
Representing Nuprl Proof Objects in ACL2:

toward a proof checker for Nuprl

James L. Caldwell⋆ and John Cowles⋆

Department of Computer Science, University of Wyoming, Laramie Wyoming

{jlc,cowles}@cs.uwyo.edu

Abstract. Stipulations on the correctness of proofs produced in a for-
mal system include that the axioms and proof rules are the intended ones
and that the proof has been properly constructed (i.e. it is a correct in-
stantiation of the axioms and proof rules.) In software implementations
of formal systems, correctness additionally depends both on the correct-
ness of the program implementing the system and on the hardware it is
executed on. Once we implement a system in software and execute it on
a computer, we have moved from the abstract world of mathematics into
the physical world; absolute correctness can never be achieved here. We
can only strive to increase our confidence that the system is producing
correct results. In the process of creating proofs, foundational systems
like Nuprl construct formal proof objects. These proof objects can be
independently checked to verify they are correct instantiations of the
axioms and proof rules thereby increasing confidence that the putative
proof object faithfully represents a proof in the formal system. Note that
this kind of proof checking does not address issues related to the models
of the proof system, it simply provides more evidence that a proof has
been correctly constructed. The Nuprl implementation consists of more
than 100K lines of Lisp and tactic code implemented in ML. Although
parts of the system consist of legacy codes going as far back as the late
1970’s (Edinburgh LCF), and even though the Nuprl system has been
extensively used since 1986 in formalizing a significant body of mathe-
matics, the chances that the implementation is correct are slim. Verifying
the system itself is infeasible, instead we propose to increase confidence
in Nuprl proofs by independently checking them in ACL2. In this paper
we describe: (i.) the ACL2 formalization of Nuprl terms, proof rules, and
proofs, (ii.) first steps in the implementation of a proof checker, and (iii.)
discuss issues related to the future of the project.

1 Introduction

Theorem proving is the archetypal example of a computationally hard (or even
undecidable) problem for which a witness (i.e. a proof) is easy to check. Finding
a proof requires expert human guidance, while checking a formal proof can often
be done in linear time. There is a vast literature on checking formal proofs,

⋆ This research is supported by ONR grant N00014-01-1-0765

we mention only a few [3, 13, 8, 15, 12]. We note that in [13, pg.215], Pollack
suggests that our goal, checking Nuprl proofs, may not be possible. We hope to
refute this claim and, more importantly, to provide independent certification of
Nuprl proofs thereby increasing confidence in the proof objects constructed in the
system. The work of McCune and Shumsky on Ivy [12] is especially applicable;
Ivy integrates ACL2 with Otter provers to both preprocess inputs to Otter and
to check outputs. But our goals are different since our intention is to create an
independent criteria of correctness for Nuprl proofs.

Nuprl proof checking is certainly not a linear time operation. Of the 167
proof rules included in the standard Nuprl distribution, 152 of them can be sim-
ply and uniformly checked by a combination of pattern matching and verifying
the well-formedness of the instances of the rule premises. Indeed, the Nuprl im-
plementation includes a refiner that does exactly this to generate instances of the
rules in the proof process. The remaining 15 proof rules have more complex side
conditions which are established in Nuprl by calls to underlying Lisp code. The
most extreme example of a rule having computationally hard side-conditions is
arith. It invokes a decision procedure for an extended theory of linear arithmetic
thus, checking an instance of arith is as hard as deciding this theory.

We believe ACL2[11, 10] provides the ideal environment for implementing a
proof checker for Nuprl. It contains its own decision procedure for linear arith-
metic [6], provides support for pattern matching and will allow us to prove
properties of the checker itself.

For the purposes of proof checking, aside from a few side-conditions, a se-
mantic understanding Nuprl’s type-theory is not strictly necessary (this is the
essence of proof checking) but we hope Nuprl’s type theory will be of indepen-
dent interest to the ACL2 community and we urge the reader to examine Allen’s
recent documentation of Nuprl’s type theory [2]. A comparison between Nuprl
and an earlier incarnation of ACL2 (NQTHM1)was published by Basin and
Kaufmann[4]; they compared the two systems by verifying Ramsey’s theorem in
each.

This paper describes Nuprl’s internal representations of sequents, proof rules,
and proofs and then describes how they are translated into a form usable in
ACL2. To date, our checker only verifies that a Nuprl proof object satisfies
the most gross structural constraints. We describe how we plan to extend the
existing checker so that users can gain the highest levels of confidence in the
proofs certified by the checker.

2 Overall Strategy

This section is largely speculative in that it describes the strategy we plan to
implement for checking Nuprl proofs, but much remains to be done. However,
we argue below that even the little that has been done increases confidence in
Nuprl proofs.

1 Although NQTHM is not ACL2, the comparison should still be interesting to ACL2
users.

2

Our strategy for using ACL2 to check Nuprl proofs is a three step process.

i.) From within Nuprl, a representation of a primitive Nuprl proof object suit-
able for input to ACL2 is generated. This step is implemented by an ML
program within Nuprl.

ii.) The representation of the putative Nuprl proof is read into ACL2 and it is
used to guide the synthesize a term of the ACL2 logic, we will refer to this
term as is-proof.

iii.) The is-proof term is submitted to the ACL2 prover.

If ACL2 accepts the is-proof term as a theorem we claim that we have
increased confidence that the Nuprl proof is indeed a proof. We argue that any
reasonable person who understands the commonly accepted criteria for what
it means to be a formal proof must assent to increased confidence as well. On
the other hand, if ACL2 fails in its attempt to prove the is-proof term, we
understand there may be a problem with Nuprl, with the translation process,
with our criteria for what counts as a proof, or with ACL2. A failed certification
would motivate further investigations.

There are many justifications for our claim of increased confidence. Of course,
the fact that Caldwell and Cowles are known to be careful people who are not
known to be liars is one form of justification. Similarly, the fact that ACL2 has
been implemented by well known, respected and trusted individuals and that it
has been used for many similar projects is another form of justification. Beyond
these facts; that the ACL2 code implementing the proof checker is available for
inspection by interested parties makes it unlikely that the checker relies on some
unacceptable trick that would invalidate it. Finally, we intended to prove proper-
ties (in ACL2) about the checker system. These will include properties about the
program that constructs the is-proof term, e.g. that the entire Nuprl proof is
accounted for in the is-proof term; that no information has been added or lost.
We also intend to prove properties about the is-proof term itself. is-proof is
intended to assert commonly accepted criteria for formal proofs; facts about the
relationship between Nuprl’s proof rule schemata and fully instantiated proofs.
Any reasonably knowledgeable person who understands the standard criteria
for concepts such as being a rule schema, being a substitution instance, or being

equivalent modulo renaming of bound variables should accept that certification
by the checker does indeed add credence to correctness of the certified proof.

We should emphasize that we are not making claims about the correctness
of Nuprl itself. Indeed, our goal is to give an independent criteria for the cor-
rectness of the proof objects constructed by Nuprl. Our current implementation
of the checker simply verifies that the gross structure of the proof tree is correct;
each node has the correct number of children. This is a kind of weak certifica-
tion, but it is sufficient to catch a certain class of errors. We should note that
these errors are not entirely unlikely since Nuprl users do not typically examine
proofs at the level of primitive rule instances but instead view them at the level
of tactic inferences. A missing sub-goal in a primitive rule application might
never be observed by the typical user. Of course it is far more likely that users

3

would notice extra subgoals. This structural property of proofs is only one of
the criteria reasonable people would expect to hold of a Nuprl proof. There are
many others. Indeed, since we are not verifying Nuprl but are establishing an
independent criteria for accepting a Nuprl proof, there may be no end to the
properties reasonable people might propose we either include in our independent
certification or verify about the is-proof term.

3 Formalizing Core Nuprl in ACL2

Sequent proof systems for classical and intuitionistic logic were first presented by
Gentzen [7]. Somewhat surprisingly, restricting sequents by allowing at most one
formula in the succedent is enough to move from classical to intuitionistic logic.
As we describe below, Nuprl sequents and proof objects are modified versions of
pure Gentzen systems. This account of Nuprl proof structure is of independent
interest since it has not been described elsewhere. The Nuprl representation
naturally supports views of proofs at the both the tactic level and at the level
of primitive rule instances.

The Nuprl system is implemented in two levels: an underlying system core
implemented in Lisp and an interface to the core implemented in ML. The un-
derlying Lisp implementation consists of approximately 60K lines of code and
includes the implementation of ML, the internal representation of proof objects,
as well as code for the refiner, an evaluator, the user interface, and decision pro-
cedures for equality and arithmetic. The ML interface to the system includes
about 40K lines of ML code which is primarily tactic code but also includes ML
primitives to manipulate terms and proofs.

Nuprl proofs are compactly stored on disk in a Lisp-readable form consist-
ing of: the name of the theorem, its status (complete, partial, or in error), the
sequent term which is the goal of the proof, the tactic script used to generate
the proof, the extract term of the proof, and a list of lemma references made
in the proof. Unless we intended to duplicate the entire tactic system (which
we do not) the compact stored form is not useful for our purposes. Instead, we
intend to check primitive Nuprl proofs. During proof development, or when a
previously saved (partial) proof has been loaded from disk and expanded, the
internal representation is a fully expanded (primitive) sequent proof. It is this
primitive proof form we check. Indeed, should the checker find errors in Nuprl
proofs, the most likely source of these errors would be the tactic system.

The fact that we are checking Nuprl’s internal representation (and not the
one used to compactly store proofs) means there is a translation step between
the internal representation and a form suitable for use by the ACL2 checker.
We will refer to the translation as the print-form of the proof. The translator is
a piece of Nuprl ML code that traverses a proof object and outputs the print-
form. The translator could be implemented at either Lisp level or the ML level.
For ease of implementation and to provide independence from underlying Lisp
implementations of the system 2 the translator is implemented at the ML level.

2 Nuprl is currently ported to Allegro-CL, AKCL, and CMU-CL

4

The translator recursively walks the proof tree emitting addressed nodes of
the proof as it goes. It may be of interest that the initial implementation of
translator, which attempted to generated the print-form in memory before out-
putting to disk, frequently exhausted memory on even medium sized proof ob-
jects. These problems lead to the print-form representation using hierarchically
addressed proof nodes.

In the following sections we describe the Nuprl representation of sequents,
proof rules and proofs and how they are translated into the print-form for the
checker.

3.1 Nuprl Sequents

Consider the section of the print-form grammar describing a Nuprl sequent.

<sequent> ::= (’sequent <hypothesis list> <conclusion>)

<hypothesis list> ::= true list of hypotheses

<hypothesis> ::= (<declared variable> <term> <Boolean>)

<conclusion> ::= <term>

<declared variable> ::= <quoted string>

Thus, a Nuprl sequent consists of a hypothesis list and a conclusion. The
conclusion is simply a Nuprl term. The hypothesis list is a list of triples each
of which consists of: a variable name (used to refer to the hypothesis), a Nuprl
term (which is the content of the hypothesis), and a Boolean value. The last
element of a triple indicates whether a hypothesis is hidden or not.

Nuprl sequents also carry information about their inhabitants. We can extend
the grammar for sequents to include this information (although our current
implementation ignores extracts.)

<sequent> ::= (’sequent <hypothesis list> <conclusion>)

| (’sequent <hypothesis list> <conclusion> <extract>)

<extract> ::= <term>

The extract is a term of the computation system, i.e. it is a program. Consider
the Nuprl sequent Γ ⊢ C ext t, here t is the extract term. If we have a proof
of Γ ⊢ C ext t, then we know Γ ⊢ t ∈ C, i.e. we know that the term t

has type C in the context specified by the hypothesis list Γ . Nuprl proofs are
developed by top down refinement. Only after a proof is completed is it possible
to instantiate the extract term, it is synthesized from the extract terms below it
in the proof tree. As you will see below, Nuprl proof rules specify how extract
terms are constructed from the extracts of the subgoals. The moral of this story
is that Nuprl proofs implicitly contain programs which can be made explicit by
extracting them from completed proofs. Sequents carry a placeholder for the
extract term which is instantiated after a proof has been completed.

This brings us back to the issue of hidden hypotheses. Hidden hypotheses are
a technical aspect of Nuprl’s type theory, they provide the mechanism for im-
plementing the so-called non-propositional types [1], which include the quotient

5

type, comprehension subtypes, and the intersection type. Essentially, a non-
propositional type is one whose inhabitants do not carry enough information to
prove their own well-formedness. It is fair to think of hidden hypotheses as true,
but lacking computational evidence for their truth. In practice, the effect on the
Nuprl implementation is that, decomposing a non-propositional type may result
in hypotheses for which the computational content is unknown, i.e. they can not
be allowed to find their way into the extract of a proof. Thus, if a hypothesis is
not hidden, the variable referring to it may appear in the extract of the proof. If
a hypothesis is hidden, the variable referring to it may not appear in the extract
of the proof. The Nuprl proof rules indicate when a hypothesis is to be hidden
(or unhidden), and the Nuprl refiner raises an exception if the instantiation of
a proof rule would incorrectly include a reference to a hidden hypothesis in the
extract.

This property, whether a hidden hypothesis ever finds its way into an extract,
is one we will independently check. Of course, by doing so we are not checking
the correctness of the proof rules themselves nor are we checking whether they
correctly specify when a variable is to be hidden or unhidden, but simply that
a hidden variable never finds its way into an extract.

3.2 Nuprl Proof Rules

Abstractly, a proof rule is a quadruple consisting of: a name, a goal pattern3, a
list of rule parameters, and a list of subgoal patterns. The goal pattern specifies
a family of sequents by using meta-variables for its various components. The
subgoals of the rule are specified using meta-variables occurring in the goal
pattern, rule parameters, and a substitution operator. Multiple occurrences of a
term meta-variable may denote distinct, but alpha-equivalent, terms (i.e. terms
are equivalent modulo substitution of bound variables.)

Consider the following rule having no subgoals.

* RULE hypothesis

H, x:A, J ⊢ A ext x

BY hypothesis #$i

No Subgoals

The name of the rule is hypothesis. The goal pattern is H, x:A, J ⊢ A.
Here, H and J are meta-variables denoting hypothesis lists, x is a variable meta-
variable and A is a term meta-variable. The only parameter is #$i, a non-negative
integer parameter, which indicates the position of the hypothesis x:A in the
hypothesis list H, x:A, J. There are no subgoals so this rule serves as an axiom.

The hypothesis rule proves any sequent which is a substitution instance of
the goal pattern. Note that the alpha-equality condition on term meta-variables

3 The goal pattern for a Nuprl rule includes a specification of how the extract term is
constructed from the extracts of it’s subgoals. Currently, we do not consider these
terms but will in the future.

6

means a sequent of the form H, x:A, J ⊢ A’ matches this pattern if A and A’

are alpha-equivalent.
As another example, consider the following rule for equality of dependent-

functions.

* RULE functionExtensionality

H ⊢ f = g ∈ x:A → B ext t

BY functionExtensionality level{i} (y:C → D) (z:E → F) u

H, u:A ⊢ f(u) = g(u) ∈ B[u/x] ext t

H ⊢ A ∈ U{i}
H ⊢ f ∈ y:C → D

H ⊢ g ∈ z:E → F

The goal pattern is specified by the sequent H ⊢ f = g ∈ x:A → B. Here
H is a hypothesis list meta-variable, f, g, A, and B are term meta-variables
and x is variable meta-variable. The parameters to the rule include a universe
level parameter level{i}, two term patterns (y:C → D) and (z:E → F) and
a variable meta-variable u. There are four subgoals specified in terms of the
meta-variables which appear in the goal pattern and the rule parameters. Any
sequent which is a substitution instance of the goal pattern may be proved
by discharging the four subgoals generated by building the specified sequents
from the terms matching the corresponding meta-variables. Note that the first
subgoal is specified using the substitution operator B[u/x] which denotes the
substitution of the variable u for the variable x in the term matching the meta-
variable B. The curious reader may wonder why the well-formedness subgoals
do not have extract terms associated with them; they do, they are simply not
displayed since they are always the constant term Ax.

Not all Nuprl proof rules are substitution instances of a rule pattern and
rule parameters. We call these proof rules non-uniform. Non-Uniform rules are
implemented in Nuprl by calling routines at the Lisp level. These are accessed
via rules containing a term of the form CallLisp(<Lisp function>). In the
standard library there are 13 non-uniform rules. Each requires special attention
in the proof checker. Many are trivial, but included among the non-uniform rules
are decision procedures for arithmetic and for type equality terms.

When a CallLisp (<F>) term is invoked, the Lisp function F is called with
the current proof node as an argument (which also gives F access to the argu-
ments passed through the rule parameters). If F succeeds, the application of the
rule succeeds. The function F may return information, passing it back through
meta-variables in the rule specification.

Here is the arith rule found in the standard library which decides linear
arithmetic.

* RULE arith

H ⊢ C ext t

BY arith U{i}
Let (SubGoals, t) = CallLisp(ARITH)

SubGoals

7

The goal pattern for this rule matches any sequent. The name of the rule is
arith and it takes a universe term as a parameter. The subgoals generated by
the rule are not specified here, they are generated by an external call to the Lisp
function ARITH which, if it succeeds, returns a pair consisting of a list of subgoals
and an extract term t. The ARITH decision procedure detects arithmetically true
conclusions and arithmetic contradictions in the hypothesis list.

To check this rule we will use theorem proving capability in ACL2. The
checker will only ever be asked to verify successful instances of the rule.

We have included the specifications of the other 12 non-uniform rules in
Appendix B.

3.3 Nuprl Proofs

Nuprl proofs are interactively created by top-down refinement. Users interact
with the system using a proof editor. The editor allows users to navigate through
a proof structure, and to refine leaf nodes by applying tactics4. A Nuprl tactic
[9, pp.35] is a function of the following type.

tactic = (proof -> ((proof list) × ((proof list) -> proof)))

A tactic is applied to a leaf node of a proof5 and returns a pair consisting of list
of remaining subgoals and a validation. The validation is a function that maps
proofs of the subgoals to a proof of the refined node.

The internal representation of Nuprl’s proof objects are designed to support
multiple views of the proof. Ordinarily, proof objects are viewed at the level of
tactic inferences. This is how the Nuprl editor displays proofs. Since proofs are
constructed by making inference at the tactic level, this is the natural view. A
goal of formalizing mathematics is not simply to check proofs, but to provide
formally justified explanations. Typically, tactics encapsulate some cognitively
meaningful chunk of reasoning and thus, as far as the explanatory function of
proofs goes, this is the most useful view of a proof.

The formal justification for a proof lies in the structure of the primitive proof
tree constructed by the tactics. Nuprl proof objects include both views.

We present an account of the Nuprl proof structure in phases. As a first
approximation, we model proofs as inductively defined structure having refined
and unrefined nodes. We call this structure a pure-quasi-proof: it is “pure” be-
cause it does not include tactic refinements, it is a pure Gentzen style sequent
proof; it is a “quasi-proof” because it only defines the gross structure of a proof,
it does not include the constraint that it is actually a tree of correct substitution
instances of rules.

<pure-quasi-proof> ::=

(unrefined <sequent>)

| (rule-refined <sequent> <rule instance> [<pure-quasi-proof>*])

4 In rare cases users will directly apply proof rules, but this is uncommon.
5 The type referred to as proof is an abuse in that it includes both complete and

partial trees e.g. a single unrefined node also has the Nuprl type proof.

8

<rule instance> ::= (’rule-instance <rule name> <argument list>)

<rule name> ::= <quoted string>

<argument list> ::= list of terms and parameters

Note that an unrefined node is simply an unproved leaf. A refined node con-
sists of a sequent, the rule being applied including any relevant parameters, and
a (possibly empty) list of quasi-proofs, these are the proof obligations generated
by the application of the rule.

These quasi-proofs are primitive proof trees. We add another constructor to
better approximate the true Nuprl proof representation.

<quasi-proof> ::=

(unrefined <sequent>)

| (rule-refined <sequent> <rule instance> [<quasi-proof>*])

| (tactic-refined <sequent> <tactic> <tactic-proof> [<quasi-proof>*])

<tactic-proof> ::= <quasi-proof>

In this model, we distinguish between nodes refined by a tactic and nodes
refined by a primitive rule. A tactic-refined node includes the sequent the
tactic has been applied to, the tactic that was applied, a tactic proof and a list of
quasi-proofs. The tactic-proof is the quasi-proof generated by applying the tactic.
To understand how the tactic-proof relates to the entire proof we consider the
cases when the tactic completes a proof and the case when it does not. If the
tactic completes the proof, there will be no unrefined leafs of the associated
tactic-proof and the accompanying quasi-proof list will be empty. If the tactic
does not complete the proof, there will be unrefined leafs in the tactic-proof.
The accompanying quasi-proof list will have as many quasi-proofs as there are
unrefined leafs in the tactic-proof. The sequents associated with the unrefined
leafs will match the sequents associated with the list of quasi-proofs.

Here is the quasi-proof representation of a proof.

(tactic-refined
⌈
⊢ ∀P,Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉

⌈D 0 THENA MemCD⌉

tactic-proof-1

[(tactic-refined
⌈P:U{i} ⊢ ∀Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉

⌈Auto⌉

tactic-proof-2

[])

])

The application of the tactic ⌈D 0 THENA MemCD⌉ generates one subgoal. This
subgoal is discharged by the application of the ⌈Auto⌉ tactic 6

Because the list of quasi-proofs associated with the application of ⌈Auto⌉ is
empty, we know tactic-proof-2 is a complete quasi-proof, it has no unrefined

6 The auto tactic could have completed the proof, we have added a step here to
illustrate how the tactic proof is separated out from the primitive proof.

9

nodes. The tactic-proof-1 is a quasi-proof having one unrefined node, and the
sequent associated with that node is ⌈P:U{i} ⊢ ∀Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉.
We display the quasi-proof tactic-proof-1 in Figure 1.

(rule-refined
⌈
⊢ ∀P,Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉

⌈direct computation [1:∀P,Q:U{i}. P ∧ Q ⇒ Q ∧ P]⌉

[(rule-refined
⌈
⊢ P:U{i} → (∀Q:U{i}. P ∧ Q ⇒ Q ∧ P)⌉

lambdaFormation level{i’} P

[(unrefined
⌈P: U{i} ⊢ ∀Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉)

(rule-refined
⌈
⊢ U{i} = U{i}∈ U{i’}⌉

⌈reverse direct computation [1:U{i} ∈ U{i’}]⌉

[(rule-refined
⌈
⊢ U{i} ∈ U{i’}⌉

⌈direct computation [1:U{i} ∈ U{i’}]⌉

[(rule-refined
⌈
⊢ U{i} = U{i}⌉

universeEquality ()

[]

)])])])])

Fig. 1. tactic-proof-1

3.4 The proof node addressing scheme

In the quasi-proof data-type, tactic-proofs and subgoals are also quasi-proofs. In
the print form, we eliminate these inductive components and rely on a hierar-
chical addressing scheme to be able to access them. In this scheme, a proof node
address is a list of natural numbers. The addressing scheme is defined as follows.

i.) The root node of a quasi-proof has the empty list ’() as its address.
ii.) If the quasi-proof at address addr is of the form

(rule-refined s r [q1 q2 · · · qn])

then the address of the proof node for qi is (rcons addr i), i.e. is the list
obtained by concatenating i to the right of the list addr.

iii.) If the quasi-proof at address addr is of the form
(tactic-refined s r q [q1 q2 · · · qn])

then the address of the proof node for q is (rcons addr 0) and the address
of the proof node for qi is (rcons addr i).

For the purposes of checking the formal proofs, the checker reconstructs
the equivalent of a pure-quasi-proof from a quasi-proof, i.e. it ignores all the

10

tactic-refined nodes in the proof and must be able to match unrefined leafs
in the tactic-proof with the roots of the appropriate subgoal in the list of quasi-
proofs. Thus any tactic-refined nodes are not included in the final list of
proof nodes output to a file.

Figure 2 shows a partial quasi-proof annotated with addresses which appear
after the node constructor name.

(tactic-refined ()
⌈
⊢ ∀P,Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉

⌈D 0 THENA MemCD⌉

(rule-refined (0)
⌈
⊢ ∀P,Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉

⌈direct computation [1:∀P,Q:U{i}. P ∧ Q ⇒ Q ∧ P]⌉

[(rule-refined (0 1)
⌈
⊢ P:U{i} → (∀Q:U{i}. P ∧ Q ⇒ Q ∧ P)⌉

lambdaFormation level{i} P

[(unrefined (0 1 1)
⌈P: U{i} ⊢ ∀Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉)

(rule-refined (0 1 2)
⌈
⊢ U{i} = U{i}∈ U{i’}⌉

⌈reverse direct computation [1:U{i} ∈ U{i’}]⌉

[(rule-refined (0 1 2 1)
⌈
⊢ U{i} ∈ U{i’}⌉

⌈direct computation [1:U{i} ∈ U{i’}]⌉

[(rule-refined (0 1 2 1 1)
⌈
⊢ U{i} = U{i}⌉

universeEquality ()

[]

)])])])])

[(tactic-refined (1)
⌈P:U{i} ⊢ ∀Q:U{i}. P ∧ Q ⇒ Q ∧ P⌉

⌈Auto⌉

tactic-proof-2

[])

])

Fig. 2. quasi-proof annotated with addresses

3.5 Representation of Nuprl Proofs in ACL2

The following is the first part of a grammar describing how Nuprl proofs are
represented in ACL2. A more complete version of the grammar can be found in
appendix A.

<proof list> ::= (’proof . <proof node list>)

11

<proof node list> ::= true list of proof nodes

<proof node> ::= (<address> <sequent>)

| (<address> <sequent> <rule instance>)

<address> ::= (’address . <number list>)

<sequent> ::= (’sequent <hypothesis list> <conclusion>)

<rule instance> ::= ...

<hypothesis list> ::= ...

The grammar is implemented in ACL2 using records similar to the ones described
in the section The ACL2 Record Facilities, located in the ACL2 implementation
file basis.Lisp.

For each entity (record) used in this representation of the grammar, a recog-
nizer for the entity, accessors for decomposing the entity, and a keyword com-
mand for displaying the entity are provided.

As a simple example, suppose the nonterminal <node> is described by the
productions

<node> ::= (a <symbol> <natural number>)

| (a <symbol>)

where a <symbol> is any Lisp symbol and a <natural number> is any nonneg-
ative integer. The recognizer is called |node|, the accessors are invoked using
access with |node| plus a key word, and the display command is invoked with
:d-node (d for “display”). Evaluation of each expression on the left of the ->
returns the value on the right:

(|node| ’(a b 2)) -> t

(|node| ’(a 1 2)) -> nil

(|node| ’(a b)) -> t

(|node| ’(b b)) -> nil

(access |node| ’(a b 2) :|symbol|) -> b

(access |node| ’(a b 2) :|natural number|) -> 2

(access |node| ’(a b) :|symbol|) -> b

(access |node| ’(a b) :|natural number|) -> nil

Each command line below is followed by the output produced by the command:

NUPRL !>:d-|node| (a b 2)

node:

symbol: B

natural number: 2

T

NUPRL !>:d-|node| (a b)

node:

symbol: B

natural number: NONE

12

T

NUPRL !>:d-|node| (a 1 2)

ACL2 Error in ACL2::TOP-LEVEL: The guard for the function symbol

|D-node-FN|, which is (|node| X), is violated by the arguments in

the call (|D-node-FN| ’(A 1 2)).

To help automate producing the recognizers, accessors, and keyword com-
mands as the grammar went through many modifications, the grammar is trans-
lated into Common Lisp readable form in two steps.

1. Minimal hand edit.

– Enclose entire list of productions with matching [&].
– Enclose each production with matching [&].
– Replace |(vertical bar) with !(bang).
– Replace true list of things with list <thing>.
– Replace “any Lisp type” with “Lisp typep.”

[;; begin productions

[<proof list> ::= (’proof . <proof node list>)]

[<proof node list> ::= list <proof node>]

[<proof node> ::= (<address> <sequent>)

! (<address> <sequent> <rule instance>)]

[<address> ::= (’address . <number list>)]

[<sequent> ::= (’sequent <hypothesis list> <conclusion>)]

[<rule instance> ::= ...]

[<hypothesis list> ::= ...]

...]

2. Change AKCL Common Lisp *readtable*

– Make [&] behave as (&).
– Make !(bang), :, and = behave as white space.
– Make < & > behave as multiple escapes.

The result of using the changed *readtable* in AKCL produces a Common
Lisp readable version of the grammar.

((|proof list| (’PROOF . |proof node list|))

(|proof node list| LIST |proof node|)

(|proof node| (|address| |sequent|)

(|address| |sequent| |rule instance|))

(|address| (’ADDRESS . |number list|))

(|sequent| (’SEQUENT |hypothesis list| |conclusion|))

(|rule instance| ...)

(|hypothesis list| ...)

...)

13

4 Checking Nuprl Proofs

Our current implementation is able to check the gross structural properties of
Nuprl proofs. We have implemented the translator which outputs the print form
of a proof suitable for processing by ACL2. Utilities for navigating proof nodes by
addresses have been implemented in ACL2 and they have been used to implement
a simple checker.

The properties we can check include that the proper number of subgoals
have been generated for each proof rule. For uniform proof rules, the number of
subgoals is fixed. There are three non-uniform proof rules where evaluating the
CallLisp(F) term returns a list of subgoals, the number of subgoals may vary.
For these rules the checker simply assumes the number of subgoals generated is
correct.

The correctness of the tactic system depends on the fact that the sequent
in each unrefined leaf of a tactic-proof must match the sequent in one of the
subgoals of the node. Thus, if the tactic refinement is of the following form:

(tactic-refined s r q [q1 q2 · · · qn])

there must be exactly n unrefined nodes in q and, if the sequents in those nodes
are s1, s2, · · · sn, then there is a permutation ρ : {1..n} → {1..n} such that the
sequent proved by qi is sρ(i). This matching of number and form of sequents is
currently being checked.

5 Conclusions and Future Work

Our goal is to produce a proof checker that, applied to a Nuprl proof, adds
significantly to the proof’s credibility. Our current proof checker only checks
certain structural features of a Nuprl proof. To achieve our goal much remains
to be done.

The largest challenge for us as developers of the proof checker will be to
certify the rules that invoke decision procedures. Also, to check the direct com-
putation rules, which may fold or unfold definitions, requires access to those
definitions within the proof. We are not currently carrying the information in
the proof. Similarly, applications of the lemma rule which instantiates a theorem
as a hypothesis will require we have, at least, the statement of the lemma. The
issues of exactly what information and how much and how to package it in the
print form is unresolved.

Independent scrutiny of Nuprl proof objects raises a number of challenges for
the Nuprl projects. The largest of these is management of the because rule. This
rule generates no subgoals completing a proof, it asserts the truth of any sequent.
This primitive rule is frequently instantiated by tactics which use previously
proved theorems. This reuse is based on a proof caching scheme. Statistics of
rules uses show that instances of the because rule may account for 15% or
more of the rules in a proof. When the Auto tactic discharges a well-formedness
goal by appealing to the proof cache, it simply completes the proof by invoking

14

the because rule. Most of these instances are can be eliminated by turning off
the proof-caching mechanism, a user settable option. Certification of proofs run
with caching turned off will provide evidence that the mechanism itself does
not interfere with validity. However, other uses of the because rule are more
fundamental. The SupInf tactic, which implements Bledsoe’s Sup Inf decision
procedure[5, 14] for linear arithmetic, invokes because if the decision procedure
says yes. We do not believe the rule itself is objectionable, but if Nuprl proofs
are to be believed, the uses of because must be accounted for. This is currently
an active project in the Nuprl group at Cornell.

Acknowledgments
The authors would like to thank Stuart Allen at Cornell for his efforts in support
of this project. We also thank Ralph Wachter at ONR for his support.

References

1. S. Allen, R. Constable, D. Howe, and W. Aitken. The semantics of reflected proof.
Proc. of Fifth Symp. on Logic in Comp. Sci., IEEE, June 1990.

2. Stuart Allen. Nuprl Basics. Cornell University, 2001.
www.cs.cornell.edu/Info/People/sfa/Nuprl/NuprlPrimitives/.

3. Jon Barwise. Mathematical proofs of computer systems correctness. Notices of the

American Mathematical Society, 36:844–851, 1989.
4. David A. Basin and M. Kaufmann. The Boyer-Moore prover and Nuprl: An exper-

imental comparison. In Gérard Huet and Gordon Plotkin, editors, Logical Frame-

works, pages 89–119. Cambridge University Press, 1991.
5. W. Bledsoe. A new method for proving certain Presburger formulas. In Proc. of

the 4 th Joint Conf. on Artificial Intelligence, pages 15–21, 1975.
6. R. S. Boyer and J Strother Moore. Integrating decision procedures into heuristic

theorem provers: A case study of linear arithmetic. Technical Report ICSCA-
CMP-44, Institute for Computing Science and Computer Applications, University
of Texas at Austin, 1985. citeseer.nj.nec.com/boyer85integrating.html.

7. Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,
The collected papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.

8. Michael J. C. Gordon. Representation and validation of mechanically generated
proofs (final report). citeseer.nj.nec.com/154955.html.

9. Paul B. Jackson. Enhancing the Nuprl proof development system and applying it

to computational abstract algebra. PhD thesis, Cornell University, 1995.
10. M. Kaufmann, P. Manolios, and J. Moore. Computer-Aided reasoning: ACL2 Case

Studies, volume 4 of Advances in Formal Methods. Kluwer, 2000.
11. M. Kaufmann, P. Manolios, and J. Moore. Computer-Aided reasoning: An ap-

proach, volume 3 of Advances in Formal Methods. Kluwer, 2000.
12. William McCune and Olga Shumsky. Ivy: A preprocessor and proof checker for

first-order logic”. [10], chapter 16, pages 265–281.
13. Robert Pollack. How to believe a machine-checked proof. In G. Sambin and

J. Smith, editors, Twenty-Five Years of Constructive Type Theory. Oxford Univer-
sity Press, 1998.

14. Robert E. Shostak. On the SUP-INF method for proving Presburger formulas.
Journal of the ACM, 24(4):529–543, 1977.

15

15. W. Wong. Recording and Checking HOL Proofs. In E.T. Schubert, P.J. Wind-
ley, and J. Alves-Foss, editors, 8th International Workshop on Higher Order Logic

Theorem Proving and its Applications, volume 971 of LNCS, pages 353–368, Aspen
Grove, Utah, USA, 1995. Springer-Verlag.

A Nuprl in ACL2

The following grammar describes how Nuprl proofs are represented in ACL2.

<proof list> ::= (’proof . <proof node list>)

<proof node list> ::= true list of proof nodes

<proof node> ::= (<address> <sequent>)

| (<address> <sequent> <rule instance>)

<address> ::= (’address . <number list>)

<sequent> ::= (’sequent <hypothesis list> <conclusion>)

<rule instance> ::= (’rule-instance <rule name> <argument list>)

<hypothesis list> ::= true list of hypotheses

<hypothesis> ::= (<declared variable> <term> <Boolean>)

<conclusion> ::= <term>

<rule name> ::= <quoted string>

<argument list> ::= true list of terms

<declared variable>::= <quoted string>

<Boolean> ::= T

| NIL

<term> ::= ((<opid> . <parameter list>) <bterm list>)

<bterm list> ::= true list of bterms

<bterm> ::= (<bound-var list> <term>)

<bound-var list> ::= true list of bound variables

<bound-var> ::= <quoted string>

<opid> ::= <token>

<parameter list> ::= true list of parameters

<parameter> ::= <simple parameter>

| <meta parameter>

<simple parameter> ::= (<natural number> . |natural-parameter|)

| (<quoted string> . |string-parameter|)

| (<quoted string> . |token-parameter|)

| (<quoted string> . |var-parameter|)

| (<Boolean> . |bool-parameter|)

| (<level exp> . |level-exp-parameter|)

<meta parameter> ::= (<meta variable> . |natural-meta-parameter|)

| (<meta variable> . |string-meta-parameter|)

| (<meta variable> . |token-meta-parameter|)

| (<meta variable> . |var-meta-parameter|)

| (<meta variable> . |bool-meta-parameter|)

<level exp> ::= true list of token-nbr pairs

<token nbr> ::= (<token> . <natural number>)

<meta variable> ::= any lisp string starting with the character $

<token> ::= any lisp symbol

<number list> ::= true list of natural numbers

16

<natural number> ::= any nonnegative integer

<quoted string> ::= any lisp string

Here are a few of the many varieties of Nuprl terms specifically mentioned
in the proof rules.

<equal term> ::=

any term,

((<opid> . <parameter list>) <bterm list>)

of the form

((|equal|) ((<bound-var list> <universe term>) <bterm> <bterm>))

<or term> ::=

any term,

((<opid> . <parameter list>) <bterm list>)

of the form

((|or|) (<bterm> <bterm>))

<product term> ::=

any term,

((<opid> . <parameter list>) <bterm list>)

of the form

((|product|) (<bterm> <bterm>))

<union term> ::=

any term,

((<opid> . <parameter list>) <bterm list>)

of the form

((|union|) (<bterm> <bterm>))

<universe term>::=

any term,

((<opid> . <parameter list>) <bterm list>)

of the form

((|universe| (<level exp> . |level-exp-parameter|)) NIL)

B Non-uniform Nuprl proof rules

* RULE universeFormation

H ⊢ U{i} ext U{j}
BY universeFormation level{j}

Let () = CallLisp(UNIVERSE-FORMATION)

No Subgoals

* RULE universeEquality

H ⊢ U{j} = U{j} ∈ U{i}
BY universeEquality ()

Let () = CallLisp(LE-UNIVERSE-EQUALITY)

No Subgoals

17

* RULE cumulativity

H ⊢ t = t ∈ U{i}
BY cumulativity level{j}

Let () = CallLisp(LE CUMULATIVITY)

H ⊢ t = t ∈ U{j}

* RULE direct computation

H ⊢ T ext t

BY direct computation S

Let C = CallLisp(DIRECT-COMPUTATION)

H ⊢ C ext t

* RULE direct computation hypothesis

H, x:A, J ⊢ T ext t

BY direct computation hypothesis #$i S

Let B = CallLisp(DIRECT-COMPUTATION-HYPOTHESIS)

H, x:B, J ⊢ T ext t

* RULE reverse direct computation

H ⊢ T ext t

BY reverse direct computation S

Let C = CallLisp(REVERSE-DIRECT-COMPUTATION)

H ⊢ C ext t

* RULE reverse direct computation hypothesis

H, x:A, J ⊢ T ext t

BY reverse direct computation hypothesis #$i S

Let B = CallLisp(REVERSE-DIRECT-COMPUTATION-HYPOTHESIS)

H, x:B, J ⊢ T ext t

* RULE lemma

H ⊢ C ext t

BY lemma "$theorem"

Let (t, C) = CallLisp(LE-LEMMA)

No Subgoals

* RULE instantiate

H ⊢ T ext t[$psl]

BY instantiate J C parameter-substitution-list{$psl:psl}
Let () = CallLisp(INSTANTIATE)

J ⊢ C ext t

* RULE extract

H ⊢ t = t ∈ C

BY extract "$theorem"

Let (t, C) = CallLisp(LE-LEMMA)

No Subgoals

* RULE equality

H ⊢ s = t ∈ T

BY equality ()

Let () = CallLisp(LE EQUALITY)

No Subgoals

18

* RULE arith

H ⊢ C ext t

BY arith U{i}
Let (SubGoals, t) = CallLisp(ARITH)

SubGoals

* RULE recEquality

H ⊢ rec(z1.t1) = rec(z2.t2) ∈ U{i}
BY recEquality y

Let () = CallLisp(REC-EQUALITY)

H, y:U{i}⊢ t1[y/z1] = t2[y/z2] ∈ U{i}

*RULE sqequalRule

H ⊢ a ∼ b ext t

BY sqequal ()

Let (SubGoals, t) = CallLisp(SQEQ)

SubGoals

*RULE sqequalIntensionalEquality

H ⊢ (a ∼ b) = (c ∼ d) ∈ U{i}
BY sqequalIntensionalEquality ()

Let SubGoals = CallLisp(SQEQ-EQUALITY)

SubGoals

19

