
Deriving Structural Hylomorphisms From Recursive

De�nitions

Zhenjiang Hu

�

Hideya Iwasaki

y

Masato Takeichi

z

Summary.

In functional programming, small programs are often \glued" to-

gether to construct a complex program. Program fusion is an optimiz-

ing process whereby these small programs are fused into a single one

and intermediate data structures are removed. Recent work has made it

clear that the process is especially successful if the recursive de�nitions

are expressed in terms of hylomorphisms. In this paper, we propose an

algorithm which can automatically turn all practical recursive de�ni-

tions into structural hylomorphisms making program fusion be easily

applied.

1 Introduction

The compositional style of functional programming has many advantages of clarity

and higher level of modularity. It constructs a complex program by gluing com-

ponents which are relatively simple, easier to write, and potentially more reusable.

However, some data structures, which are constructed in one component and con-

sumed in another but never appear in the result of the whole program, give rise to

the problem of e�ciency.

Consider a toy example of function all which tests whether all the elements of

a list satisfy the given predicate p. It may be de�ned as follows.

all p = and �map p

where and = �xs: case xs of Nil! True; Cons (a; as)! a ^ (and as)

Here p is applied to all the elements of the list producing an intermediate list of

Booleans which are then \anded" together by the function and producing a single

Boolean result. To make the function all be computed e�ciently, it is expected

to fuse and and map p together to have the following new de�nition where the

intermediate list of Booleans is not produced.

all p = �xs: case xs of Nil! True; Cons (a; as)! p a ^ (all as)

�

Department of Information Engineering, Graduate School of Engineering, The University of

Tokyo (hu@ipl.t.u-tokyo.ac.jp) .

y

Educational Computer Centre, The University of Tokyo (iwasaki@rds.ecc.u-tokyo.ac.jp) .

z

Department of Mathematical Engineering and Information Physics, Faculty of Engineering,

The University of Tokyo (takeichi@u-tokyo.ac.jp) .

1 November 1995, METR 95-11

2 Technical Report METR 95-11

There are two kinds of approaches dealing with such fusion. One, �rst proposed

by Wadler as called deforestation, aims to fuse arbitrary functions by fold-unfold

transformations, keeping track of function calls and using clever control to avoid

in�nite unfolding[Chi92, Wad88]. The other, quite di�erently, makes use of some

speci�c forms such as catamorphisms (or called folds), anamorphisms (or called

unfolds) and hylomorphisms and �nds how they interact[GLJ93, SF93, TM95].

The second approach has been proved to be more practical in a real imple-

mentation in compilers, although at �rst sight it seems less general than the for-

mer. Its theoretical basis can be found in the study of Constructive Algorith-

mics [Fok92, Mal90, MFP91] which will be outlined in Section 2. In constructive

algorithmics, data types are categorically de�ned as initial �xed points of functors,

and functions from one data type to another are represented as structure-preserving

maps between algebras. By doing so, an orderly structure can be imposed on the

program and such structure can be exploited to facilitate program fusion.

However, this approach imposes recursive structures of speci�c forms on pro-

grams, which is unrealistic in practical functional programming. One attempt

has been made by Launchbury and Sheard[LS95]. They gave an algorithm to

turn recursive de�nitions into so-called build-cata forms (i.e. catamorphisms with

constructors being parameterized) so that the shortcut deforestation technique be-

comes applicable. One major problem still left is that the build-cata form is too

restrictive to describe some kinds of practical recursive de�nitions and therefore

many intermediate data structures cannot be removed.

The purpose of this paper is to demonstrate how practical recursive de�nitions

can be automatically turned into hylomorphism, general forms covering all those

in [MFP91, SF93, TM95], which makes program fusion transformation be applied

better. The main contribution of this work is as follows.

� We propose an algorithm that can automatically turn almost all recursive

de�nitions to structural hylomorphisms. With the use of fusion systems[SF93,

KL94, TM95] successfully developed for hylomorphisms, we can improve a

larger class of programs freely de�ned by programmers.

� Our algorithm is guaranteed to be correct, and to terminate with a suc-

cessful hylomorphism. To the contrary, Launchbury and Sheard's derivation

algorithm of build-catas from recursive de�nitions may fail to give build-

catas[LS95]. Their algorithm has to be on the alert against failure of the

\two-stage fusion" and gives up the derivation in case failure occurs.

� Our algorithm structures hylomorphisms so that the Hylo Fusion and Acid

Rain Theorems (Section 2) can be e�ectively applied. Particularly, we pro-

pose a new theorem for deriving polymorphic functions (Section 5.2), namely

� and �, for the use of Acid Rain Theorem.

� Our algorithm does not limit its use to the fusion of recursions inducting over

a single data structure. It is helpful for the fusion of recursions over multi-

ple data structures without introducing new fusion theorems as in [FSZ94]

(Section 4.4). Moreover, it is also useful for other program optimizations

Deriving Structural Hylomorphisms From Recursive De�nitions 3

such as removal of multiple traversal over the same data structures[Tak87].

This is because general optimization rules are much easier to be de�ned over

hylomorphisms rather than over the recursions.

This paper is organized as follows. In Section 2 we review the previous work

in Constructive Algorithmics, the theoretical basis of hylomorphisms. Section 3

de�nes a simple language for the description of recursive de�nitions. We discuss

our algorithm in Section 4 and 5. In Section 4 we de�ne our algorithm for deriving

hylomorphisms from recursive de�nitions, and in Section 5 we give the algorithm

for structuring hylomorphisms so that the two fusion theorems can be e�ectively

applied. Section 6 discusses the related work and Section 7 gives the conclusion.

2 Background

In this section, we review previous work on constructive algorithmics and explain

some basic facts which provide theoretical basis of our method. Throughout this

paper, our default category C is a CPO, the category of complete partial orders

with continuous functions.

2.1 Functors

Endofunctors on category C (functors from C to C) are used to capture both data

structure and control structure in a type de�nition. In this paper, we assume

that all the data types are de�ned by endofunctors which are only built up by the

following four basic functors. Such endofunctors are known as polynomial functors .

De�nition 1 (Identity) The identity functor I on type X and its operation on

functions are de�ned as follows.

I X = X; I f = f

2

De�nition 2 (Constant) The constant functor !A on type X and its operation on

functions are de�ned as follows.

!A X = A; !A f = id

where id stands for the identity function. 2

De�nition 3 (Product) The productX�Y of two typesX and Y and its operation

to functions are de�ned as follows.

X � Y = f(x; y) j x 2 X; y 2 Y g

(f � g) (x; y) = (f x; g y)

Some related operators are:

�

1

(a; b) = a; �

2

(a; b) = b

(f

4

g) a = (f a; g a):

2

4 Technical Report METR 95-11

De�nition 4 (Separated Sum) The separated sum X + Y of two types X and Y

and its operation to functions are de�ned as follows.

X + Y = f1g �X [f2g � Y

(f + g) (1; x) = (1; f x)

(f + g) (2; y) = (2; g y)

Some related operators are:

�

1

a = (1; a); �

2

b = (2; b)

(f

5

g) (1; x) = f x

(f

5

g) (2; y) = g y:
2

Although the product and the separated sum are de�ned over 2 parameters,

they can be naturally extended for n parameters. For example, the separated sum

over n parameters can be de�ned by +

n

i=1

X

i

= [

n

i=1

fig �X

i

and (+

n

i=1

f

i

) (j; x) =

(j; f

j

x).

2.2 Data Types as Initial Fixed Points of Functors

A data type is a collection of operations (data constructors) denoting how each

element of the data type can be constructed in a �nite way, and via these data

constructors functions on the type may be de�ned. So a data type is a particu-

lar algebra, one distinguished property is categorically known as initiality of the

algebra. Let C be a category and F be an endofunctor from C to C.

De�nition 5 (F -algebra) An F -algebra is a pair (X;�), where X is an object in

C, called the carrier of the algebra, and � is a morphism from object F X to object

X denoted by � :: F X ! X, called the operation of the algebra. 2

De�nition 6 (F -homomorphism) Given F -algebras (X;�) and (Y;), the F ho-

momorphism from (X;�) to (Y;) is a morphism h from object X to object Y in

category C satisfying h � � = � F h. 2

De�nition 7 (Category of F -algebras) The category of F -algebras has as its ob-

jects the F -algebras and has as its morphisms all F -homomorphisms between F -

algebras. Composition in the category of F -algebra is taken from C, and so are

the identities. 2

It is known that an initial object in the category of F -algebras exists when F is

a polynomial functors[Mal90]. The representative for the initial algebra is denoted

by �F . Let (T; in

F

) = �F , �F de�nes a data type T with the data constructor

in

F

: F T ! T . Function out

F

: T ! F T is the inverse of in

F

and it destructs

its argument and is therefore called data destructor . To be concrete, consider the

data type of cons lists given by the following equation with elements of type A:

List A = Nil j Cons (A;List A):

It is categorically de�ned as the initial object of (List a; Nil

5

Cons)

1

in the category

of L

A

-algebras, where L

A

is the endofunctor de�ned by L

A

= !1 + !A � I (1 is

1

Strictly speaking, the Nil should be written as �():Nil. In this paper, the function with the

form of �():t will be simply denoted as t.

Deriving Structural Hylomorphisms From Recursive De�nitions 5

the terminal object in C). Here, the data constructor and the data destructor are

as follows.

in

L

A

= Nil

5

Cons

out

L

A

= �xs: case xs of Nil ! (1; ()); Cons (a; as)! (2; (a; as))

2.3 Hylomorphisms over data types

Hylomorphisms in triplet form[TM95] are de�ned as follows.

De�nition 8 (Hylomorphism in triplet form) Given morphisms � : GA ! A,

 : B ! F B and natural transformation � : F _!G, the hylomorphism [[�; �;]]

G;F

is de�ned as the the least morphism f : B ! A satisfying the following equation.

f = � � (� � F f) �

2

Hylomorphisms are powerful in description in that practically every recursion

of interest can be speci�ed by hylomorphisms[BdM94]. Hylomorphisms are quite

general in that many useful forms are their special cases as de�ned below. Note

that we sometimes omit the subscripts G and F when it is clear from the context.

De�nition 9 (Catamorphism, Anamorphism, Map)

Let (T

F

; in

F

) = �F , (T

G

; in

G

) = �G.

([])

F

: 8A: (F A! A)! T

F

! A

([�])

F

= [[�; id; out

F

]]

F;F

[()]

F

: 8A: (A! F A)! A! T

F

[()]

F

= [[in

F

; id;]]

F;F

h[]i

G;F

: (F _!G)! T

F

! T

G

h[�]i

G;F

= [[in

G

; �; out

F

]]

G;F

2

Catamorphisms ([]) are generalized foldr (or reduces) operators that substitute

the constructor of a data type with other operation of the same signature. Dually,

anamorphisms [()] are generalized unfold (or generations) operators. Maps h[]i

apply a natural transformation on the data structure. Maps can be represented as

both catamorphisms and anamorphisms based on the following Hylo Shift Theorem.

Theorem 1 (Hylo Shift)

[[�; �;]]

G;F

= [[� � �; id;]]

F;F

= [[�; id; � �]]

G;G

:

2

The Hylo Shift Theorem shows that some computations can be shifted within a

hylomorphism. For program fusion, hylomorphisms possess the general laws called

the Hylo Fusion Theorem.

Theorem 2 (Hylo Fusion)

Left Fusion Law: f � � = �

0

�Gf =) f � [[�; �;]]

G;F

= [[�

0

; �;]]

G;F

Right Fusion Law: � g = F g �

0

=) [[�; �;]]

G;F

� g = [[�; �;

0

]]

G;F

2

6 Technical Report METR 95-11

Decl ::= v = b (recursive) function de�nition

b ::= �v

s

: case t

0

of r de�nition body

v

s

::= v j (v

1

; � � � ; v

n

) argument

r ::= p

1

! t

1

; � � � ; p

n

! t

n

alternatives

t ::= v variable

j (t

1

; � � � ; t

n

) term tuple

j v t function application

j C t constructor application

p ::= C p pattern

j (p

1

; � � � ; p

n

) pattern tuple

j v variable

Fig. 1 The language for Recursive De�nitions

These laws are quite general in the sense the functions to be fused with, e.g.,

f and g in Theorem 2, can be any functions. If f and g are restricted to spe-

ci�c hylomorphisms, we could have the following simple but practical Acid Rain

Theorem[TM95].

Theorem 3 (Acid Rain)

Cata{Hylo Fusion Law:

� : 8A: (F A! A)! F

0

A! A

[[�; �

1

; out

F

]]

G;F

� [[�in

F

; �

2

;]]

F

0

;L

= [[�(� � �

1

); �

2

;]]

F

0

;L

Hylo{Ana Fusion Law:

� : 8A: (A! F A)! A! F

0

A

[[�; �

1

; �out

F

]]

G;F

0

� [[in

F

; �

2

;]]

F;L

= [[�; �

1

; �(�

2

�)]]

G;F

0

2

3 Language

To demonstrate our techniques, we use the language given in Fig. 1 for the de-

scription of recursive de�nitions. It is nothing special except that functions are

de�ned in an un-curried way. In order to simplify our presentation, we restrict

ourselves to single-recursive data types and functions without mutual recursions,

since the standard tupling technique can transform mutual recursive de�nitions to

non-mutual ones. We also assume that recursive function calls are not nested and

only occur in the terms of the alternatives in the de�nition body.

Several simple examples of recursive de�nitions are given below. The function

sum sums up all the elements in a list, the function upto generates a list of natural

numbers between two given numbers, and the function zip turns a pair of lists into

a list of pairs.

sum : List a! Int

sum = �xs: case xs of

Nil! 0;

Cons (a; as)! plus (a; sumas)

Deriving Structural Hylomorphisms From Recursive De�nitions 7

upto : Int� Int! List Int

upto = �(b; e): case b < e of

True! Nil;

False! Cons (b; upto (plus (b; 1); e))

zip : List A� List B ! List (A;B)

zip = �(xs; ys): case (xs; ys) of

(Nil;)! Nil;

(Cons (a; as); Nil)! Nil;

(Cons (a; as);Cons(b; bs))! Cons ((a; b); zip (as; bs))

Here plus is the function adding two integers. Next, let's consider de�nitions of

higher order functions, such as

map : (A! B)! List A! List B

map g = �xs: case xs of

Nil! Nil;

Cons (a; as)! Cons (g a;map g as)

which is not a valid de�nition in our language since the de�ned function map g

is not a variable. The simplest way to solve this problem is to consider map g

as a \packed" variable and to consider g as a global function. That is, the above

de�nition is considered something like

map g = �xs: case xs of

Nil! Nil;

Cons (a; as)! Cons (g a;map g as).

Viewed in this way, map g can be regarded as a valid de�nition. Below is another

similar example.

foldr1 : (B � C ! C)! List B ! C

foldr1 � = �xs: case xs of Nil! error;

Cons (a;Nil)! a;

Cons (a; as)! a� (foldr1 � as)

4 Expressing Recursions as Hylomorphisms

In this section, we propose an algorithm to turn recursive de�nitions into hylomor-

phisms. Consider the following typical recursive de�nition of function f .

f = �v

s

: case t

0

of p

1

! t

1

; � � � ; p

n

! t

n

If we can transform the right hand side to � � F f � , it soon follows that f =

[[�; id;]]

F;F

from the de�nition of hylomorphisms.

4.1 Main idea

The trick to do so is to turn each term t

i

(i = 1; � � � ; n) into g

i

t

0

i

, a suitable function

being applied to a new term. Put it in more detail, suppose that we have got that

t

i

= g

i

t

0

i

, the original de�nition becomes:

f = �v

s

: case t

0

of p

1

! g

1

t

0

1

; � � � ; p

n

! g

n

t

0

n

:

8 Technical Report METR 95-11

Extracting all g

i

's out and adding tag i to t

0

i

can give a compositional description

of f :

f = (g

1

5

� � �

5

g

n

) � (�v

s

: case t

0

of p

1

! (1; t

0

1

); � � � ; p

n

! (n; t

0

n

)):

If g

i

can be expressed as �

i

� F

i

f where F

i

is some functor, it soon follows that

g

1

5

� � �

5

g

n

= (�

1

5

� � �

5

�

n

) � (F

1

+ � � �+ F

n

) f:

Now replacing it in the above compositional description of f gives:

f = (�

1

5

� � �

5

�

n

)�(F

1

+� � �+F

n

) f�(�v

s

: case t

0

of p

1

! (1; t

0

1

); � � � ; p

n

! (n; t

0

n

)):

According to the de�nition of hylomorphisms, we have f = [[�; id;]]

F;F

, where

F = F

1

+ � � �+ F

n

� = �

1

5

� � �

5

�

n

 = �v

s

: case t

0

of p

1

! (1; t

0

1

); � � � ; p

n

! (n; t

0

n

):

The essential point of our algorithm is, therefore, to derive a function �

i

, a

functor F

i

and a new term t

0

i

from each term t

i

satisfying t

i

= (�

i

� F f) t

0

i

.

4.2 Deriving �

i

, F

i

and t

0

i

from t

i

Our algorithm to derive �

i

, F

i

and t

0

i

from t

i

is informally as follows.

1. Identify all the occurrences of recursive calls in t

i

, say they are f t

i

1

; � � � ; f t

i

l

i

;

2. Find all the free variables in t

i

bound in the de�nition except in t

i

1

; � � � t

i

l

i

,

say they are v

i

1

; � � � ; v

i

k

i

;

3. De�ne t

0

i

by tupling all the arguments of the recursive calls obtained in Step

1 and the free variables obtained in step 2, i.e. t

0

i

= (v

i

1

; � � � ; v

i

k

i

; t

i

1

; � � � ; t

i

l

i

):

4. De�ne F

i

according to the construction of t

0

i

by F

i

=!�(v

i

1

)� � � ��!�(v

i

k

i

)�

I

1

� � � � � I

l

i

, where I

1

= � � � = I

l

i

= I and � returns the type of the given

variable.

5. De�ne �

i

by abstracting all recursive function calls in t

i

by

�

i

= �(v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): t

i

[f t

i

1

7! v

0

i

1

; � � � ; f t

i

l

i

7! v

0

i

l

i

]

where v

0

i

1

; � � � ; v

0

i

l

i

are new variables used for replacing those occurrences of

recursive calls f t

i

1

; � � � ; f t

i

l

i

.

4.3 Algorithm for Deriving Hylomorphisms

The derivation algorithm described above is summarized in Fig. 2. The main algo-

rithm is A which turns a recursive de�nition into a hylomorphism. The algorithm

A calls the algorithm D to process each term t

i

returning a triple, i.e.,

(fv

i

1

; � � � ; v

i

k

i

g; f(v

0

i

1

; f t

i

1

); � � � ; (v

0

i

l

i

; f t

i

l

i

)g; t

i

[f t

i

1

7! v

0

i

1

; � � � ; f t

i

l

i

7! v

0

i

l

i

]) = D[j[t

i

]]j:

The algorithm D actually implements most of the algorithm in Section 4.2. It is

worth noting that every time an occurrence of recursive call is found, a fresh variable

is allocated for the replacement. The algorithm A is correct and guaranteed to

terminate with a successful hylomorphism as result.

Deriving Structural Hylomorphisms From Recursive De�nitions 9

A[j[f = �vs:case t

0

of p

1

! t

1

; � � � ; p

n

! t

n

]]j = (f = [[�

1

5

� � �

5

�

n

; id;]]

F;F

)

where F = F

1

+ � � �+ F

n

F

i

= !1; if k

i

= l

i

= 0

= !(�(v

i

1

))� � � � �!(�(v

i

k

i

))� I

1

� � � � � I

l

i

; (I

1

= � � � = I

l

i

= I), otherwise

�

i

= � (v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): t

00

i

 = �vs:case t

0

of p

1

! (1; t

0

1

); � � � ; p

n

! (n; t

0

n

)

t

0

i

= (v

i

1

; � � � ; v

i

k

i

; t

i

1

; � � � ; t

i

l

i

)

where

(fv

i

1

; � � � ; v

i

k

i

g; f(v

0

i

1

; f t

i

1

); � � � ; (v

0

i

l

i

; f t

i

l

i

)g; t

00

i

) = D[j[t

i

]]j; (i = 1; � � � ; n)

�(v) = return v's type

D[j[v]]j = if v is a global variable then (fg; fg; v) else (fvg; fg; v)

D[j[(t

1

; � � � ; t

n

)]]j= (s

1

[� � � [s

n

; c

1

[� � � [c

n

; (t

0

1

; � � � ; t

0

n

))

where (s

i

; c

i

; t

0

i

) = D[j[t

i

]]j; i = 1; � � � ; n

D[j[v t]]j = if v = f then (f g; f(u; f t)g; u) else (s

v

[s

t

; c

v

[c

t

; t

v

t

t

)

where (s

v

; c

v

; t

v

) = D[j[v]]j, (s

t

; c

t

; t

t

) = D[j[t]]j

u is a fresh variable

D[j[C t]]j = (s; c;C t

0

) where (s; c; t

0

) = D[j[t]]j

Fig. 2 Algorithm for Deriving Hylomorphisms

Theorem 4 The algorithm A is correct.

Proof: First, [[�

1

5

� � �

5

�

n

; id;]]

F;F

is a correct de�nition of hylomorphism

because (1) F is a polynomial functor; (2) � has the type of F T

o

! T

o

and has

the type of T

i

! F T

i

, as easily veri�ed, where T

i

and T

o

denote f 's input type and

output type respectively; (3) id is a natural transformation from F to F .

Next, we argue that f = [[�

1

5

� � �

5

�

n

; id;]]

F;F

by the following calculation.

f = [[�

1

5

� � �

5

�

n

; id;]]

F;F

� f De�nition of hylomorphism g

f = �

1

5

� � �

5

�

n

� id � F f �

� f De�nition of and F g

f = �

1

5

� � �

5

�

n

� (F

1

+ � � �+ F

n

) f�

(�vs:case t

0

of p

1

! (1; t

0

1

); � � � ; p

n

! (n; t

0

n

))

� f Promote function into case expression g

f = �v

s

:case t

0

of p

1

! (�

1

� F

1

f) t

0

1

; � � � ; p

n

! (�

n

� F

n

f) t

0

n

� f De�nition of t

0

i

's g

f = �v

s

:case t

0

of

p

1

! (�

1

� F

1

f) (v

1

1

; � � � ; v

1

k

1

; t

1

1

; � � � ; t

1

l

1

);

� � � ;

p

n

! (�

n

� F

n

f) (v

n

1

; � � � ; v

n

k

n

; t

n

1

; � � � ; t

n

l

n

)

� f De�nition of F

i

and �

i

g

f = �v

s

:case t

0

of

p

1

! (�(v

1

1

; � � � ; v

1

k

1

; v

0

1

1

; � � � ; v

0

1

l

1

): t

00

1

) (v

1

1

; � � � ; v

1

k

1

; f t

1

1

; � � � ; f t

1

l

1

);

� � � ;

p

n

! (�(v

n

1

; � � � ; v

n

k

n

; v

0

n

1

; � � � ; v

0

n

l

n

): t

00

n

) (v

n

1

; � � � ; v

n

k

n

; f t

n

1

; � � � ; f t

n

l

n

)

10 Technical Report METR 95-11

� f Simplication g

f = �v

s

:case t

0

of

p

1

! t

00

1

[v

0

1

1

7! f t

1

1

; � � � ; v

0

1

l

1

7! f t

1

l

1

];

� � � ;

p

n

! t

00

n

[v

0

n

1

7! f t

n

1

; � � � ; v

0

n

l

n

7! f t

n

l

n

]

� f Property of D algorithm g

f = �v

s

:case t

0

of p

1

! t

1

; � � � ; p

n

! t

n

2

4.4 Examples

To see the algorithm A in action, consider some examples de�ned in Section 3.

We begin by considering a quite simple de�nition of sum. In this case, we know

that t

1

= 0 and t

2

= plus (a; sumas). Applying D to t

1

and t

2

gives

D[j[0]]j = (fg; fg; 0)

D[j[plus (a; sumas)]]j = (fag; f(v

0

1

; sumas)g; plus (a; v

0

1

)):

It follows from A that

t

0

1

= (); �

1

= �(): 0 = 0

t

0

2

= (a; as); �

2

= �(a; v

0

1

): plus (a; v

0

1

)

and

 = �xs: case xs of Nil! (1; ()); Cons (a; as)! (2; (a; as)) = out

F

F = !1+ !Int� I

Therefore we derive the following hylomorphism for sum:

sum = [[0

5

�(a; v

0

1

): plus (a; v

0

1

); id; out

F

]]

F;F

:

The above hylomorphism is also catamorphism ([0

5

�(a; v

0

1

): plus (a; v

0

1

)])

F

.

Our second example is to deal with the recursive de�nition of foldr1 �. This

also appeared in [GLJ93] for the illustration of the limitation of their shortcut

deforestation algorithm because foldr1 � cannot be speci�ed as a catamorphism

(since it does not treat all Cons cells identically). With the algorithm A, we can

get the following hylomorphism.

foldr1 � = [[�; id;]]

F;F

where F = !1+ !B+ !B � I

� = �

1

5

�

2

5

�

3

where �

1

= error

�

2

= �a:a = id

�

3

= �(a; v

0

1

): (a� v

0

1

) = �

 = �xs: case xs of Nil! (1; ());

Cons (a;Nil)! (2; (a));

Cons (a; as)! (3; (a; as))

Section 6 will show how it helps removing more intermediate data structures than

[GLJ93].

Deriving Structural Hylomorphisms From Recursive De�nitions 11

Next we'd like to to show that our derivation algorithm does not restrict to

the recursive de�nitions inducting over a single parameter. Consider the recursive

de�nition of zip which inducts over multiple parameters. Applying algorithm A

will give the following hylomorphism.

zip = [[Nil

5

Nil

5

�(a; b; p):Cons((a; b); p); id;]]

F;F

where F = !1+ !1+ !A� !B � I

 = �(xs; ys): case (xs; ys) of

(Nil;)! (1; ());

(Cons (a; as); Nil)! (2; ());

(Cons (a; as);Cons(b; bs))! (3; (a; b; (as; bs)))

The advantage of this transformation is that zip now can be fused with other

functions by the Hylo Fusion Theorem. Compared with Fegaras's approach[FSZ94]

where some new fusion theorems were intentively developed, our algorithm makes

it unnecessary to obtain the same e�ect. More detail discussion can be found in

[HIT95].

Finally, we give some other examples.

map g = [[Nil

5

�(a; v

0

1

):Cons (g a; v

0

1

); id; out

L

A

]]

L

A

;L

A

upto = [[in

L

Int

; id;]]

L

Int

;L

Int

where

 = �(b; e): case b < e of

True! (1; ());

False! (2; (b; (plus (b; 1); e)))

5 Restructuring Hylomorphisms

Once a hylomorphism is got, it can be fused with other functions. But not all

hylomorphisms have good structures for program fusion to be e�ectively applied.

In this section, we show how to structure the given hylomorphism [[�; �;]]

G;F

by

arranging �, � and well inside it, so that it could be fused with other functions

e�ectively by the two fusion theorems, namely the Hylo Fusion and the Acid Rain

Theorems.

5.1 Suitable Hylomorphisms for Hylo Fusion Theorem

The e�ective use of the Hylo Fusion Theorem requires that � () in a hylomorphism

[[�; �;]]

G;F

contain as much computation as possible for the Left (Right) Fusion

Law. As an example, consider the following program foo, where N represents the

type of natural numbers with two constructors Zero and Succ.

foo : List N ! List N

foo = h � [[in

L

N

; id; (id+ Succ� id) � out

L

N

]]

L

N

;L

N

h = �xs: case xs of

Nil! Nil;

Cons (Zero;Nil)! Nil;

Cons (Zero;Cons (x

0

; xs

0

))! Cons (Succ x

0

; h xs

0

);

Cons (Succ x

0

; xs

0

)! Cons (Succ x

0

; h xs

0

)

12 Technical Report METR 95-11

To fuse foo by the Left Fusion Law, we have to derive �

0

from the equation h �

in

L

N

= �

0

�L

N

h. But such �

0

cannot be derived because of the lack of information

in in

L

N

. To solve this problem, we shift some computations to in

L

N

and get the

following program:

foo = h � [[in

L

N

� (id+ Succ� id); id; out

L

N

]]

L

N

;L

N

:

Because of the knowledge that the value of Succ x cannot be Zero and thus the

second and third branchs of the case expression in h cannot be taken, we can derive

that �

0

= Nil

5

(Cons � (Succ� id)) and have foo = [[�

0

; id; out

L

N

]]

L

N

;L

N

.

Similar cases might happen to the Right Fusion Law.

5.2 Suitable Hylomorphisms for Acid Rain Theorem

The Acid Rain Theorem expects that � and in the hylomorphism [[�; �;]]

G;F

:

A! B to be described as � in

F

B

and � out

F

A

respectively. Here, � and � are poly-

morphic functions and F

A

and F

B

are functors de�ning types A and B respectively.

Our Laws for deriving such � and � are as follows.

Theorem 5 (Deriving Polymorphic Function) Under the above conditions, � and

� are de�ned by the following two laws.

8�: ([�])

F

B

� � = �

0

�G ([�])

F

B

� = ��: �

0

8�: � [(�)]

F

A

= F [(�)]

F

A

�

0

� = ��:

0

Proof sketch: We only show the correctness of the above law for de�ning � .

(1) � has the type of 8A: (F

B

A ! A) ! GA ! A as required because � is

de�ned for all � : F

B

A! A with any A;

(2) We prove that � = � in

F

B

by the following calculation.

� = � in

F

B

� f De�nition of � g

� = �

0

[� 7! in

F

B

]

� f Since ([in

F

B

])

F

B

= id and Gid = id g

([in

F

B

])

F

B

� � = �

0

[� 7! in

F

B

] �G ([in

F

B

])

F

B

(f Assumption g

8�: ([�])

F

B

� � = �

0

�G ([�])

F

B

2

Because in using the Acid Rain Theorem we have to derive �

0

(

0

) from � ()

for any � (�), it is expected that � () is simple (contains few computations).

5.3 Algorithm for Structuring Hylomorphisms

Generally, the behavior of a hylomorphism [[�; �;]]

G;F

could be understood as

follows: generates a recursive structure, � operates on the elements of the

structure, and � manipulates on the recursive structure. It is possible for � and

Deriving Structural Hylomorphisms From Recursive De�nitions 13

to have the computation that � can do. They are said to have the least computation

if they do not have computation that � can do.

A hylomorphism [[�; �;]] is said to be structural if � and contain the least

computation. Structural hylomorphisms are �t for the two fusion theorems. For

the Acid Rain Theorem, it is �tful since � and are simple. For the Hylo Fusion

Theorem, since � () contain the least computation, it implies that � � (� � �)

contains the most computation and so [[�; id; � �]] ([[� � �; id;]]) is suitable for

the Right (Left) Fusion Law. In other words, once a structural hylomorphism is

got, we can \shift" the natural transformation (�) freely inside the hylomorphism

according to which Fusion Law is to be applied.

Our algorithm for structuring the given hylomorphism [[�; �;]]

G;F

is to shift

computations from � and into � by factorizing � to �

0

��

�

and to �

�

0

so that

�

0

and

0

contain the least computation, resulting in a structural hylomorphism

[[�

0

; �

�

� � � �

;

0

]]

G

0

;F

0

. In the following, we give the algorithm for factorizing � to

�

0

� �

�

, while omitting the dual discussion on .

Let � : GA! A be given as:

� = �

1

5

� � �

5

�

n

where G = G

1

+ � � � + G

n

and �

i

: G

i

A ! A. A typical �

i

, as in algorithm A, is

de�ned by:

�

i

= �(v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): t

i

The variables with type A are explicitly indicated with

0

attached and called re-

cursive variables.

In order to capture the computations in �

i

which can be done by a natural

transformation, we de�ne maximal non-recursive subterms as follows.

De�nition 10 (Maximal Non-Recursive Subterm) A term t

i

j

is said to be a non-

recursive subterm of t

i

if (1) t

i

j

is a subterm of t

i

; (2) t

i

j

does not include recursive

variables. A non-recursive subterm is said to be maximal if it is not a subterm of

other non-recursive subterms. 2

The essence of our algorithm is to factorize �

i

into �

0

i

� �

�

i

so that all the

maximal non-recursive subterms in t

i

are shifted into �

�

i

. Informally, the algorithm

for factorizing �

i

is as follows.

1. Find all the maximal non-recursive subterms in t

i

, say t

i

1

; :::; t

i

m

i

.

2. Let t

0

i

be the term from t

i

with each maximal non-recursive subterm t

i

j

be

replaced by a new variable u

i

j

, i.e., t

0

i

= t

i

[t

i

1

7! u

i

1

; � � � ; t

i

m

i

7! u

i

m

i

].

3. Factorize �

i

by extracting all the maximal non-recursive subterms out of t

i

as follows.

�

i

= �

0

i

� �

�

i

where �

0

i

= �(u

i

1

; � � � ; u

i

m

; v

0

i

1

; � � � ; v

0

i

l

i

): t

0

i

�

�

i

= �(v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): (t

i

1

; � � � ; t

i

m

i

; v

0

i

1

; � � � ; v

0

i

l

i

)

4. Factorize � by grouping the result of �

i

, i.e., � = (�

0

1

5

� � �

5

�

0

n

) � (�

�

1

+

� � �+ �

�

n

).

14 Technical Report METR 95-11

S[j[[[�

1

5

� � �

5

�

n

; �;]]

G;F

]]j = [[�

0

1

5

� � �

5

�

0

n

; (�

�

1

+ � � �+ �

�

n

) � �;]]

G

0

;F

where �

0

i

= �(u

i

1

; � � � ; u

i

m

; v

0

i

1

; � � � ; v

0

i

l

i

): t

0

i

�

�

i

= �(v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): (t

i

1

; � � � ; t

i

m

i

; v

0

i

1

; � � � ; v

0

i

l

i

)

G

0

= G

0

1

+ � � �+G

0

n

G

i

= !1; if m

i

= l

i

= 0

= !(�(u

i

1

))� � � � � !(�(u

i

m

i

))� I

1

� � � � � I

l

i

; (I

1

= � � � = I

l

i

= I), otherwise

where �(v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): t

i

= �

i

, (assume v

0

i

1

; � � � ; v

0

i

l

i

are recursive parameters)

(f(u

i

1

; t

i

1

); � � � ; (u

i

m

i

; t

i

m

i

)g; t

0

i

) = E [j[t

i

]]j fv

0

i

1

; � � � ; v

0

i

l

i

g

E [j[v]]j s

r

= if v 2 s

r

then (fg; v) else (f(u; v)g; u)

where u is a fresh variable

E [j[(t

1

; � � � ; t

n

)]]j s

r

= if 8i; Var

s

r

(t

i

) then (f(u; (t

1

; � � � ; t

n

))g; u) else (w

1

[� � � [w

n

; (t

0

1

; � � � ; t

0

n

))

where (w

i

; t

0

i

) = E [j[t

i

]]j s

r

(i = 1; � � � ; n); u is a fresh variable

E [j[C t]]j s

r

= if Var

s

r

(t

0

) then (f(u;C t)g; u) else (w;C t

0

)

where (w; t

0

) = E [j[t]]j s

r

; u is a fresh variable

E [j[v t]]j s

r

= if Var

s

r

(t

0

v

) ^ Var

s

r

(t

0

t

) then (f(u; v t)g; u) else (w

v

[w

t

; t

0

v

t

0

t

)

where (w

v

; t

0

v

) = E [j[v]]j s

r

; (w

t

; t

0

t

) = E [j[t]]j s

r

; u is a fresh variable

Var

s

r

(t) = t is a variable ^ t =2 s

r

Fig. 3 Algorithm for Structuring Hylomorphisms

The above algorithm is summarized in Fig. 3. The main transformation is S

which in turn calls transformation E to process every term t

i

for factorizing �

i

. Sim-

ilar to the algorithm in Fig. 2, a fresh variable is allocated every time a non-recursive

subterm is found. It will be discarded when the corresponding non-recursive sub-

term turns out to be non-maximal by the predicate V ar. The correctness of the

algorithm S is omitted, but it should be noted that �

0

1

5

� � �

5

�

0

n

: G

0

A! A and

�

�

1

+ � � �+ �

�

n

is natural transformation from G to G

0

.

Theorem 6 The �

�

1

+ � � �+ �

�

n

, derived in the algorithm S, is natural transforma-

tion from G to G

0

, i.e.,

�

�

1

+ � � �+ �

�

n

: G _!G

0

:

Proof: We prove it by the following calculation.

�

�

1

+ � � �+ �

�

n

: G _!G

0

� f De�nition of natural transformation g

8f: (�

�

1

+ � � �+ �

�

n

) �Gf = G

0

f � (�

�

1

+ � � �+ �

�

n

)

� f De�nitions of G and G

0

g

8f: �

�

1

�G

1

f + � � �+ �

�

n

�G

n

f = G

0

1

f � �

�

1

+ � � �+G

0

n

f � �

�

n

(f trivial g

8f: �

�

i

�G

i

f = G

0

i

f � �

�

i

; (i = 1; � � � ; n)

� f De�nitions of �

�

i

, G

i

and G

0

i

g

8f: �(v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): (t

i

1

; � � � ; t

i

m

i

; f v

0

i

1

; � � � ; f v

0

i

l

i

)

= �(v

i

1

; � � � ; v

i

k

i

; v

0

i

1

; � � � ; v

0

i

l

i

): (t

i

1

; � � � ; t

i

m

i

; f v

0

i

1

; � � � ; f v

0

i

l

i

); (i = 1; � � � ; n)

� f obvious g

True

2

Deriving Structural Hylomorphisms From Recursive De�nitions 15

5.4 Examples

Let's structure the following hylomorphism obtained in Section 4.4 where g : A!

B.

map g = [[Nil

5

�(a; v

0

1

):Cons (g a; v

0

1

); id; out

L

A

]]

L

A

;L

A

In this example, �

1

= �():Nil, and �

2

= �(a; v

0

1

):Cons (g a; v

0

1

). Here there is only

one maximal non-recursive subterm as underlined. Our algorithm will move out

the computation g a out of �

2

as

�

2

= �

0

2

� �

�

2

; where �

0

2

= �(u

2

1

; v

0

1

): Cons(u

2

1

; v

0

1

); �

�

2

= �(a; v

0

1

):(g a; v

0

1

)

and �nally give the following structural hylomorphism:

map g = [[Nil

5

�(u

2

1

; v

0

1

): Cons(u

2

1

; v

0

1

); id+ �(a; v

0

1

):(g a; v

0

1

); out

L

A

]]

L

B

;L

A

:

Moreover, with Theorem 5, we can get �

0

= � and � = id. So the above hylo-

morphism becomes [[in

L

B

; id+�(a; v

0

1

):(g a; v

0

1

); out

L

A

]]

L

B

;L

A

, a structural hylomor-

phism for the two fusion theorems.

6 Related Work and Discussions

It has been argued that programming with the use of generic control structures

which capture patterns of recursions in a uniform way is very signi�cant in program

transformation and optimization[GLJ93, MFP91, SF93, TM95]. Our work is much

related to these studies. In particular, our work was greatly motivated by Sheard

and Fegaras's work[SF93] and Takano and Meijer's[TM95].

Both of them, essentially, work with a language without general recursion but

containing hylomorphisms as basic components, advocating structural functional

programming. Sheard and Fegaras implemented a fusion algorithm called normal-

ization algorithm

2

based on the similar theorem like the Hylo Fusion Theorem.

Takano and Meijer generalized Gill, Launchbury and Peyton Jones's one-step fu-

sion algorithm relying on functions being written in a highly-stylized build-cata

forms[GLJ93] (i.e., catamorphisms with data constructors being parameterized),

and implemented another one-step fusion algorithm based on the Acid Rain The-

orem. All have made it clear that the fusion process is especially successful if the

recursive de�nitions are expressed in terms of hylomorphisms.

However, as argued by Launchbury and Sheard[LS95], although structural func-

tional programming contributes much to program transformation and optimization,

it is unrealistic in real functional programming. It is impractical to force program-

mers to de�ne their recursive de�nitions only in terms of the speci�c forms like

hylomorphisms, in which a lot of abstract categorical concepts are embedded.

To remedy this situation, Launchbury and Sheard[LS95] gave an algorithm to

turn recursive de�nitions into build-cata forms. The major problem still left is

2

Sheard and Fegaras's normalization algorithm �rst only worked with the language containing

folds (i.e., catamorphisms) as basic components. It has been extended to work with languages

containing so-called homomorphisms (i.e., hylomorphisms) in [KL94].

16 Technical Report METR 95-11

that many programs cannot be fused because some recursive de�nitions cannot be

speci�ed in build-cata forms. As an example, consider the program

foldr1 � � map g

which accepts a list Cons (x

1

; � � � ;Cons (x

n�1

;Cons(x

n

; Nil)) � � �) and returns g x

1

�

(� � � (g x

n�1

� g x

n

) � � �). Since foldr1 � is not a catamorphism (Section 4.4), the

algorithm in [LS95] will fail and leave the intermediate data structure produced

by map g remained. Our algorithm can solve this problem. With the results in

Sections 4.4 and 5.4, we have

[[error

5

id

5

�; id;]]

F;F

� [[in

L

B

; id+ �(a; v

0

1

):(g a; v

0

1

); out

L

A

]]

L

B

;L

A

;

and we can derive a polymorphic function

� = ��: (�

1

5

(�

2

� �

1

5

�

3

� (id� �

�1

� �

2

)) � dist) � L

A

� � �

from such that = �out

L

B

according to Theorem 5, where dist is a natural

transformation de�ned as follows.

dist : X � (Y + Z)! X � Y +X � Z

dist(x; (1; y)) = (1; (x; y))

dist(x; (2; z)) = (2; (x; y))

In the following, we demonstrate how the Ana-Hylo Fusion Law is applied to

eliminate the intermediate data structure in the program foldr1� � map g.

foldr1� � map g

= f Replace foldr1 � and map g with their hylomorphisms g

[[error

5

id

5

�; id; �out

L

B

]]

F;F

� [[in

L

B

; id+ g � id; out

L

A

]]

L

B

;L

A

= f Acid Rain Theorem (Hylo-Ana Fusion Law) g

[[error

5

id

5

�; id; �((id+ g � id) � out

L

A

)]]

F;F

Now we focus on the transformation of the third part in the above hylomor-

phism.

�((id+ g � id) � out

L

A

)

= f De�nition of �, let h = id+ g � id g

(�

1

5

(�

2

� �

1

5

�

3

� (id� (h � out

L

A

)

�1

� �

2

)) � dist) � L

A

(h � out

L

A

) � h � out

L

A

= f De�nition of L

A

, and h. g

(�

1

5

(�

2

� �

1

5

�

3

� (id� (h � out

L

A

)

�1

� �

2

)) � dist)

� (id+ (g � (h � out

L

A

))) � out

L

A

= f De�nition of L

A

g

(�

1

5

(�

2

� �

1

5

�

3

� (id� (h � out

L

A

)

�1

� �

2

)) � dist)

� (id+ g � h) � L

A

out

L

A

� out

L

A

= f De�nition of h g

(�

1

5

(�

2

� �

1

5

�

3

� (id� (h � out

L

A

)

�1

� �

2

)) � dist)

� (id+ g � (id+ g � id)) � L

A

out

L

A

� out

L

A

= f Move dist backwards g

(�

1

5

(�

2

� �

1

5

�

3

� (id� (h � out

L

A

)

�1

� �

2

)))

� (id+ dist � (g � (id+ g � id))) � L

A

out

L

A

� out

L

A

Deriving Structural Hylomorphisms From Recursive De�nitions 17

= f Transformation property of dist g

(�

1

5

(�

2

� �

1

5

�

3

� (id� (h � out

L

A

)

�1

� �

2

)))

� (id+ (g � id+ g � (g � id)) � dist) � L

A

out

L

A

� out

L

A

= f Since (f

5

g) � (p+ q) = f � p

5

g � q, out

�1

L

A

= in

L

A

g

(�

1

5

(�

2

� g � �

1

5

�

3

� (g � (in

L

A

� h

�1

� �

2

� (g � id)))) � dist) � L

A

out

L

A

� out

L

A

= f Since h

�1

� �

2

= �

2

� (g � id)

�1

g

(�

1

5

(�

2

� g � �

1

5

�

3

� (g � in

L

A

� �

2

)) � dist) � L

A

out

L

A

� out

L

A

It then derived the following hylomorphism:

[[error

5

id

5

�; id;

5

�

3

� (g � in

L

A

� �

2

)) � dist) � L

A

out

L

A

� out

L

A

]]

F;F

:

Inlining the above derived hylomorphism, named prg, would give the following

familiar program:

prg = �xs: case xs of

Nil! error;

Cons (a;Nil)! g a

Cons (a; as)! g a� prg as

where the intermediate data structure produced by map g no longer exists. Com-

pared with Launchbury and Sheard's algorithm, ours is more general and powerful.

Our work is also related to the discussion on the fusion of recursions inducting

over multiple data structures. Rather than introducing new fusion theorems as in

[FSZ94], we can handle it by turning them into hylomorphisms.

7 Conclusion

We have successfully given the algorithm to turn recursive de�nitions to structural

hylomorphisms in order to enable program fusion. Our algorithm is a two-stage

abstraction, abstracting recursive function calls to derive hylomorphisms and ab-

stracting maximal non-recursive subterms to structure hylomorphisms. A proto-

type of our algorithm has been implemented and tested extensively, showing its

promise to be embedded in a real system. Finally, our algorithm gives the evidence

that hylomorphisms can specify all recursions of interests as claimed in [BdM94].

Acknowledgement

This paper owes much to the thoughtful and helpful discussions with Akihiko

Takano. Thanks are also to Fer-Jan de Vries for reading the manuscript and making

a number of helpful suggestions.

18 Technical Report METR 95-11

References

[BdM94] R.S. Bird and O. de Moor. Relational program derivation and context-free

language recognition. In A.W. Roscoe, editor, A Classical Mind, pages 17{35.

Prentice Hall, 1994.

[Chi92] W. Chin. Safe fusion of functional expressions. In Proc. 1992 ACM Conference

on Lisp and Functional Programming, San Francisco, Ca., June 1992.

[Fok92] M. Fokkinga. Law and Order in Algorithmics. Ph.D thesis, Dept. INF, Univer-

sity of Twente, Netherlands, 1992.

[FSZ94] L. Fegaras, T. Sheard, and T. Zhou. Improving programs which recurse over

multiple inductive structures. In Proc. PEPM'94, June 1994.

[GLJ93] A. Gill, J. Launchbury, and S.P. Jones. A short cut to deforestation. In

Proc. Conference on Functional Programming Languages and Computer Archi-

tecture, pages 223{232, Copenhagen, June 1993.

[HIT95] Z. Hu, H. Iwasaki, and M. Takeichi. Making recursions manipulable by con-

structing medio-types. Technique report METR 95{04, Faculty of Engineering,

University of Tokyo, June 1995.

[KL94] R.B. Kieburtz and J. Lewis. Algebraic design language. Technical Report OGI,

Tech-report 94-002, Dept. of Computer Sceience and Engineering, Oregon Grad-

uate Institution of Science and Technology, 1994.

[LS95] J. Launchbury and T. Sheard. Warm fusion: Deriving build-catas from recursive

de�nitions. In Proc. Conference on Functional Programming Languages and

Computer Architecture, pages 314{323, La Jolla, California, June 1995.

[Mal90] G. Malcolm. Data structures and program transformation. Science of Computer

Programming, (14):255{279, August 1990.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with ba-

nanas, lenses, envelopes and barbed wire. In Proc. Conference on Functional

Programming Languages and Computer Architecture (LNCS 523), pages 124{

144, Cambridge, Massachusetts, August 1991.

[SF93] T. Sheard and L. Fegaras. A fold for all seasons. In Proc. Conference on

Functional Programming Languages and Computer Architecture, pages 233{242,

Copenhagen, June 1993.

[Tak87] M. Takeichi. Partial parametrization eliminates multiple traversals of data

structures. Acta Informatica, 24:57{77, 1987.

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In

Proc. Conference on Functional Programming Languages and Computer Archi-

tecture, pages 306{313, La Jolla, California, June 1995.

[Wad88] P. Wadler. Deforestation: Transforming programs to eliminate trees. In Proc. of

ESOP (LNCS 300), pages 344{358, 1988.

