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A presheaf semantics of value-passing processesGlynn WinskelBRICS* { Computer Science Dept., University of AarhusAbstractThis paper investigates presheaf models for process calculi withvalue passing. Denotational semantics in presheaf models are shownto correspond to operational semantics in that bisimulation obtainedfrom open maps is proved to coincide with bisimulation as de�nedtraditionally from the operational semantics. Both \early" and \late"semantics are considered, though the more interesting \late" semanticsis emphasised. A presheaf model and denotational semantics is pro-posed for a language allowing process passing, though there remainsthe problem of relating the notion of bisimulation obtained from openmaps to a more traditional de�nition from the operational seman-tics. A tentative beginning is made of a \domain theory" supportingpresheaf models.IntroductionThe papers [12, 4] explore presheaf models for concurrency. Here begins aninvestigation of the use of presheaves to model higher-order features, mostdramatic in the situation of process calculi where processes can be commu-nicated as values.Something of higher-order appears even in value-passing process calculiwhere values lie in some discrete datatype like integers or booleans. As iscustomary, for value-passing calculi, we draw a distinction between \early"and \late" semantics. Early semantics coincides with that presented in [14]where a value-passing calculus is reduced to a value-free one by immediatelyinstantiating the variable in an input action to its possible values, the re-sulting processes being set together in a nondeterministic sum. Accordingto late semantics input actions contain bound variables which only becomeinstantiated when a communication is made. Generally (see e.g. [15, 6, 16]),* Basic Research in Computer Science,Centre of the Danish National Research Foundation.1



a late semantics for value passing represents the result of input communica-tion as an abstraction, denoting a function from values to processes. Whereasthe usual models for concurrency, transition systems, labelled Petri nets andevent structures and the like, accommodate early semantics for value-passingdirectly, following [14, 7, 8], the late semantics seems accomplished mostsmoothly in domain-theoretic settings, which readily support abstractions.Two ways seem open to extending models for concurrency to higher-orderfeatures. One is to take existing models, most of these transitions systems inone disguise or another, and essentially decorate them with extra structure.Another is to develop a new class of models, some of which can be seen tocorrespond to existing models, and which at the same time are rich enoughto support constructions of the kind we are used to seeing in domain theory.This paper follows the latter course in investigating presheaf models.Presheaf models for concurrency have the advantage of including inter-leaving models like synchronisation trees and independence models like la-belled event structures, as well as contributing a general de�nition of bisimu-lation based on open maps. As we will see, they also extend to higher-order,though presently many questions remain, chief among them being the prob-lem of simultaneously combining higher-order features with independence ofthe kind seen in event structures and Petri nets. A more speci�c problemis that of obtaining a characterisation in terms of the operational semanticsof the bisimulation obtained from open maps for a process-passing calculus.On the positive side, the usual de�nition of \late bisimulation" and \earlybisimulation" for ordinary value-passing is reconciled with the de�nition ofbisimulation obtained on presheaves via open maps.1 The language VProcVProc is a process language for passing values along channels, inspired byCCS. Its syntax:t ::= nil j �:t j a!e:t j a?x:t j t1 j t2 j t1 + t2 j [e1 = e2]t j X j recX:twhere x ranges over value-variables V ar, X over process-variables Pvar, aover channel names C, and e; e1; e2 over value-expressions. We will not gointo the details of the form of value-expressions beyond remarking that theymay contain free value-variables and when evaluated yield values in a set V .2



For simplicity we assume that recursive de�nitions of processes recX:t areguarded in the sense that all free occurrences of X in t lie under, though notnecessarily immediately under, a pre�x �:-; a!e:- or a?x:-:1.1 Late transition semantics for VProcWe specify the transitions a closed term can perform. A transition t �! t0,where t is a closed term, is understood to mean that the process t can performaction � to become t0; actions � range over � -actions � , output actions a!v,where a 2 C and v 2 V , and input actions a?x, where a 2 C and x 2 V ar.� rule: �:t �! tOutput rule: a!e:t a!v! twhere e, necessarily closed, evaluates to value v.Input rule: a?x:t a?y! t[y=x]where y 2 V ar is assumed not captured by its substitution for x in t.Parallel rules: t1 �! t01t1jt2 �! t01jt2 t2 �! t02t1jt2 �! t1jt02In the �rst parallel rule t2 must have no free variables in common with action�; a symmetric condition is enforced for the second parallel rule.t1 a!v! t01 t2 a?y! t02t1jt2 �! t01jt02[v=y] t1 a?y! t01 t2 a!v! t02t1jt2 �! t01[v=y]jt02Sum rules: t1 �! t01t1 + t2 �! t01 t2 �! t02t1 + t2 �! t02Condition rule: t �! t0[e1 = e2]t �! t0provided e1 and e2 evaluate to the same value.Recursion rule: t[recX:t=X] �! t0recX:t �! t03



1.2 Late bisimulationDe�nition: A late bisimulation is a binary relationR between closed processterms such that whenever t1Rt2(i) t1 �! t01 ) 9t02: t2 �! t02 & t01 R t02 and t2 �! t02 ) 9t01: t1 �! t01 & t01 R t02(ii) t1 a!v! t01 ) 9t02: t2 a!v! t02 & t01 R t02 and t2 a!v! t02 ) 9t01: t1 a!v! t01 & t01 R t02(iii) t1 a?y! t01 ) 9t02; z: t2 a?z! t02 & 8v 2 V: t01[v=y] R t02[v=z] andt2 a?y! t02 ) 9t01; z: t1 a?z! t01 & 8v 2 V: t01[v=y] R t02[v=z]:Say closed process terms t1; t2 are late bisimilar i� there is a late bisimu-lation R such that t1Rt2.2 Open maps and bisimulation on presheavesLet P be a small category. It is to be thought of as a category of path objects(or path shapes) in which morphisms stand for an extension of one path byanother. Let bP = [Pop;Set], the category of presheaves over P. Recall, amorphism h : X ! Y , between presheaves X;Y , is open i� for all morphismsm : P ! Q in P, the square X(P ) X(Q)Y (P ) Y (Q)hP �� Xmoo hQ��Y moois a quasi-pullback, i.e. whenever p 2 X(P ) and q 2 Y (Q) satisfy hP (p) =(Y m)(q), then there exists p0 2 X(Q) such that (Xm)(p0) = p and hQ(p0) =q. (This de�nition of open map, translates via the Yoneda Lemma to anequivalent path-lifting property of h|see [12].)Say presheaves X;Y are bisimilar i� there is a span of surjective openmaps between them, equivalently, i� there is R ,! X � Y such that thecompositions with the projections R ,! X � Y �1! X and R ,! X � Y �2! Yare surjective open.In [12, 4] we de�ned bisimulation between rooted presheaves, presheavesX, over a category assumed to have an initial object I, for which X(I) is a4



singleton. For rooted presheaves bisimulation is de�ned merely through thepresence of a open maps (not requiring surjectivity). This is because openmaps between rooted presheaves are necessarily surjective.We can cast further light on rooted presheaves with the help of a \lifting"construction which will be important later, as is to be expected from tradi-tional domain theory. For P, a small category, de�ne its lifting P? to consistof P with a new initial object (called ?) adjoined freely. Given X 2 bP,de�ne lift(X) 2 bP? to be the rooted presheaf which acts as X on copies ofP 2 P and yields a singleton, f�g say, on ?. The lift operation extends inthe obvious way to a functor which gives an equivalence between bP and thesubcategory of rooted presheaves over P?; on maps h in bP, lift(h) is openi� h is surjective open. These remarks are useful in another context, that ofalgebraic set theory|see [10], p. 72.3 A domain-theoretic settingIn proposing categories of presheaves as our \domains" of processes we areleaving domain theory as traditionally understood; processes are denoted bypresheaves, objects in a category rather than elements of a partial order.This is not new; several proposals have been made for generalisation of pow-erdomains that leave the category of partial orders, for instance [13, 1, 18],and presheaves, being a way to introduce nondeterministic branching to com-putation paths, have much in common with powerdomains.We sketch a setting, generalising traditional domain theory, in which wecan place the work on presheaf models. The category analogue of algebraiccpo's is �nitely accessible categories [2] in which the role of the basis of �-nite/isolated/compact elements is replaced by that of a small subcategoryof �nitely presentable objects; every object of a �nitely accessible categoryis a directed colimit of �nitely presentable objects. This is analogous to thefact that an algebraic cpo is the ideal completion of its �nite elements. Mor-phisms between �nitely accessible categories are functors preserving directedcolimits, the analogue of continuous functions.A way to introduce nondeterminism to a �nitely accessible category C isvia a construction on the \basis" of �nitely presentable objects C0: Freelyclose C0 under all �nite colimits to get a new basis (in which nondeterministicbranching has been introduced). The �nitely accessible category with this5



new category as basis, got by closing under directed colimits, can be thoughtof as the nondeterministic computations of C. This \ideal completion" isequivalent to the category of presheaves over C0 (by results of [9], ch.VI). Sotaking presheaves combines two operations, adding branching to a basis (thepart that takes us outside partial orders), and then completing to a �nitelyaccessible category. Viewed in this way, taking presheaves over the basis of a�nitely accessible category yields a \monad" on �nitely accessible categories,reminiscent of powerdomain monads.1The Kleisli category of the monad associated with taking presheaves isProf, the bicategory of profunctors (see e.g. [3] where they are called distrib-utors). Profunctors and their categorical constructions provide a convenientsetting in which to provide semantics to process calculi with value and pro-cess passing. The bicategory Prof has small categories as objects and asmorphisms F : P p!Q, where P and Q are small categories, we take functorsF : P! cQ. Composition in Prof, say of F : P p!Q and G : Q p!R, is givento within isomorphism by Gy �F : P p!R|here Gy is the left Kan extensionLanyQG of G with respect to the Yoneda embedding yQ : Q ! cQ. LeftKan extensions and so composition are only determined up to isomorphism;thus the fact that Prof is really a bicategory, and not a category. Note thatprofunctors, or more properly their left Kan extensions, preserve (surjective)open maps and so bisimulation by [4] Lemma 3|the extra preservation ofsurjectivity is easy to show. Cat the category of small categories embedsin Prof: A functor F : P ! Q is sent to the composition yQ � F with theYoneda embedding yQ : Q ! cQ. The embedding Cat ! Prof preservessmall colimits.Prof forms a model of classical linear logic. To see its monoidal closedstructure, for small categories P;Q, de�neP( Q = Pop �Q and P 
Q = P �Q ;where product � on the right is the usual product of categories, and observethe natural bijection:Prof (P; [Q( R]) �= Prof (P
Q;R)The unit of 
 is 1, the category with a single object and morphism. Prof hasproducts and coproducts which coincide on objects, where both are given by1In this motivational section, we won't be distracted by the constructions more properlytaking place in a 2-category/bicategory|thus the quotes around \monad".6



coproduct in Cat. As a model of classical linear logic there is the same kindof degenerary familiar from the category of relations; par (}) coincides withtensor (
), and ? with 1 (so Prof is compact-closed). Linear involutionP? is isomorphic to P( 1 and so to Pop.Morphisms 1 p!(P( Q) correspond to presheaves over Pop �Q and soto profunctors P p!Q. They correspond to colimit-preserving functors frombP to cQ.When we attend to presheaf semantics we are involved with various sortsof functors. Certainly we quickly encounter functors from P to cQ corre-sponding, to within isomorphism, to colimit-preserving functors from bP tocQ, between presheaves. We also meet more general \continuous" functorsbP ! cQ, for example to cope with processes which can receive processes asvalues. As usual in linear logic we can recover these with the help of an ex-ponential (!). De�ne !P, to be a completion of P under �nite colimits; moreprecisely we can take !P to be a skeletal subcategory of the subcategory ofbP consisting of �nitely presentable objects. Then profunctors !P p!Q corre-spond, to within isomorphism, to functors bP ! cQ which are continuous inthe sense that they preserve directed colimits.Prof provides us with a rich repertoire of constructions on categories ofpresheaves. We pause to ask how the constructions are reected in notionsof open maps and bisimulation.It is clear when a map is (surjective) open in a coproduct P+Q in Prof:h : X ! Y is (surjective) open in \P+Q i� the two components h1 : X1 ! Y1and h2 : X2 ! Y2 are (surjective) open in bP and cQ respectively. Becauseproducts in Prof are given by the same construction on objects, the sameholds for products.Let h : X ! Y be a map in \P 
Q. For P 2 P, de�ne hP to be the naturaltransformation hP : X(P;�) ! Y (P;�) with component (hP )Q = hP;Q atQ 2 Q. In a similar way, de�ne hQ : X(�; Q) ! Y (�; Q) for any Q 2 Q.Now, we can observe: h : X ! Y is (surjective) open in \P 
Q i�8P 2 P: hP is (surjective) open in cQ and 8Q 2 Q: hQ is (surjective) openin bP.There is a similar characterisation of open maps in \P( Q becauseP ( Q = Pop � Q. A map h : X ! Y in \P( Q is (surjective) openi�8P 2 P: hP is (surjective) open in cQ and 8Q 2 Q: hQ is (surjective) open in dPop.7



Note openness and bisimilarity in \P( Q involves openness and bisimilarityin dPop! However, in the situation where P is a discrete category, h is openi� hP is open for all P 2 P.This proposal of a domain theoretic framework in which to understandpresheaf models cannot be de�nitive at present. We would, for instance,expect to work within some cartesian-closed subcategory of �nitely accessiblecategories. But, more importantly, until the aim of bringing independencemodels within a domain-theoretic framework is carried out fully we shouldremain open-minded.4 A late path categoryWe seek a path category P with respect to which closed process terms ofVProc denote presheaves. Its objects should reect that a compution pathof a process may begin with a � -action, an output action a!v or an inputaction a?, when it may either resume with a computation path, or, in the casewhere it has �rst performed an input action, input a value before resumingthe computation path. This guides us to wishing to denote closed terms ofVProc by presheaves over path category P, which is an initial solution toP �= P? + X(a;v)2C�V P? +Xa2C(V ( P)?in Prof|here we treat the set V as a discrete category. The solution is easyto construct, �rstly because it is su�cient to �nd an initial solution toP �= P? + X(a;v)2C�V P? +Xa2C(V op �P)?in Cat (where V op = V as V is discrete), and secondly because all theoperations used preserve the property that the category is a partial order.This means an initial solution has the form of a partial orderP = P? + X(a;v)2C�V P? +Xa2c(V op �P)?whose path objects are given inductively by:� �: 2 P, and �:P 2 P if P 2 P, 8



� a!v: 2 P, and a!v:P 2 P if P 2 P,� a? 2 P, and a?(v 7! P ) 2 P if P 2 P,where a 2 C and v 2 V , and whose morphisms (the partial order) are giveninductively by the following clauses, where P;P 0 2 P; a 2 C and v 2 V :� P � P ,� �: � �:P , and �:P � �:P 0 if P � P 0,� a!v: � a!v:P , and a!v:P � a!v:P 0 if P � P 0,� a? � a?(v 7! P ), and a?(v 7! P ) � a?(v 7! P 0) if P � P 0.Notation: We use (P;Q) to name the unique morphism from P to Q in Pwhen P � Q.We are using suggestive names for the objects of P to pick out to whichcomponent of a sum they belong:� �: is the least element of the leftmost summand of P, other elementsof this component being of the form �:P:� a!v: is the least element of the output summand associated with out-putting value v on channel a; other elements of this component havethe form a!v:P .� a? is the least element of the summand associated with a commitmentto input on channel a; its other elements take the form a?(v 7! P ) andcorrespond to resuming a computation path after inputting value v.We could have derived the above constructions on path objects systemati-cally from operations associated with sums, lifting and product of categories.5 Late presheaf semanticsWe introduce operations on presheaves which capture the meaning of oper-ations in VProc. 9



5.1 Pre�xingLet X 2 bP. We de�ne �:X 2 bP by taking �:X = In� � lift(X). whereIn� : bP? ! bP takes a presheaf over P? to the corresponding presheaf overthe left summand P? inP = P? + X(a;v)2C�V P? +Xa2C (V op �P)? : (y)Recalling our notation for path objects it follows that for X 2 bP and a pathobject Q 2 P �:X(Q) = 8><>: X(P ) if Q = �:P;f�g if Q = �:;; otherwise.Similarly, for X 2 bP; a 2 C and v 2 V , we de�ne a!v:X 2 bP so that on apath object Q 2 Pa!v:X(Q) = 8><>: X(P ) if Q = a!v:P;f�g if Q = a!v:;; otherwise:Let F : V ! bP and a 2 C. We de�ne a?F 2 bP as follows. Firstnotice that F corresponds to a presheaf X over V op � P, and now de�nea?F = Ina? � lift(X) where Ina? : bP? ! bP takes a presheaf over (V op �P)?to the corresponding presheaf over the a-summand inP (see (y) above). Now,for F : V ! bP; a 2 C and a path object Q 2 P we obtaina?F (Q) = 8><>: (Fv)(P ) if Q = a?(v 7! P );f�g if Q = a?;; otherwise:Notation: If G(v) 2 bP, for any v 2 V , we can as usual write �v:G(v) forthe associated function V ! bP. We write a?v:G(v) for a?(�v:G(v)).5.2 SumsCoproducts of presheaves provide nondeterministic sums of processes.If X1;X2; � � � ;Xn 2 bP, we use X1+ � � �+Xn to denote the presheaf which ata path object P 2 P takes the set-value(X1 + � � � +Xn)(P ) = X1(P ) + � � �+Xn(P );10



the disjoint union of sets X1(P ); � � � ;Xn(P ). For a morphism (P;Q) of P,where P � Q,(X1;+ � � �+Xn)(P;Q) = X1(P;Q) + � � � +Xn(P;Q);making use of the functorial nature of disjoint union (= coproduct) of sets.Similarly, if Xi; i 2 I, is an indexed family of presheaves Xi 2 bP, we useXi2I Xi to denote their coproduct. If I = ; this is the empty presheaf ;, withempty set as value at each path object.5.3 A decomposition resultWe will now observe that every presheaf X 2 bP decomposes into a sum ofdisjoint components rooted at one of the minimal path objects �:; a!v:; a?where a 2 C; v 2 V . The notion of rooted component will play a key role.Let M be a minimal object in P, Let X 2 bP. Any m 2 X(M) determines asub-presheaf Cm of X as follows. Letting m 2 X(M), de�neCm(P ) = ( fp 2 X(P ) j X(M;P )(p) = mg ifM � P;; otherwisefor P 2 P, and when P � Q de�ne the function Cm(P;Q) : Cm(Q)! Cm(P )by Cm(P;Q)(q) = X(P;Q)(q) for q 2 Cm(Q)| because X is a contravariant functor it follows thatX(M;P )(X(P;Q)(q) = X(M;Q)(q) = mso that X(P;Q)(q) 2 Cm(P ). It is easily checked that Cm is a presheaf andindeed a sub-presheaf of X because its action on morphisms (P;Q), whenP � Q, restricts that of X.Notation: In this situation, we shall say Cm is a rooted component of X atm. Rooted components of X are pairwise disjoint in the sense that if M;M 0are minimal objects of P and Cm is a rooted component at m 2 X(M) and11



Cm0 is a rooted component at m0 2 X(M 0), then if at P 2 P, Cm(P ) \Cm0(P ) 6= ; then M =M 0 and m = m0. Thus, for any path object P 2 P,X(P ) =[M [m2X(M)Cm(P ) ; (1)a disjoint union, where M ranges over minimal objects of P. Consequently,X is isomorphic to a sum of its rooted components:X �=XM Xm2X(M) Cm (2)where M ranges over minimal objects of P and Cm is the rooted componentof X at m.We analyse further the form of rooted components of X 2 bP.A rooted component Ci at i 2 X(�:) is isomorphic to �:Xi where Xi 2 bPis given byXi(P ) = Ci(�:P ); on objects P 2 P; andXi(P;Q) = Ci(�:P; �:Q) : Xi(Q)! Xi(P ); on morphisms P � Q of P:We write X �! X 0 when there is i 2 X(�:) such that X 0 = Xi. The assign-ment i 7! Xi is a bijection between the sets X(�:) and fX 0 j X �! X 0g.A rooted component Ci at i 2 X(a!v), for a 2 C and v 2 V , is isomorphicto a!v:Xj, where Xj 2 bP is given byXj(P ) = Cj(a!v:P ); on objects P 2 P; andXj(P;Q) = Cj(a!v:P; a!v:Q); on morphisms P � Q of P:We write X a!v! X 0 when there is j 2 X(a!v) such that X 0 = Xj . Theassignment j 7! Xj is a bijection between the sets X(a!v:) and fX 0 j X a!v!X 0g.Let Ck be a rooted component at K 2 X(a?). De�neXk(v)(P ) = Ck(a?(v 7! P )); andXk(v)(P;Q) = Ck(a?(v 7! P ); a?(v 7! Q)) : Xk(v)(Q)! Xk(v)(P ):Then Xk is a function from values v 2 V to presheaves Xk(v) 2 bP such thatCk is isomorphic to a?Xk. We write X a?! F when there is k 2 X(a?) such12



that F is isomorphic to Xk. The assignment k 7! Xk is a bijection betweenthe sets X(a?) and fF j X a?! Fg.Recalling (1) above and the de�nition of Xj for j 2 X(a!v) and Xk fork 2 X(a?) we deduce: X(�:P ) = [i2X(�:)Xi(P )X(a!v:P ) = [j2X(a!v:)Xj(P )X(a?(v 7! P )) = [k2X(a?)Xk(v)(P )with unions which are disjoint, where a 2 C and v 2 V .Recalling the decomposition (2) above, we obtain the following decompo-sition result:Proposition 1 Let X 2 bP. ThenX �= Xi2X(�:)�:Xi + X(a;v)2C�V Xj2X(a!v:)a!v:Xj +Xa2C Xk2X(a?:)a?Xk :5.4 Guarded recursive de�nitionsPresheaf categories possess all colimits and so in particular !-colimits forbuilding denotations of recursive de�nitions. In fact, because all our de�ni-tions have been given concretely as operations on sets, we are able to showthat they are all continuous with respect to the sub-presheaf relation, andthe solution of recursive de�nitions reduces to �nding �xed points of a con-tinuous function on cpo's; we obtain solutions up to equality and not justisomorphism.There is clearly a well-founded relation� on path objectsP given by theirinductive de�nition. If a presheaf X say is a solution to a guarded recursivede�nition then X will be equal to an expression in which each occurrenceof X lies under a pre�x operation. Hence by the results of Section 5.3,X(P ) is given in terms of X(Q) where Q � P . Thus, by well-foundedinduction any solution is uniquely determined. A similar argument appliesto an operation on presheaves, like parallel composition de�ned below, whosevalues on presheaves is de�ned recursively in terms of the operation underpre�xes|it too is uniquely determined.13



5.5 Parallel compositionLet X;Y 2 bP have the decompositions :X �=Xi2I �:Xi + X(a;v)2C�V Xj2Ja;v a!v:Xj +Xa2C Xk2Ka a?XkY �=Xl2L �:Yl + X(a;v)2C�V Xm2Ma;v a!v:Ym +Xa2C Xn2Na a?YnTheir parallel composition X j Y is de�ned recursively to beXi2I �:(Xi j Y ) + X(a;v)2C�V Xj2Ja;v a!v:(Xj j Y ) +Xa2C Xk2Ka a?v:(Xk(v) j Y )+Xl2L �:(X j Yl) + X(a;v)2C�V Xm2Ma;v a!v:(X j Ym) +Xa2C Xn2Na a?v:(X j Yn(v))+ X(a;v)2C�V Xj2Ja;v Xn2Na �:(Xj j Yn(v)) + X(a;v)2C�V Xm2Ma;v Xk2Ka �:(Xk(v) j Ym) :5.6 Late denotational semanticsSuppose t is a process term with free process-variables within U1; � � � ; Um andfree value-variables within x1; � � � ; xn (possibly empty lists). The denotationof t in this context, written [[t[U1; � � � ; Um;x1; � � � ; xn]]], is a function (extend-able to a functor) bPm � V n ! bP, given by structural induction on t in theusual fashion, matching syntactic constructs with the appropriate semanticoperations:
14



[[nil[!U;!x]]] !X!v= ;; the empty presheaf.[[�:t[!U;!x]]] !X!v= �:([[t[!U;!x]]] !X!v )[[a!e:t[!U;!x]]] !X!v= a!w:([[t[!U;!x]]] !X!v )where e evaluates to w in environment !v = !x.[[a?y:t[!U;!x]]] !X!v= a?w:([[t[!U;!x; y]]] !X!v w)[[t1 j t2[!U ;!x]]] !X!v= [[t1[!U ;!x]]] !X!v j [[t2[!U;!x]]] !X!v[[t1 + t2[!U ;!x]]] !X!v= [[t1[!U ;!x]]] !X!v + [[t2[!U ;!x]]] !X!v[[[e1 = e2]t[!U;!x]]] !X!v= ( [[t[!U;!x]]] !X!v if e1; e2 evaluate to a common value in !v = !x.;; the empty presheaf, otherwise.[[Ui[!U ;!x]]] !X!v= Xi[[recY:t[!U;!x]]] !X!v= R; the unique solution of R = [[t[!U; Y ;!x]]] !X R !v :Lemma 2 Let t be a process term with free process-variables among U1; � � � ; Umand free value-variables among x1; � � � ; xn. Suppose s1; � � � ; sm are closedprocess-terms and that v1; � � � ; vn are values in V . Then,[[t[!U;!x]]][[!s ]] = [[t[!s = !U ][!v = !x]]]:6 The late semantics relatedThe decomposition result and the preparatory discussion suggest that weview a presheaf over P as a transition system. In particular, it is sensibleto view a relation X �! X 0 holding between presheaves X;X 0 as meaningthat the process represented by the presheaf X can make a � -transition to aprocess represented by the presheafX 0. There is a similar reading ofX a!v! X 0,while X a?! F means X can receive a value on channel a when, depending onthe value v received, it will resume as process F (v).Thus, a closed process term is associated with two transition systems,one from the transition semantics and one from its denotation as a presheaf.15



The next lemma asserts, essentially, that the relationf([[t]]; t) j t a closed process termgis a late-bisimulation between the two transition systems.Lemma 3 Let t be a closed process term. Then,[[t]] �! Xi� 9t0: t �! t0 & [[t0]] = X ;[[t]] a!v! Xi� 9t0: t a!v! t0 & [[t0]] = X ;[[t]] a?! F i� 9t0; y: t ay! t0 & [[t0[y]]] = F :Proof: For W 2 bP and t a closed process term de�ne W � t i�8Z: W �! Z , 9t0: t �! t0 & [[t0]] = Z;8Z; a; v: W a!v! Z , 9t0: t a!v! t0 & [[t0]] = Z; and8F; a: W a?! F , 9t0; y: t a?y! t0 & [[t0[y]]] = F:The proof proceeds by structural induction an process terms t with inductionhypothesis:If t has free process-variables withinX1; � � � ;Xn, free value-variableswithin x1; � � � ; xn, and S1; � � � ; Sn are closed process-terms suchthat Xi is guarded in t or [[Si]] � Si; whenever 1 � i � m;then for all v1; � � � ; vn 2 V ,[[t[!X;!x]]] ![[s]]!v� t[!s = !X;!v = !x]|using an obvious vector notation.Clearly, when t is closed the induction hypothesis amounts to [[t]] � t, asrequired. 2As will be seen, the bisimilarity induced by spans of open maps in bPcoincides with the natural translation of late bisimulation to presheaves.16



De�nition: A late bisimulation on presheaves consists of a binary relationR on presheaves bP such that whenever X R Y ,X �! X 0 ) 9Y 0: Y �! Y 0 & X 0 R Y 0;Y �! Y 0 ) 9X 0: X �! X 0 & X 0 R Y 0;X a!v! X 0 ) 9Y 0: Y a!v! Y 0 & X 0 R Y 0;Y a!v! Y 0 ) 9X 0: X a!v! Y & X 0 R Y 0;X a?! F ) 9G: Y a?! G & 8v 2 V: F (v) R G(v);Y a?! G) 9F: X a?! F & 8v 2 V: F (v) R G(v):Say X;Y 2 bP are late bisimilar i� X R Y for some late bisimulation onpresheaves R.That surjective open maps induce late bisimulations on presheaves followsdirectly from the next lemma.Lemma 4 Assume f : X ! Y is an open map bP.Let M be a minimal object of bP. If Cm is a rooted component of X atm 2 X(M) then the image fCm is a rooted component of Y at fM(m); therestriction fCm of f to Cm is an open map fCm : Cm ! fCm.Moreover, if f is surjective then any rooted component of Y is the imageof a rooted component of X under f , and each restriction fCm , where Cm isa rooted component of X, is a surjective open map.Proof: Direct consequence of the de�nition of open map. 2Corollary 5 If h : X ! Y is a surjective open map in bP, then X;Y arelate bisimilar.Proof: De�ne R a relation on presheaves by:W R Z i� 9f :W ! Z surjective and open in bP:Then R is a late bisimulation on presheaves by Lemma 4. 217



Corollary 6 If X;Y are bisimilar in bP, i.e. they are related by an span ofsurjective open maps, then X;Y are late bisimilar as presheaves.Proof: >From Corollary 5, as late bisimilarity on presheaves is easily seento be an equivalence relation. 2Thus a span of surjective open maps yields a late bisimulation betweenpresheaves. We now show the converse. For the presheaves X;Y and a late-bisimulation R which relates them we construct a sub-presheaf of RXY �X � Y whose projections to X and Y are surjective open maps.For X 2 bP, recall from Section 5.3, the bijections between� i 2 X(�:) and transitions X �! Xi ,� j 2 X(a!v) and transitions X a!v! Xj ,� k 2 X(a?) and transitions X a?! Xk .They are used in the next de�nition.De�nition: Let R be a late bisimulation. De�ne, by induction on the struc-ture of path objects P 2 P, sets RXY (P ) whenever X R Y :RXY (�:) = f(i; l) 2 X(�:)� Y (�:) j Xi R YlgRXY (�:P ) = SfRXiYl(P ) j (i; l) 2 RXY (�:)gRXY (a!v:) = f(j;m) 2 X(a!v:)� Y (a!v:) j Xj R YmgRXY (a!v:P ) = SfRXjYm(P ) j (j;m) 2 RXY (a!v:)gRXY (a?) = f(k; n) 2 X(a?)� Y (a?) j 8v 2 V: Xk(v) R Yn(v)gRXY (a?(v 7! P )) = SfRXk(v)Yn(v)(P ) j (k; n) 2 RXY (a?)gLemma 7 Let R be a late bisimulation on presheaves. If X R Y , then(i) RXY extends to a sub-presheaf of X � Y .(ii) The compositions RXY ,! X � Y �1! X and RXY ,! X � Y �2! Yare surjective open, where �1; �2 are the projections associated with theproduct X � Y . 18



Proof: (i) It is �rst necessary to show that RXY (P ) � X(P ) � Y (P ). Thisfollows by induction on the structure of P 2 bP. For instance consider a pathobject of the form a?(v 7! P ). Suppose X a?! Xk; k 2 X(a?); and Y a?!Yn; n 2 Y (a?), with 8v 2 V: Xk(v) R Yn(v). Now,RXk(v)Yn(v)(P ) � Xk(v)(P )� Yn(v)(P ) by induction,� X(a?(v 7! P ))� Y (a?(v 7! P )) by Section 5.3.Thus RXY (a?(v 7! P )) � X(a?(v 7! P ))� Y (a?(v 7! P )):An induction on the clauses for deriving morphisms P � Q in bP (see Sec-tion 4) shows X(P;Q)�Y (P;Q) restricts to a function RXY (Q)! RXY (P ),making RXY a sub-presheaf of X � Y .(ii) Write �1; �2 for the restriction of the projections RXY ,! X�Y �1! Xand RXY ,! X � Y �2! Y . That each component �1P ; �2P is surjective isproved by induction on the structure of path objects P . The quasi-pullbackconditions providing the openness of �1 and �2 are shown to hold by inductionon the clauses for deriving morphisms P � Q in bP. 2Hence:Theorem 8 Presheaves X;Y 2 bP are late-bisimilar i� they are related by aspan of surjective open maps.The next lemma links late-bisimilation on presheaves and late-bisimulationon closed terms of VProc, and yields the main result of this section|theequivalence of the operational and denotational formulations of bisimilarity.Lemma 9 Let t1; t2 be closed process terms. The denotations [[t1]]; [[t2]] arelate bisimilar as presheaves i� t1; t2 are late bisimilar.Proof: Assuming R is a late-bisimulation on presheaves, it is claimed weobtain a late-bisimulation S on (closed) process terms by de�ningS = f(t1; t2) j [[t1]] R [[t2]]g:Conversely, assuming S is a late-bisimulation on (closed) process terms, it isclaimed we obtain a late bisimulation on presheaves by de�ningR = f([[t1]]; [[t2]]) j t1 S t2g:19



The proof of these two claims rests on Lemma 3, with recourse to the Sub-stitution Lemma 2.For example, suppose S is obtained from a late-bisimulation on presheavesas above. Suppose s1Ss2 and s1 a?y! s01. For S to be a late bisimulation weare required to �nd a matching transition of s2. However, by Lemmas 3,[[s1]] a?! [[s01[y]]], so because [[s1]]R[[S2]] there is G : V ! bP for which[[s2]] a?! G and 8v 2 V: [[s01[y]]](v)RG(v):By Lemma 3 again, there are s02; z for whichs2 a?z! s02 & [[s02[z]]] = G:By the Substitution Lemma 2,8v 2 V: [[s01[v=y]]]R[[s02[v=z]]];i.e. 8v 2 V: s0[v=y]Ss02[v=z], as required. 2Theorem 10 Closed process terms t1; t2 of VProc are late-bisimilar i� theirdenotations [[t2]]; [[t2]] are related by a span of surjective open maps.Proof: Directly from Theorem 8 and Lemma 9. 27 VariationsA transition semantics and bisimulation for VProc with early value passingcan be obtained easily on the lines of [14]. An appropriate presheaf semanticsis obtained with a path category a partial order which is an initial solutionto: P = P? + X(a;v)2C�V P? + X(a;v)2C�V P?In fact bP is isomorphic to rooted presheaves over P? which is readily seento be isomorphic to a category of synchronisation trees in which labels havethe form � , a!v or a?v where a 2 C and v 2 V , a category STC�V in the no-tation of [12, 4]. For such categories bisimulation obtained from open mapshas been shown to coincide with Park and Milner's strong bisimulation [12].20



Furthermore, denotational semantics is given in [19] in which denotationsof terms as synchronisation trees are strong bisimilar to the transition sys-tems from an operational semantics. Thus there is no di�culty in producinga denotational semantics so that the denotation of closed terms in bP areconnected by a span of open surjections i� the terms are strong bisimilar.A much greater challenge is provided by a process-passing language witha syntax similar to that of VProct ::= nil j �:t j a!t1:t2 j a?X:t j (t1 j t2) j t1 + t2 j X j recX:tbut where in contrast to VProc a process t1 can be sent along a channel a bya process a!t1:t2 and an arbitrary process can be received on a and bound toprocess-variable X in a process a?X:t. A transition semantics can be found,for instance, in [16]. A path category for process-passing with late semanticsis reasonably taken to be an initial solution to the following isomorphism inProf P �= P? +Xa2C(P�P)? +Xa2C(!P( P)?or su�ciently an initial solution toP �= P? +Xa2C(P+P)? +Xa2C((!P)op �P)?in Cat|the constructions one is led to by Section 3. There is little trou-ble in giving a denotational semantics to a term with n free variables asa functor bPn ! bP. So closed terms, denoting presheaves in bP, inherit anotion of bisimulation from open maps in presheaf categories. But there isa problem in understanding the bisimulation that arises, for example as acoinductive de�nition based on a transition semantics, along the usual lines.The di�culties are due to the function space component (!P( P).On the other hand, there seem to be no fundamental di�culties in pre-senting a presheaf model of the Pi-calculus, where following the lead of [17, 5]we (Cattani,Stark,Winskel) move to ProfI, indexed by a category of name-sets I.AcknowledgementsI especially thank Martin Hyland for very helpful discussions during my stayat the Isaac Newton Institute, Cambridge University. Thanks also to Jaap21



van Oosten for useful pointers to the literature.References[1] Abramsky, S., On semantic foundations of applicative multiprogram-ming. Proc. ICALP'83, Barcelona, LNCS 154, 1983.[2] Adamek, J., and Rosicky J., Locally presentable and accessible cate-gories. LMS Lecture Notes Series 189, 1994.[3] Borceux, F., Handbook of categorical logic, 1. Cambridge UniversityPress, 1994.[4] Cattani, G.L., and Winskel, G., Presheaf models for concurrency.Manuscript, 1996.[5] Fiore, M., Moggi, E., and Sangiori, D., A fully abstract model for thePi-calculus. Proc. of LICS'96.[6] Hennessy, M., and Ingolfsdottir, A., A theory of communicating pro-cesses with value passing. Information and Computation, 107(2), 1993.[7] Hennessy, M., and Plotkin, G., A termmodel for CCS. Proc. 9th MFCS,Poland, LNCS 88, 1980.[8] Ingolfsdottir, A., A semantic theory for value-passing processes, lateappraoch|Parts I and II. BRICS reports RS{95{3/22, 1995.[9] Johnstone, P.T., Stone Spaces. Cambridge University Press, 1982.[10] Joyal, A., and Moerdijk, I., Algebraic set theory. LMS Lecture NotesSeries 220, Cambridge University Press, 1995.[11] Joyal, A., and Moerdijk, I., A completeness theorem for open maps. InAnnals of Pure and Applied Logic 70, 51-86, 1994.[12] Joyal, A., Nielsen, M., and Winskel, G., Bisimulation from open maps.Report Series RS-94-7, BRICS, University of Aarhus, Denmark, May1994. Accepted for a LICS 93 special issue of Information and Compu-tation. 22



[13] Lehman, D., Categories for �xed point semantics. FOCS 17, 1976.[14] Milner, A.R.G., Communication and concurrency, Prentice Hall, 1989.[15] Milner, R., Parrow, J., and Walker, D., A calculus of mobile processes,Parts I and II. Information and Computation, 100:1-77, 1992.[16] Sangiori, D., Bisimulation for higher-order process calculi. INRIA Re-port, Sophia-Antipolis, RR-2508, 1995.[17] Stark, I.,A fully abstract domain model for the Pi-calculus. Proc. ofLICS'96, 1996.[18] Vickers, S., Geometric theories and databases. In LMS Lecture NotesSeries 177, 1992.[19] Winskel, G., and Nielsen, M., Models for concurrency. In the Hand-book of Logic in Computer Science, vol.IV, ed. Abramsky, Gabbay andMaibaum, Oxford University Press, 1995.

23



Recent Publications in the BRICS Report Series

RS-96-44 Glynn Winskel. A Presheaf Semantics of Value-Passing
Processes. November 1996. 23 pp. Extended and revised
version of paper appearing in Montanari and Sassone,
editors, Concurrency Theory: 7th International Confer-
ence, CONCUR ’96 Proceedings, LNCS 1119, 1996, pages
98–114.
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