
O-Plan2: an Open Architecture forCommand, Planning and ControlAustin Tate, Brian Drabble and Richard KirbyArti�cial Intelligence Applications Institute, University of Edinburgh, 80 South Bridge,Edinburgh EH1 1HN, United Kingdom1 IntroductionO-Plan2 (the Open Planning Architecture) provides a generic domain independentcomputational architecture suitable for command, planning and execution applications. Themain contribution of the O-Plan2 research has been a complete vision of a modular andexible planning and control system incorporating arti�cial intelligence methods.This paper describes the O-Plan2 agent oriented architecture and describes thecommunication which takes place between planning and execution monitoring agents builtupon the architecture. Separate modules of such a system are identi�ed along with internaland external interface speci�cations that form a part of the design.Time constraints, resource usage, object selection and condition/e�ect causal constraints arehandled as an integral part of the overall system structure by treating specialised constraintmanagement as supporting the core decision making components in the architecture. A closecoupling of planning and time or resource scheduling is therefore possible within a systememploying an activity based plan representation.2 History and Technical InuencesO-Plan grew out of the experiences of other research into ai planning, particularly with Nonlin[28] and \blackboard" systems [20]. The Readings in Planning volume [1] includes a taxonomyof earlier planning systems which places O-Plan in relation to the inuences on its design. Itis assume that the reader is familiar with these works as the references do not include themall. The same volume [1] includes an introduction to the literature of ai planning.The main ai planning techniques which have been used or extended in O-Plan are:� A hierarchical planning system which can produce plans as partial orders on actions (assuggested by Sacerdoti [23]), though O-Plan is exible concerning the order in whichparts of the plan at di�erent levels are expanded.� An agenda-based control architecture in which each control cycle can post pending tasksduring plan generation. These pending tasks are then picked up from the agenda andprocessed by appropriate handlers (hearsay-ii [16] and opm [15] uses the termKnowledge Source for these handlers). 1

� The notion of a \plan state" which is the data structure containing the emerging plan,the \aws" remaining in it, and the information used in building the plan. This issimilar to the work of McDermott [19].� Constraint posting and least commitment on object variables as seen in molgen [35].� Temporal and resource constraint handling, shown to be valuable in realistic domains byDeviser [36], has been extended to provide a powerful search space pruning method.The algorithms for this are incremental versions of Operational Research (or) methods.O-Plan has integrated ideas from or and ai in a coherent and constructive manner.� O-Plan is derived from the earlier Nonlin planner [28] from which we have taken andextended the ideas of Goal Structure, Question Answering (qa) and typed preconditions.� We have maintained Nonlin's style of domain and task description language (TaskFormalism or tf) and extended it for O-Plan2.2.1 O-Plan1The main e�ort on the �rst O-Plan project (now referred to as O-Plan1) was concentrated inthe area of plan generation. The work on O-Plan1 is documented in a paper in the Arti�cialIntelligence Journal [5]. One theme of the O-Plan1 research was search domain knowledgebased space control in an ai planner. The outputs of that work gave a better understanding ofthe requirements of planning methods, improved heuristics and techniques for search spacecontrol, and a demonstration system embodying the results in an appropriate framework andrepresentational scheme.O-Plan1 sought to build an open architecture for an ai planning system. It was our aim tobuild a system in which it was possible to experiment with and integrate developing ideas.Further, the system was to able to be tailored to suit particular applications. Time andresource constraints were handled to restrict search while still working within an activitybased plan representation.2.2 O-Plan2The O-Plan2 project began in 1989 and had the following new objectives:� to consider a simple \three agent" view of the environment for the research to clarifythinking on the roles of the user(s), architecture and system. The three agents being thejob assignment agent, the planning agent and the execution agent.� to explore the thesis that communication of capabilities and information between thethree agents could be in the form of plan patches which in their turn are in the sameform as the domain information descriptions, the task description and the planrepresentation used within the planner and the other two agents.2

� to investigate a single architecture that could support all three agent types and whichcould support di�erent plan representations and agent capability descriptions to allowfor work in activity planning or resource scheduling.� to clarify the functions of components of a planning and control architecture.� to draw on the earlier Edinburgh planning experience in O-Plan1 [5] and to improve onit especially with respect to ow of control [32].� to provide an improved version of the O-Plan1 system suitable for use outside ofEdinburgh within Common Lisp, x-Windows and unix.� to provide a design suited to use on parallel processing systems in future.This paper gives an overview of the O-Plan2 architecture and its use in a prototype planningsystem. Further details of the system are available in [33].3 Characterisation of O-Plan2The O-Plan2 approach to command, planning, scheduling and control can be characterised asfollows:� successive re�nement/repair of a complete but awed plan or schedule� least commitment approach� using opportunistic selection of the focus of attention on each problem solving cycle� building information incrementally in \constraint managers", e.g.{ e�ect/condition manager{ resource utilisation manager{ time point network manager{ object/variable manager� using localised search to explore alternatives where advisable� with global alternative re-orientation where necessary.O-Plan2 is aimed to be relevant to the following types of problems:� project management for product introduction, systems engineering, construction,process ow for assembly, integration and veri�cation, etc.� planning and control of supply and distribution logistics.3

� mission sequencing and control of space probes such as Voyager, ers-1, etc.These applications �t midway between the large scale manufacturing scheduling problemsfound in some industries (where there are often few inter-operation constraints) and thecomplex puzzles dealt with by very exible logic based tools. However, the problems of thetarget type represent an important class of industrial, scienti�c and engineering relevance.4 Communication in Command, Planning and Control4.1 The ScenarioThe scenario we are investigating is as follows:� A user speci�es a task that is to be performed through some suitable interface. We callthis process job assignment.� A planner plans and (if requested) arranges to execute the plan to perform the taskspeci�ed. The planner has knowledge of the general capabilities of a semi-autonomousexecution system but does not need to know about the actual activities that execute theactions required to carry out the desired task.� The execution system seeks to carry out the detailed tasks speci�ed by the planner whileworking with a more detailed model of the execution environment than is available tothe job assigner and to the planner.The central planner therefore communicates a general plan to achieve a particular task, andresponds to failures fed back from the execution agent which are in the form of aws in theplan. Such failures may be due to the inappropriateness of a particular activity, or becausethe desired e�ect of an activity was not achieved due to an unforeseen event. The reason forthe failure dictates whether the same activity should be re-applied, replaced with otheractivities or whether re-planning should take place.We have deliberately simpli�ed our consideration to three agents with these di�erent roles andwith possible di�erences of requirements for user availability, processing capacity andreal-time reaction to clarify the research objectives in our work.4.2 A Common Representation for Communication between AgentsWe have been exploring a common representation to support the communication between auser, requesting the plan, and the real world, in which the plan is being executed. Suchcommunication may take place either directly through a planner or indirectly via a centralplanner and a dumb or semi-autonomous execution agent.The common representation includes knowledge about the capabilities of the planner andexecution agent, the requirements of the plan and the plan itself either with or without aws4

Task AssignCapability DomainModel PlannerCapability DomainModel Exec SystemCapability DomainModel
Plan State Plan State Plan State6 6 6? ? ?@@@R @@@R @@@R���	 ���	 ���	�� �� �� �� �� ��Task Assign Planner Exec System�- � - � - �-User RequirementsReporting RequirementsReporting OutputInput RealWorld
Figure 1: Communication between Central Planner and Ex. Agent(see Figure 1). Thus, a planner will respond to the requirements of a user. Based on theknowledge of its own capabilities and that of the execution environment, it will generate aplan. This plan may then be executed directly in the real world, or, indirectly via anexecution agent. The execution agent executes this plan in the real world and monitors theexecution, responding to failures in one of two ways. If it does not have knowledge of its owncapabilities, it simply returns knowledge of the failure to the central planner and awaits arevised plan to be sent. In this case, the execution agent is dumb. If it does have knowledge ofits own capabilities, it may attempt to repair the plan and then continue with execution. Onthe other hand, if a repair is beyond the capabilities of the execution agent, then thisknowledge is fed back to the central planner and again a revised plan is expected. In this case,the execution agent is semi-autonomous. When failures during the application of the plan arefed back to the planner, these may be acted upon by it and a repair of the plan made or totalre-planning instigated. This may, in turn, involve the user in reformulating the taskrequirement. A revised or new plan is then executed. Finally, success of the execution orpartial execution of the plan is fed back to the user.The communication of task, plan and execution information between agents is in the form ofplan patches since it is assumed that each agent is operating asynchronously with its own planstate and model of the environment. Further details are given in [31].5 O-Plan2 ArchitectureThis section describes the O-Plan2 architecture and describes the major modules which makeup the system. An agenda based architecture has been used as the central feature of thesystem and the design approach. Within this framework there has been consideration ofchoice enumeration, choice ordering, choice making and choice processing. This is importantas it allows us to begin to justi�ably isolate functionality which can be described in terms of:� triggering mechanisms | i.e. what causes the mechanism to be activated.� decision making roles | precisely what type of decision can be made.5

� implications for search | has the search space been pruned, restricted or furtherconstrained as far as possible.� decision ordering | in what order should we choose between the alternative decisionspossible.� choice ordering | for a decision to be made, which of the open choices should we adopt.The main components of an O-Plan2 agent are:1. Domain Information - the information which describes an application and the tasks inthat domain to the agent.2. Plan State - the emerging plan to carry out identi�ed tasks.3. Knowledge Sources - the processing capabilities of the agent (plan modi�cationoperators).4. Support Modules - functions which support the processing capabilities of the agent andits components.5. Controller - the decision maker on the order in which processing is done.A generalised picture of the architecture illustrated with the components to specialise thearchitecture to be a planning agent is shown in Figure 2. Further details of each componentfollows in subsequent sections. In these sections, illustrations of the contents of the maincomponents are made by referring to the parts of a planning agent.5.1 Domain InformationDomain descriptions are supplied to O-Plan2 in a language called Task Formalism (tf). Thisis compiled into the internal data structures to be used during planning. A tf descriptionincludes details of:1. activities and events which can be performed or occur in the domain.2. information about the environment and the objects in it.3. task descriptions which describe the planning requirements.tf is the means through which a domain writer or domain expert can supply the domainspeci�c information to the O-Plan2 system, which itself is domain independent. O-Plan2embodies search space pruning mechanisms using this domain information (strong searchmethods) and will fall back on other weak methods, if these fail. tf is the mechanism thatenables the user of the system to supply domain dependent knowledge to assist the system inits search. 6

'& $%CONTROLLER
PLAN NETWORK� EFFECTS� CONDITIONS� RESOURCEUSAGE� TIMEWINDOWS
AGENDAS (Issues)

KNOWLEDGESOURCESEXPAND AN ACTIVITYSATISFY A CONDITIONADD A LINKBIND A VARIABLE DOMAININFORMATIONPLANSTATE � ACTIONSCHEMAS� PROCESSSCHEMAS� RESOURCEDEFINITION� TASKDEFINITION� CONSTRAINTS(STATIC)SUPPORT TOOLS� CONDITION/EFFECT MANAGER� QUESTION ANSWERING� TIME POINT NETWORK MANAGER� PLAN STATE VARIABLES MANAGER� RESOURCE MANAGER� INSTRUMENTATION TOOLS� EVENT HANDLERINPUTEVENTS OUTPUTEVENTS- -

� �
?

6

���������*

PPPi ���1
. . . .

. . . .

Figure 2: O-Plan2 Architecture
7

5.2 Plan StateIn contrast to the relatively static information outlined above, the plan state (on the left ofFigure 2) is the dynamic data structure used during planning and houses the emerging plan.There are a number of components to this structure, the principal ones being:� the plan network itself. This is based on a partial order of activities, as originallysuggested in the noah planner [23]. In O-Plan2 the plan information is concentrated inthe \Associated Data Structure" (ads). The ads contains node and link structuresnoting temporal and resource information, plan information, etc.� the plan rationale. As in Nonlin and O-Plan1, the system keeps explicit information to\explain" why the plan is built the way it is. This rationale is called the Goal Structure(gost) and, along with the Table of Multiple E�ects (tome), provides an e�cient datastructure for the condition achievement support module used in O-Plan2 (QuestionAnswerer { qa { c.f. Chapman's Modal Truth Criteria [3]).� the agenda. O-Plan2 starts with a complete plan, but one which is \awed", hencepreventing the plan from being capable of execution. The nature of the aws presentwill be varied, from actions which are at a higher level than that which the executingagent can operate, to linkages necessary in the plan to resolve conict. Some agendaentries can represent potentially bene�cial, but not yet processed, information. Theagenda is the repository for this \pending" information which must be processed inorder to attain an executable plan.The plan state is a self-contained snapshot of the state of the planning system at a particularpoint in time in the plan generation process. It contains all the state of the system hence thegeneration process can be suspended and this single structure rolled back at a later point intime to allow resumption of the search1.5.3 Knowledge SourcesThese are the computational capabilities associated with the processing of the aws containedin the plan and they embody the planning knowledge of the system. There are as manyKnowledge Sources (ks) as there are aw types, including the interface to the user wishing toexert an inuence on the plan generation process. A ks can draw on domain information (e.g.the use of an action schema for purposes of expansion) to process a aw, and in turn they canadd structure to any part of the plan state (e.g. adding ordering links to the plan, insertingnew e�ects or further populating the agenda with aws).1Assuming that the Task Formalism and the Knowledge Sources used on re-start are the same \static"information used previously.
8

5.4 Support ModulesIn order to e�ciently support the main planning functionality in O-Plan2 there are a numberof support modules separated out from the core of the planner. These modules have carefullydesigned functional interfaces in order that we can both build the planner in a piecewisefashion, and in particular that we can experiment with and easily integrate newimplementations of the modules. The modularity is possible only through the experiencegained in earlier planning projects where support function requirements were carefullyseparated out from the general problem solving and decision making demands of the system.Support modules are intended to provide e�cient support to the higher level KnowledgeSources where decisions are taken. They should not take any decision themselves. They areintended to provide complete information about the questions asked of them to the decisionmaking level itself. Some support modules act as constraint managers for a sub-set of the planstate information.The support modules include the following:� Question-Answerer (qa) is the process at the heart of O-Plan2's condition satisfactionprocedure. It can establish whether a proposition is true or not at a particular point inthe plan. The answer it returns may be (i) a categorical \yes", (ii) a categorical \no", or(iii) a \maybe", in which case qa will supply an alternative set (structured as an and/ortree) of strategies which a Knowledge Source can choose from in order to ensure thetruth of the proposition. The qa procedure makes use of the information managed bythe time point network and condition/e�ect constraint management components (seebelow) to �lter the answers provided to the decision making level above.� Time Point Network Manager (tpn) to manage metric and relative time constraints in aplan.� tome and gost Manager (tgm) to manage the causal structure (conditions and e�ectswhich satisfy them) in a plan.� Plan State Variable Manager to manage partially bound objects in the plan.� Resource Utilisation Manager to monitor and manage the use of resources in a plan.� Instrumentation and Diagnostics routines. O-Plan2 has a set of routines which allow thedeveloper to set and alter levels of diagnostic reporting within the system. These canrange from full trace information to fatal errors only. The instrumentation routinesallow performance characteristics to be gathered while the system is running.Information such as how often a routine is accessed, time taken to process an agendaentry, etc. can be gathered.5.5 ControllerHolding this loosely coupled framework together is the Controller acting on the agenda. Itemson the agenda (the aws) have a context dependent priority which the Controller can9

re-compute, and which allows for the opportunism required to drive plan generation. Agendaentries can be triggered by speci�c plan state changes or other events, such as the binding of avariable, the satisfaction of a condition, the occurrence of an external event, a reminder froman internal agent diary, etc.The controller also provides the framework to activate Knowledge Sources on KnowledgeSource Platforms and to give them appropriate access to domain and plan information.Further details of the choice ordering mechanisms in O-Plan2 is given in [32].The controller provides facilities for managing alternative plan states for internal searchwithin an O-Plan2 agent where this is feasible.6 Process Structure of the O-Plan2 ImplementationThe current O-Plan2 prototype system is able to operate both as a planner and a simpleexecution agent. The job assignment function is provided by a separate process which has asimple menu interface.The abstract architecture described in Figure 2 can be mapped to the system and processarchitecture detailed in Figure 3 which shows the specialisation of the architecture to theO-Plan2 planner agent. Communication between the various processes and managers in thesystem is shown. Each entry within the Figure is explained later in this section.The basic processing cycle of O-Plan2 (as illustrated by the planner agent) is as follows:1. An event is received by the Event Manager which resides within the Interface Manager(im) process. The im is in direct contact with all other processes of the architecturethrough the Module Communication Channel (mcc)2. Support modules allow thedeveloper to change levels of diagnostics and to set up instrumentation checks on theplanner. The Event Manager has two Guards, one on the left input channel (from thejob assigner) and one on the right input channel (from the execution system). The inputchannels themselves are separated into priority levels.The guards verify and if necessary reject events which are not relevant to the system.The guards use knowledge of the system's capabilities derived from the KnowledgeSources and domain model (tf) currently loaded into the system.2. If the event is approved by the guard then it is passed to the Controller/AgendaManager (am) which assigns it the necessary triggers and Knowledge Source activationentry. The entry (now referred to as an Agenda Entry) is then passed to the DatabaseManager (dm) to await triggering. The entry is placed in the Agenda Table (at)monitored by the Trigger Detector (td).
2The mcc is not shown in Figure 3 to simplify the diagram.10

Context LayeringO-Base
DomainInformationADSPlan NetworkTOME/GOSTAgendaTable(AT) TPNLL

Trigger DetectorPlan State Database Manager
Altern.Handler AgendaManagerController (AM) Knowledge SourcePlatform(s) (KP)

Diag. Monitors InstrumentationInterface ManagerGuard GuardDiary
6? ?

�
?
6

-� -�6DIARYIN
TRIGGERSIN DBIN

AGENDAIN KPREADY

Planner User/Developer
LEFTOUTLEFTIN RIGHTOUTRIGHTIN

....

Figure 3: Internal Structure of the Current O-Plan2 Planner11

3. When triggered, the Trigger Detector informs the Agenda Manager and may cache acopy of the triggered agenda entry in the Agenda Manager. The order of entries on thetriggered agenda is constantly updated as new agenda entries are added or triggers onwaiting agenda entries become invalid. A trigger can become invalid due to itstriggering condition ceasing to hold.Knowledge Sources can use the Diary Manager functions to assist them to perform theirtask. The Diary Manager (diary) is responsible for handling triggers associated with agiven time. For example, send an action for execution at a speci�c time or trigger aregular event.Eventually the agenda entry is selected for processing by the Controller/AgendaManager.4. The Controller/Agenda Manager assigns an available Knowledge Source Platform (kp)which can run the pre-nominated Knowledge Source on the triggered agenda entry.5. When a Knowledge Source Platform has been allocated, if it does not already containthe nominated Knowledge Source, the Platform may request the body of the KnowledgeSource from the Database Manager, in order to process the agenda entry. KnowledgeSources may be preloaded on the Platform so this request is not necessary in all cases.Some Platforms may be best suited to run particular Knowledge Sources, hence thesystem will not store all Knowledge Sources at all Platforms. The Knowledge SourcePlatforms will eventually have their own local libraries of Knowledge Sources. Lockingdown of a speci�c real time Knowledge Source to a dedicated Platform is allowed for inthe design.6. A protocol (called the Knowledge Source Protocol) and an access key are used to controlcommunication between the Controller/Agenda Manager and a Knowledge Sourcerunning on a Platform. This controls the processing which the Knowledge Source can doand the access it has to the current plan state via the Database Manager (dm).A Knowledge Source can terminate with none, one or multiple alternative resultsthrough interaction with the Controller via the protocol. The Controller uses anAlternatives Manager Support Module to actually manage any alternatives it isprovided with and to seek alternatives when no results are returned by a KnowledgeSource. A Knowledge Source can also be asked to terminate at suitable internal \stage"boundaries by the Controller3.The internal details of the Database Manager (dm) will depend upon the particularrepresentation chosen for the Plan State. In Figure 3 the internal details of the DatabaseManager relate to the O-Plan2 planner. Here there is a separation of the Associated DataStructure (ads) level which describes the plan network, the Table of Multiple E�ects (tome)and the Goal Structure (gost) from the lower level time constraint management done via theTime Point Network (tpn) and its associated metric time point list called the Landmark Line(ll) and the underlying resource constraint management (done via a Resource UtilisationManager).3O-Plan2 Knowledge Sources can comprise a number of separate stages where suspension of processing canoccur at any stage boundary. 12

7 O-Plan2 PlannerThe O-Plan2 planner agent has been the main focus of our work to date. The followingsections describe the ways in which the generic O-Plan2 architecture has been specialised forthis planner.7.1 Plan StateThe planning agent plan state holds information about decisions taken during planning andinformation about decisions which are still to be made (in the form of an agenda).7.1.1 Plan NetworkThe Associated Data Structure (ads) provides the plan entities which de�ne the plan as a setof activity and event nodes with ordering information in the form of links as necessary tode�ne the partial order relationships between these elements. The end points of these planentities are associated with a lower level Time Point Network (tpn). E�ects, conditions, timewindows and resource utilisation information is also attached to the nodes at the ads level.Time windows play an important part in O-Plan2 in two ways: �rstly as a means of recordingtime limits on the start and �nish of an action and on its duration and delays betweenactions, and secondly during the planning phase itself as a means of pruning the potentialsearch space if temporal validity is threatened.Time windows in O-Plan2 are maintained as min/max pairs, specifying the upper and lowerbounds known at the time. Such bounds may be symbolically de�ned, but O-Plan2 maintainsa numerical pair of bounds for all such numerical values. In fact, a third entry is associatedwith such numerical bounds4. This third entry is a projected value (which could be a simplenumber or a more complex function, data structure, etc.) used by the planner for heuristicestimation, search control and other purposes. The numerical outer bounds on time windowswhich are maintained by the Time Point Network Manager are used in the qa process at theheart of the planner and, if there are tight time constraints on a plan, they can e�ectivelyprune valid responses for ways to satisfy conditions or correct for interactions betweenconditions and e�ects.7.1.2 TOME and GOSTThe Table of Multiple E�ects (tome) holds statements of form:fn(arg1 arg2 ...) = value at time-pointThe Goal Structure (gost) holds statements of form:4All numerical values in O-Plan2 are held as triples: minimum, maximum, and projected values.13

<condition-type> fn(arg1 arg2 ...) = <value> at <time-point>from <contributor-list>where <contributor-list> is a set of pairs of format:(<time-point> . <method-of-satisfaction-of-condition>)In the current implementation, e�ects and conditions are kept in a simple pattern directedlookup table as in Nonlin [28]. The O-Plan1 Clouds mechanism [30] for e�cientlymanipulating large numbers of e�ects and their relationship to supporting conditions will beused in O-Plan2 in due course.7.1.3 Plan State Objects and VariablesO-Plan2 can keep restrictions on plan state objects without necessarily insisting that ade�nite binding is chosen as soon as the object is introduced to the Plan State. Plan StateVariables can be used in e�ects, conditions, etc.7.1.4 Resource Utilisation TableThe Resource Utilisation Table holds statements of form:set/+/- resource(<resource-name> <qualifier> ...) = <value>at <time-point>The statement declares that the particular resource is set to a speci�c value or changed bybeing incremented or decremented by the given value at the indicated time point. There canbe uncertainty in one or both of the value and the time point which are held as min/maxpairs.Task Formalism resource usage speci�cations on actions are used to ensure that resourceusage in a plan stays within the bounds indicated. There are two types of resource usagestatements in tf. One gives a speci�cation of the overall limitation on resource usage for anactivity (over the total time that the activity and any expansion of it can span). The othertype describes actual resource utilisation at points in the expansion of an action. It must bepossible (within the min/max exibility in the actual resource usage statements) for a point inthe min/max range of the sum of the resource usage statements to be within the overallspeci�cation given. The Resource Utilisation Table is used to manage the actual resourceutilisation at points in the plan.7.2 Planning Knowledge SourcesThe O-Plan2 architecture is specialised into a planning agent by including a number ofKnowledge Sources which can alter the Plan State in various ways. The planning Knowledge14

Sources provide a collection of plan modi�cation operators which de�ne the functionality ofthe planning agent beyond its default O-Plan2 architecture properties (essentially limited toinitialisation and communication capabilities by default).The planning Knowledge Sources in the current version of the O-Plan2 planner includes:� KS SET TASK a Knowledge Source to set up an initial plan state corresponding to thetask request from the job assignment agent.� KS EXPAND a Knowledge Source to expand a high level activity to lower levels ofdetail.� KS CONDITION a Knowledge Source to ensure that certain types of condition aresatis�ed. This is normally posted by a higher level KS EXPAND.� KS ACHIEVE a Knowledge Source initiated by KS EXPAND to achieve conditionspossibly by inserting new activities into the plan.� KS OR a Knowledge Source to select one of a set of possible alternative linkings andplan state variable bindings. The set of alternative linkings and bindings will have beencreated by other Knowledge Sources (such as KS CONDITION) earlier { normally as aresult of a Question Answerer (qa) call.� KS BIND a Knowledge Source used to select a binding for a plan state variable incircumstances where alternative possible bindings remain possible.� KS USER a Knowledge Source activated at the request of the user acting in the role ofsupporting the planning process. This is used at present to provide a menu to browse onthe plan state and potentially to alter the priority of some choices.� KS POISON STATE a Knowledge Source used to deal with a statement by anotherKnowledge Source that the plan state is inconsistent in some way or cannot lead to avalid plan (as far as that Knowledge Source is aware).In addition, the default Knowledge Sources available in any O-Plan2 agent are present and areas follows:� KS INIT Initialise the agent.� KS COMPILE Alter the Knowledge Source (agent capability) Library of an O-Plan2agent by providing new or amended Knowledge Sources (described in a KnowledgeSource Framework language). In the current implementation of O-Plan2, this cannot bedone dynamically.� KS DOMAIN Call the Domain Information (normally tf) compiler to alter the DomainInformation available to the agent.� KS EXTRACT RIGHT Extract a plan patch for passing to the subordinate agent tothe `right' of this agent - i.e the execution agent.15

� KS EXTRACT LEFT Extract a plan patch for passing to the superior agent to the`left' of this agent - i.e the job assignment agent.� KS PATCH Merges a plan patch from an input event channel into the current plan state.7.3 Use of Constraint Managers to Maintain Plan InformationThe O-Plan2 planner uses a number of constraint managers to maintain information about aplan while it is being generated. The information can then be utilised to prune search (whereplans are found to be invalid as a result of propagating the constraints managed by thesemanagers), to restrict the range of valid answers provided by the Question Answerer (qa)procedure in the planner, or to order search alternatives according to some heuristic priority.The constraint managers are provided as a collection of support modules which can be calledby Knowledge Sources to maintain specialised aspects of the information in a plan or toanswer queries based upon this information.7.3.1 Time Point Network Manager (tpnm)O-Plan2 uses a point based temporal representation with range constraints between timepoints and with the possibility of specifying range constraints relative to a �xed time point(time zero). This provides the capability of specifying relative and metric time constraints ontime points. The functional interface to the Time Point Network (tpn), as seen by theAssociated Data Structure (ads) has no dependence on a particular representation of the planstate. Further details are given in [8].The points held in the tpn may be indirectly associated with actions, links and events, withthe association being made at the Associated Data Structure level. The points are numberedto give an index with a constant retrieval time for any number of points. This structure allowspoints to be retrieved and compared through a suitable module interface and with a minimumof overhead. The interface reects the functionality required of the tpn, and hides the detail.This ensures that we have no absolute reliance on points as a necessary underlyingrepresentation. Time points whose upper and lower values has converged to a single value areinserted into a time ordered Landmark Line (ll). This allows the planner to quickly check theorder of certain points within the plan. The tpn and ll are maintained by the Time PointNetwork Manager (tpnm). As well as its use in the O-Plan2 activity orientated planner, thecurrent tpnm has also been applied to large resource allocation scheduling problems in thetosca scheduler [2] where the number of time points was in excess of 5000 and the number oftemporal constraints exceeded 3000.7.3.2 tome/gost Manager (tgm)The conict free addition of e�ects and conditions into the plan is achieved through the tgm,which relies in turn on support from the Question Answerer (qa) module which suggests16

resolutions for potential conicts. The resolutions proposed are sensitive to metric timeconstraints as managed by the Time Point Network Manager.7.3.3 Resource Utilisation Management (rum)O-Plan2 uses a Resource Utilisation Manager to monitor resource levels and utilisation.Resources are divided into di�erent types such as:1. Consumable: these are resources which as \consumed" by actions within the plan. Forexample: bricks, fuel, money, etc.2. Re-usable: these are resources which are used and then returned to a common \pool".For example, robots, workmen, lorries, etc.Consumable resources can be subcategorised as strictly consumed or may be producable insome way. Substitutability of resources one for the other is also possible. Some may have asingle way mapping such as money for fuel and some can be two way mappings such as moneyfor travellers' cheques. Producable and substitutable resources are di�cult to deal withbecause they increase the amount of choice available within a plan and thus open up thesearch space.The current O-Plan2 Resource Utilisation Manager uses the same scheme for strictlyconsumable resources as in the original O-Plan1. However, a new scheme based on themaintenance of optimistic and pessimistic resource pro�les with resource usage events andactivities tied to changes in the pro�les is now under study.7.3.4 Plan State Variables Manager (psvm)The Plan State Variable Manager is responsible for maintaining the consistency of restrictionson plan objects during plan generation. O-Plan2 adopts a least commitment approach toobject handling in that variables are only bound as and when necessary. The Plan StateVariables Manager within the Database Manager (dm) maintains an explicit \model" of thecurrent set of plan object restrictions and seeks to ensure that a possible instantiation of theobject is possible at all times.When a Plan State Variable (psv) is created by the planner the Plan State Variables Managercreates a plan state variable name (psvn), plan state variable body (psvb) and a range listfrom which a value must be found. For example, the variable could be the colour of aspacecraft's camera �lter which could be taken from the range (red green blue yellowopaque). A plan state variable must have an enumerable type and thus cannot be, forexample, a real number. The psvb holds the not-sames and constraint-lists and may bepointed to by one or more psvns. This allows easier updating as new constraints are addedand psvb's are made the same. Two or more psvb's can be collapsed into a single psvb if allof the constraints are compatible. i.e. the not-sames and constraints-list. A psvn pointingto a collapsed psvb is then redirected to point at the remaining psvb. This scheme allows17

triggers to be placed on the binding of psv's (e.g. do not bind until the choice set is less than3) and allows variables which are creating bottlenecks to be identi�ed and if necessary furtherrestricted or bound.7.4 Other Support Modules in O-Plan2As well as the managers referred to above, a number of other support routines are availablefor call by the Knowledge Sources of O-Plan2. The main such support mechanisms whichhave been built into the current O-Plan2 Planner include:� Question Answerer (qa)The Question-Answering module is the core of the planner and must be both e�cientand able to account for both metric and relative time constraints. qa supports theplanner to satisfy and maintain conditions in the plan in a conict free fashion,suggesting remedies where possible for any interactions detected. The qa proceduremakes use of the constraint managers to reduce the number of legal answers it provides.� Graph Operations Processor (gop)The gop provides e�cient answers to ordering related questions within the main plan(represented by a graph). gop works with metric time ordered and relative or partiallyordered activities in the graph.� ContextsAll data within the O-Plan2 plan state can be \context layered" to provide support foralternatives management and context based reasoning. An e�cient, structure sharingsupport module provides the ability to context layer any data structure accessor andupdator function in Lisp. This is particularly useful for the underlying contentaddressable database in the system: O-Base.� O-BaseThis database support module supports storage and retrieval of entity/relationship datawith value in context. This model allows for retrieval of partially speci�ed items in thedatabase.In addition, there are support modules providing support for the User Interface, Diagnostics,Instrumentation, etc.7.5 Alternatives ManagerThere is an additional support module capability in O-Plan2 which is utilised by theController. This provides handling of alternative plan states within an O-Plan2 agent.If a Knowledge Source �nds that it has alternatives ways to achieve its task, and it �nds thatit cannot represent all those alternatives in some way within a single plan state, then theController provides support to allow the alternatives that are generated to be managed. This18

is done by the Knowledge Source telling the Controller about all alternatives but one favouredone and asking for permission to continue to process this. This reects the O-Plan2 searchstrategy of local best, then global best. A support routine is provided to allow a KnowledgeSource to inform the Controller of all alternatives but the selected one.A Knowledge Source which cannot achieve its task or which decides that the current planstate is illegal and cannot be used to generate a valid plan may terminate and tell theController to poison the plan state. In the current version of O-Plan2, this will normallyinitiate consideration of alternative plan states by a dialogue between the Controller and thealternatives manager. A new current plan state will be selected and become visible to newKnowledge Source activations. Concurrently running Knowledge Sources working on the old(poisoned) plan state will be terminated as soon as possible as their e�orts will be wasted.As well as having the existing system's option to explore alternative plan states, futureversions of O-Plan2 will consider ways to unpoison a plan state by running a nominatedpoison handler associated with the Knowledge Source that poisoned the plan state or with thereason for the plan state poison. This is important as we envisage O-Plan2 being used incontinuous environments where alternative plan states will become invalid.7.6 Implementation as Separate ProcessesIn the current UNIX and Common Lisp based implementation of O-Plan2 the main managersand Knowledge Source Platforms are implemented as separate processes. One advantage ofthis approach is that Knowledge Sources can be run in parallel with one another, and thatexternal events can be processed by the Interface Manager (the manager in charge of allinteraction, diagnostic handling and instrumentation) as they occur. The agent latency orreaction time performance of the system is measured by the time taken to move an incomingevent through the agenda triggering mechanism to a waiting Knowledge Source Platform. Thecycle time performance of the system is measured by the time taken to move an agenda entryposted by one Knowledge Source through the triggering mechanism to run on a waitingKnowledge Source Platform.

19

8 O-Plan2 User Interface8.1 Planner User Interfaceai planning systems are now being used in realistic applications by users who need to have ahigh level of graphical support to the planning operations they are being aided with. In thepast, our ai planners have provided custom built graphical interfaces embedded in thespecialist programming environments in which the planners have been implemented. It is nowimportant to provide interfaces to AI planners that are more easily used and understood by abroader range of users. We have characterised the user interface to O-Plan2 as being based ontwo views supported for the user. The �rst is a Plan View which is used for interaction with auser in planning entity terms (such as the use of PERT-charts, Gantt charts, resource pro�les,etc). The second is the World View which presents a domain orientated view or simulation ofwhat could happen or is happening in terms of world state.

Figure 4: Example Output of the AutoCAD-based User Interface
20

Computer Aided Design (CAD) packages available on a wide range of microcomputers andengineering workstations are in widespread use and will probably be known to potentialplanning system users already or will be in use somewhere in their organisations. There couldbe bene�ts to providing an interface to an ai planner through widely available CAD packagesso that the time to learn an interface is reduced and a range of additional facilities can beprovided without additional e�ort by the implementors of ai planners.We have built an interface to the Edinburgh ai planning systems which is based on AutoCAD[26]. A complete example of the use of the interface has been built for a space platformbuilding application. O-Plan2 Task Formalism has been written to allow the generation ofplans to build various types of space platform with connectivity constraints on the modulesand components. A domain context display facility has been provided through the use ofAutoLISP. This allows the state of the world following the execution of any action to bevisualised through AutoCAD. Means to record and replay visual simulation sequences for planexecution are provided.A sample screen image is included in Figure 4. There are three main windows. The planner isaccessible through the Job Assignment window to the top left hand corner which is showingthe main user menu. The planner is being used on a space station assembly task and has justbeen used to get a resulting plan network. In the Plan View supported by O-Plan2, this hasbeen displayed in the large AutoCAD window along the bottom of the screen. Via interactionwith the menu in the AutoCAD window, the planner has been informed that the user isinterested in the world context at a particular point in the plan - the selected node ishighlighted in the main plan display. In the World View supported by O-Plan2, the plannerhas then provided output which can be visualised by a suitable domain speci�c interpreter.This is shown in the window to the top right hand corner of the screen where plan, elevationand perspective images of the space station are simultaneously displayed.The O-Plan2 Plan View and World View support mechanisms are designed to retainindependence of the actual implementations for the viewers themselves. This allows widelyavailable tools like AutoCAD to be employed where appropriate, but also allows text based ordomain speci�c viewers to be interfaced without change to O-Plan2 itself. The speci�c viewersto be used for a domain and the level of interface they can support for O-Plan2 use isdescribed to O-Plan2 via the domain Task Formalism (tf). A small number of viewercharacteristics can be stated. These are supported by O-Plan2 and a communicationslanguage is provided such that plan and world viewers can input to O-Plan2 and take outputfrom it.

21

8.2 System Developer InterfaceWhen O-Plan2 is being used by a developer, it is usual to have a number of windows active toshow the processing going on in the major components of the planner. There is a smallwindow acting as the job assignment agent with its main O-Plan2 menu. There are thenseparate windows for the Interface Manager (im) { through which the user can communicatewith other processes and through which diagnostic and instrumentation levels can be changed.The Agenda Manager/Controller (am), the Database Manager (dm) and the KnowledgeSource Platform(s) (kp) then have their own windows. Further pop-up windows are providedwhen viewing the plan state graphically or when getting detail of parts of the plan, etc.A sample developer screen image is shown in Figure 5.

Figure 5: Example Developer Interface for the O-Plan2 Planning Agent
22

9 ApplicationsThe O-Plan2 prototype has been tested on a number of simple, but realistic, domains as wellas on puzzles intended to test speci�c features.Block Stacking. A set of puzzle problems used to test e�ect/condition interaction and goalhandling in O-Plan2.House Building. A \standard" domain for tests of the Edinburgh planners with a number ofvariants to test speci�c features. The aim is to construct a project plan to build a housewith certain requirements.Space Station Assembly. This application shows the development of a plan for theconstruction of one of a number of di�erent Space Platforms. Platforms are constructedfrom a series of joints, trusses, pressurised modules, solar panels, radiators andantennas. This example has been included to demonstrate the AutoCAD user interfacewhich has been constructed for O-Plan2.Satellite Control. This application shows the development of a plan for the control of asimple satellite we have called eusat (Edinburgh University Satellite) which is based onthe University of Surrey's successful uosat-ii. The O-Plan2 planning agent has beendemonstrated generating a plan for operation of the spacecraft for one day bygenerating the actual on-board computer Diary commands and was able to pass it to anO-Plan2 based execution agent for simulated dispatch and monitoring to take place.10 Related ProjectsO-Plan2 is one of several projects at Edinburgh grouped under the title of europa (EdinburghUniversity Research into Open Planning Architectures). The combined research of theseprojects cover issues in Knowledge Based Planning and Scheduling and are anchored aroundthe two main, long term research projects of O-Plan2 and tosca (The Open SChedulingArchitecture [2]). O-Plan2 has concentrated on an activity based plan state with good timeand resource constraint handling for this base. tosca is a variant of the same ideas applied tothe area of operations management in the factory (job shop) environment. tosca employsappropriate Knowledge Sources for its domain of application (e.g. resource assignment,bottleneck analysis) which operate on an emerging schedule state, similar to the notion of theplan state mentioned above. There is a good measure of overlap between the techniques usedon these projects, particularly with respect to time and resource handling. Our aim is todevelop designs and architectures suited to both activity planning and scheduling problemsand to develop as much common ground as is possible. O-Plan2 plays a key role in this plan.
23

AcknowledgementsThe O-Plan2 project has been supported by the us Air Force Rome Laboratory through theAir Force O�ce of Scienti�c Research (afosr) and their European O�ce of AerospaceResearch and Development by contract number F49620-89-C0081 (eoard/88-0044)monitored by Dr. Northrup Fowler iii at the usaf Rome Laboratory. Additional resources forthe O-Plan work has been provided by the Arti�cial Intelligence Applications Institutethrough the europa (Edinburgh University Research on Planning Architectures) Institutedevelopment project.References[1] Allen, J., Hendler, J. & Tate, A. Readings in Planning. Morgan-Kaufmann, 1990.[2] Beck, H.A. TOSCA: The Open SCheduling Architecture, Papers of the AAAI SpringSymposium on \Practical Approaches to Scheduling and Planning", Stanford, CA, USA,March 1992.[3] Chapman, D. Planning for conjunctive goals. Arti�cial Intelligence Vol. 32, pp. 333-377,1987.[4] Currie, K.W. & Tate, A. (1985) O-Plan: Control in the Open Planning Architecture,Proceedings of the BCS Expert Systems 85 Conference, Warwick, UK, CambridgeUniversity Press.[5] Currie, K.W. & Tate, A. O-Plan: the Open Planning Architecture, Arti�cial IntelligenceVol 51, No. 1, Autumn 1991, North-Holland.[6] Daniel, L. (1983) Planning and Operations Research in Arti�cial Intelligence: Tools,Techniques and Applications (eds. O'Shea and Eisenstadt), Harper and Row, New York.[7] Drabble, B. Planning and reasoning with processes, in Procs. of the 8th Workshop of theAlvey Planning sig, The Institute of Electrical Engineers, November, 1988. Full paper toappear in Arti�cial Intelligence, 1992.[8] Drabble, B. & Kirby, R.B. Associating ai planner entities with an underlying time pointnetwork, in Procs. of the European Workshop on Planning, pp. 27-38, St. Augustin,Germany, March 1991. Lecture Notes in ai No. 522, Springer-Verlag.[9] Drabble, B. & Tate, A., Using a CAD system as an interface to an AI Planner,European Space Agency Conference of Space Telerobotics, European Space Agency, 1991,Noordwijk, Holland.[10] Drummond, M. & Currie, K. Exploiting temporal coherence in nonlinear planconstruction, in Procs. of ijcai-89, Detroit.24

[11] Drummond, M.E., Currie, K.W. & Tate, A. (1988) O-Plan meets T-SAT: First resultsfrom the application of an AI Planner to spacecraft mission sequencing, AIAI-PR-27,AIAI, University of Edinburgh.[12] Fikes, R.E., Hart, P.E. & Nilsson, N.J. (1972) Learning and Executing Generalized RobotPlans, Arti�cial Intelligence Vol. 3.[13] George�, M. P. & A. L. Lansky (1986) Procedural Knowledge, in Proceedings of theIEEE, Special Issue on Knowledge Representation, Vol. 74, pp. 1383-1398.[14] Hayes, P.J. (1975) A representation for robot plans, in Procs. of the International JointConference on Arti�cial Intelligence (ijcai-75), Tbilisi, USSR.[15] Hayes-Roth, B. & Hayes-Roth, F. A cognitive model of planning, Cognitive Science, pp.275-310, 1979.[16] Lesser, V. & Erman, L. A retrospective view of the Hearsay-II architecture, in Procs. ofthe International Joint Conference on Arti�cial Intelligence (ijcai-77), pp. 27-35, 1977[17] Liu, B., Ph.D Thesis, Knowledge Based Scheduling, Edinburgh University, 1988.[18] Malcolm, C. & Smithers, T. (1988) Programming Assembly Robots in terms of TaskAchieving Behavioural Modules: First Experimental Results, in Procs. of the SecondWorkshop on Manipulators, Sensors and Steps towards Mobility as part of theInternational Advanced Robotics Programme, Salford, UK.[19] McDermott, D.V. A Temporal Logic for Reasoning about Processes and Plans, CognitiveScience, 6, pp. 101-155, 1978.[20] Nii, P. The blackboard model of problem solving, AI Magazine Vol.7 No. 2 & 3. 1986.[21] Nilsson, N.J. (1988) Action Networks, in Procs. of the Rochester Planning Workshop,October 1988.[22] Rosenschein, S.J., & Kaelbling, L.P. (1987) The Synthesis of Digital Machines withProvable Epistemic Properties, SRI AI Center Technical Note 412.[23] Sacerdoti, E. A structure for plans and behaviours, Arti�cial Intelligence Series, NorthHolland, 1977.[24] Sadeh, N. & Fox, M.S., Preference Propagation in Temporal/Capacity Constraint Graphs,Computer Science Dept, Carnegie-Mellon University, 1988, Technical ReportCMU-CS-88-193.[25] Smith, S., Fox, M. & Ow, P.S., Constructing and maintaining detailed production plans:Investigations into the development of knowledge based factory scheduling systems, AIMagazine, 1986, Vol 7, No.4[26] Smith, J. & Gesner, R. (1989) Inside AutoCAD, New Riders Publishing Cp., ThousandOaks, Ca. 25

[27] Sridharan, N. Practical Planning Systems, in Procs. of the Rochester Planning Workshop,afosr, 1988.[28] Tate, A. Generating project networks. In procs. ijcai-77, 1977.[29] Tate, A. (1984) Planning and Condition Monitoring in a FMS, in Procs. of theInternational Conference on Flexible Automation Systems, Institute of ElectricalEngineers, London, UK.[30] Tate, A. (1986) Goal Structure, Holding Periods and \Clouds", in Procs. of theReasoning about Actions and Plans Workshop, Timberline Lodge, Oregon, USA. (eds,George�, M.P. & Lansky, A.), published by Morgan Kaufmann.[31] Tate, A. (1989) Coordinating the Activities of a Planner and an Execution Agent, in inProcs. of the Second NASA Conference on Space Telerobotics, (eds. G.Rodriguez &H.Seraji), JPL Publication 89-7 Vol. 1 pp. 385-393, Jet Propulsion Laboratory, February1989.[32] Tate, A. (1990) O-Plan2: Choice Ordering Mechanisms in an AI Planning Architecture,in Procs. of the 1990 DARPA Workshop on Innovative Approaches to Planning,Scheduling and Control, San Diego, California, USA on 5-8 November 1990, published byMorgan-Kaufmann. Also updated with B.Drabble as AIAI-TR-86, AIAI, University ofEdinburgh.[33] Tate, A., Drabble, B. & Kirby, R.B. Spacecraft Command and Control using AI PlanningTechniques - The O-Plan2 Project - Final Report, USAF/AFOSR contract no.F49620-89-C0081. Technical Report from Rome Laboratory, Gri�ss AFB, NY13441-5700. Also available as AIAI-TR-109, AIAI, University of Edinburgh.[34] Tecknowledge, S.1 Product Description, Tecknowledge Inc., 525 University Avenue, PaloAlto, CA 94301, 1988.[35] Ste�k, M. Planning with constraints, Arti�cial Intelligence, Vol. 16, pp. 111-140, 1981.[36] Vere, S. Planning in time: windows and durations for activities and goals. ieeeTransactions on Pattern Analysis and Machine Intelligence Vol. 5, 1981.[37] Wilkins, D.E. (1985) Recovering from execution errors in SIPE, ComputationalIntelligence Vol. 1 pp. 33-45.[38] Wilkins, D.E. Practical Planning, Morgan Kaufman, 1988.
26

