YopB of *Yersinia enterocolitica* is Essential for YopE Translocation

Roland Nordfelth and Hans Wolf-Watz

Updated information and services can be found at:
http://iai.asm.org/content/69/5/3516

REFERENCES

These include:

This article cites 17 articles, 6 of which can be accessed free at:
http://iai.asm.org/content/69/5/3516#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
YopB of *Yersinia enterocolitica* Is Essential for YopE Translocation

ROLAND NORDFELTH AND HANS WOLF-WATZ*

Department of Cell and Molecular Biology, Umeå University, 901 87 Umeå, Sweden

Received 6 November 2000/Returned for modification 8 January 2001/Accepted 19 February 2001

A previous study has shown that YopB of *Yersinia* spp. is essential for translocation of Yop effectors across the eucaryotic plasma membrane (M.-P. Sory and G. R. Cornelis, Mol. Microbiol. 14:583–594, 1994). However, this role was recently challenged (V. T. Lee and O. Schneewind, Mol. Microbiol. 31:1619–1629, 1999). Using protease protection and digitonin extraction, we reconfirm that YopB of *Yersinia enterocolitica* is essential for the translocation of YopE into HeLa cell monolayers.

Human pathogenic yersiniae cause disease by utilizing adherence to, type III-machinery-mediated secretion in, and translocation of numerous antihost Yop effector proteins into target cells. A subset of genes located on a common virulence plasmid of *Yersinia* spp. encode a type III delivery apparatus that is essential for the translocation of these effectors across the eucaryotic plasma membrane (5). Specifically, YopB, YopD, and LcrV are essential for this process (1, 6, 8, 9, 14, 16). In contrast, however, a recent publication by Lee and Schneewind (12) suggests that YopB is dispensable for the translocation of Yop effectors, such as YopE, into the eucaryotic cell.

To reconcile this obvious discrepancy, in this study we have used the *Yersinia enterocolitica* strains W22703 (wild type) and MC4 (yopB1; insertion of a stop codon after amino acid 8), kindly provided by O. Schneewind, to show that YopB is essential for Yop effector translocation. In particular, the pool of YopE extracted with digitonin from HeLa cells infected with a yopB mutant was degraded if cultures were treated with proteinase K (PK) prior to extraction. However, a protease-resistant YopE fraction was recovered from cell monolayers in the absence of PK treatment, infection of HeLa cells with the wild-type strain or the yopB1 mutant at a multiplicity of infection (MOI) of 10 (Fig. 1A). These results suggest that the YopE detected after protease treatment followed by SDS lysis of a yopB mutant at a multiplicity of infection of 10.

Following incubation at 37°C for 3 h, the HeLa cells were washed twice with PBS to remove the cell culture medium and nonadherent bacteria. To some of the monolayers, 500 μl of PE (500 μg/ml in PBS) was added. The PK solution was removed after 30 s to leave only a thin film of liquid on the cells. After 20 min at room temperature, 500 μl of freshly prepared phenylmethylsulfonyl fluoride (4 μM in PBS) was added to all monolayers to block protease activity. HeLa cells were lysed by addition of 400 μl of digitonin (1% in PBS) or 400 μl of sodium dodecyl sulfate (SDS) (1% in PBS), cells were collected into Eppendorf tubes, and the incubation was continued at room temperature for 20 min, with occasional vortexing. Cell debris and attached bacteria were removed from the lysate by centrifugation for 10 min at 4°C. The resulting supernatant (~1.1 ml) was collected and mixed with an equal volume of 2× SDS sample buffer. Aliquots corresponding to approximately 6×10^6 infected HeLa cells were analysed by SDS-polyacrylamide gel electrophoresis and Western blotting using antisera raised against YopE or its intrabacterial chaperone SycE.

In the absence of PK treatment, infection of HeLa cells with either the wild-type strain or the yopB1 mutant of *Y. enterocolitica* resulted in digitonin extracts containing large amounts of YopE (Fig. 1A). Moreover, if the infected cells were first treated with PK and then lysed with SDS, large amounts of YopE were recovered regardless of the strain (Fig. 1A). These results are in agreement with the results presented by Lee and Schneewind (12) (Fig. 1A). In contrast, if the infected monolayers were treated with PK prior to digitonin lysis, a reduction in the level of YopE was found after infection with the wild type. Thus, this fraction of YopE was protected from PK activity presumably due to its cytosolic location within HeLa cells. However, after PK treatment of HeLa cells infected with the yopB1 mutant, no YopE could be recovered (Fig. 1A). In this case, YopE was likely of extracellular origin and therefore proteolytically sensitive. All lysates were, in addition, analyzed for the presence of intrabacterial SycE (17). Significantly, this chaperone was detected only after extraction with SDS (Fig. 1B). These results suggest that the YopE detected after protease treatment followed by SDS lysis of a yopB1 mutant originates from an intrabacterial pool and not from the HeLa cell cytosol.

To determine the fate of the intrabacterial YopE pool in vitro upon digitonin or SDS treatment, we incubated bacteria,
grown without HeLa cells, with the detergents. The wild-type and the \(yopB1\) mutant strains were incubated with MEM plus 10\% hi-FCS and cytochalasin D in tissue culture dishes in the absence of HeLa cells. After 4 h at 37°C, the bacteria were pelleted and resuspended in 500 \(\mu\)l of PBS, to which 500 \(\mu\)l of either 1\% digitonin or 1\% SDS was added. Digitonin-prepared soluble lysates, recovered from both the wild-type and \(yopB1\) bacteria, contained only trace amounts of YopE. In contrast, when the bacteria were extracted with SDS, YopE was abundant in lysates from both the wild type and the \(yopB\) mutant (Fig. 2A). This result was not surprising since SDS is routinely used to lyse gram-negative bacteria (11). Total bacterial lysis by SDS was confirmed, since SycE was also detected in the SDS lysates (Fig. 2B). The amounts of YopE or SycE found in bacteria lysed with 1\% SDS for 20 min were equal to amounts detected in bacteria boiled in SDS sample buffer (data not shown). This indicates that 1\% SDS was enough to completely solubilize the bacteria. Importantly, digitonin treatment did not release any soluble SycE (Fig. 2B). Taken together, these results show that the \(yopB1\) mutant still secretes YopE during a HeLa cell infection but, importantly, that it is unable to translocate YopE. Thus, it can be concluded that YopB is an essential component of the Yop translocation machinery. In conclusion, protease protection in combination with SDS lysis (as performed in studies reported in references 2 to 4 and 11 to 13) is a technique unsuitable for determination of the subcellular localization of translocated proteins, since this detergent leads to bacterial lysis. In addition, proteins recovered from digitonin extracts cannot automatically be considered to be derived from the eukaryotic cytosol, since they can originate equally well from the bacterial cell surface and the space between the bacterium and the eucaryotic cell. Our results show that experiments using digitonin extraction without prior protease treatment to remove protein, secreted but not translocated, are inconclusive and may be misleading. Therefore, no reliable conclusions can be made about type III-machinery-mediated protein translocation based on experiments using digitonin only (see references 2 to 4 and 11 to 13).

We acknowledge M. Frances for critically reading the manuscript. This work was supported by grants from the Swedish Foundation for Strategic Research and from the Swedish Medical Research Council.

REFERENCES

Editor: B. B. Finlay