
Intensions and Extensions in a Reflective Tower

Olivier DANVY∗& Karoline MALMKJÆR

DIKU – University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen Ø, DENMARK

uucp: danvy@diku.dk & karoline@diku.dk

Abstract

This article presents a model of the reflective tower
based on the formal semantics of its levels. They are re-
lated extensionally by their mutual interpretation and
intensionally by reification and reflection.

The key points obtained here are: a formal relation
between the semantic domains of each level; a formal
identification of reification and reflection; the visual-
isation of intensional snapshots of a tower of inter-
preters; a formal justification and a generalization of
Brown’s meta-continuation; a (structural) denotational
semantics for a compositional subset of the model; the
distinction between making continuations jumpy and
pushy; the discovery of the tail-reflection property; and
a Scheme implementation of a properly tail-reflective
and single-threaded reflective tower.

Section 1 presents the new approach taken here:
rather than implementing reification and reflection
leading to a tower, we consider an infinite tower de-
scribed by the semantics of each level and relate these
by reification and reflection. Meta-circularity then
gives sufficient conditions for implementing it. Section
2 investigates some aspects of the environments and
control in a reflective tower. An analog of the funarg

problem is pointed out, in relation with the correct en-
vironment at reification time. Jumpy and pushy con-
tinuations are contrasted, and the notions of ephemeral
level and proper tail-reflection are introduced. Our ap-
proach is compared with related work and after a con-
clusion, some issues are proposed.

Keywords
Procedural reflection, reification, meta-continuation,

Blond, tail-reflection, single-threadedness,
jumpy and pushy continuations

∗LITP – Université de Paris 6 (45-55, 2e ét.), 4 place Jussieu,
75252 Paris Cedex 05, FRANCE (. . . !mcvax!inria!litp!od)

Introduction

For a number of reasons reflective towers [Smith 82]
[Smith 84] have not led to a general understand-
ing of what they are, nor what to do with them
and only to some extent [des Rivières & Smith 84]
[Wand & Friedman 88] how to implement them. This
article attempts to contribute to the field by investigat-
ing the extensional and intensional aspects of a reflec-
tive tower. The results obtained are a non-reflective,
more general and more precise description (that is:
requiring less intuition) and an implementation run-
ning in Scheme [Rees & Clinger 86], a little bigger
than the Brown reflective tower [Wand & Friedman 86]
[Wand, Friedman & Duba 86], but richer and more
consistent with respect to the formal description pre-
sented here.

The terms “extensional” and “intensional” are taken
in their general sense, as in [Talcott 85], that is: the
first addresses the abstract “what”, in the usual math-
ematical sense, and the latter covers the constructive
“how”, that is the mechanisms fulfilling the extension.

The basic idea of a reflective tower is to have a se-
ries of interpreters1 interpreting each other, and con-
nected by two meta-level operations: “reification” and
“reflection” [Friedman & Wand 84]. Each interpreter
processes the one below, and the tower is run by an
“ultimate machine” [Smith 84] at its top:

. .

. .

+---------+ △
| 2 | Reification

+---------+

| 1 | Reflection

+---------+ ▽
| 0 |

+---------+

Reification makes the current state of the compu-
tation (expression to be interpreted, environment and
continuation) available. It is achieved with procedures
whose bodies are processed one level higher than their
application: reifiers. Conversely, reflection spawns and

1For now, we relax the constraint that they are meta-circular.

1

activates a new level down in the tower, given the state
in which the computation starts.

We propose not to focus immediately on the meta-
level operations, but first to consider only one level.
Denotational semantics provides a convenient frame-
work to describe the language of this level2. To dis-
tinguish the descriptions of different levels, we index
each semantic domain with its level in the tower. This
gives the formal framework to identify and study the
meta-level connections. We then establish the relation
between all the semantic descriptions:

En[[intn]]ρnκn ≃ En−1

This isomorphism expresses that each level is created
by an interpreter at the level above. It is general and
does not assume the interpreter to be meta-circular.

With this extensional study, and constraining the
interpreters to all interpret the same language3 (that
is, to be meta-circular) we get a simple intensional
description using a meta-continuation pairing the en-
vironments and continuations of all the levels above.
This, in turn, proves well-suited for implementing the
tower. En passant, this approach justifies some de-
sign choices of Brown and in particular its single-
threadedness – that is, there is one unique interpreter
active at any time and thus no order-of-magnitude
overhead every time a level is spawned. In addition, our
implementation is more consistent than Brown since,
for example, reification occurs in a correct environ-
ment, without any variable capture. This study does
not use reflection to explain reflection and neither does
our implementation.

We call our system Blond4. Its concrete syntax
resembles Scheme, with numbers, strings, identifiers,
λ-abstractions and reifiers (represented as γ and δ-
abstractions): the idea of a γ-reifier is that it ex-
tends the environment at the level above its defini-
tion, whereas a δ-reifier extends the environment at
the level above its application. Blond is applicative,
call by value, lexically scoped and reflective. It is thus
higher-order and offers full-fledged continuations. It
has no special forms nor keywords, since each identi-
fier can be (re-)bound and since most of the predefined
control structures can be redefined reflectively (quote,
if, etc.) – the others are the rock bottom semantic
objects implementing the tower (meaning, openloop,
etc.).

2The notations from [Schmidt 86] will be used.
3But this does not have to be so: [Sturdy 88] describes a

reflective architecture, Platypus, in which the languages are dis-
tinct at each level.

4This is a bit of a joke and a wink at Brown, as Blond has
been built in Scandinavia.

Blond is largely comparable to Brown, but differs on
several points:
— the operator make-reifier has disappeared5, for
reasons developed in section 2.1, and reifiers are repre-
sented as ternary γ and δ-abstractions;
— numbers need not be quoted6;
— each level has its own environment;
— the actual representation of the reflective tower (the
meta-continuation in Brown) holds explicitly a cur-
rent continuation and a current environment; this is
required for a correct implementation of reification, as
pointed out in section 2.1;
— when opening a new top level loop one can specify
its environment;
— a Blond prompt displays both the current level in
the tower and the current number of iterations in the
top level loop7. The latter has proven very useful to
visualize a point of reactivation:

>>> (blond)

0-0: bottom-level

0-1> (load "cwce.bl")

call-with-current-environment exit

0-1: loaded

0-2> (call-with-current-environment

(lambda (r)

(openloop "foo" r)))

foo-0: bottom-level

foo-1> (exit "bar")

0-2: bar

0-3> (exit "bye")

1-0: bye

1-1>

This illustrates a first scenario with Blond. The tower
is started up from Scheme. The bottom level is labelled
0, below an infinity of others, labelled 1, 2, 3, etc.. At
the iteration 1 of level 0, the file "cwce.bl" is loaded
(in verbose mode). Two Blond reifiers are defined: one
captures environments and the other exits the current
level. At the iteration 2 of level 0, a new level labelled
foo is spawned with the same environment as level 0.
In that environment the identifier exit is bound. The
only thing we do at the level foo is to exit from it. We
are back to finish iteration 2 of level 0. During the
iteration 3, we exit from level 0 to arrive at level 1.
Exiting further would lead to levels 2, 3, 4, and so on.

5In Brown, reifiers are made by applying make-reifier to a
ternary procedure.

6In the Brown expression (add1 ’3), add1 designates a Brown
primitive which designates the successor function; ’3 designates
the same as 3 in Scheme, whereas 3 does not designate any-
thing in Brown. In the Blond expression (add1 3), add1 still
designates a Blond primitive function; 3 designates an internal
structure which designates the number 3.

7This is analogous to a prompt in the command interpreter
of an operating system, displaying the name of the host machine
and the number of the next command in the session history.

2

What we get with Blond is a tower simulator pro-
cessing one program point at any time, at the edge
where the program stands. In that respect, control is
single-threaded in Blond.

What we lose is any side effect above in the tower.
This is easy to understand intuitively too, because the
intuitive explanation of why the levels above do not
need to be really processed is that they all perform
operations on identical and well-known data (the in-
terpreter at the level below). If one interpreter also
performs side effects (such as a trace, etc.), these are
neither well-known nor identical to anything else. They
are lost in a single-threaded implementation.

The effect of a level is to process the level below,
until the edge. In other words: even knowing only how
the level below is behaving, one knows how and what
the level above is doing. Of course, this only holds
because the code of the level above is known, and so
on.

This statement does not hold for side effects at the
level above but only for its known effects. For example,
let us consider one level displaying information about
its own computation. This could be tuned by swap-
ping the tracing level with the level above it (or be-
low it) in the tower – the resulting trace varying by
orders of magnitude (one for each level of interpreta-
tion). This cannot be done in Blond, because of its
single-threadedness, even though we can illustrate how
to swap levels.

For example let us permute the two levels above the
current one. The idea is to reify three times and then
to reflect back, exchanging environments and contin-
uations and restoring the initial ones. To express it
graphically:

. . . .

. . . .

+---------+ +---------+

| 3 | | 3 |

+---------+ +---------+

| 2 | | 1 |

+---------+ --permute!-> +---------+

| 1 | | 2 |

+---------+ +---------+

| 0 | | 0 |

+---------+ +---------+

The corresponding code figures in appendix 1, and the
following scenario illustrates its effect. In an environ-
ment where permute! is bound to the permuter and
exit exits the current level, we get:

>>> (blond)

0-0: bottom-level

0-1> (load "swap-2.bl")

permute! exit

0-1: loaded

0-2> (permute!)

0-2: done

0-3> (exit "bye")

2-0: bye

2-1> (begin (mute-load "exit.bl") (exit "ibid."))

1-0: ibid.

1-1> (begin (mute-load "exit.bl") (exit "again"))

3-0: again

3-1> (begin (mute-load "exit.bl") (exit "more"))

4-0: more

4-1>

Above level 0 are the two levels 1 and 2. Their per-
mutation is witnessed by exiting from the level 0 to
the level 2 and from the level 2 to the level 1, below
the levels 3, 4, and so on. To conclude this example,
let us point out that conceptually, what was syntax at
one level has become semantics at the level above, and
what was semantics at that level has become syntax at
the level below.

Finally let us take a closer look to the meta-level
connections: we already know how to spawn a new
level with openloop. The general way to reflect is the
function meaning, where one specifies an expression to
be evaluated, an environment that has been reified and
any function to be applied to the result:

>>> (blond)

0-0: bottom-level

0-1> (meaning 100 (reify-new-environment)

(lambda (a) a))

0-1: 100

0-2> (meaning 100 (reify-new-environment) add1)

0-2: 101

0-3>

The expression 100 is evaluated one level below and
the result is passed to the function specified as a con-
tinuation. Since this function is specified at level 0,
the result is transmitted at level 0. As we can see,
openloop is a particular instance of meaning where
the continuation loops and the expressions are read.
The function reify-new-environment returns an ini-
tial environment that has just been reified.

Reification is performed by applying a reifier. A rei-
fier has three parameters. The first is bound to the
list of all its arguments (unevaluated), the second to
a reified version of the current environment, and the
third to a reified version of the current continuation.
The body of the reifier is processed at the level above
the current one:

>>> (blond)

0-0: bottom-level

0-1> (define baz (delta (e r k) e))

0-1: baz

0-2> (baz x y z)

1-0: (x y z)

1-1>

3

What we can do with a reified expression is to treat it
as any denotable value. We can also convert it back to
a syntactic object and evaluate it:

1-1> ((delta (e r k)

(map add1 e)) 0 1 2 3)

2-0: (1 2 3 4)

2-1> ((delta (e r k)

(meaning (car e) r k)) (map list ’(1 2)))

2-1: ((1) (2))

2-2>

The latter reifier is the usual reflective definition of the
identity function.

What we can do with a reified environment is to
consult it. It is a function mapping identifiers to their
value, if any. We can extend it too, out of a list of
identifiers and a parallel list of values:

2-2> (let ((x "anything"))

((delta (e r k) (r ’x))))

3-0: anything

3-1> (define env

(extend-reified-environment

’(x y z) ’(1 2 3) (reify-new-environment)))

3-1: env

3-2> (env ’y)

3-2: 2

3-3>

What we can do with a reified continuation is to
apply it, since it is reified as an applicable object. Ap-
plying it, by default, replaces the current continuation,
as in Scheme. To that respect the definition:

(define call-with-current-continuation

(lambda (f)

((delta (e r k)

(k ((r ’f) k))))))

is unsatisfactory since it would lose levels. The follow-
ing definition is correct and summarizes what we know
so far:

(define call-with-current-continuation

(lambda (f)

((delta (e r k)

(let ((env (extend-reified-environment

’(g c) (list (r ’f) k) r)))

(meaning ’(g c) env k))))))

Numerous other examples can be found in [Danvy &
Malmkjær 88] and in the rest of this paper, which is or-
ganized as follows: section 1 develops on the semantics
of each level in a reflective tower and their meta-level
connection. This leads to design a reflective architec-
ture for Blond. Section 2 investigates some aspects of
environments and control in Blond. Section 3 compares
the present approach with related work.

1 Extensional and intensional aspects

of reflection

Let us first consider a tower of (possibly identical) in-
terpreters, each processing the level below, but without
any meta-level facilities. The language at each level
is an expression language comparable to Scheme but
they are not necessarily identical. Each of them is
described by a usual continuation semantics manipu-
lating expression, environment, and continuation but
without a store – that is without side effects. In order
to distinguish the domains and valuation functions at
each level n, we subscript them:

Abstract syntax:
B, E, F, R, K ∈ Expressionn

C ∈ Constantn

I, x, y, z . . . ∈ Identifiern

E ::= C | I | (F E∗)

etc.
Domains:

a, b, c, v ∈ DenotableValuen =
Identifier

n
+ Functionn + Listn + . . .

ρn ∈ Environmentn =
Identifier

n
→ DenotableValuen

κn ∈ Continuationn =
DenotableValuen → Answern

etc.
Valuation functions:

En : Expression
n
× Environmentn×

Continuationn → Answern

En[[I]]ρnκn = κn(ρn[[I]])
etc.

In such a tower, all the domains are distinct, but
strongly related because each level is created by the
level above. All the objects at one level are represented
at the level above: expressions, environments, contin-
uations, denotable values, and so on.

One way to obtain this is to represent an object as
a compound structure with the object and some iden-
tification tag.

1.1 Digression

For example an element of the domain Numbern could
be represented in a domain Pairn+1 at the level above,
the first element of the pair being a tag mimicking the
injection tags of the domain DenotableValuen.

Thus the number 7 at level 0 (let us call it 70) would
at level 1 be represented as (ν0, 71) and, leaving aside
how to represent pairs and tags at the level above the
number, 70 would be represented at level 21 as:

(ν0, (ν1, . . . (ν20, 721)) . . .))

4

At the “top” of the tower, 70 would appear as:

(ν0, . . . (νn, (νn+1, . . . , 0000 0111) . . .)) . . .)

This gives a pleasing intensional view of the
whole tower even for the most elementary objects.
[Danvy 87] presented an analogous intensional view
holding only for primitive functions.

Another alternative is just to represent a number
(and any other elementary object) as the correspond-
ing object at the level above. For example the number
7 at level n is represented as the number 7 at level
n + 1 and thus at all levels. Then the subscripts can
be avoided and for the sake of simplicity this is done
in the following.

Being familiar with these representations of objects
of one level in another has proven helpful to understand
meta-level facilities. Having distinguished the levels,
we are now in a better position to describe reification
and reflection.

1.2 The semantics of going up and down

The point of having reification in a system is to have
full access to the state of the computation. Since each
level in the tower is described by a semantics manip-
ulating expression, environment, and control, full ac-
cess can here be understood as access to expression,
environment, and control. Similarly reflection (with
the function meaning) can specify a state from which
computation will proceed, by specifying the expression,
environment and continuation to be in effect.

In the reflective tower this is realized by letting rei-
fiers and meaning operate on more than one level. This
easily leads to confusion and it is this confusion we can
avoid with our subscripted model.

Now the operation of a reifier, (delta (e r k) B),
can be explained as a relation between valuation func-
tions from the semantics of two levels8. The reifier has
a body B and three formal parameters e, r and k to be
bound respectively to the reified expression, environ-
ment, and continuation of the level where it is applied.

En[[((delta (e r k) B) E∗)]]ρnκn

= En+1[[B]]([[[e]] 7→ (map
n

exp∧
n
[[E∗]]),

[[r]] 7→ (env∧
n
ρn),

[[k]] 7→ (cont∧
n
κn)]ρn+1) κn+1

The reification relation

where ρn+1 and κn+1 are the environment and con-
tinuation of level n + 1, exp∧

n
, env∧

n
and cont∧

n
are

operations9 of the following types:
8For simplicity we consider the definition directly rather than

a reifier bound in the environment.
9Named compatibly with [Wand & Friedman 88].

exp∧
n

: Expression
n
→ DenotableValuen+1

env∧
n

: Environmentn → DenotableValuen+1

cont∧
n
: Continuationn → DenotableValuen+1

and (map
n
f) maps a sequence of expressions into a list

of values by applying f to each of the expressions. It
has the following functionality:

(Expression
n
→ DenotableValuen+1) →

Expression∗

n
→ DenotableValuen+1

One can note that exp∧
n

is not applied to B, the body
of the reifier, since by hypothesis B is written in the
language of level n + 1.10 This could be compared to
an asm statement in a C program: the argument is
written in assembly language, not in C nor in anything
else.

Similarly reflection can be described by:

En[[(meaning E R K)]]ρnκn =
En[[E]]ρn(λa.En[[R]]ρn

(λb.En[[K]]ρn

(λc.En−1(exp
∨

n
a)(env∨

n
b)(cont∨

n
c))))

The reflection relation

where exp∨
n
, env∨

n
and cont∨

n
have the types:

exp∨
n

:DenotableValuen → Expression
n−1 ∪ {error}

env∨
n

:DenotableValuen → Environmentn−1 ∪ {error}
cont∨

n
:DenotableValuen → Continuationn−1 ∪ {error}

Applying exp∨
n

to the argument a actually makes it a
syntactic object at level n − 1 so it is not necessary to
enclose it in semantic brackets.

It is important to notice that this is not a denota-
tional definition of meaning but a relation between two
denotational semantics. If it was to be interpreted as
a denotational definition it would clearly violate the
compositionality principle.

This is at the crossroad of the criticisms against the
non-compositionality of Lisp [Muchnick & Pleban 80],
as a denotable value is mapped to an expression. For
now, let us say that this criticism does not apply (yet),
since here the operation exp∨

n
relates two distinct se-

mantics.
About the ∧ and ∨ operations it is not in general pos-

sible to say much except for their functionality. Since
they are to support meta-level connections, however,
they must satisfy these relations:

(1) cont∨
n+1 ◦ cont∧

n
= identityContinuationn

and
(2) cont∧

n
◦ cont∨

n+1 ⊑ identityDenotableValuen+1

10This assumption is of importance if the languages at the
different levels are different, because B would have to be compiled
by exp∧

n
if it was written in the language of another level.

5

(1) should hold because when a previously reified ob-
ject is reinvoked, we want it to be the same object
(actually having a similar behaviour is sufficient in an
implementation – but probably not the most efficient).

(2) states that cont∧
n
◦ cont∨

n+1 is less defined than
identityDenotableValuen+1

, i.e., (cont∧
n
(cont∨

n+1c)) is ei-
ther c or error. It is c when (cont∨

n+1c) is defined be-
cause we only want one legal representation at level n

for each object at level n−1. It is error when (cont∨
n+1c)

is error because we don’t want to take something un-
defined to something defined.

Similar relations hold for the other operations: exp∧
n
,

exp∨
n
, env∧

n
and env∨

n
.

Though the reification and reflection relations are
enlightening they do not take full advantage of the fact
that this happens in a tower of interpreters interpreting
each other. This makes it possible to integrate the
loose ends: how to find the correct ρn+1 and κn+1 in
the reification relation and how to find the correct En−1

in the reflection equation.
What happens in the intuitive model when meaning

is called is that the interpreter intn (which is defined
at level n, the currently lowest level of the tower) is
invoked with some arguments E, R and K. Since intn
implements the language described by En−1 we have:

En[[intn]]ρnκn ≃ En−1

Similarly, when a reifier is applied, ρn+1 and κn+1 are
present in the valuation function En. This isomorphism
expresses that the meaning of an interpreter applied to
an expression is the meaning of that expression. It cor-
responds to the fact that partially evaluating an inter-
preter with respect to a program leads to an equivalent
residual program [Jones et al. 88].

This also makes sense in terms of domains since, in
the model of the reflective tower, an interpreter at level
n takes three DenotableValuen-arguments – an expres-
sion, an environment, and a continuation at level n−1
– and returns an Answern. Thus it has the type:

Expression
n−1×Environmentn−1×Continuationn−1 →

Answern

which is the same type as En−1 if we assume that all
the Answer domains are equal.

To examine this relation a little further, let us as-
sume that all the levels are identical and that the in-
terpreter is a program, <intn>, which does not use
reification nor reflection. We can then evaluate a level
n− 1 expression11, [[E]]n−1, at level n in a level n envi-
ronment ρn binding e, r and k to the expression and

11Subscripting the semantic brackets for clarity.

structures representing the environment ρinitn−1
and

the continuation κinitn−1
of level n − 1.

En[[(<intn> e r k)]]nρnκn

= En[[<intn>]]nρn(λf.(f(exp∧[[E]]n−1)(env∧ρinitn−1
)

(cont∧κinitn−1
)κn))

≃ En−1[[E]]n−1ρinitn−1
κinitn−1

Since the levels are identical the ∧ and ∨ functions at
all levels are identical and it is no longer necessary to
subscript them.

This describes, in some sense, the meaning of two
levels in the semantics of the upper one. The meaning
of an expression [[E]] at level n − 1 can be found as

En[[(<intn> e r k)]]n([[[e]]n 7→ (exp∧[[E]]n−1)]ρn)κn

where κn is the initial continuation in the semantics.
It is not a (structural) denotational semantics for level
n−1, since the meaning of an expression is not a com-
position of the meanings of its subexpressions.

However it is possible to express the reflection re-
lation in the semantics of one level assuming that
meaning is bound to the denotation of the interpreter
in the environment.

To reduce the compositionality problem somewhat
(if not completely) we can choose to make the inter-
preter (i.e., meaning) a special form in the language
and introduce a second valuation function in the se-
mantics, E−1

n
. E−1

n
would take three arguments: a syn-

tactic expression of level n−1 (which is where the com-
positionality problem remains) and two values to serve
as level n − 1 environment and continuation. How-
ever since E−1

n
is a valuation function in the level n

semantics it also needs the continuation of level n as
an argument. For reifiers it is also necessary to save the
environment ρn (see section 2.1 for a closer discussion).
Then we can define

MetaContinuationn−1 =
(Environmentn × Continuationn)

E−1
n

:Expression
n
× DenotableValuen×

DenotableValuen × MetaContinuationn →
Answer

En[[(meaning E R K)]]ρnκn

= En[[E]]ρn

(λa.En[[R]]ρn

(λb.En[[K]]ρn

(λc.E−1
n

(exp∨a)(env∨b)(cont∨c)(ρn, κn))))

It can be noticed that in this definition, the “continua-
tion” of E−1

n
is a function at the level n, so it takes the

continuation of level n as argument. Correspondingly
a unary function at level n takes two arguments: the
actual parameter and the continuation, while a unary

6

function at level n − 1 takes three arguments: the ac-
tual, the “continuation” of level 1 and the continuation
of level n.

Now we can even describe reification at level n − 1:

E−1
n

[[((delta (e r k) B) E∗)]] r k (ρn, κn)
= En[[B]]([[[e]] 7→ (map exp∧[[E∗]]),

[[r]] 7→ (env∧r),
[[k]] 7→ (cont∧k)]ρn)κn

To describe the whole tower this way in the level n

semantics we just need infinitely many valuation func-
tions, all alike but operating on different domains and
all taking this extra argument:

MetaContinuationn−1 =
((Environmentn × Continuationn)×
((Environmentn−1 × Continuationn−1) × . . .))

Em

n
:Expression

n+m
× Environmentn+m×

Continuationn+m × MetaContinuationn+m →
Answer

Em

n
[[(meaning E R K)]]ρn+mκn+mτn+m

= Em

n
[[E]]ρn+m(λaτn+m.

Em

n
[[R]]ρn+m(λbτn+m.

Em

n
[[K]]ρn+m(λcτn+m.

Em−1
n

(exp∨a)(env∨b)(cont∨c)
((ρn+m, κn+m), τn+m))τn+m)τn+m)τn+m

Em

n
expresses the meaning of level n+m in the seman-

tics of level n (m can be compared to an offset).
With an infinity of levels, the functions at all lev-

els take infinitely many arguments. For simplicity
that is rather written as three, of which the third is
infinite: the actual, the continuation and the meta-
continuation.

This means (since a continuation is a function at the
level above) that a continuation rather than one ar-
gument takes two: a value and a meta-continuation.
This again means that if we want to use a function
at one level as a continuation at the level below (with
meaning) cont∨ has to transform it from a 3-argument
function to a 2-argument function. This is no problem
since the three arguments the function should take are
contained in the two which are available: continuation
of level n and meta-continuation of level n are con-
tained in the meta-continuation of level n − 1.

Now the whole tower is described in one semantics.
So far we have carefully maintained subscripts to clar-
ify level shifts. But since all the levels are identical
the subscripts were not necessary and simply remov-
ing them from the domains the MetaContinuation re-
veals to have the type (Continuation×Environment)×
MetaContinuation, i.e., all the superscripted valuation
functions have the same type - and are thus identical.
So we can remove the super- and subscripts giving:

MetaContinuation =
(Environment × Continuation) × MetaContinuation

E : Expression× Environment × Continuation×
MetaContinuation → Answer

E [[(meaning E R K)]] ρ κ τ

= E [[E]]ρ(λaτ.E [[R]]ρ(λbτ.E [[K]]ρ(λcτ.

E(exp∨a)(env∨b)(cont∨c)((ρ, κ), τ))τ)τ)τ
E [[((delta (e r k) B) E∗)]]ρκ((ρ′, κ′), τ)
= E [[B]]([[[e]] 7→ (map exp∧[[E∗]]),

[[r]] 7→ (env∧ρ),
[[k]] 7→ (cont∧κ)] ρ′)κ′τ

Given these two central definitions it should be clear
how to describe the reflective tower completely in this
system. However it should be noticed that the compo-
sitionality problem is still not solved, but remains in
the part “E(exp∨a) . . .”.

We are now sufficiently equipped to specify a reflec-
tive tower simulator. As we want everything to be
redefinable and first class, everything will be held in
the environment. As we want to reify over expressions
by applying reifiers, the expressions in function posi-
tion will be evaluated prior to their arguments. As we
want to reify over environments, the semantics will be
environment-based rather than a set of rewrite rules
with substitution. As we want to reify over continua-
tions, it will be in continuation passing style. And fi-
nally in order to handle reflection, a meta-continuation
will be added.

1.3 The design of a procedurally reflective ar-
chitecture

The architecture is described with denotational seman-
tics but it is sufficiently close to Scheme to allow a
straightforward transcription.

The general design is based on a continuation-
passing style interpreter without special forms. Be-
cause it has no special forms, its architecture is clas-
sically based on a dichotomy eval/apply and when a
compound form is encountered, the object in functional
position is evaluated. The apply module realizes a dis-
patch on the injection tag of the result, the domain of
applicable objects being a direct sum of abstractions,
reifiers, and so on.

To make it reflective it is extended with a meta-
continuation which is passed around by all the valu-
ation functions and the continuations, which have the
functionality:

κ : DenotableValue × MetaContinuation → Answer

The abstract syntax is essentially the same as specified
earlier. It comprises constants (numerals, booleans,

7

strings), identifiers and parentheses. The semantic al-
gebras for primitive domains are standard:

Identifiers
Domain i ∈ Identifier = Identifier

Constants
Domain c ∈ TruthValue + Number + String
Operations (omitted)

Omitting the valuation function C for constants, and
leaving aside the store, we can already write:

E :Expression× Environment × Continuation×
MetaContinuation → Answer

E [[C]] ρ κ τ = κ (inConstant(C [[C]])) τ

E [[I]] ρ κ τ = κ (ρ [[I]]) τ

E [[(F E∗)]] ρ κ τ = E [[F]] ρ (λa τ.apply a [[E∗]] ρ κ τ)τ

The domain of applicable objects is a direct sum of all
the objects that can occur in function position: ab-
stractions, reifiers, predefined control structures, rei-
fied environments and reified continuations. The aux-
iliary function for applying objects dispatches them ac-
cording to their injection tag:

apply :ApplicableObject ×Expression∗×
Environment × Continuation ×
MetaContinuation → Answer

apply f [[E∗]] ρ κ τ

= cases f of isSubr(s) → applySubr s [[E∗]] ρ κ τ

[] isFsubr(f) → applyFsubr f [[E∗]] ρ κ τ

[] isAbstraction(α)
→ applyAbstraction α [[E∗]] ρ κ τ

[] isDeltaReifier(d)
→ applyDeltaReifier d [[E∗]] ρ κ τ

[] isContinuation(c)
→ applyContinuation c [[E∗]] ρ κ τ

[] . . . end

To apply a primitive function (a subr in the Lisp
terminology – such as car, cdr, etc.), one checks that
the number of formal and actual parameters coincide
and evaluates the actuals before applying it. To apply
a predefined control structure (an fsubr – if , quote,
meaning, etc. with a fixed arity, and and, or, begin

with a variable arity) one does something compara-
ble. As can be expected, the initial environment maps
the names of primitive functions and predefined control
structures to their associated semantic function.

applyFsubr f [[E∗]] ρ κ τ = f [[E∗]] ρ κ τ

To apply an abstraction, all its arguments are evalu-
ated and put in a list (for example). This is performed
by an auxiliary function evlis. The abstraction is then
applied to the list, the current continuation (to ensure
proper tail-recursion) and the new meta-continuation
(to keep track of possible level shifts).

applyAbstraction α [[E∗]] ρ κ τ

= evlis [[E∗]] ρ (λ l τ . α l κ τ) τ

So far the parameter τ has been passively transmit-
ted. It participaters more actively when reifiers are
applied.

Applying a reifier is done by reifying its arguments
and the current environment and continuation. Then
the environment and continuation of the level above are
extracted from the meta-continuation, together with a
new meta-continuation. Finally the body of the reifier
is evaluated, in effect at the level above its application,
since it is in the environment and with the continuation
of that level.

applyDeltaReifier r [[E∗]]ρnκn((ρn+1, κn+1), τn+1)
= r (map exp∧ [[E∗]]) (env∧ρn) (cont∧κn)ρn+1κn+1τn+1

To apply a γ-abstraction is quite similar:

applyGammaReifier g [[E∗]]ρnκn((ρn+1, κn+1), τn+1)
= g (map exp∧[[E∗]]) (env∧ρn) (cont∧κn)κn+1τn+1

To make this description more complete, here are
three central examples of semantic functions bound in
the initial environment. We give them as if they were
special forms for the sake of simplicity12. Checking
whether the number of formal and actual arguments
coincide is omitted here.

E [[(lambda (I∗) B)]] ρ κ τ

= κ(inAbstraction(λ l κ τ.

E [[B]] extendEnvironment([[I∗]] l ρ)κ τ))τ

where the function extendEnvironment straightfor-
wardly extends an environment from of a sequence of
identifiers and an isomorphic list of values.

E [[(delta (e r k) B)]] ρ κ τ

= κ(inDeltaReifier(λ e r k ρ κ τ.

E [[B]] ([[[e]] 7→ e,

[[r]] 7→ r,

[[k]] 7→ k] ρ)κ τ)) τ

The operational value of a δ-abstraction closes its for-
mal parameters and its body.

E [[(gamma (e r k) B)]] ρ κ ((ρ′, κ′), τ)
= κ(inGammaReifier(λ e r k κ τ.

E [[B]] ([[[e]] 7→ e,

[[r]] 7→ r,

[[k]] 7→ k] ρ′)κ τ)) ((ρ′, κ′), τ)

12In an implementation the identifier lambda, for example,
would be bound to a predefined control structure producing the
operational value of an λ-abstraction: a closure.

8

These specifications are compositional: by introduc-
ing the meta-continuation in the semantic functions,
we have expressed the denotation of reifiers and their
application without breaking the denotational assump-
tion. The only new point is that the body of, e.g., the
δ-abstraction is evaluated both in another environment
and with another continuation than the current one
(since the current has been reified). Comparing this
with the classical specification of a λ-abstraction, one
can see that the body of the λ-abstraction is evaluated
with the current continuation, but in another environ-
ment, i.e., its environment of definition, extended.

What remains to do now is to specify the function
meaning and how to initialize the meta-continuation.

In the initial environment, the identifier meaning is
bound to the semantic function meaning, in the do-
main Fsubr. A naive definition of meaning would let
it evaluate its three arguments, convert them down and
stack the current environment and continuation in the
meta-continuation – that is, assuming that meaning is
actually applied to three arguments:

meaning [[E R K]] ρ κ τ

= E [[E]] ρ
(λa τ . E [[R]] ρ

(λ b τ . E [[K]] ρ
(λ c τ . reflect a b c ρ κ τ) τ) τ) τ

reflect a b c ρ κ τ

= E (exp∨a) (env∨b) (cont∨c) ((ρ, κ), τ)

This definitional clause is not compositional: the right-
hand side contains an expression: (exp∨a) that is not
a proper subpart of the left-hand side, which violates
the denotational assumption13.

There exists an alternative to the function meaning,
slightly less powerful but compositional. We call it
meaning-prime – shortened meaning’ – and the idea
is that it behaves as meaning but without evaluating
its first argument14:

E [[(meaning’ E R K)]] ρ κ τ

= E [[R]] ρ (λ b τ . E [[K]] ρ (λ c τ . reflect’ [[E]] b c ρ κ τ) τ) τ

reflect’ [[E]] b c ρ κ τ

= E [[E]] (env∨b) (cont∨c) ((ρ, κ), τ)

This definitional clause is compositional. It satisfies
the fairly large domain of application where one would
give an expression and the binding of its free variables

13But is the whole point of Kleene’s second recursion theorem.
14In that respect it is dual to if which is strict in its first

argument and non-strict in each of the others. meaning’ is non-
strict in its first argument and strict in the two others.

instead of building a new expression. Of course, one
could say that the problem of compositionality is not
solved but just pushed away, since extending a rei-
fied environment transforms a list of denotable values
into a list of syntactic identifiers. However, most of
the time this list is static, so introducing the opera-
tor extend-reified-environment-prime – shortened
extend-reified-environment’– non-strict in its first
argument, fulfills both requirements of usefulness and
compositionality. With

E [[(extend-reified-environment’ (I∗) L R)]]ρκτ

= E [[L]] ρ (λ l τ.E [[R]] ρ (λ r τ.

κ(env∨(extendEnvironment [[I∗]] l (env∨r)))τ)τ)τ

one can write compositionally

0-3> (let ((f (lambda (x) x)) (d "hello world"))

(meaning’ (f d)

(extend-reified-environment’

(f d)

(list f d)

(reify-new-environment))

(lambda (a) a)))

0-3: hello world

0-4>

Extending the environment rather than building a
piece of program originates in [Wand & Friedman 86].
It turns out not to be only a trick for avoiding the use
of quote, but a general way to preserve compositional-
ity. Thus in Blond one can reflect non-compositionally,
with meaning, or compositionally (and as gener-
ally, provided extend-reified-environment’) with
meaning’.15

Another way to specify a reflective program compo-
sitionally is to take it as a whole and use the algebraic
properties of operators over reified expressions. The
reflective description of identity:

E [[((delta (e r k) (meaning (car e) r k)) baz)]] ρ κ τ

reduces to

E (exp∨(exp∧[[baz]])) ρ κ τ

which does not break the denotational assumption, as

exp∨ ◦ exp∧ = identityExpression

Finally, the meta-continuation is initialized to

fix λ τ . ((ρ, κ), τ)

where ρ is the initial environment and κ the initial con-
tinuation. In an implementation κ could be a toplevel
loop.

15ASET’ in [Steele & Sussman 78] has a comparable genesis.

9

2 Environments and Control in a Re-

flective Tower

This section analyzes the consequences of pairing the
environment and continuation of the levels above in
the meta-continuation. The first is that reification
occurs in a correct environment, which it did not in
Brown. The second consequence is the question of the
current continuation when a reified continuation is ap-
plied: should it be abandoned as in Scheme or stacked
in the meta-continuation as in Brown? Finally, we dis-
cuss ephemeral levels and proper tail-reflection.

2.1 Reification: extending which environ-
ment?

The goal of this section is to point out in which en-
vironment the body of a reifier should be evaluated.
This question is not trivial, as in Brown it is the envi-
ronment from the level of definition of the reifier16 and
the result is to mask variables, in a way very similar
to the old funarg problem [Moses 70]. Let us take the
Brown definition of exit:

(lambda (x)

((make-reifier

(lambda (e r k) x))))

This function returns a result from one level to the level
above it. For one thing, this conflicts with the referen-
tial transparency of the level above: that is, since x is
bound in the reified environment r, its value should be
found there. A correct Brown definition would be:

(lambda (x)

((make-reifier

(lambda (e r k) (r ’x)))))

since an environment is reified as a function of type:

Identifier → DenotableV alue

The point is better communicated by adding semantic
brackets and subscripting them with their level:

[[(lambda (x) ((make-reifier

(lambda (e r k) [[x]]n+1))))]]n

In the following Blond scenario, [[x]]n+1 is evaluated in
the correct environment ρn+1.

0-1> (let ((x "foo"))

(meaning’ (let ((x "bar"))

((delta (e r k) x)))

16Although it could be any other, since in Brown one can make
a reifier out of an abstraction already defined, with something
like (make-reifier foo). This leads to evaluate the body of the
reifier in the closure environment of foo, lexically extended with
the reified expression, environment and continuation.

(reify-new-environment)

(lambda (a) "whatever")))

0-1: foo

0-2>

In the environment ρ0, extended with the binding of
x to the value "foo", a new (and anonymous) level is
spawned with a fresh initial environment and an arbi-
trary continuation. At that new level, the environment
is extended to map x to the value "bar" and reification
occurs, leading to:

E [[x]] ([[[e]] 7→ (map exp∧ [[]]),
[[r]] 7→ (env∧([[[x]] 7→ C[["bar"]]] ρ)),
[[k]] 7→ (cont∧κ)]
[[[x]] 7→ C[["foo"]]] ρ0) κ0

and the continuation κ0 is applied to the expressible
value C[["foo"]].

This shows that a reifier cannot be defined as a λ-
abstraction, and has made us rule out make-reifier

in Blond. Instead, the body of a reifier should be
evaluated either in the environment of the level above
its definition or in the environment of the level above
its application. Blond supplies both possibilities:
the first with γ-abstractions and the second with δ-
abstractions. At first glance, this looks surprisingly
close to the question of having a lexical or dynamic
scope in a non-reflective language. However, the ques-
tion can be identically put for continuations: one could
imagine the body of a reifier to be evaluated with a
continuation above its level of application as well as
its level of definition17. In a reflective tower, though,
the actual environment and continuation above the ap-
plication of a reifier would be lost18. This shows the
limits of the comparison: again, further experiments
are needed.

2.2 Jumpy vs. pushy continuations

In Scheme, when a captured continuation is applied,
the context of its application is thrown away. This
is often referred to as a “black hole” behaviour and
[des Rivières 88] classifies such continuations as jumpy.
In contrast, continuations have been made pushy in
Brown: whenever a reified continuation is applied,
the current continuation is stacked on the meta-
continuation, rather than being thrown away19. This

17This is not irrealistic: procedures returning in their con-
text of definition rather than application exist and are used as
exceptions.

18To some extent, it justifies why debuggers are called from
an error point.

19This phenomenon is distinct from the functional continu-
ations of [Felleisen et al. 87]: applying compositional continua-

10

is illustrated in the following Brown scenario, adapted
from [Wand & Friedman 86]:

0-> ((make-reifier (lambda (e r k)

(cons (k ’a) (k ’d)))))

0:: a

0-> (exit ’foo)

0:: d

0-> (exit ’bar)

1:: (foo . bar)

1->

The body of the reifier is processed at level 1. The
reified continuation is the top level loop at level 0. It is
applied twice. Each time, the current continuation is
stacked on the meta-continuation. Exiting twice from
level 0, one obtains a result at level 1.20

Having jumpy continuations, the scenario becomes:

0-1> (load "exit.bl")

exit

0-1: loaded

0-2> ((delta (e r k)

(cons (k "a") (k "d"))))

0-2: a

0-3> (exit "foo")

2-0: foo

2-1>

and the levels 1 and 0 are irremediably lost – level 1
because it has been replaced by level 0 and level 0 be-
cause it has been exited. Thinking about the environ-
ment extensions in a procedural language, one might
make an analogy with dynamic and static scoping: in
the former, extensions are managed in a stack, whereas
in the latter, they are thrown away when a procedure is
applied tail-recursively and its lexical extension takes
place.

We argue here that the pushy feature muddies the
meta-continuation, because the current continuation is
not only stacked at reflection time, but also when a
reified continuation is applied. In fact, the point is not
whether a continuation is pushy or jumpy, since this is
not a property of the continuation itself, but of how it
is applied. Applying a reified continuation in a jumpy
way is modelled by:

applyContinuation c [[E]] ρ κ τ = E [[E]] ρ c τ

whereas applying it in a pushy way would be:

tions returns a result to the point of their application. Thus they
can be composed. In Brown, applying a continuation stacks the
current one on the meta-continuation, so that reifying or exiting
from the level below reactivates it – the point is that there are
top level loops at each level.

20One can note that Brown evaluates the arguments of cons
from left to right.

applyContinuation c [[E]] ρ κ τ = E [[E]] ρ c ((ρ, κ), τ)

These equations underline the problem that stacking
a pushy continuation is done together with an envi-
ronment – here the current one, implicitly. In Blond,
where continuations are jumpy by default, a pushy
behaviour is obtained regularly via meaning, where
it is explicitly specified which environment should be
stacked together with the continuation:

0-2> ((delta (e r k)

(cons (meaning’ "a" r k)

(meaning’ "d" r k))))

0-2: a

0-3> (exit "foo")

0-2: d

0-3> (exit "bar")

1-0: (foo . bar)

1-1>

Rather than applying a pushy continuation, it is spec-
ified that the continuation should be pushed by using
meaning. The results are identical.

However, this session carries more information than
the Brown one, as the Blond prompt makes it explicit
that the second iteration of the top level loop at level
0 is captured and activated twice.

But clearly again, further experiments are needed,
so we have provided a toggle in Blond for switching
the application mode of reified continuations between
jumpy and pushy, the default mode being jumpiness.
This is only for convenience since one can anyway
jumpify a pushy continuation with:

(define jumpify

(lambda (pc)

(lambda (a)

((delta (e r k)

(meaning’ a r (r ’pc)))))))

and pushify a jumpy continuation with

(define pushify

(lambda (jc)

(lambda (a)

(let ((env (extend-reified-environment’

(dummy) (list a)

(reify-new-environment))))

(meaning’ dummy env jc)))))

using call by value – that is, if reification occurs while
evaluating the argument, the reified continuation is the
current one and not the one to be applied. The other
way around is specified in appendix 2.

2.3 Ephemeral levels and proper tail-reflection

This section introduces a phenomenon analogous
to tail-recursion for reflective programming: tail-re-
flection. Here is a tail-reflective program:

11

(delta (e r k)

(meaning (car e) r

(lambda (p)

(meaning (ef p (cadr e) (caddr e)) r k))))

This reifier follows the usual reflective definition of if
in 3-Lisp or in Brown, using the conditional function
ef, strict on all its arguments. The test part of the
form is evaluated and according to its result one of the
two alternatives are evaluated. Translating this reifier
directly would give a denotational specification flirting
with non-compositionality:

E [[(if P T E)]] ρ κ = E [[P]] ρ (λ p.E (p → [[T]] [] [[E]]) ρ κ)

but meaning the same as the correct:

E [[(if P T E)]] ρ κ = E [[P]] ρ (λ p.p → E [[T]] ρ κ [] E [[E]] ρ κ))

Let us retrace the essential steps of the computation:
when the reifier is applied, its unevaluated arguments,
the current environment and the current continuation
are reified; the top-most environment and continua-
tion are popped off the meta-continuation; the body of
the reifier is processed in that environment, extended
with its formal parameters, and that continuation; this
body spawns a new level to evaluate the test; the con-
tinuation popped from the meta-continuation and the
extended environment are pushed back; the specified
continuation (lambda (p) ...) is applied to the result
of the test; in its body a new level is spawned to evalu-
ate one of the alternatives; and the initial continuation
will eventually be applied21.

As a whole, two new levels are created for evalu-
ating the test and one alternative. The first level is
ephemeral because it only exists for evaluating the test
part. Both calls to meaning are tail-reflective. Retrac-
ing the essential steps of a derivation:

E [[((delta (e r k)

(meaning (car e) r (lambda (p) ...)))

#t "hello" "world")]] ρ0 κ0 ((ρ1, κ1), τ1)
= E [[(meaning (car e) r (lambda (p) ...))]] ρ′1 κ1 τ1

where ρ′1 = [[[e]] 7→ (map exp∧ [[#t "hello" "world"]])
[[r]] 7→ (env∧ρ0),
[[k]] 7→ (cont∧κ0)] ρ1

and, using the algebraic property
car(map exp∧ [[(E E∗)]]) = exp∧[[E]]

= E(exp∨(exp∧[[#t]]))
(env∨(env∧ρ0))
(λ v ((ρ′′1 , κ1), τ) .

E [[(meaning (ef p (cadr e) (caddr e)) r k)]]
([[[p]] 7→ v] ρ′1) κ1 τ1)

((ρ′1, κ1), τ1)
21As one may note, this specification is properly tail-recursive:

the initial continuation is transmitted for evaluating the selected
alternative.

The next reduction is properly tail-reflective: because
(lambda (p) ...) is a function at the level subscripted
with 1 and a continuation at the level subscripted with
0, its body is evaluated at level 1 with the correspond-
ing meta-continuation. In particular, it is evaluated in
the environment ρ′1 so the environment ρ′′1 is not used.

= E [[(meaning (ef p (cadr e) (caddr e)) r k)]]
([[[p]] 7→ C[[#t]]] ρ′1) κ1 τ1

= E (exp∨(exp∧[["hello"]])) (env∨(env∧ρ0))
(cont∨(cont∧κ0)) (([[[p]] 7→ C[[#t]]] ρ′1, κ1), τ1)

= κ0 (C[["hello"]]) (([[[p]] 7→ C[[#t]]] ρ′1, κ1), τ1)

Maybe to some surprise, the top-most environment
in the meta-continuation has been altered. Assuming
rift to be bound to the present reifier:

>>> (blond)

0-0: bottom-level

0-1> (load "rift.bl")

rift

0-1: loaded

0-2> (rift #t "hello" "world")

0-2: hello

0-3> ((delta (x y z) e))

1-0: (#t hello world)

1-1>

Level 1 memorizes in its environment the bindings of all
the formal parameters of the reifiers applied at level 0.
This extension concerns only the top-most environment
in the meta-continuation and not the environment of
any later continuation, since they close environments
of their own. At iteration 1 of level 1 in the scenario,
the variable e is unbound.

There are a couple of lessons that we can learn
from this example. About the environment: the phe-
nomenon is inherent to the model of a reflective tower
– reifiers are processed in the interpreter above. If one
reifies and reflects back, the altered environment re-
minds him that he already has reified and reflected
back. Thus the extension of the environment at the
level above.

About the control: the description is naturally tail-
reflective since a continuation like

(λa ((ρ, κ), τ) . κ a τ)

does not occur when a reified continuation or a func-
tion is given as a continuation to meaning. This
would be the typical continuation of an ephemeral
level. Whereas a properly tail-reflective specification
would be

E [[(meaning’ E R (lambda (a) B))]] ρ κ τ

= E [[R]] ρ (λ r τ. E [[E]] (env∨r)
(λa ((ρ, κ), τ). E [[B]] ([[[a]] 7→ a]ρ)

κ τ) ((ρ, κ), τ)) τ

12

a non-properly tail-reflective specification could be:

E [[(meaning’ E R (lambda (a) B))]] ρ κ τ

= E [[R]] ρ
(λ r τ. E [[E]] (env∨r)

(λa τ. E [[B]] ([[[a]] 7→ a]ρ)
(λ v((ρ, κ), τ). κ v τ) τ) ((ρ, κ), τ)) τ

The pattern is comparable to a call followed by a return
in assembly language, the difference being that the last
thing done at one level is to create a new one.

To summarize: by definition of a reflective tower,
the environment above any reification followed by a
reflection is extended with the formal parameters of
the reifier. An ephemeral level is created each time
a level is spawned with, as a continuation, a function
which is not a reified continuation. This corresponds to
a composition of functions and can be treated properly,
the idea being that as a proper tail-recursion requires a
constant continuation, a proper tail-reflection requires
a constant meta-continuation.

3 Comparison with related work

3.1 3-Lisp

[Smith 82] introduces the model of the reflective tower
together with an implementation: 3-Lisp. It addresses
a number of the central issues about reflection such
as its philosophical background, the limits of machine
representation, the semantic framework, the finite im-
plementation of the infinite tower, the possible mathe-
matical characterizations, etc..

3-Lisp is based on a statically scoped Lisp-like lan-
guage. Since it is reflective, it is also higher-order and
supports macros. Furthermore it is semantically ratio-
nalized, i.e., expressions are not dereferenced but only
normalized to a co-designating normal form, unless ex-
plicitly stated otherwise. Thus the levels in the tower
correspond to different levels of designation and going
up and down also changes the level of designation.

The 3-Lisp implementation creates the levels above
on demand and only keeps a stack of the already cre-
ated levels. The internal structures of the interpreter
are managed as data structures and reified as such,
rather than being curried and untyped abstractions, as
in Brown, which uses an applicative-order Y combina-
tor to create levels. In Blond, levels are also defined
recursively. They rely on the recursive capabilities of
the definition language, rather than on an explicit Y
combinator.

3.2 Brown

[Friedman & Wand 84] describes an interpreter for
Brown: a language with access to internal structures
of the interpreter, i.e., expressions, environments and
continuations. This process is referred to as reifica-
tion. By symmetry, structures can be (re-)installed as
new current expression, environment and continuation
of the interpreter. This process is referred to as re-
flection. Finally, the various possibilities of keeping or
throwing away the current continuation at reification
and reflection time are analyzed.

[Wand & Friedman 86] essentially describe a tight-
ened Brown. A new structure is introduced as the
spine of the model: the meta-continuation. At reflec-
tion time, the current continuation is pushed on it,
and at reification time, the new current continuation
is popped from the top of the meta-continuation. The
meta-continuation represents the tower, and this view
is acknowledged in [des Rivières 88].

The essence of Brown is to provide a direct inter-
pretation of any reflective program, managing reflec-
tive procedures with the meta-continuation. Brown is
thus single-threaded. The implementation of Brown
in 1984 was flat in the sense of towerless, while the
one of 1986 is towerful, with the meta-continuation. It
is an impressively neat piece of Scheme programming,
where basically all functions are curried and untyped
abstractions. [Wand, Friedman & Duba 86] attempts
to circumvent the cost of shifting environments and
continuations up and down by coercing them.

We have described the effect of a couple of design
choices in Brown, which have occurred to us while
establishing the extensional aspects of the model de-
scribed in this paper: pushy continuations interfere
with the management of the meta-continuation; at
reification time, an evaluation occurs in an incorrect
environment.

But environments are a complex problem, and as a
proof we take the fact that their conversion to Brown
functions is different in [Wand & Friedman 86] and
[Wand, Friedman & Duba 86]: this results in distinct
behaviours when studying “pathologies for shifting”.
The idea is that one specifies a conversion without
level-shifting while the other shifts levels. Therefore,
exiting at that point, one leaves from two different lev-
els and thus arrives at two different levels above.

[Wand & Friedman 88] refines the article from 1986,
essentially about the algebraic aspects of upping and
downing objects at reification and reflection time.

To compare Brown with Blond: Brown starts from
a flat, towerless reflective model to build a reflective
tower. Blond starts from a non-reflective tower to make
it reflective.

13

Conclusion and issues

This paper reports an extensional and intensional
study of the reflective tower. A new approach has been
taken: first to describe the infinite tower in itself, and
then consider the impact of meta-level connections on
it. Based on this and the additional constraint that
all the interpreters are meta-circular, we have designed
and implemented a reflective tower simulator. The re-
sult is Blond, a reflective dialect of Scheme.

This study shows why a meta-continuation is nec-
essary and sufficient to create a reflective dialect of a
language which can be defined by a semantics manip-
ulating expressions, environments and continuations.
We have pointed out not only how but why a reflective
tower can be implemented using only one running in-
terpreter, that is without order of magnitude overhead
for each downwards level shift.

With this more clear view of the reflective tower we
can see some of its possibilities and limits. For exam-
ple, the following reflective definition of quote:

(delta (e r k) (k (car e)))

requires the reified continuation to be pushy. Also, as
a reifier, it extends the environment at the level above
with the bindings of e, r and k. The former can be
solved with:

(delta (e r k)

(meaning-prime dummy

(extend-reified-environment-prime

(dummy) (list (car e)) r)

k))

the -prime operators being non-strict, but at the meta-
level and compositionally. Another limitation is that
the model does not have a store and thus no side effects.
This explains why side effects above the current level in
the tower are lost in the implementation, as discussed
in the introduction.

A natural extension would be reification over the
store, e.g. to give a formal model of garbage col-
lection. Another extension could be variadic reifiers,
able to reify over the meta-continuation, the conse-
quent meta-meta-continuation, and so on. This would
need to maintain one extra dimension of meta-ness and
could be used to model distributed systems.

An immediate perspective is to explore Blond pro-
gramming and more generally, to continue investigat-
ing the intriguing extensional similarities between re-
flective towers and self-applicable partial evaluators.

Acknowledgements

To Bruce F. Duba for the intense hours introducing the
first author to Brown; to Neil D. Jones and Jacqueline

Signorini for discussing issues about reflection; and to
Anders Bondorf, Andrzej Filinski, Kristoffer Høgsbro
Holm, Torben Mogensen and Peter Sestoft for their
optimizing rereading.

References

[Danvy 87] Olivier Danvy: Accross the Bridge between
Reflection and Partial Evaluation, Proceedings of
the Workshop on Partial Evaluation and Mixed
Computation, Dines Bjørner, Andrei P. Ershov and
Neil D. Jones (eds.), North-Holland (to appear), Gl.
Avernæs, Denmark (October 1987)

[Danvy & Malmkjær 88]
Olivier Danvy, Karoline Malmkjær: A Blond Pri-
mer, draft, DIKU, University of Copenhagen, Co-
penhagen, Denmark (February 1988)

[des Rivières & Smith 84] Jim des Rivières, Brian C.
Smith: The Implementation of Procedurally Re-
flective Languages, Conference Record of the 1984
ACM Symposium on LISP and Functional Pro-
gramming pp 331–347, Austin, Texas (August 1984)

[des Rivières 88] Jim des Rivières: Control-Related
Meta-Level Facilities in LISP, from Meta-Level Ar-
chitectures and Reflection, Patti Maes & Daniele
Nardi (eds.), North-Holland (1988)

[Felleisen et al. 87] Matthias Felleisen,
Daniel P. Friedman, Bruce F. Duba, John Merrill:
Beyond Continuations, Technical Report No 216,
Computer Science Department, Indiana University,
Bloomington, Indiana (February 1987)

[Friedman & Wand 84] Daniel P. Friedman, Mitchell
Wand: Reification: Reflection without Metaphysics,
Conference Record of the 1984 ACM Symposium
on LISP and Functional Programming pp 348–355,
Austin, Texas (August 1984)

[Jones et al. 88] Neil D. Jones, Peter Sestoft, Harald
Søndergaard: MIX: a Self-Applicable Partial Eval-
uator for Experiments in Compiler Generation, to
appear in the International Journal LISP and Sym-
bolic Computation, (1988)

[Moses 70] Joel Moses: The Function of FUNCTION
in LISP, or Why the FUNARG Problem should
be called the Environment Problem, MIT-AIL, AI
Memo No 199, Cambridge, Massachusetts (June
1970)

14

[Muchnick & Pleban 80] Steven S. Muchnick, Uwe F.
Pleban: A Semantic Comparison of Lisp and Sche-
me, Conference Record of the 1980 LISP Conference
pp 56-64, Stanford, California (August 1980)

[Rees & Clinger 86] Jonathan Rees, William Clinger
(eds): Revised3 Report on the Algorithmic Lan-
guage Scheme, Sigplan Notices, Vol. 21, No 12 pp
37-79 (December 1986)

[Schmidt 86] David A. Schmidt: Denotational Seman-
tics: a Methodology for Language Development, Al-
lyn and Bacon, Inc. (1986)

[Smith 82] Brian C. Smith: Reflection and Semantics
in a Procedural Language, Ph. D. thesis, MIT/-
LCS/TR-272, Cambridge, Massachusetts (January
1982)

[Smith 84] Brian C. Smith: Reflection and Seman-
tics in Lisp, Conference Record of the 14th An-
nual ACM Symposium on Principles of Program-
ming Languages pp 23-35, Salt Lake City, Utah
(January 1984)

[Steele & Sussman 78] Guy L. Steele Jr., Gerald J.
Sussman: The Revised Report on SCHEME, a Di-
alect of LISP, MIT-AIL, AI Memo No 452, Cam-
bridge, Massachusetts (January 1978)

[Sturdy 88] John C. G. Sturdy: Ph. D. thesis (forth-
coming), University of Bath, School of Mathemati-
cal Sciences, Bath, England (1988)

[Talcott 85] Carolyn Talcott: The Essence of Rum:
A Theory of the Intensional and Extensional As-
pects of Lisp-type Computation, Ph. D. thesis, De-
partment of Computer Science, Stanford University,
Stanford, California (August 1985)

[Wand & Friedman 86] Mitchell Wand, Daniel P.
Friedman: The Mystery of the Tower Revealed: a
Non-Reflective Description of the Reflective Tower,
Conference Record of the 1986 ACM Symposium
on LISP and Functional Programming pp 298–307,
Cambridge, Massachusetts (August 1986)

[Wand, Friedman & Duba 86] Mitchell Wand, Daniel
P. Friedman, Bruce F. Duba: Getting the Levels
Right (Preliminary Report), Preprints of the Work-
shop on Meta-Level Architectures and Reflection,
Patti Maes & Daniele Nardi (eds.), Alghero, Sar-
dinia (October 1986)

[Wand & Friedman 88] Mitchell Wand, Daniel P.
Friedman: The Mystery of the Tower Revealed: a
Non-Reflective Description of the Reflective Tower,

to appear in the International Journal LISP and
Symbolic Computation (1988)

Appendix 1 – Swapping levels in Blond

(define permute!

(delta (e0 r0 k0)

((delta (e1 r1 k1)

((delta (e2 r2 k2)

(let ((R2 (extend-reified-environment’

(R0 K0)

(list ((r2 ’r1) ’r0)

((r2 ’r1) ’k0))

r2))

(K2 k2))

(let ((R1 (extend-reified-environment’

(R2 K2)

(list R2 K2)

(r2 ’r1)))

(K1 (r2 ’k1)))

(meaning’ (meaning’ (meaning’ "done"

R0 K0) R2 K2) R1 K1)))))))))

Appendix 2 – Pushifying in Blond

Defining pushify can follow three paths: (pushify (k

<exp>)) (pushify k <exp>) ((pushify k) <exp>) and
the third one has been chosen here. The following spec-
ifies how to make a pushy continuation out of a jumpy
one. The point here is that if reification occurs while
evaluating the arguments of the pushified continuation,
that continuation will be found rather than the current
one.

(define pushify-bis

(lambda (jc)

(meaning’

(gamma (e r k)

(meaning’

(meaning’ dummy env cont)

(extend-reified-environment’

(env cont)

(list (extend-reified-environment’

(dummy) (list (car e)) r)

jc)

r)

k))

(reify-new-environment)

(lambda (pc) pc))))

The idea of using both meaning’ and a γ-abstraction
is that we want to capture the binding of pc in a reifier
– of course at the price of an environment above.

15

