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ABSTRACTGame sites on theWorldWideWeb draw people from aroundthe world with speialized interests, skills, and knowledge.Data from the games often reets the players' expertise andwill to win. We extrat probabilisti foreasts from data ob-tained from three online games: the Hollywood Stok Ex-hange (HSX), the Foresight Exhange (FX), and the For-mula One Pik Six (F1P6) ompetition. We �nd that allthree yield aurate foreasts of unertain future events. Inpartiular, pries of so-alled \movie stoks" on HSX aregood indiators of atual box oÆe returns. Pries of HSXseurities in Osar, Emmy, and Grammy awards orrelatewell with observed frequenies of winning. FX pries arereliable indiators of future developments in siene andtehnology. Colletive preditions from players in the F1ompetition serve as good foreasts of true rae outomes.In some ases, foreasts indued from game data are morereliable than expert opinions. We argue that web gamesnaturally attrat well-informed and well-motivated players,and thus o�er a valuable and oft-overlooked soure of high-quality data with signi�ant preditive value.
Categories and Subject DescriptorsH.2.8 [Database Management℄: Database Appliations|data mining ; H.3.5 [Information Storage and Retrieval℄:Online Information Systems|web-based servies; J.4 [Com-puter Appliations℄: Soial and Behavioral Sienes|eonomis; K.8 [Computing Milieux℄: Personal Comput-ing|games�This work onduted while visiting the NEC Researh In-stitute.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD 2001 San Francisco, CA USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

KeywordsColletive probabilisti foreasts, World Wide Web games,data mining, knowledge disovery, arti�ial markets, Hol-lywood Stok Exhange, Foresight Exhange, Formula OnePik Six Competition
1. INTRODUCTIONMultiplayer games on the World Wide Web are growingin prevalene and popularity, fueled in part by low operatingosts and global reah. Game players tend to be more knowl-edgeable and enthusiasti about their game's topi than thepubli at large. For example, the Hollywood Stok Exhange(HSX), a play-money market where traders bet on the fu-ture suess of movies and stars, draws heavily from among�lm a�ionados. In this paper, we investigate the use ofsuh online games as topi-foused soures of data with rel-atively high signal-to-noise ratios, as ompared to the webas a whole.Setion 2 disusses bakground and related work in ex-ploiting olletive knowledge to generate foreasts. Setion 3desribes the three games under study. Setions 4 and 5 eval-uate the olletive ompetene of HSX players in preditingbox oÆe results and entertainment award outomes, re-spetively. In both ases, we �nd that HSX foreasts are asaurate or more aurate than expert judgments. Setion 6shows that pries on the Foresight Exhange (FX) orre-late strongly with observed outome frequenies for eventsof broad sienti� and soietal interest. Setion 7 examinesthe Formula One Pik Six (F1P6) ompetition, showing thata simple weighting of partiipants' preditions seems as re-liable or more reliable than even the oÆial rae odds. Se-tion 8 disusses the more general prospets of mining dataand extrating knowledge from a variety of online games andrelated soures.
2. COLLECTIVE FORECASTSFor deades, and aross many disiplines, sientists haveinvestigated ombining foreasts frommultiple soures. Gen-est and Zidek [15℄ and Frenh [13℄ survey the extensive lit-erature on ombining probability assessments from multipleexperts. Clemen [3℄ reviews the equally large (and related)body of work on ombining foreasts; most studies onlude



that olletive foreasts are indeed more aurate than indi-vidual ones. Some of today's best mahine learning methodsare so-alled ensemble algorithms that ombine lassi�a-tions from multiple learners to yield more robust lassi�a-tions [7℄. Collaborative �ltering algorithms or reommendersystems leverage ommunity information about many peo-ple's preferenes in order to reommend items of interest(e.g., movies or books) to individuals [29℄.Markets an also be thought of as ombination devies.Pries reet information distributed among many traders,eah with diret monetary inentives to at on any pertinentinformation. Informative pries often translate diretly intoaurate foreasts of future events. For example, pries of�nanial options are good probability assessments of the fu-ture pries of the underlying assets [31℄; pries in politialstok markets, like the Iowa Eletroni Market (IEM),1 anfurnish better estimates of likely eletion outomes than tra-ditional polls [11, 12℄; odds in horse raes, determined solelyby how muh is bet on whih horses, math very loselywith the horses' atual frequenies of winning [1, 30, 32, 33,35℄; and point-spread betting markets yield unbiased pre-ditions of sporting event outomes [14℄. Several studiesdemonstrate that, in a laboratory setting, markets are oftenable to aggregate information optimally [10, 25, 26, 27℄.In a game without monetary rewards, inentives to revealinformation presumably derive from entertainment value,eduational value, bragging rights, and/or other intangiblesoures. Our reent investigations [22, 23℄ onlude thateven market games show signs of olletive ompetene. Forexample, arbitrage opportunities on HSX (i.e., loopholesthat allow traders to earn a sure pro�t without risk) tendto disappear over time, just as they do in real markets. Se-tions 4, 5, and 6 show that intangible rewards seem suÆ-ient to drive foreast auray in market games. Setion 7presents evidene that, even without the \arrot" of mone-tary ompensation, F1P6 players are motivated enough togenerate very aurate olletive preditions of Formula Oneraing outomes.
3. THE GAMES

3.1 The Hollywood Stock ExchangeThe Hollywood Stok Exhange (HSX)2 is a popular on-line market game, with approximately 400,000 registered a-ounts. New aounts begin with H$ two million in \Holly-wood dollars". Partiipants an buy and sell movie stoks,star bonds, movie options, and award options. The ur-rent top portfolio is worth just over H$1 billion. High rank-ing portfolios are atually sold at aution on Ebay3 for realmoney on a regular basis. Based on these sales, the \ex-hange rate" seems to be approximately H$1 million to US$1,with the rate inreasing for higher ranked portfolios. HSXis beginning to o�er new investment opportunities bakedwith real money. For example, HSX investors ould pur-hase shares in the movie Amerian Psyho for H$1 mil-lion eah; these shares paid o� about US$1 for every US$5million of the movie's box oÆe proeeds. HSX ofounder1http://www.biz.uiowa.edu/iem/. Other eletion marketshave opened in Canada (http://esm.ub.a/) and Austria(http://ebweb.tuwien.a.at/apsm/).2http://www.hsx.om/3http://www.ebay.om/

Max Keiser hosts a weekly radio broadast in Los Angeles,and appears regularly on NBC's Aess Hollywood to dis-uss HSX information. HSX also sponsors a booth at theSundane Film Festival, and holds an annual Osar partyin Hollywood. Media reports suggest that HSX pries aretaken seriously by some Hollywood insiders.Although the urrent prie of any HSX movie stok isbased on the olletive whims of HSX traders, the valueof the stok is ultimately grounded in the orrespondingmovie's performane at the box oÆe. Spei�ally, afterthe movie has spent four weeks in release, the stok delistsand ashes out: shareholders reeive H$1 per share for everyUS$1 million that the movie has grossed up to that pointin the US domesti market, as reported by ACNielsen EDI,In.4 Traders buy (resp., short sell) stoks that they believeunderestimate (overestimate) the movie's eventual perfor-mane. The urrent prie, then, is a olletive foreast ofthe movie's four-week box oÆe returns.5The pries of some stoks adjust after their �rst weekendin wide, national release. On Friday, trading in the stokis halted; on Sunday, the prie adjusts to H$2.9 times themovie's weekend box oÆe numbers (in US$ millions).6 Inthis ase, the stok's prie prior to wide release is the HSXtraders' foreast of 2.9 times the movie's opening weekendproeeds. The 2.9 fator is meant to projet the movie'sfour week total based on its opening weekend results.Oasionally, HSX o�ers \award options" assoiated withpartiular entertainment awards eremonies|for example,the 72nd Annual Aademy Awards, or Osars, sponsoredby the Aademy of Motion Piture Arts and Sienes in2000. Five options, orresponding to the �ve award nomi-nees, are available within eah award ategory (for example,Osar award options were available for eah of the eightmajor Osar ategories of best piture, best ator, best a-tress, best supporting ator, best supporting atress, bestdiretor, best original sreenplay, and best adapted sreen-play). Within eah ategory, the winning option ashes outat H$25, and the other four ash out at H$0. Before awardsare announed, an option's prie an be interpreted as itsestimated likelihood of winning. For example, when KevinSpaey's prie was twie that of Denzel Washington, theonsensus of HSX opinions was that Spaey was roughlytwie as likely to win as Washington. By normalizing prieswithin eah ategory, likelihoods an be onverted into prob-abilities.
3.2 The Foresight ExchangeHanson [17, 18℄ proposes what he alls an Idea Futuresmarket, where partiipants trade in seurities that pay o�ontingent on future developments in siene, tehnology,or other arenas of publi interest. For example, a seuritymight pay o� US$1 if and only if a ure for aner is disov-ered by a ertain date. He argues that the reward strutureof suh a market enourages honest revelation of opinionsamong sientists, yielding more aurate foreasts for useby funding agenies, publi poliy leaders, the media, and4http://www.entdata.om/5Although ash holdings do arue interest on HSX, all anal-yses in this paper ignore any time value of Hollywood dol-lars.6Movies released on holiday weekends, and movies with sub-stantial box oÆe reeipts prior to wide release, may adjustdi�erently.



other interested parties. The onept is operational as a webgame alled the Foresight Exhange (FX).7 There are ur-rently on the order of 3000 registered partiipants and 200ative laims. Players start with an initial amount of \FXbuks" and reeive an allowane every week, up to a ertainmaximum. Partiipants an buy and sell existing laims,or submit their own laims. Eah laim is assigned a judgeto arbitrate ambiguous wording, and to ultimately deter-mine whether the laim is true or not on the judgment date.Claims range from tehnial (e.g., FX$1 if and only if analgorithm for three satis�ability is developed with a parti-ular runtime omplexity by the year 2020) to soiopolitial(e.g., FX$1 if and only if Japan possesses nulear missiles by2020) to irreverent (e.g, FX$1 if and only if Madonna namesher �rst hild Jesus). The developers of the site intend forthe pries of these laims to be interpreted as assessmentsof the probabilities of the various events.
3.3 The Formula One Pick Six CompetitionFormula One (F1) is one of the prime international raear ompetitions. Drivers ompete in approximately 16 raesduring a season, aumulating points aording to how wellthey plae within eah rae. The sport draws a large andavid following, espeially in Europe. Betting on the sportis also quite popular. A variety of bookmakers, both onlineand o�, support bets on the outomes of individual F1 raesand on the results of an entire season. Media overage of thesport is fairly extensive, inluding a variety of informativewebsites (e.g., http://www.motorsport.om/).Formula One Pik Six (F1P6) is an email- and web-basedompetition for prediting F1 outomes.8 The game hasbeen in existene for a number of years, and urrently hasseveral thousand registered partiipants. No monetary re-ward is assoiated with the F1P6 ompetition. The goal isto orretly foreast the top six drivers of eah rae. Par-tiipants reeive a sore based one how well their ranking ofdrivers mathes the atual result. For eah orret driver-plae predition, they reeive 10 points. For eah driverpredition that is one plae o�, they reeive 6 points. Foreah driver predition that is 2, 3, 4, or 5 plaes o�, theyreeive 4, 3, 2, or 1 points, respetively. Drivers that �nishin seventh plae and below are disregarded. Wasserman [34℄desribes statistial analyses of the �rst three years (1994-1996) of the ompetition.
4. BOX OFFICE FORECASTS: HSX MOVIE

STOCKSIn this setion, we evaluate HSX movie box oÆe foreastsaording to several error metris. We also investigate thebene�t of augmenting game data with outside informationto boost predition quality.Reall that, before a movie's opening weekend, its prieon HSX is an estimate of 2.9 times its weekend proeeds. Weolleted the halt pries sh (Friday morning's pries) and ad-just pries sa (2.9 times the atual return) from HSX for 50movies opening during the period Marh 3, 2000 to Septem-ber 1, 2000. Figure 1 plots the atual box oÆe returnsa=2:9 versus the HSX estimate sh=2:9 for eah movie. Wemeasure auray of the foreasts aording to four metris:7http://www.ideafutures.om/8http://www.motorsport.om/ompete/p6/
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5. ENTERTAINMENT AWARD FORECASTS:

HSX AWARD OPTIONSIn the 2000 HSX Osar options market, as it turns out,eah nominee with the highest �nal prie in its ategorydid indeed win an Osar. The Wall Street Journal, amidontroversy, published a poll of atual Aademy voters daysbefore the Osar awards eremony; their report orretlyforeasted only seven out of eight winners.Beyond prediting the most likely winner, we investigatehow aurately HSX award option pries reet all likeli-hoods of winning. For example, if pries are aurate, thenamong all options with a normalized prie of H$0.1, aboutone in ten should end up winning. Our auray analysis issimilar to that onduted for horse raes [1, 30, 32, 33, 35℄and other sports betting markets involving real money. Weolleted pries of award options assoiated with the 2000Osars, Grammies, and Emmies, for a total of 135 options.Grammy options (nine ategories) and Emmy options (tenategories) funtioned exatly as Osar options, though win-ning Grammy options paid out H$42 instead of H$25.Pries were reorded just before the markets losed, andbefore winners were announed. We sorted the options byprie, and grouped them into six bukets. We plaed thesame number of options (16) in every buket, under theonstraint that every buket inlude at least one winningoption. We omputed the average normalized prie of op-tions within eah buket, and the observed frequeny withineah buket, or the number of winning options divided bythe number of options. Figure 5 plots eah buket's observedfrequeny versus its average normalized prie. If we modeloptions as independent Bernoulli trials, then, in the limit as

the number of options goes to in�nity, ompletely auratepries would imply that buket points fall on the line y = x,where observed frequeny equals prie. Error bars display95% on�dene intervals under the independent Bernoullitrials assumption. Spei�ally, the lower error bound is the0.025 quantile of a Beta distribution orresponding to theobserved number of suesses (wins) and trials in the buket,and the upper error bound is the 0.975 quantile. The Betadistribution is the orret posterior distribution over fre-queny, assuming a uniform prior.11 The length of an errorbar dereases as the number of options in the buket in-reases. The independene assumption is an idealization,sine options within a single award ategory are atuallymutually exlusive. The loseness of �t to the line y = xan be onsidered a measure of the auray of HSX pries.We ompare HSX pries of Osar options to reported like-lihood assessments from �ve olumnists at the HollywoodStok Brokerage and Resoure (HSBR),12 a fansite of HSX.We use the logarithmi soring rule to rate the market andthe olumnists. The logarithmi sore is a proper soringrule [36℄, and is an aepted method of evaluating proba-bility assessors. When experts are rewarded aording to aproper sore, they an maximize their expeted return byreporting their probabilities truthfully. Additionally, moreaurate experts an expet to earn a higher average sorethan less ompetent experts. Sores are omputed sepa-rately within eah award ategory, then averaged. Indexthe �ve nominees in a ategory i = 1; 2; : : : ; 5. Let wi = 1 ifand only if the ith nominee wins, and wi = 0 otherwise. letp1; p2; : : : ; p5 be the market's or olumnist's reported prob-abilities for the �ve nominees. Then the assessor's sore forthe urrent ategory is ln �P5i=1 wipi�. Expert assessmentswere reported on February 18, 2000. Table 2 gives the av-erage sores for the HSX market, the �ve olumnists, andthe onsensus of the olumnists. Higher sores are better,with 0 the maximum and negative in�nity the minimum.Only one of the �ve experts sored appreiably better thanthe market on February 18. HSX's sore inreased almostontinuously from the market's open on February 15 to themarket's lose on Marh 26. By February 19, the market'ssore had surpassed all of the sores for all �ve experts andfor their onsensus.
6. SCIENCE AND TECHNOLOGY FORE-

CASTS: THE FORESIGHT EXCHANGELike HSX award options, FX pries onstitute olletiveprobability assessments of future events. To determine howaurate these assessment are, we olleted historial prieinformation for all retired (ompleted) laims as of Septem-ber 8, 2000. Of these, we retained only the 172 that werebinary (i.e., paid o� if and only if some true-or-false eventourred). We reorded the prie of eah laim 30 days be-fore it expired. A total of 161 laims were ative for at least30 days, and thus quali�ed for this data set. We sortedthe laims by their 30-day-before-expiration prie, groupedthem into six bukets of size 17 (under the onstraint thatevery buket ontain at least one winning laim), and om-11Note that the expetation of the Beta distribution, s+1=n+2, does not oinide preisely with the observed frequeny,s=n, where s is the number of suesses and n the numberof trials. However, as n grows, the two measures onverge.12http://www.hsbr.net/



Table 2: Auray of HSX Osar foreasts andHSBR olumnists' foreasts, evaluated aording toaverage logarithmi sore. Higher (less negative)sores are better.foreast soure avg log soreFeb 18 HSX pries -1.08Feb 19 HSX pries -0.854Tom -1.08Jen -1.25John -1.22Fielding -1.04DPRoberts -0.874olumnist onsensus -1.05
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7. FORMULA ONE FORECASTS: F1P6The reward struture in the F1P6 ompetition is quite dif-ferent than in HSX, FX, or the F1 betting market. Corretlyprediting an improbable event yields no more points thanorretly prediting a likely event. One might expet thatompetitors would onsistently hoose the six most probablewinners. But this strategy may not always be optimal. Byhoosing only the best drivers, a partiipant is not likely todi�erentiate himself or herself from the pak (unless every-one reasons this way). For example, Kaplan and Garstka[19℄ show that, under some onditions, piking the top seedsin an NCAA basketball tournament pool does not alwaysmaximize the hanes of winning. Moreover, when no moneyis involved, a player may not gain muh sense of aomplish-
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We tested only four soring rules among a lass of sixdimensional weighted averaging rules, in part to avoid over-�tting our limited data. With more training and test data,learning the vetor of weights, or learning other funtionalmappings from F1P6 votes to psuedo-probabilities, beginsto make sense. One might also explore ombining F1P6and betting odds data, or ombining with data from othergames, web sites, or other soures.
8. DATA MINING FROM ONLINE GAMES:

IMPLICATIONS AND APPLICATIONSA growing number of games and markets on the web pro-vide vast amounts of data reeting the interations of mil-lions of people around the world. Eah soure o�ers theopportunity to infer something about the players involvedand the knowledge they possess. Data mining algorithms|typially fast algorithms for extrating knowledge from mas-sive quantities of data [8, 28℄|seem partiularly well suitedfor the job. In this work, we employed simple extration al-gorithms to obtain probabilisti foreasts of real-world events.Our results an be seen as statistial validation of the un-derlying quality of data from online games. The gamesthemselves appear to serve as a mehanism for olleting,merging, and leaning data from human experts, naturallyhandling some of the more diÆult steps in a typial datamining appliation [4, 20℄. Yet we expet room for improve-ment with the use of more sophistiated algorithms and datafusion tehniques.For example, with aess to user-spei� data, predi-tions ould be improved by weighting users aording toinferred measures of reliability or expertise, �ltering out\noisy" users, and identifying and removing users attempt-ing to manipulate the game. Game foreasts ould also beboosted with information from outside soures. For exam-ple, baseline HSX box oÆe preditions ould bene�t fromadditional data from expert foreasts, statistial sampling,ritial reviews, ator popularity, advertising budgets, num-ber of sreens playing, disussion boards, newsgroups, searhqueries [2℄, distribution of inbound hyperlinks pointing tomovie homepages, web ommunity sizes [9℄, et.More detailed analysis of game dynamis an atually leadto algorithms for identifying and pinpointing the introdu-tion of new knowledge into the publi onsiousness. Forexample, in August 1996, the rapid inrease in the prie ofa bet on FX that extraterrestrial life will be disovered18 anbe traed to news at the time that fossils were potentiallyidenti�ed in a Martian meteorite [21℄. Similarly, two sequen-tial dereases in the prie of a bet on the (real-money) IowaEletroni Market that Rudy Giuliani will win the 2000 USSenate eletion in New York an be orrelated with two an-nounements during his ampaign: �rst that he had prostateaner, and later that he was dropping out of the rae.In non-market games like F1P6, generating probabilistiforeasts requires more expliit data manipulation, sine anatural prie statisti is not available. In this paper, we triedweighted voting proedures as a �rst step, �nding that a lin-ear ombination seems to work well, though more advanedmahine learning and data mining tehniques are ertainlyappliable. Additionally, with a model of how people playthe game [19℄, one an infer the maximum likelihood opin-ion of eah user, then ombine results using known belief or18http://www.ideosphere.om/fx-bin/Claim?laim=XLif



foreast aggregation methods [3, 15℄.Inevitably, multiple sites will fous on interrelated topis,and extration algorithms will bene�t from ombining datasoures while aounting for orrelations. More general on-line ommunities, for example hat boards or newsgroups,feature some of the same bene�ts as game sites|namelydediated and knowledgeable partiipants often willing todivulge information|though leveraging this more free-formdata will require more omplex proessing algorithms.An obvious path for appliations is to mine informationfrom existing games. Alternatively, organizations may setup their own online games as a mehanism for gatheringdata on partiular subjets of interest or onern, perhapsas an alternative to ostly market researh [16℄. While Inter-net polls are notoriously skewed toward an unrepresentative(more eduated, more wealthy, more onservative) demo-graphi, it appears that web games atually bene�t fromthe bias within their nihe audienes. Perhaps the di�er-ene arises beause, while polls typially ask questions of theform \what do you want?", these games pose questions ofthe form \what do you think will happen?" to an attentiveand knowledgeable audiene. However, if orporations be-gin to take game data seriously, players may feel wary aboutprivay issues and what information they are revealing forfree and to whom. Moreover, one data is being used foronsequential deisions, inentives to manipulate the gameinrease, and good mehanisms for �ltering or ontrollingmanipulation will be essential.
9. CONCLUSIONThe World Wide Web fosters large-sale group ativitiesof all sorts, from ompeting in games, to trading in markets,to ompeting in market trading games. We �nd that, beyondtheir entertainment and ommerial value, these sites anbe valuable resoures for inferring preditions about real-world events. We show that HSX pries are informativesignals for movie box oÆe results and entertainment awardoutomes|as aurate or more aurate than expert opin-ions. FX pries reliably foreast true outome frequenies forsienti� and soietal questions. The ombined judgments ofF1P6 ompetitors are equally or better aligned with atualrae outomes than the oÆial betting odds.In both eonomis [24℄ and deision siene [6, 36℄ it isknown that appropriate monetary reward strutures an in-due people to reveal their inside information and expertknowledge. Our results provide evidene that well-designedgames also provide suÆient inentives for people to divulgetheir information. In this ontext, the players' motivationsderive from their ompetitive spirit and the value of enter-tainment, rather than diretly from onsumable (e.g., mone-tary) ompensation. In all three games studied, partiipantsappear to be (olletively) knowledgeable, and to take win-ning seriously enough to reveal that knowledge indiretlythrough their play. Suh online games at as a sink forspeialized information from experts. We believe that, inontrast to the low signal-to-noise ratio on web as a whole,many online games are good soures for targeted mining ofpertinent and useful data.
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