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Abstract

O’Keefe (1991) has proposed that spatial information in rats might be represented as phasors:
phase and amplitude of a sine wave encoding angle and distance to a landmark. We describe
computer simulations showing that operations on phasors can be efficiently realized by arrays of
spiking neurons that re-code the temporal dimension of the sine wave spatially. Some cells in motor
and parietal cortex exhibit response properties compatible with this proposal.
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1. Introduction

Any vector in polar coordinates @ = (r,¢) can be represented as a sine wave f{t) = r cos(wt + ¢),
where r is amplitude, ¢ is phase, and w is (constant) frequency. This is commonly known as a
phasor. The advantage of phasor representation is that translation and rotation of a vector are
both trivial operations. Translation is achieved by addition of sine waves, and rotation can be
obtained by phase shifting or temporal delay. O’Keefe (1991) has suggested that rats might use
phasors to encode angle and distance to landmarks. In his proposal, hippocampal theta provides
the reference signal for determining phase.

This temporal approach to encoding a sine wave has some drawbacks. The 7-12 Hz theta
rhythm may be too slow to support real-time spatial reasoning tasks requiring rapid manipulation
of phasors. Furthermore, maintaining even a modest angular resolution of 10° relative to a roughly
10 Hz reference signal requires a temporal resolution of 3 msec. Although some specialized sensory
systems are known to make much finer discriminations (e.g., acoustic imaging in bats and dolphins,
or auditory localization in barn owls), we are reluctant to require this degree of temporal precision
at the higher cognitive level associated with spatial reasoning. Instead, we suggest that phasor op-
erations are more plausibly realized by re-coding the temporal dimension of the sine wave spatially,
using populations of spiking neurons. We propose an architecture called the sinusoidal array for
manipulating vectors in phasor form, and report the results of computer simulations.

There is some experimental evidence that sinusoidal array representations may exist in rat
parietal cortex and in rhesus motor or parietal cortex. We propose an experiment to test this
hypothesis in rats.

2. Sinusoidal Arrays

To encode a phasor as a sinusoidal array, we replace the continuous temporal signal f(t) by a
distributed pattern of activity over an array of N elements, as in Figure 1. The value encoded by
the ith array element is the amplitude of the sine wave sampled at point 27i/N. That is, the activity
level of the ith array element encoding the vector (r, ¢) is given by f(r,¢,i) = r cos(¢ + 27i/N),
for 0 <7 < N. Note that for the special case of N = 4, the sinusoidal array encoding is exactly
the Cartesian encoding (z,y,—,—y), where 2 = r cos ¢ and y = r sin ¢.

Each sinusoidal array element is a collection of neurons. Its activity level is encoded by the
neurons’ average firing rate, or equivalently, the average percentage of neurons firing at any instant.
If the neuronal population is sufficiently large, this representation can encode values with high
precision even when individual neurons are noisy and have a limited number of discriminable firing
rates.

In order to be able to represent the negative half of the sine wave, neurons in a sinusoidal array
fire at a rate F'(r,¢,1) = k- fir,¢,i)+ b, where k is a gain parameter and b the baseline firing rate.
In our simulations, the baseline firing rate is 40 spikes/second. This gives the neuron a dynamic
range of 0-80 Hz, which is compatible with cells in parietal cortex.

A significant advantage of the sinusoidal array representation is that it allows coordinate trans-
forms to be done nearly instantaneously. If the signal f(t) were represented temporally, the simplest
way to determine its phase would be to wait for the peak. But one might have to wait up to one full
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inhibitory neurons in the second half of the shifter.

The shifter’s N gated permutation channels each copy the activity of the N-element input array
to the N-element output array, permuting the elements along the way. When the jth channel is
active, it copies the activation of input element 7 to output element ¢ — j mod IV, for 0 < ¢ < N.
The channels have associated with them tonically active channel-inhibitory neurons that keep them
silent most of the time. These are the same type of inhibitory units as the phase detector neurons,
except that their only inputs are inhibitory. When a neuron in the phase detector fires, it inhibits
the corresponding channel-inhibitory neuron, thereby dis-inhibiting the channel and allowing the
shifted sine wave to appear across the output array.

Anderson and Van Essen describe a shifter using log, N levels where each level has two permu-
tation channels, giving O(N) connections. In a refinement of this model, Olshausen et al. use four
levels with varying numbers of nodes, and fan-ins of approximately 1000, mirroring the connectivity
of cortical areas V1, V2, V4, and IT. Because our own N is so small (N = 24 in the simulations), we
can use a single level with N channels and O(N?) connections. Aside from the obvious advantage
of simplicity of connection structure, this allows us to use a simple 1-of-N representation for the
amount by which to shift, rather than the more complex binary encoding required by Anderson
and Van Essen, or the distributed encoding of Olshausen et al. Our model is also simpler because
it requires only shunting inhibition, whereas theirs requires multiplicative synapses.

The shifter circuit is not central to our theory. As discussed in the next section, many rodent
navigation tasks can be performed using just translation. However, in situations where the reference
frame must be determined anew on each trial based on the orientation of a cue array, there does
appear to be a need for mental rotation of some sort. The shifter offers a solution to the general
problem of rotation of vectors. But for some navigation tasks, the animal could instead slew its
internal compass.

4. Rodent Navigation

In a remarkable series of experiments, Collett, Cartwright, and Smith investigated landmark learn-
ing behavior in gerbils [Collett et al. 86]. We will describe two of their simpler experiments here.
Figure 3 shows the result of training a gerbil to find a food reward at a constant distance (50 cm)
and compass bearing from a cylindrical landmark. The landmark was moved to a different location
at each trial. Once trained (requiring on the order of 150 trials), the gerbil proceeded directly
to the goal location from any starting location, and spent most of its time searching in the goal
location.

To model this behavior, we assume that the gerbil has learned that a constant memory vector
M describes the remembered angle and distance of the landmark from the goal. On each trial,
the gerbil’s perceptual apparatus produces a vector P that describes the location of the landmark
relative to the animal’s current position. Thus, the position of the goal relative to the animal can
be computed by vector subtraction: G = P — M. Collett et al. show that the animal must be
computing this location, rather than simply moving to make its view of the landmark match a
stored memory of the goal, by turning off the lights after it had begun moving toward the goal.
The animal still proceeded directly to the goal.

The calculation of the goal location relies on a critical assumption: that the memory vector












which the cell zeros its net activation and enters a refractory state. For the experiments reported
here, a clock tick, At, is 0.1 msec. The cell’s refractory period is 1/80 second, limiting the peak
firing rate to 80 Hz. It’s important that the clock rate be significantly faster than peak firing rate,
so that inputs are not lost when a cell zeros its net activation. Only impulses arriving at the exact
moment a cell spikes will be lost; during the refractory period the cell continues to integrate its
inputs.

Pyramidal cells make up the summation module used for addition and subtraction of phasors.
Cells in the summation module receive excitatory inputs from two sinusoidal arrays, following the
equation F(i) = Fi(i) + F2(¢) — b. A neuron in the ith array element will receive inputs from
10 randomly-chosen neurons from the ¢th element of each input array. The bias term b = 40 Hz
is implemented by decrementing the net activation by —b -8 - At every clock tick, but the total
activation of the cell is not permitted to go below 0.

Pyramidal cells also make up the output array of the shifter module. These cells have a fan-in
of 240 since they receive 10 inputs from each of N permutation channels. They do not require a
bias term.

The second type of model neuron is a fast-spike inhibitory interneuron used in the shifter. Both
the phase detector neurons and the permutation channel inhibitory neurons are of this type. It
has a resting level of 0 and a threshold of 1, like the pyramidal cell, but the refractory period is
only 5 msec. The firing of a phase detector neuron has two distinct effects. First, it inhibits all the
other phase detector neurons, essentially setting their net activation to zero. Second, it inhibits
the corresponding channel-inhibitory neuron, allowing the permutation channel to open. Lateral
inhibition of phase detector cells should have a short time course, so that when a neuron loses the
race to fire first it can re-enter the competition in short order. But channel-inhibitory neurons
should be inhibited for a relatively long time, because we do not want the channel to close again
between successive firings of its controlling phase detector. In cortex, GABA 4 inhibition has a
short time course, while GABApg inhibition has a long time course. It therefore does not seem
unreasonable to posit different inhibitory effects arising from the same interneuron.

The channel-inhibitory neurons, when not themselves inhibited, shut down the permutation
channel. This could be accomplished in real neural systems in several ways. If we assume that
the ¢th channel’s bundle of connections from input cells to a cell in the shifter’s output array
are distributed throughout the output cell’s dendritic tree, then shutting down the channel would
require inhibitory axo-axonic synapses at many select sites. But if connections comprising the
tth channel were localized to a specific region of the output cell’s dendritic tree, the channel-
inhibitory interneuron would require only a single synapse onto the base of this subtree. Because
our simulation is not at the compartmental level, we do not distinguish between these possibilities
in our model.

We add noise to the model by perturbing each cell’s activation level by a small random value
at each clock tick. For 5% noise, we use perturbations in the range £0.025M - @ - At, where M is
the cell’s maximum firing rate. Small amounts of noise actually improve the shifter’s performance
by preventing the output cells within an array element from synchronizing with each other due to
inhibition from contrast enhancement, described below.? Noise also prevents a phase detector cell
from consistently winning the race to inhibit its neighbors just because the cells that synapse onto

2Synchronization would cause anomalous behavior in any phase detector that used this signal as input, unless the
phase detector cells integrated their inputs over a much longer time period.



it happened to start out with a slightly higher initial activation level.

A technical problem with the shifter suggests that we may want to add basket cells to our model.
We found that for the shifter to work correctly, the phase detector must be producing a stable
output, i.e., reporting a consistent phase. However, when the sine wave input to the phase detector
is of small amplitude, the peak can be difficult to determine precisely, so the phase detector’s output
wanders among several nearby values. This results in the opening of different permutation channels
at different times, degrading the shifter’s output representation. To prevent this, we introduced
a contrast enhancement layer with a form of “center-surround” feedback inhibition to pre-process
the phase detector’s input and make the peak easier to find. In real neural systems, this type
of inhibitory feedback is thought to be provided by basket cells [McNaughton & Nadel 90]. The
details of our model’s contrast enhancement mechanism are a bit ad hoc at present and are in need
of refinement, but preliminary results show that it does result in correct and stable phase detector
output.

If the inhibitory feedback is set at a high level, the contrast enhancement process yields an array
representation with only one active element, thereby anticipating the winner-take-all function of the
phase detector. However, for a range of lower values, instead of winner-take-all behavior contrast
enhancement produces cells with triangular response functions. The firing rates of these cells peak
at a certain preferred direction, fall off roughly linearly within 30-60 degrees of that direction, and
are elsewhere flat and close to zero. As discussed in the next section, cells with this behavior have
been found in postsubiculum by Taube et al.

We have also run simulations varying the number of neurons in a sinusoidal array. There
was no appreciable advantage to doubling the number to 200 neurons per element. There was a
slight penalty for using only 50 neurons: it took longer for the shifter to settle down and produce
a consistent output signal, because contrast enhancement had to be done more slowly to avoid
errors. With 20 neurons per element the system was unstable.

6. Experimental Evidence for Sinusoidal Arrays

A necessary condition for sinusoidal arrays to exist in cortex is the presence of cells whose response
pattern obeys the function F(r,¢) = b+ k- rcos ¢, where distance r and angle ¢ are measured
either egocentrically or allocentrically.

Georgopoulos et al. have formulated a similar equation, d(M) = b+ k cos(6cy), to de-
scribe the behavior of neurons in rhesus parietal cortex [Kalaska et al. 83] and motor cortex
[Georgopoulos et al. 86]. These neurons have firing rates proportional to the cosine of the an-
gle between a “preferred direction vector” ' and an intended reaching vector M. Different cells
have different directional preferences® and hence different firing rates for a given movement. Their
collective activity forms a “neural population vector” that can express any angle of intended motion.

Another important piece of evidence in support of the sinusoidal array hypothesis is the finding
in rats of cells that encode head direction with respect to either a visual landmark or an inertial
reference frame. These cells appear to be part of the animal’s internal compass referred to earlier.
Taube et al. report head-direction sensitive cells in postsubiculum with sharp directional preferences

®The preferred direction C plays the role of the array position ¢ in our formula for F(r, ¢,1).



Figure 7: Tuning curves for a cell in parietal area Oc2M when the animal is motionless or making
a left or right turn. Modified from [Chen 91, p. 118].

The crucial question for both the rat and primate datais whether cells with a sinusoidal response
function are also sensitive to distance. Schwartz and Georgopoulos have found this to be the case
in rhesus motor cortex [Schwartz & Georgopoulos 87]. They first varied the angle of a constant-
distance target in a reaching task, in order to determine the preferred direction for each cell.
Subsequently, they varied the distance between the animal and the target when the target was
located at the cell’s preferred direction. They report a substantial number of direction-sensitive
cells with weak but statistically significant linear response as a function of target distance.

In the case of the rat parietal recordings, in order to measure sensitivity to distance the animal
would have to be attending to some known location. One way to accomplish this would be to train
the rat to perform a landmark-based navigation task as in Figure 3, and then look for direction-
sensitive parietal cells whose response varied linearly with distance to either the landmark or the
goal.
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7. Discussion

Hippocampal theta may play some role as a reference signal for navigation, but it is probably not
related to compass direction. O’Keefe and Recce (1992) report that the phase at which place cells
fire relative to the theta rhythm varies through 360° as the animal enters, proceeds through, and
exits the cell’s place field. This has led Burgess, O’Keefe, and Recce to propose a navigation model
in which phase information is used to distinguish entering vs. exiting. In conjunction with head
direction information and a separate layer of goal cells, the net firing field of subicular place cells at
phase 0° is peaked ahead of the rat, allowing the animal to navigate by homing to a goal location
[Burgess et al. 93].

The Burgess et al. model has a number of interesting properties, but it cannot deal with complex
navigation tasks of the sort Collett et al. have studied, with cue arrays that change position and
orientation from trial to trial. While the hippocampus is known to play an important role in spatial
behavior, researchers such as [Nadel 91] claim that its role is spatial memory, not planning and
navigation. Parietal cortex appears to be involved in these latter tasks [Stein 91].

McNaughton et al. (1991) propose a model of directional sense based on both vestibular sensa-
tions and visual cues. In darkness or unfamiliar environments, the animal maintains its compass
by inertial means, using an associative memory “table lookup” scheme to compute its new heading
from the old heading plus angular acceleration. But in familiar environments, “local view” cells
(possibly hippocampal place cells) adjust the compass to agree with the learned heading associated
with that view direction.

We mentioned previously that compass slewing might replace the second rotation when perform-
ing Collett et al.’s rotating cue array task. McNaughton (personal communication) has suggested
that if local view cells can determine compass direction by direct matching of visual landmarks, the
first subtraction and rotation steps might also be eliminated, leaving just one vector subtraction.
We agree with the notion that distant landmarks should control the animal’s compass in familiar
environments. But it seems less plausible that viewing a configuration of nearby landmarks would
provide sufficiently accurate heading information to solve the rotating cue array task by table
lookup, because the view could change significantly with relatively small translations. Hence we
believe at least one mental rotation step is required.

FElsewhere in their paper McNaughton et al. speculate that trajectory computations (vector
subtractions) might be done by the same table lookup mechanism as they propose for updating
the inertial compass. The drawback of this proposal is the large table that would be required to
represent all possible pairs of vectors, and the cost of filling in the entries. The sinusoidal array
appears to offer a simpler solution for vector arithmetic.

The neural architecture we’ve described is compatible with properties of parietal cortex. It
manipulates phasors as sinusoidal arrays, but it does not explain how such representations arise in
the first place. We simply assume that perceptual and memory vectors are available in the required
form. We defend this assumption by noting that sinusoidal encodings of angles have already been
found in rats and monkeys. Indications of a linear sensitivity to distance in rhesus sinusoidal cells
reported by Schwartz & Georgopoulos offer additional support. At this point, the most important
test of our model is whether rat parietal cells can be found with cosine response functions that are
also linearly sensitive to distance.
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Two other properties of our model are worth noting. As presently formulated, all cells in a
sinusoidal array element have the same preferred direction (as do cells in a single orientation column
in visual cortex), so there are only N directions represented. If the preferred directions of real
parietal cells are found to cluster into a small number of discrete, evenly-spaced values, this would
be strong evidence in favor of the sinusoidal array hypothesis. However, we expect our model would
also function correctly using input units with preferred directions smoothly distributed around the
circle, so that neurons in bin ¢ had a preferred direction somewhere within 27(2£0.5)/N. We have
not yet verified this experimentally, however. Due to the many-to-one connectivity of pyramidal
cells, units in the output sinusoidal array should still show preferred direction values close to the
centers of their respective bins.

The model also assigns the same scale factor k to all neurons in an array. But experimenters
report a wide range of peak firing rates for direction-sensitive cells in both postsubiculum and
parietal cortex. We again expect the model to function correctly under this condition, assuming
only that the mean scale factor is the same across elements.
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