Spectral Characterization of Dictyostelium Autofluorescence

RUCHIRA ENGEL, PETER J.M. VAN HAASTERT, AND ANTONIE J.W.G. VISSER

1MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
2Department of Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands

KEY WORDS spectral imaging; fluorescence fluctuation spectroscopy; confocal microscopy; chemotaxis

ABSTRACT Dictyostelium discoideum is used extensively as a model organism for the study of chemotaxis. In recent years, an increasing number of studies of Dictyostelium chemotaxis have made use of fluorescence-based techniques. One of the major factors that can interfere with the application of these techniques in cells is the cellular autofluorescence. In this study, the spectral properties of Dictyostelium autofluorescence have been characterized using fluorescence microscopy. Whole cell autofluorescence spectra obtained using spectral imaging microscopy show that Dictyostelium autofluorescence covers a wavelength range from ~500 to 650 nm with a maximum at ~510 nm, and thus, potentially interferes with measurements of green fluorescent protein (GFP) fusion proteins with fluorescence microscopy techniques. Further characterization of the spatial distribution, intensity, and brightness of the autofluorescence was performed with fluorescence confocal microscopy and fluorescence fluctuation spectroscopy (FFS). The autofluorescence in both chemotaxing and nonchemotaxing cells is localized in discrete areas. The high intensity seen in cells incubated in the growth medium HG5 reduces by around 50% when incubated in buffer, and can be further reduced by around 85% by photobleaching cells for 5–7 s. The average intensity and spatial distribution of the autofluorescence do not change with long incubations in the buffer. The cellular autofluorescence has a seven times lower molecular brightness than eGFP. The influence of autofluorescence in FFS measurements can be minimized by incubating cells in buffer during the measurements, prebleaching, and making use of low excitation intensities. The results obtained in this study thus offer guidelines to the design of future fluorescence studies of Dictyostelium. Microsc. Res. Tech. 69:168–174, 2006. © 2006 Wiley-Liss, Inc.

INTRODUCTION

Dictyostelium discoideum is used extensively as a model organism for the study of chemotaxis, the process of cell movement along a chemical gradient, because of its resemblance to mammalian cell movement. As a model system Dictyostelium offers many advantages, which include its genetic manageability and easy access for biochemical and biological studies. In recent years, the chemotaxis mechanism of Dictyostelium has been increasingly probed using fluorescence-based techniques. The phenomenon of fluorescence, by virtue of its multiple characteristics—intensity, brightness, lifetime, excitation-emission spectra, resonance energy transfer, to name a few—can be exploited to specifically study the behavior of one type of molecules in a medley of diverse molecules in the cell. The possibility of fusing the protein of interest to intrinsically fluorescent proteins, such as the green fluorescent protein (GFP), without loss of its normal function and localization (Tsien, 1998), has made fluorescence-based techniques a powerful tool available to biologists today to study various processes in living cells. Fluorescence microscopic and spectroscopic techniques applied to study Dictyostelium chemotaxis include the use of confocal imaging to study localization and dynamics of cellular proteins e.g., G-proteins (Blauw et al., 2003; Jin et al., 2000), pleckstrin homology domain of the cytosolic regulator of adenylyl cyclase (Parent et al., 1998), adenylyl cyclase A (Kriebel et al., 2003), guanylyl cyclase (Veltman et al., 2005), actin cytoskeleton (Fischer et al., 2004; Uchida and Yumura, 2004), the use of fluorescence recovery after photobleaching to study cellular viscosities and diffusion of actin or actin-binding proteins (Bretschiener et al., 2002; Potma et al., 2001) and the use of Förster resonance energy transfer to detect interaction between G-protein subunits (Janetopoulos et al., 2001; Xu et al., 2005). In addition, fluorescence fluctuation spectroscopy (FFS) has been used to study the diffusion of GFP-tagged proteins in Dictyostelium cells (Ruchira et al., 2004). FFS, comprising techniques such as fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis, makes use of tiny, spontaneous fluorescence intensity fluctuations in a small volume (<1 fL (femtolitre)) to extract information about their physical parameters (Haustein and Schwille, 2003; Hess et al., 2002; Levin and Carson, 2004; Vukojevic et al., 2005). Because of its high sensitivity, FFS can be used for detection at the single molecule level and can thus provide a means to study the behavior of biomolecules in cells at physiologically relevant concentrations.

©2006 WILEY-LISS, INC.
Intrinsic cellular fluorescence is one of the major factors that can interfere with the application of fluorescence-based techniques in cells. Autofluorescence caused by endogenous molecules such as flavins, flavoproteins, and NAD(P)H (Aubin, 1979; Benson et al., 1979) can bias a measurement and reduce the signal to noise ratio (SNR). Thus, knowledge of autofluorescence characteristics is essential to avoid or minimize its influence. In the present study, we have characterized the spectral properties of Dicyostelium autofluorescence using fluorescence spectral imaging microscopy (FSPIM). The spatial distribution of autofluorescence and its intensity at different excitation wavelengths has been visualized using confocal laser scanning microscopy (CLSM). FFS was used to quantify molecular brightness and intensity in cells under different experimental conditions. The results obtained in this study offer guidelines to the design of future fluorescence studies of Dicyostelium.

MATERIALS AND METHODS

Sample Preparation

Wild type Dicyostelium discoideum of strain AX3 were grown in HG5 medium that was composed of 14.3 g/L peptone, 7.15 g/L yeast extract, 0.54 g/L Na₂HPO₄, 0.49 g/L KH₂PO₄, and 10.0 g/L glucose. Cells were transferred to a 96-chambered glass-bottom microplate for confocal microscopy and FFS measurements, cells were transferred using a 250IS imaging spectrograph (Chromex) coupled to a CH250 CCD camera (Photometrics, The Netherlands) (Hink et al., 2003). A 100-W mercury arc lamp provided the excitation light, which was filtered using longpass filters 475, 505, and 650. Differential interference contrast (DIC) images were also acquired simultaneously. The acquired images were processed using Zeiss LSM Image Browser software package (V 3.2).

Fluorescence Spectral Imaging Microscopy. Confocal images of cells were obtained with a confocal laser-scanning microscope (ConfoCor 2–LSM 510 combination setup, Carl-Zeiss, Germany), which is described in detail elsewhere (Hink et al., 2003). Autofluorescence was excited with 458 and 488 nm wavelengths from an argon-ion laser and with 633 nm wavelength from a He-Ne laser, focused into the sample by a U-Apochromat 40× water-immersion objective with NA 1.2 (Zeiss). The excitation power during image acquisition was ~30 μW for the 458-nm laser line and 200 μW for the 488- and 633-nm laser lines. The fluorescence was passed through the main beam splitters HFT 458, 488, and 514/633 and was filtered using longpass filters 475, 505, and 650. Differential interference contrast (DIC) images were also acquired simultaneously. The acquired images were processed using Zeiss LSM Image Browser software package (V 3.2).

Fluorescence Fluctuation Spectroscopy. FCS and PCH measurements were performed with Zeiss-Evotec ConfoCor, as has been described previously (Ruchira et al., 2004). Autofluorescent molecules were excited with a wavelength of 488 nm from an argon-ion laser, the power of which was attenuated with neutral-density filters. For the quantification of autofluorescence of cells under different conditions, and for PCH analysis, measurements were performed at a power of ~10 μW. Measurement duration in all cases was 10 s. In order to photobleach the autofluorescent molecules, cells were exposed to ~1 mW laser power, for the times mentioned. For PCH analysis, between 3 × 10⁵ and 1 × 10⁶ photons were collected and the data were analyzed at a sampling frequency of 20 kHz. The autofluorescence characteristics of vegetative cells incubated in buffer were measured at excitation intensities of 3, 10, 20, 70, 200, and 670 μW.

The FCS data were analyzed using the FCS data processor software package V 1.4 (Shakun et al., 2005). The data were fit to a model describing the Brownian motion of molecules in three dimensions, given in Eq. (1).

\[G(\tau) = 1 + \frac{1}{N} \sum \phi_i \frac{1}{1 + \frac{\tau}{\tau_i}} + \text{offset} \]

where, \(\phi_i = \frac{e^2 Y_i}{\sum e_i Y_i} \)

In Eq. (1), \(G(\tau) \) is the autocorrelation function, \(N \) is the average number of molecules in the 3D Gaussian volume of radial radius \(r_{0p} \) and axial radius \(r_{0z} \). The molecules of species \(i \) have a diffusion time \(\tau_{di} \), molecular brightness \(e_i \) and molar fraction \(Y_i \). If only one species is present, \(\phi_i \) becomes 1. The offset term in the equation accounts for slow drifts in the intensity fluctuation trace (in the time scales of seconds) due to which the autocorrelation function does not decay to 1 at infinitely long times (Broek et al., 1999). \(\tau_{di} \) is related to the translational diffusion coefficient \(D \) as:

\[\tau_{di} = \frac{e^2}{D} \]
The 3D Gaussian volume is given as (Schwille et al., 1997):

\[V_{3DG} = \pi^{3/2} o_x^2 o_y o_z \]

The average concentration of the fluorescent species in the sample can be calculated using \(N \) and \(V_{3DG} \):

\[C = \frac{N}{V_{3DG}} \]

In Eq. (5), \(A \) is the Avogadro's number, which is 6.023 \(\times 10^{23} \). The instrument was calibrated with the dye rhodamine-110 (Molecular Probes, The Netherlands) \((D = 2.8 \times 10^{-10} \text{ m}^2/\text{s})\), which gave a value of 10 for the ratio \(o_x o_y o_z \), also called the structural parameter, and \(\tau_d = 55 \mu \text{s} \). \(V_{3DG} \) was calculated to be 0.85 fl. The \(D \) values for autofluorescent molecules could be subsequently calculated from the obtained \(\tau_d \) and using Eq. (5).

The PCH data were fit assuming single species. The PCH function for an open detection volume describes the possibility of observing \(k \) photon counts per sampling time with \(N \) as the average number of molecules in the detection volume (Chen et al., 1999). The molecular brightness \(\epsilon \), expressed as kHz/molecule, is the ratio of the average number of photon counts \(\langle k \rangle \) received per second to \(N \) (Eq. (6)). \(\epsilon \) is independent of the sampling frequency and as a result values from different experiments can be directly compared (Chen et al., 1999).

\[\epsilon = \frac{\langle k \rangle}{N} \]

RESULTS

Autofluorescence Spectrum

Average autofluorescence spectra from wild-type *Dictyostelium* cells of strain AX3 were acquired using FSPIM (Fig. 1). The autofluorescence spectrum is broad and asymmetric with a peak at 510 nm and a slight shoulder around 565 nm. For comparison, emission spectra of eGFP, of the growth medium HG5, and of FMN, an enzymatic cofactor thought to be a constituent of cellular autofluorescence (Aubin, 1979; Benson et al., 1979), were obtained under similar experimental conditions (Fig. 1).

The autofluorescence spectrum covers the entire region (475–625 nm) in which GFP also emits. The maximum in the autofluorescence spectrum is very close to the eGFP emission maximum (~508 nm), indicating that it can potentially interfere with measurements of GFP-fusion proteins. The HG5 medium, taken up by cells as they grow in it, is also fluorescent and displays a broad but characteristic spectrum. The spectrum, which is broader than the autofluorescence spectrum, also exhibits a peak around 510 nm and a slight shoulder around 565 nm. The ratio of the shoulder to the emission maxima, however, is different from the autofluorescence spectrum. The growth medium, which consists of yeast extracts containing vitamin B\(_2\) (riboflavin), has previously been suggested as the reason for *Dictyostelium* autofluorescence (http://dictybase.org/techniques/lowflomedium.htm). The free FMN spectrum was however, slightly red-shifted with a peak at 525 nm and no shoulder. Since the fluorescence of flavin nucleotides is sensitive to its environment, it is very likely that in the growth medium and in the cells, where the nucleotides may be present in association with proteins or peptides, the fluorescence spectrum is affected (Aubin, 1979; Benson et al., 1979; Visser et al., 2001).

Visualizing Autofluorescence With Confocal Microscopy

The whole cell FSPIM spectrum gives important information about the emission characteristics of the autofluorescence molecules. The spatial distribution of the autofluorescence at different excitation wavelengths was then visualized using CLSM. Figure 2 shows the images acquired with excitation wavelengths of 458, 488, and 633 nm. The images show a patchy autofluorescence pattern that does not change when cells start aggregating. The images acquired at 633 nm excitation (Fig. 2C) show no detectable fluorescence signal, indicating that the interference of autofluorescence can be minimized by the use of fluorophores that can be excited in this region. Cells incubated in the growth medium (Fig. 3A) exhibit higher autofluorescence than cells incubated in buffer (Fig. 3B), indicating that the fluorescent growth medium taken up by the cells contributes to the autofluorescence. To investigate if the autofluorescence intensity decreased as cells exchanged the fluorescent medium for the nonfluorescent buffer, a series of images of cells incubated in buffer for various times was made. The autofluorescence intensity of cells incubated in buffer for 2 h is similar to the intensity of cells incubated in buffer for 20 min (Fig. 3). Thus, it appears that the exchange of medium for buffer takes place within the first 20 min and thereafter the average autofluorescence intensity does not change perceptibly. This fast exchange rate is in accordance with previous studies on fluid uptake by *Dictyostelium* cells grown in liquid...
medium (Aguado-Velasco and Bretscher, 1999; Kayman and Clarke, 1983). AX3 cells have a fluid uptake rate of \(~4\) fl/cell/min (Kayman and Clarke, 1983). Approximating the cell to a hemisphere of 5 \(\mu\)m radius, the cell volume is \(\sim 250\) fl, which means that in 20 min a cell can exchange fluid equivalent to one-third of its total volume. Since autofluorescence appears to cover \(~20\%\) of the cell volume (Figs. 2 and 3), this means that in 20 min the cells can effectively get rid of any fluorescence due to the growth medium.

Fluorescence Fluctuation Spectroscopy of Autofluorescent Molecules

Further characterization of the autofluorescence intensity and molecular brightness was performed with FCS and PCH analysis. Autofluorescent molecules were excited with the 488 nm wavelength, and fluctuation intensity traces and autocorrelation curves from cells under different experimental conditions were recorded. The autofluorescence intensity shows wide variation from cell to cell and the fluctuation intensity traces display large nonuniform fluctuations (Fig. 4). The average intensity obtained from a 10-s measurement in a cell was taken as the average autofluorescence intensity of that cell.

The autofluorescence dependence on laser power was first studied. AX3 cells incubated in buffer were excited with increasing power of the 488-nm laser line. With increasing laser powers the autofluorescence intensity initially increases linearly and then reaches saturation (Fig. 5). The autocorrelation curves recorded at the different laser powers are noisy, indicating low SNRs (Fig. 6). The curves were evaluated using Eq. (1). At excitation intensities of \(~700\) and \(200\) \(\mu\)W fast diffusion with average diffusion coefficient value of \(220 \pm 50\) \(\mu\text{m}^2/\text{s}\) \((n = 13)\) is observed. The diffusion appears slower, with an average diffusion coefficient value corresponding to \(47 \pm 23\) \(\mu\text{m}^2/\text{s}\) \((n = 11)\), when the excitation power is \(~70\) and \(20\) \(\mu\)W. Below excitation intensities of \(20\) \(\mu\)W, the curves became too noisy to be evaluated. The apparently fast diffusion at higher intensities can be due to intense photobleaching or other fast photophysical effects, e.g., triplet state dynamics and blinking, at these intensities (Widengren, 2001).

Since at excitation intensities below \(20\) \(\mu\)W the autofluorescence intensity fluctuations do not autocorrelate, it is more favorable to perform FCS measurements on GFP fusion proteins at these intensities. This

Fig. 2. Dictyostelium autofluorescence imaged with fluorescence confocal laser scanning microscope. Vegetative AX3 cells incubated in buffer were excited at (A) 458 nm (B) 488 nm, and (C) 633 nm wavelength. Fluorescence was filtered using longpass filters 475, 505, and 650. Aggregating cells (D) were excited at 488 nm. Images shown are merge of DIC and fluorescence images. Bar = 10 \(\mu\)m.

Fig. 3. Autofluorescence images of AX3 cells incubated in HG5 medium or buffer for different periods. A: Cells in HG5 medium, (B) in buffer for 20 min, and (C) in buffer for 2 h. The lower panels show the corresponding fluorescence intensity profiles taken along the white dotted line through a cell in each image. Excitation wavelength is 488 nm. Bar = 10 \(\mu\)m.
would eliminate unwanted contribution of the auto-fluorescent species to the autocorrelation curve. The presence of noncorrelating background does not affect the diffusion times obtained from FCS curves. However, it does lower the amplitude of the correlation curve leading to an apparently higher number of molecules in the detection volume (Brock et al., 1998), which can be corrected for as described in Eq. (7)

$$N_{corr} = N_{total} \left(1 - \frac{F_{background}}{F_{total}}\right)^2$$

where N_{corr} and N_{total} are the average corrected and uncorrected number of molecules in the detection volume, $F_{background}$ is the auto-fluorescence intensity, and F_{total} is the total fluorescence intensity including background and GFP fluorescence. Tolerating a maximum error of 15% in determination of N_{corr}, the auto-fluorescence at excitation intensities below 20 μW can be ignored if F_{total} is at least 14 times higher than $F_{background}$.

The average auto-fluorescence intensities of cells excited at \sim10 μW, under different experimental conditions, were next investigated (Table 1). Cells incubated in HG5 medium have the most intense auto-fluorescence signal (85 kHz), which reduces by 50% when the medium is replaced with buffer (44 kHz). In agreement with the confocal imaging this value does not change further with time. The auto-fluorescence can be photo-bleached by short exposure to the laser light. The auto-fluorescence of cells incubated in buffer reduces by 65% upon exposure to \sim1 mW laser power for 1–2 s. Under similar experimental conditions, free GFP expressed in *Dictyostelium* cell cytoplasm shows \sim45% decrease in its fluorescence intensity (data not shown). The slower photobleaching rate of GFP compared with the auto-fluorescent molecules indicates that the SNR in FFS measurements can be increased by photobleaching the auto-fluorescent molecules. Further reduction in auto-fluorescence intensity, up to 85% compared with initial values for cells incubated in buffer, can be obtained by exposing cells to 1 mW laser power for 5–7 s. During photobleaching, the microscope stage was moved so that the whole cell could be exposed to the high intensity beam. In this manner auto-fluorescent molecules

![Fig. 4. Autofluorescence intensity fluctuation. Representative curve of the fluorescence intensity trace obtained from a single measurement in an AX3 cell incubated in potassium phosphate buffer (pH 6.5, 17 mM) and excited with \sim10 μW power of the 488-nm laser.](image)

![Fig. 5. Average autofluorescence intensity depends on the excitation power. Plot shows the normalized intensities obtained from *Dictyostelium* AX3 cells incubated in buffer excited with varying powers of the 488-nm laser.](image)

![Fig. 6. Normalized autocorrelation curves from *Dictyostelium* auto-fluorescence at different excitation intensities at 488 nm. Data were acquired for 10 s from cells incubated in potassium phosphate buffer (pH 6.5, 17 mM).](image)

TABLE 1. Autofluorescence intensities of *Dictyostelium* AX3 cells under different conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>I (kHz)</th>
<th>No. of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG5 Medium</td>
<td>85 ± 30</td>
<td>40</td>
</tr>
<tr>
<td>Buffer</td>
<td>44 ± 17</td>
<td>15</td>
</tr>
<tr>
<td>\sim1 h</td>
<td>37 ± 16</td>
<td>38</td>
</tr>
<tr>
<td>\sim4 h</td>
<td>41 ± 20</td>
<td>39</td>
</tr>
<tr>
<td>1–2 s photobleaching (1mW)</td>
<td>16 ± 7</td>
<td>20</td>
</tr>
<tr>
<td>5–7 s photobleaching (1mW)</td>
<td>8 ± 3</td>
<td>20</td>
</tr>
</tbody>
</table>

Average auto-fluorescence intensities and standard deviations were obtained from 10 s measurements. Cells, incubated in either HG5 medium or potassium phosphate buffer (pH 6.5, 17 mM), were excited with 488 nm argon-ion laser line with power of \sim10 μW.
calculated using Eq. (5). Photons (3 molecules in the detection volume is equal to or higher than the autocorrelation curve, when the average number of eGFP molecules, would make the concentration reduces by around 50%. Under similar experimental settings, the HG5 medium had a brightness value of 0.2 kHz, similar to what is observed in cells. But the concentration of the fluorescent species, of ~1 μM, is much higher than in cells. An eGFP solution in Tris buffer (pH 8) has ~7 times higher molecular brightness corresponding to a value of 2.57 ± 0.02 kHz. Since the relative contribution of different species to the autocorrelation curve is weighted by the square of the molecular brightness (Eqs. (1) and (2)), eGFP will contribute at least 50 times more to the autocorrelation curve, when the average number of eGFP molecules in the detection volume is equal to or higher than the autofluorescent molecules.

The molecular brightness and concentration of autofluorescent molecules in cells incubated in buffer, with and without short photobleaching for 1–2 s, was quantified using PCH analysis (Table 2). As expected, pre-bleaching does not affect the average molecular brightness of the autofluorescent molecules, but the average concentration reduces by around 50%. Under similar experimental settings, the HG5 medium had a brightness of ~1 μM, is much higher than in cells. An eGFP solution in Tris buffer (pH 8) has ~7 times higher molecular brightness corresponding to a value of 2.57 ± 0.02 kHz. Since the relative contribution of different species to the autocorrelation curve is weighted by the square of the molecular brightness (Eqs. (1) and (2)), eGFP will contribute at least 50 times more to the autocorrelation curve, when the average number of eGFP molecules in the detection volume is equal to or higher than the autofluorescent molecules.

DISCUSSION

Autofluorescence from cells is a major factor leading to reduced SNRs and artifacts in fluorescence microscopy measurements in cells. In this study, the spectral properties of *Dictyostelium discoideum* autofluorescence have been characterized using fluorescence microscopy. Whole cell autofluorescence spectra obtained using spectral imaging microscopy show that *Dictyostelium* autofluorescence covers a wide wavelength range from 500 to 650 nm. Cellular autofluorescence in this wavelength range has been attributed to biomolecules such as flavin nucleotides, flavoproteins, and NAD(P)H (Aubin, 1979; Benson et al., 1979). At the excitation wavelength (~435 nm) used in this study, NAD(P)H cannot be excited. Hence, the detected autofluorescence results from flavin compounds. The spectrum of free FMN obtained under similar experimental conditions overlaps with the autofluorescence spectrum to a large extent, but is slightly red-shifted. Also the spectrum of the growth medium HG5, which contains the vitamin riboflavin, shows nearly complete overlap with autofluorescence and FMN spectra. The differences in the spectra of HG5, free FMN, and autofluorescence can be attributed to the sensitivity of flavin fluorescence to its environment. Thus, factors such as pH, differences in viscosity and binding of FMN to proteins or peptides in both cells and the growth medium, would affect the spectrum (Aubin, 1979; Benson et al., 1979; Visser et al., 2001).

The autofluorescence covers the entire eGFP emission range and potentially interferes with fluorescence measurements of eGFP fusion proteins in cells. One way of minimizing interference of autofluorescence would be to fuse proteins of interest with other, more red-shifted fluorescent proteins, e.g., mRFP or dTomato (Fischer et al., 2004; Shaner et al., 2004). Another way would be to reduce the autofluorescence signal such that its influence on the measurements reduces. To find means of achieving the latter, the autofluorescence characteristics were further studied using fluorescence confocal microscopy and fluctuation spectroscopy. The autofluorescence intensity can be reduced by around 50% by incubating the cells in buffer instead of the growth medium. The reduction is rapid, in agreement with reported fluid uptake rates by axenically grown AX3 cells. The residual autofluorescence, after the exchange of the growth medium with buffer, does not change with time, suggesting that the remaining autofluorescent molecules are probably necessary for the cell functioning and cannot be exchanged by the cell. However, this intensity of the autofluorescent molecules can be further reduced by another 85% by photobleaching with high laser powers for short periods of time. As the high laser powers do not change the morphology and behavior of the cells and the autofluorescence reduces faster than the GFP fluorescence, photobleaching can be a convenient way of reducing autofluorescence interference. However, since bleaching would also reduce the signal from GFP, the time for which cells are exposed to high intensity should depend on the expression level of the GFP fusion proteins.

The extent of interference of autofluorescence in FFS depends on the concentration and molecular brightness of the autofluorescent molecules compared with those of GFP or other fluorophores being used. In PCH analysis, the presence of autofluorescence can be taken into account using a model for two fluorescent species, with one species fixed to the autofluorescence parameters (Chen et al., 2002). In autocorrelation curves, autofluorescence can either introduce a steady background of noncorrelating species or an additional correlating component. The *Dictyostelium* autofluorescence did not show autocorrelation at excitation intensities lower than 20 μW. The presence of noncorrelating background does not affect the diffusion times obtained from FCS curves, but can influence the amplitude of the autocorrelation curve, which should be corrected. At excitation intensities above 20 μW, the autofluorescence intensity fluctuations autocorrelate. However, the relatively high eGFP brightness, in cases where the average number of autofluorescent molecules in the detection volume is expected to be less than the average number of eGFP molecules, would make the
autofluorescence contribution to the autocorrelation curve negligible.

To summarize, Dictyostelium autofluorescence displays a wide spectrum with a peak at \(\sim 510 \) nm and potentially interferes with measurements of GFP fusion proteins with fluorescence microscopy techniques. The autofluorescence is localized in discrete areas in the cell and the localization pattern and intensity do not change with long incubations in buffer. For FFS measurements, the interference from autofluorescence can be minimized by incubating cells in buffer, pre-bleaching, and making use of low excitation intensities.

REFERENCES

