrases of German sentences are ordered depending
on the position of the main verb. These rules determine first the position of the
verb and depending on the result, the position of the other parts. Within the
same graph transformation approach, we could easily describe the mapping of
the Sierpinski triangle with one rule. The rule interpreter applies rules in four
steps. (1) First, it searches with a parallel matching algorithm all occurrences
of the left-hand side in the input graph and evaluates the conditions. (2) Then
the rule interpreter clusters the rules, which are applicable together. In the case
of the Sierpinski triangle, the rule interpreter builds only one cluster since no
alternative rules are specified. (3) After that, the rule interpreter creates the
right-hand sides of the rules for each matched rule in parallel. (4) Finally, the
rule interpreter glues the graph fragments together.

The approach works very well and fast for the problem of the Sierpinski
triangle. It builds the thirteenth generation with one core of a CPU in 18.9
seconds and the speed nearly doubles to 10.3 seconds with four cores of the same
CPU. Looking at the figures, the question comes up, why does the processing
speed not increase even more? Partially essential is that the gluing step is not
performed in parallel and compared with the gluing the parallel matching works
in this application on a three times smaller data set, therefore it contributes
much less to the processing time. Another part of the answer seems related with
the used CPU itself due to a test, which identified the memory bandwidth as a
problem. The cause could be that the CPU is a first generation quad core, which
is blamed as a not 'native’ quad core. Nevertheless, the parallel approach is very
promising since in future CPUs with many more cores will become standard
and many applications such as the evolution of plants or Natural Language
Processing fits very well to parallel approaches, which are capable to compute,
like our brain, solutions in parallel.

4.3 The Groove Tool

Groove is a graph transformations tool-set based on the SPO approach for un-
typed, edge-labelled, simple graphs. The tool-set comes with a GUI allowing to
easily define transformation rules and graphs, and to apply graph transforma-
tion either interactively, or automatically using so called exploration strategies.
Strategies can also be used without the graphical interface. Although Groove is
a general purpose graph transformation tool, it is optimised for generating (a
finite portion of) all possible derivations in a graph grammar and allows to verify



properties on the set of derived graphs and on the derivation paths. Groove is
Java-based, so platform independent. The tool, as well as the solution presented
here, can be downloaded at [1].

Let us now explain the main characteristics of our modelling of the Sierpinski
triangles in the Groove framework.

Modelling the triangles and the rules. Fig. 5 represents an intermediary
graph met while computing the second generation.' The bottom part represents
the Sierpinsky fractal itself encoded by a set of triangles in a very straightfor-
ward way. The top part is additional control structure present in the graph.
It is composed by generation nodes numbered from 0 to 4 (for computing the
fourth generation), and a ”current” marker indicating the currently computed
generation. Each elementary triangle ”"belongs” to the generation on which it
was constructed, encoded as an additional edge from its top node to the corre-
sponding control node. On Fig. 5, the two big elementary triangles belong to the
first generation, and the three small elementary triangles belong to the current,
second generation. This is used to ensure that a particular generation is com-
pleted before the computation of the next one starts. Transformation is ensured
by two small and simple rules. The first one performs an elementary step: a
triangle belonging to the previous generation is replaced by three new triangles
of the current iteration. On Fig. 5, such elementary step was just performed on
the bottom right triangle. The second rule is with lower priority, thus applicable
only if the first one does not match. It simply moves the ”current” marker to
the control node corresponding to the next generation. None of the rules uses
negative application conditions.

2
nextm 1 next next—).—a next—)ﬂ
. currant . .

helongs

belongs belongs

belon s
elangs

ﬁﬁi{m

Fig. 5. Intermediary graph while computing the second iteration.

Computing the fractal. Transformations in Groove are fully non-determi-
nistic, on purpose. However, in the case of the Sierpinski triangles, rule applica-
tions are confluent. We used the existing Linear exploration strategy to ensure

4 Node labels on that figure are just another representation of self-edges.



that only a single derivation path is computed, thus avoiding superfluous rule
transformations. Moreover, the tool allows to specify in which order edge labels
should be matched, thus guided finding of matches. In the case of the Sierpinski
triangles this allowed to avoid the computation of any superfluous matches.

Performance. Memory is a critical resource in Groove. As mentioned pre-
viously, the tool computes the set of all graphs derivable in a graph grammar
and stores all intermediate results. Different memory-saving mechanisms are in
place, as for instance sharing nodes and edges between graphs. They showed
quite efficient, as we managed to compute the twelfth iteration of the Sierpinski
fractal on a desktop machine with 1,5 GB of memory and in 45 seconds.

Alternative solution using quantified transformations. Since its last
version, Groove implements so called quantified transformation rules. Roughly
speaking, and among other things, quantified rules allow to make atomic the
application of a rule for all of its matches in the host graph. In the case of
the Sierpinski triangles, one can define a single, quite compact rule that is re-
sponsible for the computation of one generation. This results in slightly better
performance, but the main improvement is the increased expressiveness of trans-
formation rules. More information on quantified transformations can be found
in the Groove documentation accessible at [1].

4.4 MOMENT2-GT

MOMENT?2-GT is a graph transformation tool based on the SPO approach.
Graphs are provided as EMF-based models so that their nodes are attributed
and typed, taking inheritance into account. Graph transformation definitions
are constituted by a set of production rules, which are defined in a QVT-based
textual format, where OCL expressions can be used either as guards in (possibly
negative) application conditions or as attribute value manipulation expressions.
In MOMENT2-GT, a graph transformation definition is compiled into a rewrite
theory in Maude [6]. MOMENT2-GT permits defining production rules as de-
terministic (production equations) or non-deterministic (production rules). The
inclusion of this explicit difference allows performing model checking of graph-
based systems where states are algebraically defined by means of a metamodel
and production equations, and transitions between such states are defined as
production rules. In EMF, bidirectional and containment edges can be defined.
MOMENT2-GT takes into account such features to avoid the generation of in-
consistent EMF models with dangling edges. This consistency checking can be
disabled if dangling edges are explicitly avoided in the transformation definition.
The tool and the solution presented here are available at [3].

In this solution, we have based ourselves on the transformation that is pro-
vided in [12], also implemented with the Tiger EMF Transformer (see the non-
deterministic solution in Section 4.1). Our transformation definition consists in
two simple rules: a) a first rule computes the division of a triangle and b) a
second rule ensures that the following iteration in the fractal generation process
is not performed until all triangles have been split. The second rule contains a
negative application condition.



In MOMENT2-GT, the input graph is represented as a term of a specific sort
that is defined in a rewrite theory, and the execution of a graph transformation
is handled by Maude’s algorithm for term rewriting modulo associativity and
commutativity. Maude finishes the graph rewriting process when it achieves a
normal form. The resulting term is parsed by MOMENT2-GT and projected as
an EMF model again.

Although our tool is based on the reuse of Maude’s term matching algorithm
without taking into account optimized rewriting strategies, we have shown that
MOMENT2-GT can be used to rewrite reasonably big graphs but efficiency
needs to be improved still. The advantage of our approach relies on the reuse
of Maude-based formal verification techniques [6] for graph transformations to-
gether with modeling standards.

4.5 Fujaba Solution

This section reports on our case study with the Fujaba environment, cf. [2], on
building Sierpinsky triangles. It turned out, that the key bottleneck for build-
ing Sierpinski triangles is the memory usage. Thus, we exploited Fujaba’s code
generation features for the implementation of unidirectional to-one associations.
Our model uses objects for the vertices of triangles with only three unidirectional
to-one associations to refer to the horizontal right neighbor and to the vertical
left and right neighbor. This models the triangles, appropriately, with a small
memory footprint. Actually, we found out that two outgoing edges per node are
sufficient. Thus, our model can even be reduced by one edge. But the rules for
this solution are a bit more complex, so we won’t explain this solution here due
to space constraints.

We have decided to use a recursive approach for building the triangles. Fig-
ure 6 shows that recursive rule. The rule has to be executed on the top node of a
triangle. This node is represented by the this node in our rule. From that node
the left edge is traversed to get the left node of the triangle and the right edge
to get the right node. To represent the triangle structure the horizontal edge
is checked as well. Note, this could be omitted for further performance tuning.
Now a new triangle is created into the one found before. This is indicated by the
elements marked with <create>>. Since we use to-one links creating a new link
automatically destroys the old link. So we left out the <destroy>> markers for
performance reasons. When the current triangle has been refined, we initiate the
refinement of the left and the right underlying triangles. This is specified using a
recursive call on the left and the right object. Note that, if the lookup for the
triangle in this rule is not successful, the modifying operations are not executed.
That results in termination of the recursion if the bottom triangles have been
refined.

To initialize the algorithm an initial triangle has to be created. On the top
node of the triangle the refine method described above can be called several
times depending on the number of iterations one wants to calculate. This execu-
tion is modeled by a second rule not shown here. From these rules Fujaba now
generates standard Java code which can be used for performance measuring.
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Fig. 6. Refining Rule for Sierpinski triangles
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Measurement data We have done our measurements on a 64-bit quad core
AMD processor with 32GB memory using Java6. 15 iterations take about 1.4 sec-
onds. Each additional iteration takes about three times longer until the memory
is full. On our machine this works up to iteration 17 (12 seconds). We found that
in our model the runtime consumption for graph pattern lookup is neglectable
since we use a recursive approach that passes the important handle elements to
the next rule application. Thus runtime is dominated by creating new objects
and assigning pointer values. Since our approach seemed fast enough for us, we
tried to optimize the memory footprint to be able to do some more iterations.
Fujaba uses objects to represent nodes and fields of those objects to represent
edges. So only the objects need memory. On a 32-bit machine, each of our nodes
has three pointers which take 4 bytes each. A Java object has an additional
pointer to its class and a unique ID which are both again 4 bytes each. So one
node costs 20 bytes. On our 64-bit system the memory usage doubles. To get rid
of the 16 bytes of Java internal memory usage, we wrote a C++ code genera-
tion for Fujaba. C4++ objects do not have the unique ID and if all methods are
declared final also no pointer to their class. That way we were able to reduce
the memory usage to 12 bytes per node. So, using C++ one more iteration fits
into our memory. But the generated C++ code was a bit slower than the Java
code. 17 iterations took 22 seconds and 18 took 1:08 minute. Using the algorithm
mentioned above which needs only two pointers per node, we were even able to
reduce the memory footprint to 8 bytes per node for the C++ code. The rules
needed here just need one additional distinction of cases which does not make
them measurably slower.



4.6 GrGen.NET

In contrast to semi-automatic tools like FUJABA, that require the user to specify
the starting points of pattern matching, GRGEN.NET—using the search plan
driven approach to graph pattern matching [4]—can compute this information
on its own. Hence the solution for GRGEN.NET (version 1.3.1) does not involve
predefined matches, although the tool supports rules with parameters (for more
information on the tool see [10]).

The meta model: rule genO {

pattern {
node class A; a:A -:E0-> b:B -:E0-> c:C -:E0—> a;
node class B; }

node class C; replace {

a —:E1-> ab:AB -:E1-> b -:E1-> bc:BC

-:E1-> ¢ -:E1-> ca:CA -:E1-> a;
node class BC extends B,C; ab -:E1-> ca -:E1-> bc —:E1-> ab;
node class CA extends C,A; }

}

node class AB extends A,B;

edge class EQ;

edge class El;

rule genl {
The rules: pattern {
a:A -:E1-> b:B -:E1-> c:C -:E1-> a;

rule init { }
pattern { replace {

¥ a —:E0—> ab:AB -:E0-> b -:E0-> bc:BC
replace { -:EO0-> ¢ -:E0-> ca:CA -:E0-> a;

a:A -:E0-> b:B -:E0-> c:C -:E0—> a; ab -:E0-> ca —:E0-> bc —:E0-> ab;

¥ )
¥ }

Fig. 7. The meta model and all rules for the GRGEN.NET-based solution

As a first step we generate an initial triangle with the rule init (see Fig-
ure 7). Afterwards we use two almost identical rules (gen0, genl) in an alter-
nating fashion. Each rule is applied as long as possible, thus computing a whole
generation. The graph rewrite sequence init & (genO* & genlx*) [5] produces
the 10th generation (see [10]).

The edge types EO and E1 are used for distinction of generations, i.e. the rule
genO replaces EO edges with E1 edges and vice versa. The node types together
with the orientation of the edges ensure that only appropriate (not dead) trian-
gles are matched; in particular node types encode the positions. We use multiple
inheritance to cope with the situation, where one node occurs in two triangles
in different positions.



We also experimented with parallel rewriting semantics. This way only one
rule is needed to refine the initial triangle, because the interlocking of steps
is done automatically. Analogous to the graph rewrite sequence above, we get
init & [gen] [10]. Due to the overhead of temporarily storing all matches, this
approach takes 20% more time.

Because GRGEN.NET always supports all features like multi-edges, complex
type hierarchies as well as attributed nodes and edges, performance-wise subop-
timal code is produced. Note that the information present in a meta model (like
connection assertions) is rich enough to automatically generate a stripped down
and therefore more efficient implementation (see LIMIT in Section 5.2).

4.7 Viatra2

The current section highlights the concepts used to implement the Sierpinski
triangles example in the VIATRA2 [9] (VIsual Automated model TRAnsforma-
tions) framework. VIATRA?2 is a general-purpose model transformation engineer-
ing framework that aims at supporting the entire life-cycle, i.e. the specification,
design, execution, validation and maintenance of transformations within and
between various modeling languages and domains in the MDA.

Metamodel and Transformation. From the programmers point of view, the
most difficult part of implementing the Sierpinski triangle generator is to create
the correct triangle ”finder mechanisms”. In our solution, we tried to adhere to
the typing scheme found in the problem description by taking advantage of the
multiple-inheritance support of the VIATRA2 framework resulting the metamodel
depicted in Fig. 8.

Fig. 8. The metamodel of the Sierpinski triangles

This representation allowed us to create a very simple and elegant pattern
— used in VIATRA2 to describe the precondition (LHS and the NACS) of a GT
rule — illustrated in Fig. 9, where the right and left side describe the Viatra Tex-
tual Command Language (VTCL) representation and the graphical notation,
respectively. Capital letters stand for variables, normal letters denote direct ref-
erences to modelspace elements. For instance the expression a(A) declares that
the variable A is of type a. On the other hand, the expression node.e(ECA,C,A)
means that the variable ECA refers to an edge of type node.e that points from
the entity in C to A. The pattern in Fig. 9 matches a triangle with vertices type
a,b,c, respectively. The order is granted by the direction of the arrows.



pattern triangle(A,B,C,EAB,EBC,ECA) =
//Nodes

a(h); b(B); c(C);

//Edges

node.e(EAB,A,B); node.e(EBC,B,C);
node.e(ECA,C,A);

Fig. 9. Sierpinski pattern

As for the model manipulation part, instead of using GT rules for the triangle
generations we were utilizing graph patterns to match the corresponding model
parts and then performing the model manipulation by built in ASM rules. This
resulted in overall better memory consumption and a slightly faster runtime
performance.

Conclusion. Note that, we also used the example for profiling the upcoming
VIATRA2 release and it pointed out that the most critical part in the pattern
matching process is the model manager as it took more than 99 percent of the
total execution time. As for the overall performance, we were happy to see that
our current interpretation based engine can handle up to 800000 model elements
(level 11) within reasonable time.

4.8 Solution Using XL

The XL solution [11] is very simple as rules are applied in parallel by default,
which exactly matches the Sierpinski construction. The complete rule is:

a:LLVertex -e0-> b:Vertex -e120-> c:Vertex -e240-> a ==>>
a -e0-> ab:LLVertex -e0-> b -e120-> bc:Vertex -e120-> c
-e240-> ca:LLVertex -e240-> a,
ca -e0-> bc -e240-> ab -e120-> ca;

The class Vertex represents vertices, its subclass LLVertex those vertices which
are the lower left vertex of a black triangle in the usual 2D representation.
Furthermore, we use edge types €0, €120, €240 where the number is the angle
of the edge in the 2D representation. Using LLVertex speeds up matching since
a match for the pattern exists if and only if a is a lower left vertex of a black
triangle. Thus, we exclude dead ends of pattern matching as soon as possible.
We tested the performance of our solution in four different settings. The
simplest one uses the graph model of the modelling environment GroIMP [11].
This introduces some amount of memory overhead as nodes store additional
bookkeeping information and all changes to the graph are logged in a protocol.
On a 3 GHz computer with 2 GB RAM we were able to execute 13 steps, the
last step took 17.3 seconds on average. But logging can be deactivated which
is our second setting and allowed an additional step. This setting is also used
for the benchmark in Figure 15. A significant improvement concerning memory



consumption and speed (roughly factor 3 in both respects) is achieved by the
third setting where we use our own minimal graph model whose nodes only store
three pointers to adjacent nodes, thus indirectly representing the edges (which
can no longer be traversed bidirectionally). On 32-bit Java virtual machines, such
a node requires 20 bytes. We were able to execute 15 steps, the last step took
54.7 seconds on average. The fourth setting reduces the memory consumption to
8.25 bytes (66 bits) for lower-left vertices and 0 bytes for the other ones on both
32- and 64-bit machines: at first, we dispense with the 120 edge so that only
a subgraph of the Sierpinski graph is generated (but which can be extended to
the true graph by local operations). Furthermore, we address vertices by unique
long values which in case of lower-left vertices are indices into a list of pairs of
33-bit values which hold the addresses of the neighbours. 33 bits are sufficient
for up to 20 steps, the final graph then consumes nearly 27 B of memory. On
a 2.6 GHz computer with 32 GB RAM (thanks to Andreas Hotho, University
of Kassel) we were able to execute 20 steps where the last step took 2 hours on
average, resulting in a graph with 5,230,176,603 nodes and 6,973,568,802 edges.
Being able to use XL for any given graph structure, even exotic ones as in the
last setting, is certainly a highlight. We have to admit that the last setting is very
tricky and requires temporary proxy objects in order to be accessible for XL.

4.9 AGG

The graph transformation tool AGG was developed at TU Berlin to explore ad-
vanced graph transformation properties for doing formal analysis. Performance
was not one of its main design criteria. AGG can be used in two different modes:
(a) via its built-in GUI to specify and execute graph transformations visually;
(b) via its API to write Java programs that use AGG’s underlying graph trans-
formation engine. We explored both ways to implement the Sierpinski triangle.

GUI with rule sequences and NACs. Our first implementation resorts
to AGG’s ability to define rule sequences, i.e., a predefined composition of graph
transformation rules. We used the following rule sequence:

( FindMatch{*} ApplyToMatch{*} ){n}

where integer value n represents the desired number of iterations, and {*} de-
notes that each rule is applied as long as possible. The two transformation rules
in this rule sequence are shown in Figure 10. FindMatch identifies and annotates
all triangles that need to be expanded. It uses a negative application condition
to avoid applying the rule more than once to the same occurrence. ApplyMatch
performs the actual transformation on the found matches. This solution has two
shortcomings. First, it requires an auxiliary, somehow artificial, node X. Second,
the timing results are not very promising.

GUI with parallel matching. To improve performance, Olga Runge ex-
tended the AGG engine with a mechanism of parallel matching, enabling the
computation of all possible matches of a given rule at once, and then repeatedly
applying the desired transformation to all of these matches. For the Sierpinski
example, this feature allowed us to simplify the solution by using only one rule
(Figure 11), while simultaneously improving the timing results.



Nac FindMatch of CraGra

Fig. 11. Implementation of Sierpinski in AGG using parallel matching.

API-based solution. For our third and final implementation, we wrote a
simple Java program that calls AGG’s API to execute the graph transformations.
This solution also relied on a single rule (Figure 11) using parallel matching, but
was more complex to implement since one needs to write a Java program and
know how the APIT works.

Timing results. We compared performance of the above three solutions. We
observed that the GUI-based solution relying on parallel matching, as well as
the API-based equivalent are the most performant. Still, even if the results are
visualised on a logarithmic time scale to account for the fact that Sierpinksi
generation is an inherently exponential problem, the curves remain exponential,
whereas we would have expected a (theoretically) linear increase instead. It is
therefore clear that the performance of AGG can still be increased considerably.

4.10 GReAT Solution

One solution was developed using GReAT, a meta-model based model transfor-
mation tool. GReAT, along with the Generic Modeling Environment, GME, are
well-suited for this application because GME allows one to quickly implement
domain-specific languages, and GReAT supports the quick implementation of
model transformations in the form of graph transformations.



The overall process we used was the following. We started by defining a meta
model in GME to describe models of Sierpinski Triangles. Next, we created
an instance model of this meta-model that contained one triangle. We then cre-
ated a GReAT transformation that performed the Sierpinski Triangle-generation
algorithm on this instance model using simple graph rewriting rules that are ex-
plicitly sequenced.

The meta model consisted of a base object, SierpinskiTriangleModel. This
object serves as the root container of the model as well as the container for all
other objects. The “Generations” attribute on this object indicates the num-
ber of times the Sierpinski algorithm is to be performed on the input graph.
The “DecrementGeneration” attribute is used during the transformation to de-
termine when the “Generations” attribute is ready to be decremented. ”"Node”
objects are used to represent triangle vertices, and ”Connection” objects are
used to represent the edges between triangles.

Using GReAT, a simple graph transformation was written to generate the
Sierpinski triangle graph. The transformation takes an input graph containing a
single triangle and produces the corresponding Sierpinski generation as a sepa-
rate output file.
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Fig.12. GReAT rules

The transformation consists of several simple rules that are organized into
hierarchical blocks. The first rule, “GetFirstTriangle” (see Figure 12), locates the
triangle in the input model. The next block, “SierpinkiGeneration”, is a sequence
of rules that, when executed, will rewrite the graph into the next Sierpinski
generation. “DecrementRule” (a rule contained inside the “CreateGeneration”



main = init; (inc; expand!)!.

init (x: int) inc (x,y: int)

()
-2 R @-@
00

1
where x > y

expand (u,v,x,y: int)

Fig. 13. GP program

block) is executed once per generation rather than once per triangle. After every
execution of the “CreateGeneration”, the number of generations remaining is
compared to zero in the Verify test case. Once the “Generations” attribute equals
zero, the Verify test case will fail, and the transformation will end.

Using GME and GReAT to perform this transformation provided a very sim-
ple, graphical approach that was very easy to implement and execute while still
achieving an acceptable level of performance. In addition, smaller generations
are very easy to visualize using the GME interface.

4.11 Generating Sierpinski Triangles with GP

The graph programming language GP is based on conditional rule schemata
[14]. The program in Figure 13 consists of three rule-schema declarations and
the main command sequence following the key word main. It expects as input
a graph consisting of a single node labelled with the generation number of the
Sierpinski triangle to be produced.

The rule schema init creates the Sierpinski triangle of generation 0 and
turns the input node into a unique “control node” whose label is of the form
x_y. The underscore operator allows to hold the required generation number x
and the current generation number y in a common node.

After init has been applied, the nested loop (inc; expand!)! is executed.
Intuitively, the operator ! executes a subprogram as long as possible. In each
iteration of the outer loop, the rule schema inc increases the current generation
number if it is smaller than the required number. The latter is checked by the
condition where x > y. If the test is successful, the inner loop expand! performs



a Sierpinski step on each triangle whose top node is labelled with the current
generation number: the triangle is replaced by four triangles such that the top
nodes of the three outer triangles are labelled with the next higher generation
number. The test x > y fails when the required generation number has been
reached. In this case the application of inc fails and hence the outer loop ter-
minates and returns the current graph. The resulting graph is the Sierpinski
triangle of the required generation.

The GP compiler translates the program of Figure 13 into bytecode that can
be executed by the York abstract machine [14]. The execution times shown in
Figure 15 have been obtained on a PC with an Intel Pentium 4 processor with
a clock rate of 2.80GHz and 512MB of main memory. For these executions, the
backtracking mechanism of the abstract machine has been switched off because
the program’s input/output behaviour is deterministic.

Most of the execution time is used to create the elements of the triangles while
matching the left-hand sides of the rule schemata is fast due to the uniqueness
of the control node labelled with x_y. In general, matching starts at the rarest
node or edge and then proceeds to find other elements of the left-hand side of
the rule schema. In the case of expand, clearly the rarest element is the control
node. Next the variable y is bound, and so the root of the triangle labelled with y
is found. Matching then extends over the 1- or 2-edge outgoing from the y-node,
and finds the remainder of the structure in a unique way.

4.12 VMTS Solution

In Visual Modeling and Transformation System (VMTS) [18], we have created
a metamodel that defines two types; the Vertex type is used to represent the
nodes of the Sierpinski triangle, while the DepthLimit node helps to set the
actual magnification (the depth level used in the transformation). The edges
of the triangles are represented at meta level by a loop edge connected to the
Vertex. Both types have an attribute Level. In case of a Verter the attribute
shows on which level (in which generation) the vertex has been created, while
in case of the DepthLimit, Level means the depth that we would like to reach
during the transformation.

The main idea behind our transformation is that at every step, we match
all possible triangles in the complete Sierpinski triangle and we transform each
triangle into four sub-triangles. There is only one exception: we do not process
triangles in which the Level attributes of the forming nodes are equal. This
exception is required to skip the inner triangles. There are two important com-
ments on the procedure: (i) We do not match triangles for which the vertices are
not direct neighbors; (ii) on the first (0**) level, when we have only one triangle,
the Level attributes of the nodes are the same. We can handle this as an initial
step and avoid applying the exception rule in this case. The transformation stops
if there is a node in the triangle for which the Level attribute is equal to the
level set by the DepthLimit object. The input model of the transformation is an
initial triangle having three vertices and a DepthLimit object.



In VMTS, we use an activity diagram-like specification [13] to define the steps
of graph transformations. Our Visual Control Flow Language supports processes
(transformation rules), start/end states, decisions, fork and join constructs. The
utilized control flow, shown in Fig. 14, forms a pretest loop, which is executed
until we reach the configured depth limit. The loop consists of two rewriting rules

Graph Ivaqfo Rule
MainRule

Graph Trafo ooy
LoopGountRule
Fig. 14. Control flow diagram of the transformation in VMTS

and a decision node. The first rule, named LoopCountRule in the control flow
model, references the GraphTrafoLoop transformation which checks whether the
Level attribute of DepthLimit is 0. If so, the rule deletes the object, which makes
the decision element select the end state of the transformation. Inside the loop,
the main transformation rule is executed (MainRule, GraphTrafoRule). Matching
is based on graphical rule definition, while rewriting uses Imperative OCL [17]
code. The main rule is set to apply matching in a MultipleMatch mode, thus,
the matching algorithm finds not only the first match, but all possible matches.
This means that rewriting is applied once on the complete list of matches, which
can dramatically improve performance according to our experiences. Moreover,
this way the rule is executed only once for each iteration, which makes handling
the Level attribute much simpler.

Our initial solution matched each triangle three times with different orienta-
tion and the filtering was applied after the matching process. With an improved
matching which checks for multiplicity, we have achieved processing times of
23220ms on the 9" level and 211750ms on the 10", It is important to note that
our transformation framework applies the transformation steps in a strict order,
defined by the control flow, and it does not compile control flows, but interprets
them. Therefore, the processing times achieved can be considered as raw values
without any optimization specific to this task.

5 Lessons Learned

For a rough comparison of the solutions presented, we give some key charac-
teristics in the following subsection. They are meant to provide a basis for the
subsequent performance comparison. Although concrete numbers are set into



relations, this comparison is supposed to give just a rough idea of runtime per-
formances. The reader has to keep in mind that these performance tests have
been executed on different computers and within different settings.

5.1 Approaches and Features

Even for a rough performance comparison of graph transformation tools it is
important to know the degree of non-determinism used within the given solu-
tion. We distinguish the following kinds of rule matching and application to
characterize the given graph transformation solutions:

1. Selection of rules and matches by the tool
2. The order of rule application is (partly) given, but matches are selected by
the tool.
. The order of rule application as well as their matches are (partly) given.
4. The order of rule application is (partly) given and rules are allowed to be
matched and applied as often as possible in parallel.

w

In addition, we provide some information on the kind of graph representation
used within the presented solutions. Some tools allow a custom graph represen-
tation to perfectly adapt to the case. In certain cases, graph features such as
attributes, are not needed. Custom graph representations allow to adapt to such
special cases.

To get a rough idea of the graph size in memory, we collected figures for the
size of one elementary triangle, i.e. the size of three nodes glued together to a
triangle produced in an elementary step of the Sierpinski generation.

A further information which seems to be significant for performance compar-
isons of graph transformations is the representation of edges. Here we look for
double linked edges such that it is possible to traverse the edges in O(1) in both
directions by just knowing an adjacent node. (Note: This feature has nothing to
do with directed or undirected edges in the meta model.)

5.2 Runtime Performance

Comparing the performance of the solutions we can see a widespread distribution
from milliseconds to hours for the same task—even spreading over several com-
plexity classes (see Figure 15). To investigate how fast the fastest solutions really
are, Mallon and Geif} developed a hand-coded solution called LIMIT. This artifi-
cial solution is roughly 2.6 times faster and 2.5 times more memory efficient than
the fastest semi-automatic tool (FusaBa)(kind 3). The fastest fully automatic
tools, i.e. GRGEN.NET (kind 2) and parallel tools (XL, Two TAPEs)(kind 4),
are even two orders of magnitude slower than LIMIT. One of the differences
between semi and fully automatic tools is that the semi-automatic ones require
the developer to specify the starting points of pattern matching, whereas auto-
matic tools can compute this information on their own. However, LIMIT uses
only knowledge automatically deducible from a meta model. Hence it should be
possible to tune tools to generate such efficient code automatically.



10000 + N
—&—Tiger EMF (1)

tool kind|custom graph|size of triangle|edges doubly linked
TiGErR EMF 1/3 no
MOMENT2-GT 1 no no
GROOVE 1 no yes
Two TAPES 1 partially 240 bytes yes
FusAaBA 3 yes 60 bytes no
GRGEN.NET 2 in v2.0 312 bytes yes
VIATRA 2 yes yes
XL (GroIMP graph)|| 1 possible 336 bytes yes
AGG 1/4 no yes
GREAT 2
GP 2 no 410 bytes yes
VMTS 2 no 3396 bytes yes
LIMIT 3 yes 6 pointers no
Table 1. Some special solution characteristics.
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Fig. 15. Running times of the solutions shown in logarithmic scale. All measurements
were carried out on different machines, so this figure has a deviation of a factor of about
3. The line style is selected according to the kind of matching and rule application of
the solution: Kind 1 = solid line, kind 2 = dash-dot line, kind 3 = dotted line, and

kind 4 = dashed line.

LIMIT is based on a compressed memory representation. Each node is rep-
resented by its (at most two) outgoing edges; the node itself uses no memory.
The edges are stored in, and refer to, a single array. The Sierpinski triangles
can be generated using only few types. Therefore, LIMIT uses a few bits of the



indices to encode the types of the respective nodes. This way edges can only
be traversed in one direction with O(1) the other direction possibly needs the
inspection of the whole graph. The pattern matching is done by extracting just
the right edges with the right direction from memory. The rewrite step just adds
more nodes, i.e. edges.

5.3 Concluding Remarks

The generation of Sierpinski triangles is well suited to measure the memory
footprint of a solution approach and therefore, well suited for tuning tools with
respect to graph representation. It is pleasant to note, that there are tools ca-
pable of handling millions of nodes and edges in very little time; reasonable
hand-coded solutions are only one order of magnitude faster and more memory
efficient. Tools which allow custom graph representations can be well adapted to
given problems which leads to usually better runtime performances than built-
in representations. However, it would be preferable to deduce a very efficient
host graph implementation directly from the meta model. Considering Table 1
again, we have to stress that the motivations for building graph transformation
tools have been very diverse. Dependent on intended application domains, qual-
ity criteria such as performance, usability, correctness, validation facilities, etc.
are considered with intensity of varying degree. Hence, only some tools allow for
custom graph representations.

In the process of preparing contest solutions, a large part of the tool builders
started to improve the performance of their tools. For several tools this case study
has been the first application which creates huge graphs. That quickly showed
that graph representations have to be very economic regarding memory. Some
tool builders immediately started to reduce memory consumption significantly,
others will follow in the next time. Improvements regarding time seem to be
possible concerning the graph matching algorithms used. Often, simple patterns
can be handled more efficiently than currently done.

The considered tools offer a wide range of features enabling developers to
provide elegant solutions. However, although the case study is pretty small,
missing features have been identified. E.g. the graphical layout of Sierpinski
triangles was often not optimal. Furthermore, this case study led the interest
especially to parallel matching and application of rules.

All solutions of kinds 1 and 2 allow some kind of non-determinism in the selec-
tion of matches and/or rules. However, this case study does not need any kind of
non-determinism and Fig. 15 shows that solutions of kinds 3 and 4 tend to show a
better performance. Due to this diversity of solution approaches, Figure 15 does
not really provide an objective comparison of the tools’ runtime performance.
Note that many participants did provide more than one solution, in order to
provide more elegant and more performant solutions. For more precise measure-
ments, it would be preferable to choose one solution approach beforehand. Even
if doing so, this case study does not measure well the matching time for patterns,
since the patterns used are small. Moreover, the (non-deterministic) application



of many different rules and rule interaction are not considered. Hence, further
case studies need to be considered in future.
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Appendix

Tool —||LIMIT|Fujaba|GrGen| XL| Two| GP|Groove| Viatra] VMTS Tiger|GReAT| AGG Tiger MOMENT
Gen. | NET Tapes EMF (3) EMF (1) 2-GT
0 7 4

1 12 3 10 16 50 16 42
2 14 1 16 63 15 144
3 13 1 3 33 290 62 111 24 453
4 14 8 7 125 62 406 16 204 224 91 1.475
5 14 3 15 17 172 108 920 62 624 729 906 4.928
6 18 12 32 43 265 141 2.450 250 2.688| 3.788 9.870 22.284
7 2 27 27 63| 130 375 388 7.630 2.000| 6.344| 34.724| 162.427| 172.868
8 10 7 62 125|390 656 1.413| 23.220| 16.500| 43.906|495.059 1.511.668
9 29| 206| 169 334| 1.183| 1.547| 9.474|211.750| 227.250|373.781

10 78| 749| 489 907| 3.520| 4.000| 67.593 364.984

11 104| 1.930| 1.542| 2.600{10.619| 11.969|568.589

12 138| 5.876| 5.252| 6.700(31.471| 43.672

13 238]20.872|17.321{18.900|96.474

14 170 537|49.919(68.061

15 531| 1.417

16 1.562| 4.022

17 4.687|11.778

18 14.015

Table 2. Comparison of the different approaches regarding the running time. Please note, that all measurements were conducted on
different computers; hence only the tendency of the figures is significant (see Figure 15). To make the figures more accessible, we ordered
the columns comparing their running times referring to the highest common available generation.



