
Talking to Strangers Without Taking Their Candy:
Isolating Proxied Content

Adrienne Felt, Pieter Hooimeijer, David Evans, Westley Weimer
University of Virginia

{felt, pieter, evans, weimer}@cs.virginia.edu

ABSTRACT
Social networks have begun supporting external con-
tent integration with platforms like OpenSocial and the
Facebook API. These platforms let users install third-
party applications and are a popular example of a mash-
up. Content integration is often accomplished by prox-
ying the third-party content or importing third-party
scripts. However, these methods introduce serious risks
of user impersonation and data exposure. Modern bro-
wsers provide no mechanism to differentiate between
trusted and untrusted embedded content. As a result,
content providers are forced to trust third-party scripts
or ensure user safety by means of server-side code san-
itization. We demonstrate the difficulties of server-side
code filtering – and the ramifications of its failure –
with an example from the Facebook Platform. We then
propose browser modifications that would distinguish
between trusted and untrusted content and enforce their
separation.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and protection

General Terms
Security, Design

Keywords
Mashups, social networking sites, Same Origin Policy

1. INTRODUCTION
Modern browser architecture lags behind the evolu-

tion of Web design. Web pages are no longer static,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SocialNets ’08, April 1, 2008, Glasgow, Scotland, UK
Copyright 2008 ACM 978-1-60558-124-8/08/04 ...$5.00.

Figure 1: This Facebook profile has an application
(TV Shows) installed as an example of a mashup.

monolithic HTML documents. Second-generation Web
design emphasizes dynamic content and customization.
From blog comments to Google Gadgets, third-party
components are regularly included in sites. Social net-
working sites are among the most popular proponents
of third-party gadgets. In the simplest situations, the
third party input is text; in the most complicated cases,
mashups aggregate robust JavaScript applications. Cur-
rent browsers, however, offer no protection from im-
ported or proxied third-party code.

With imported scripts, <script> tags are used to
import an external script. The imported script runs
with the privileges of the host page. When an ama-
teur blogger adds a Flickr badge [8] to her page with
a <script> tag, for example, Flickr gains full access
to the blog’s content and visitor credentials. Mashup
hosts have no choice but to accept the risks of this tech-
nique.

Some professional mashup aggregators proxy third-
party code. Since browsers do not differentiate between
proxied code and proprietary code, the aggregators try
to ensure user safety with server-side code sanitiza-
tion. This is critical on sites (such as social networks)
that host personal and private information. Filtering
out malicious JavaScript, however, is a difficult task;
cross-site scripting attacks, which exploit weaknesses
in input filters, comprised nearly a quarter of publicly-
disclosed vulnerabilities in 2006 [1]. The high complex-

ity of code filters places responsibility on the mashup
aggregator; it is unlikely that small startup or amateur
sites would be able to provide similar user protection.
Further, since the filtering is done by the aggregator,
the end client has no control over the policy and must
trust the aggregator to perform the filtering correctly.
We illustrate the difficulty of server-side filtering with
an attack on the Facebook Platform and show how a
single input verification vulnerability can expose an
entire site.

Mashup integrators are limited in their ability to pro-
vide safe designs, since browsers do not let them dis-
tinguish between proprietary and third-party content.
We propose a new untrusted attribute for <div> tags
that lets mashup aggregators mark untrusted embed-
ded content. The browser can then enforce a one-way
visibility policy so that the untrusted content does not
have access to the surrounding page. This shifts the re-
sponsibility of user safety from the mashup server to
the browser, which is where other source-related secu-
rity checks occur. The browser is the definitive author-
ity for detecting script execution; unlike server-side fil-
ters, it will never miss executable JavaScript fragments
and it has access to run-time context information.

Unlike other proposals aimed at preventing cross-
site scripting, we directly address the underlying de-
sign problem behind content integration. Our new at-
tribute accommodates safe, full-featured mashups while
letting mashup integrators retain the performance and
control benefits of proxying code.

Section 2 explains how the current browser security
model is inadequate for common mashup services, and
Section 3 describes a vulnerability in the Facebook plat-
form that exemplifies the problem. Our proposed at-
tribute and prototype implemented as a Firefox exten-
sion are described in Section 4. Section 5 discusses re-
lated work.

2. BACKGROUND
Current browsers apply an industry-standard Same

Origin Policy (SOP) to cross-domain interactions on the
client-side. The SOP governs how security and isola-
tion mechanisms will be applied to third-party content.
Section 2.1 explains the SOP and how it was designed
for use with inline frames. Section 2.2 and Section 2.3
describe two alternate methods of content integration
and how the SOP is not adequate for either.

2.1 Same Origin Policy
The Same Origin Policy isolates documents from dif-

ferent domains. A script from one document may ac-
cess another document if and only if they are from the
same source domain. All parts of the URLs except for
the file name must be identical for the two domains to
be considered the same; thus, www.a.edu/XX.html

and www.a.edu/foo/YY.html are from the same ori-
gin, but www.YY.a.edu and www.XX.a.edu are not.

Cross-domain content integration is supported with
inline frames, which provide complete isolation. The
<iframe src="..."> tag prompts a child frame to
be loaded from the specified src. If the src attribute
is of the same domain as the outer page, scripts can
freely communicate between the two frames. If the
src attribute points to a different domain (as is the
case in mashups), complete isolation is imposed be-
tween the two frames. Web pages are modeled in a
parent-child tree structure known as the Document Ob-
ject Model (DOM), and an iframe from an external source
places a permanent barrier through the tree.

2.2 Imported Scripts
Cross-domain <script> tags load scripts from other

domains. An imported script will execute immediately
and with the same privileges as the surrounding con-
tent. The page that has included the script must trust it
fully, since the script may access anything on that page
and in that same domain. The mashup host has no op-
portunity to validate or rewrite the script content.

Despite this security risk, the use of cross-domain
scripts persists because the two-way isolation policy of
the SOP is too restrictive for many applications. The
mashup aggregator may need to call methods associ-
ated with the third-party script, which would not be
possible with a script in an iframe.

For example, Google Maps’ JavaScript API may be
added to pages to display a map [9]. The map can be
sandboxed in an iframe or imported as a script. Using
an iframe means that the map can only be displayed;
choosing to import it as a script lets the content inte-
grator interact with the map. Such interaction is in-
creasingly common; one example is EveryBlock, which
takes advantage of the interactivity to overlay restau-
rant reviews, crime locations, and neighborhood post-
ings onto city maps [5].

2.3 Proxying
Normally, Web content is obtained directly from the

server that hosts it. When a user navigates to a page,
her browser directly establishes a link with the host
network server to fetch content. If cross-domain frames
are included in the page, the user’s browser makes a
second round of requests to the third-party servers.

In the case of proxied content, the user’s browser sees
only one data transaction. When the user navigates
to such a mashup page, the target mashup server re-
lays the request and fetches extra content, such as gad-
gets, from third-party servers. The mashup server then
directly embeds the third-party content into the page,
and returns it to the user as if all of the content were
from the mashup server. From the standpoint of the

browser, all of the code in the aggregated page has the
same origin. Under the Same Origin Policy, the gad-
gets receive the same privileges as the host content and
can access page elements and make use of viewer cre-
dentials. If the mashup integrator wishes to incorpo-
rate external content while ensuring user safety, it must
try to filter the application content at the server side.

Filtering content for security is difficult. Even reg-
ular user input fields that only allow a few HTML el-
ements are difficult to sanitize properly. For example,
in October 2005, the Samy worm took down MySpace
for twelve hours by inserting JavaScript into a profile
field and spreading to over a million profiles [16]. Fil-
tering mashup content is even harder because useful
mashups need to support executable content, includ-
ing JavaScript. The stakes are high for large mashup
providers like social networking sites, where an over-
sight in their code sanitizer could lead to a costly denial
of service attack or a leak of personal information.

3. EXAMPLE MASHUP ATTACK
Facebook runs a large-scale proxying service for third-

party applications that users may install through the
Facebook Platform [7]. These third-party applications
can be added to Facebook profiles and pages. This fea-
ture has proven extremely popular: the highest-ranked
Facebook applications have over twenty-five million
users [6]. Facebook applies code transformation tech-
niques to the untrusted content to filter out disallowed
executable actions. Facebook’s rival social networking
site platform, OpenSocial, will soon also support Java-
Script rewriting techniques for partner sites who “wish
to avoid the overhead of putting third party JavaScript
into iframes” [10].

To illustrate the difficulty and danger of server-side
code filtering, this section describes a vulnerability we
discovered in the Facebook Platform1 and the ramifica-
tions of potential attacks through such a vulnerability.

3.1 Improper Code Transformation
Facebook requires applications to be written in Face-

book Markup Language (FBML). FBML is a non-execut-
able subset of HTML that is supplemented by propri-
etary Facebook tags. The proprietary tags aid devel-
opers by abstracting complex scripts; for example, the
simple <fb:friend-selector> tag is turned into a
predictive type-ahead user input field.

By comparing our FBML input and Facebook’s gen-
erated HTML output, we discovered an oversight in
their transformation of the <fb:swf> tag, which em-
beds an Adobe Flash .swf file into a page. To keep
ostentatious graphics and audio from annoying view-
ers, a static preview image is provided as a link to the
1Facebook was notified and patched the hole within three weeks.
Full code and a video demonstration are available at [?].

dynamic Flash content. The <fb:swf> tag therefore
includes an imgstyle attribute for the image. The
imgstyle attribute was stripped of the ", <, and >
characters but not checked for executable content. To
take advantage of this, an attacker could inject code
into a Facebook-served page as follows:

<fb:swf swfsrc="http://foo/flash.swf" imgsrc=

"http://foo/bar.jpg" imgstyle="-moz-binding:

url(\‘http://foo/xssmoz.xml#xss\’); background-

image:expression(...) " />

After conversion by Facebook, the static preview im-
age would be included in the final profile page as:

<img src="http://facebook/cached.jpg" style=
"-moz-binding:url(‘http://foo/xssmoz.xml#xss’);

background-image:expression(...) " />

The content of the final style attribute references
JavaScript. In Firefox, the -moz-binding:url selec-
tor loads and executes JavaScript from an XML file.
In Internet Explorer, the background-image tag ev-
aluates the JavaScript contents of the expression()
function. The malicious script executes every time a
Facebook user views a profile with the malicious ap-
plication installed.

3.2 Ramifications
Once arbitrary third-party JavaScript can been intro-

duced into a site, an attacker can impersonate the page
viewer and perform malicious actions on the user’s be-
half. The browser does not realize that the JavaScript is
untrusted, so the untrusted code’s requests will be ex-
ecuted with the user’s session state and permissions.
This attack is known as session surfing or Cross-Site Re-
quest Forging (CSRF).

The injected JavaScript can crawl through the page
to look for desired values (e.g., viewer ID, form keys)
and open up hidden iframes that can POST forms to
Facebook. Since the page viewer is logged in to the site,
the forms will be associated with the user’s session and
will successfully submit.

Any user action on the site that can be submitted as
a form can also be performed by the attacker. This
includes worm-like behavior, since the injected script
could install itself on viewers’ accounts. On a heavily
trafficked site, self-replicating code can spread rapidly;
the Samy worm spread to over a million MySpace pro-
files in five hours [16]. Users with stored credit card
information could be at risk if they are not required to
re-enter their password before purchasing something
on the site. (Facebook implemented a secondary login
for credit card protection in Fall 2007.)

4. BROWSER-SIDE ENFORCEMENT
Under the current browser security model, imported

scripts and proxied code are treated as if they are pro-
prietary page content. This places a large burden on
mashup integrators, puts users at risk, and limits the
ability of small and amateur sites to participate in mash-
up design. Only scripts from well-known companies
are trusted enough to be imported, and only large sites
have the resources to safely proxy content. As shown
in Section 3, even large sites make mistakes in their fil-
ters that allow malicious scripts through.

We argue that origin-related policy enforcement be-
longs in the browser. The browser will always cor-
rectly identify all JavaScript in a page, since the brow-
ser cannot execute code if it does not recognize it. Stan-
dardization is another advantage: instead of different
mashup integrators offering varying levels of protec-
tion, users will always be protected by their browsers.
The security feature will be available to amateur and
professional sites alike, and mashup integrators won’t
need to keep writing the same content-filtering code.

Currently, browsers have no way to differentiate be-
tween trusted and untrusted content in aggregated doc-
uments. We propose to solve this by introducing a
new untrusted marker, described in Section 4.1, that
identifies third-party code so that security policies can
be applied to it. JavaScript rewriting can be used within
the browser to restrict untrusted content. Section 4.2
describes our prototype implementation as a Firefox
extension.

4.1 Marking Untrusted Content
The new <div untrusted="true"> attribute is

used to mark third-party code. Any code inside an un-
trusted <div> is restricted by these policies:

• Untrusted JavaScript cannot access any page con-
tent outside of its containing <div>. This means
that the Document Object Model (DOM) above
the <div> is completely inaccessible.

• Untrusted JavaScript cannot access any global vari-
ables or functions. This also applies to interaction
between different untrusted blocks.

• Untrusted code may not make XMLHttpRequests
to or open iframes from the mashup’s domain.

These restrictions only apply to the untrusted content;
the mashup integrator’s other content is trusted and
unchanged.

The primary purpose of the untrusted tag is to
protect the surrounding page content from the third-
party code. Facebook, for example, could place third-
party gadgets in these untrusted blocks without con-
cern that the profile information displayed in the rest
of the page would leak. Similarly, external <script>
tags could be surrounded by <div> tags to shield the
page from the script provider.

In order to ensure that the untrusted code cannot ac-
cess the page in other ways, the untrusted code can-
not be allowed to make XMLHttpRequests to or open
iframes from the mashup’s domain. If untrusted code
could do either, it would be able to read the DOM by
obtaining a new copy of the document.

The rules also prevent sophisticated cross-site request
forging attacks. Web developers prevent simple XDRF
attacks by putting secret form keys in pages. Forms
then cannot be submitted without the user having ac-
tually visited the page to obtain a copy of the key. The
XDRF attack outlined in Section 3.2 circumvents this
security measure by using a cross-site scripting vulner-
ability to comb through the page DOM to find the key.
Under our untrusted rules, however, the third-party
code would be unable to access the form keys through
the DOM.

Adding a new attribute to a <div> tag is backwards-
compatible. Older browsers will simply ignore it, so
their users will receive none of the benefits of our se-
curity design.

Our current rules are simple and treat all untrus-
ted code identically. Future enhancements to the rules
could provide rich communication interfaces and poli-
cies. Untrusted code could be allowed selective access
to trusted content or other blocks of untrusted code.
Mashup integrators could specify the embedded con-
tent’s source, and users could set client-side policies
that permit or deny this content based on its source.
None of these future features can develop, however,
until aggregators are given the ability to differentiate
between proprietary and untrusted content. Our un-
trusted tag is the first step in this direction.

4.2 Implementation
The untrusted attribute and its associated proper-

ties could be easily implemented in browsers without
major changes to browser design. Browser-side script
rewriting can be used to mark the untrusted content
and enforce the rules. The browser’s HTML parser
statically instruments the untrusted content while ren-
dering the page. Runtime checks are also performed to
transform dynamically-generated code.

All untrusted JavaScript variables, objects, functions,
and DOM elements are renamed by the browser. Their
names are prepended with either a random string or
a prefix specified by the mashup integrator. For exam-
ple, if the mashup integrator used a <div untrusted
="true" name="a123"> tag, all of the enclosed vari-
ables would be prefixed with a123. This applies to
names on both sides of assignments: var foo = bar
would become var a123 foo = a123 bar. The same
strategy applies to CSS references, so that styling can
only be applied to elements that belong to the untrus-
ted content.

This renaming scheme prevents the untrusted code
from accessing unauthorized content or functions: any
reference to a trusted element will fail because it will
be redirected to a different variable name. The brow-
ser would also mediate references through the DOM to
prevent the exploitation of parent-child relationships.
The mashup integrator retains its privileges to the un-
trusted code, since it may access untrusted DOM ele-
ments and JavaScript functions by using the prefix. It
is not necessary to keep the prefix secret.

Simple static renaming is not adequate to enforce
restrictions, since reflexive JavaScript operations like
write and eval can be used to introduce new, uncen-
sored JavaScript. Facebook JavaScript (FBJS) [7] and
Yahoo’s ADsafe [19] solve this problem by disallow-
ing these functions. At the browser side, however, we
need to accept the full JavaScript language. To accom-
plish this and handle JavaScript’s reflexivity, we use
the JavaScript instrumentation techniques previously
outlined by BrowserShield [15].

Function calls, method calls, object properties, ob-
ject creation, with constructs, and in constructs in un-
trusted code are rewritten by the browser to point to
runtime checks that guard the integrity of the renam-
ing scheme. The runtime checks add the scoping pre-
fix and insert more dynamic checks into the new con-
tent. DOM access to parent, child, and sibling nodes
and innerHTML are rewritten to point to permission
checks. (If the node is beyond the untrusted div or
the innerHTML includes new JavaScript, appropriate
action is taken.) Rewriting rules are also applied to ex-
ternal scripts that are imported by an untrusted block.

We have built a Firefox extension that prototypes the
untrusted tag and JavaScript rewriting. In the proto-
type, <div> tags with a class of untrusted are con-
sidered untrusted. The extension intercepts a Firefox
page load event and passes the page through Mozilla’s
built-in SAX parser. Untrusted DOM elements are re-
named, and we create a global checker object. The
checker object provides methods for runtime rule en-
forcement. The <script> tags are sent to Mozilla Nar-
cissus’s JavaScript lexer and parser; we edit the result-
ing abstract syntax tree to add prefixes and runtime
checks. As our extension finishes altering sections of
the document, the buffered XHTML is sent to Firefox
for a regular page load. Runtime checks point to our
global checker object. For example, foo(b) becomes
checker.func("foo",b).

5. RELATED WORK
Several proposals to add new tags that disallow Java-

Script have been put forth to prevent cross-site script-
ing (Section 5.1). More closely related, Sandbox and
Module tags have been suggested as more flexible al-
ternatives to iframes (Section 5.2). Section 5.3 surveys

other techniques for preventing cross-site scripting.

5.1 Disallowing JavaScript
Three new browser features aim to prevent the exe-

cution of JavaScript in untrusted static content. In In-
ternet Explorer 6+, the parent document of a frame can
set its security attribute to restricted to prevent
the frame from running scripts [14]. Brendan Eich (au-
thor of JavaScript and CTO of the Mozilla Corporation)
has suggested a <jail> tag that would disable Java-
Script for the jail’s contents [4]. Browser-Enforced Em-
bedded Policies (BEEP) allow Web developers to de-
fine a whitelist of scripts that may run in a page [12].
These proposals are targeted at isolating wholly-static
content and do not apply to interactive mashup appli-
cations such as social network platforms.

5.2 iframe Alternatives
Two iframe alternatives, Sandbox [18] and Module

[2], have been proposed. The <Sandbox> and <Open
Sandbox> tags would let the mashup integrator iso-
late frame content regardless of its origin. Addition-
ally, the <OpenSandbox> tag allows one-way visibil-
ity for the mashup integrator to see into the container
[18]. The <Module> tag would enforce full DOM iso-
lation regardless of page origin while permitting the
passing of JSON text objects [2].

Unlike our proposal, these tags both require an extra
page load, similar to an <iframe>. Highly trafficked
sites often are designed to use proxying to reduce load
time and evenly distribute bandwidth. Additionally,
proprietary tags that ease development (like those in-
cluded in FBML) require proxying. Our design would
let sites retain the benefits of proxying while adding
new security features.

5.3 XSS Prevention
Server-side static and dynamic analysis techniques

help prevent cross-site scripting vulnerabilities when
the input is expected to be static [3, 13, 11]. An anomaly-
based intrusion detection system analyzes Web server
logs and compares the profile to incoming requests [13].
These approaches all assume that no executable con-
tent should be permitted, and therefore are not helpful
for preventing attacks on partially-executable content.

Client-side dynamic taint analysis can be used to mon-
itor the flow of sensitive information (cookies, history,
form values) in browsers [17]. JavaScript instrumenta-
tion has been previously used to enforce user-specified
policies (e.g., no pop-up windows, do not send cookies
to another domain) [20]. Both ideas mitigate the effects
of untrusted JavaScript, but neither one directly ad-
dresses the design problem. Our untrusted tag lets
Web developers explicitly identify untrusted code so
that standard browser origin policies may be applied.

6. CONCLUSION
Current browsers are ill-equipped to provide secu-

rity for third-party scripts and proxied content. Ei-
ther no security is provided at all (imported scripts), or
the mashup integrator becomes responsible for com-
plex server-side filtering (proxied content). Not only
is server-side filtering resource-intensive, but it is also
complex and difficult to do correctly.

We propose the addition of a new untrusted tag
that will identify third-party scripts and proxied con-
tent so that policies may be applied to them. Imported
scripts and proxied content should be subject to one-
way visibility rules so that the mashup integrator’s code
can access them but they cannot access outer propri-
etary content. The browser will always be correct about
what is executable JavaScript and what is not, since the
browser is responsible for executing scripts. Mashup
aggregators and their users would thereby be protected
by browser-enforced policies.

Our prototype Firefox extension implements this new
tag and security policy with client-side rewriting tech-
niques. The untrusted JavaScript is statically and dy-
namically altered to enforce a namespace. The exten-
sion’s design could be migrated into browsers with min-
imal changes to browser architecture.

ACKNOWLEDGMENTS
This work was partially funded by the NSF through
the CyberTrust program, award CNS 0627523.

REFERENCES
[1] M. Broersma. Cross-site scripting the top security

risk. Technical report,
http://www.networkworld.com/news/
2006/091806-cross-site-scripting-the
-top-security.html, Sep 2006.

[2] D. Crockford. The module Tag. Technical report,
http://www.json.org/module.html, Oct
2006.

[3] G. A. DiLucca, A. R. Fasolino, M. Mastoianni, and
wP. Tramontana. Identifying Cross Site Scripting
Vulnerabilities in Web Applications. In , 2004.

[4] B. Eich. JavaScript: Mobility and Ubiquity.
Technical report, http://kathrin.
dagstuhl.de/files/Materials/07/
07091/07091.EichBrendan.Slides.pdf,
Sep 2007.

[5] EveryBlock Incorporated. EveryBlock.
http://chicago.everyblock.com/.

[6] Facebook. Facebook Application Directory.
http://uva.facebook.com/apps/.

[7] Facebook. Facebook Platform Developer Guide.
http://developers.facebook.com/.

[8] A. Felt. The Facebook Chronicles. Technical
report, http:

//www.cs.virginia.edu/felt/fbook/,
Aug 2007.

[9] Flickr. Create your own Flickr badge.
http://www.flickr.com/badge.gne.

[10] Google. What is the Google Maps API?
http://code.google.com/apis/maps/.

[11] Google. Google Launches OpenSocial to Spread
Social Applications Across The Web. Technical
report, http://www.google.com/intl/en/
press/pressrel/opensocial.html, Nov
2007.

[12] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee,
and S.-Y. Kuo. Securing Web Application Code
by Static Analysis and Runtime Protection. In
Proceedings of the 13th International Conference on
World Wide Web, 2004.

[13] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced
embedded policies. In Proceedings of the 16th
international conference on World Wide Web, pages
601–610, 2007.

[14] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
Static Analysis Tool for Detecting Web
Application Vulnerabilities. In Proceedings of the
2006 Symposium on Security and Privacy, 2006.

[15] Microsoft. SECURITY Attribute (FRAME,
IFRAME). Technical report,
http://msdn2.microsoft.com/en-us/
library/ms534622(VS.85).aspx.

[16] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky,
and S. Esmeir. BrowserShield:
Vulnerability-driven filtering of dynamic HTML.
In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, 2006.

[17] Samy. Technical explanation of The MySpace
Worm. Technical report,
http://namb.la/popular/tech.html, Oct
2005.

[18] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross Site Scripting
Prevention with Dynamic Data Tainting and
Static Analysis. In Proceedings of the 14th Annual
Network and Distributed System Security
Conference, 2007.

[19] H. J. Wang, X. Fan, J. Howell, and C. Jackson.
Protection and Communication Abstractions for
Web Browsers in MashupOS. In Proceedings of the
21st ACM Symposium on Operating Systems
Principles, 2007.

[20] Yahoo! ADsafe. http://adsafe.org.
[21] D. Yu, A. Chander, N. Islam, and I. Serikov.

JavaScript instrumentation for browser security.
In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2007.

