Extensions to a Generalization Critic
for Inductive Proof *

Andrew Ireland Alan Bundy
Computing & Electrical Engineering Artificial Intelligence
Heriot-Watt University University of Edinburgh
Riccarton 80 South Bridge
Edinburgh EH14 4AS Edinburgh EH1 1HN
Scotland, U.K. Scotland, U.K.

Email: air@cee.hw.ac.uk Email: bundy@ed.ac.uk

Tel: 4+44-131-451-3409 Tel: +44-131-650-2716

Abstract

In earlier papers a critic for automatically generalizing conjectures in the context of failed
inductive proofs was presented. The critic exploits the partial success of the search control
heuristic known as rippling. Through empirical testing a natural generalization and extension
of the basic critic emerged. Here we describe our extended generalization critic together with
some promising experimental results.

1 Introduction

A major obstacle to the automation of proof by mathematical induction is the need for gen-
eralization. A generalization is underpinned by the cut-rule of inference. In a goal-directed
framework, therefore, a generalization introduces an infinite branching point into the search
space. It is known [13] that the cut-elimination theorem does not hold for inductive theories.
Consequently heuristics for controlling generalization play an important role in the automation
of inductive proof.

There are a number of different kinds of generalization. In this paper we present a technique
for generalization which involves the introduction of accumulator variables. This technique
relies upon the analysis of failed proof attempts. We illustrate the problem of accumulator
generalization in the context of program verification using an example taken from list processing.
The example is based upon the functions defined in figure 1. Rewrite rules derived from these
definitions are among those given in appendix A. Using these definitions we can specify an
equivalence between a single and a distributed application of the map function by a conjecture
of the form®:

Vt @ list(A).Vf: A — B.yn:IN.
map(f,t) = reduce(Ax.Ay.app(x,y), map(Ax.map(f, x), split(n,t))) (1)

*The research reported in this paper was supported by EPSRC grant GR/J/80702 and ARC grant 438.
"Note that we use A and @ to denote function abstraction and application respectively.

fun atend x nil = (x::nil) | fun split x y = splitl 1 x nil y
atend x (y::2z) = y::(atend x z)

fun app nil z =2z |
fun splitl v w x nil = (x::nil) | app (x::y) z = x::(app y 2)
splitl v w x (y::2) =
if (v > w) then fun map x nil = nil |
x::(splitl 2 w (y::nil) =z) map x (y::2z) = (x y)::(map x z)
else
(splitl v+1 w (atend y x) z) fun reduce x nil = nil |

reduce x (y::z) (x y (reduce x z))

Figure 1: Example list processing functions

This conjecture was provided? by an independent research group working on the development
parallel systems from functional prototypes [14]. Their development process involves formal
proof. Currently proofs are constructed by hand and represent a time consuming hurdle to the
research project. Having failed to prove conjecture (1) by hand it was passed to us as a challenge
theorem.

In order to prove (1) we must first unfold the definition of split. An application of rewrite
rule (12) gives rise to a refined goal of the form:

Vt @ list(A).Vf: A — B.yn:IN.
map(f,t) = reduce(Ax.Ay.app(x,y), map(Ax.map(f, x), split;(1, n, nil, t))) (2)

A proof of (2) requires induction. However, (2) must first be generalized in order for an inductive
proof attempt to succeed. An accumulator generalization is required. The generalized conjecture
takes the form:

Vt:list(A)Vf: A — B.yn: IN.VL : N.VL, : List(A).
map(f, app(ly, t)) = reduce(Ax.Ay.app(x,y), map(Ax.map(f, x), split;(1y,n, 15, 1))) (3)

Note the two new universally quantified variables l; and [,. These act as accumulators in
a subsequent inductive proof. We return to this example in §7. This paper addresses two
questions: Firstly, how the need for such a generalization can be identified and secondly, how
the construction of the required generalized conjecture can be automated.

2 Background

2.1 Proof Methods and Critics

We build upon the notion of a proof plan [3] and tactic-based theorem proving [7]. While a
tactic encodes the low-level structure of a family of proofs a proof plan expressions the high-
level structure. In terms of automated deduction, a proof plan guides the search for a proof.
That is, given a collection of general purpose tactics the associated proof plan can be used to
automatically tailor a special purpose tactic to prove a particular conjecture.

2With thanks to Greg Michaelson.

The basic building blocks of proof plans are methods. Using a meta-logic, methods express the
preconditions for tactic application. The benefits of proof plans can be seen when a proof attempt
goes wrong. Experienced users of theorem provers, such as NQTHM, are used to intervening
when they observe the failure of a proof attempt. Such interventions typically result in the
user generalizing their conjecture or supplying additional lemmata to the prover. Through the
notion of a proof critic [10] we have attempted to automate this process. Critics provide the
proof planning framework with an exception handling mechanism which enables the partial
success of a proof plan to be exploited in search for a proof. The mechanism works by allowing
proof patches to be associated with different patterns of precondition failure. We previously
reported [11] various ways of patching of inductive proofs based upon the partial success of the
ripple method described below.

2.2 A Method for Guiding Inductive Proof

In the context of mathematical induction the ripple method plays a pivotal role in guiding the
search for a proof. The ripple method controls the selective application of rewrite rule in order
to prove step case goals.

Schematically a step case goal can be represented as follows:

-+-Vb'. Pla,b]- - F Ples(a), b]

hypothesis conclusion

where ¢q(a) denotes the induction term. To achieve a step case goal the conclusion must be
rewritten so as to allow the hypothesis to be applied:

.--¥b'. Pla,b]- - F ca(Pla, cs(b)))

Note that in order to apply the induction hypothesis we must first instantiate b’ to be c3(b),
i.€e.

---Pla, c3(b)] - - -+ c2(Pla, c3(b)])

Induction and recursion are closely related. The application of an induction hypothesis cor-
responds to a recursive call while the instantiation of an induction hypothesis corresponds to
the modification of an accumulator variable. The need to instantiate induction hypotheses is
commonplace in inductive proof. Our technique, as will be explained below, exploits this fact.

Syntactically an induction hypothesis and conclusion are very similar. More formally, the
hypothesis can be expressed as an embedding within the conclusion. Restricting the rewriting of
the conclusion so as to preserve this embedding maximizes the chances of applying an induction
hypothesis. This is the basic idea behind the ripple method. The application of the ripple
method, or rippling, makes use of meta-level annotations called wave-fronts to distinguish the
term structures which cause the mismatch between the hypothesis and conclusion. Using shading
to represent wave-fronts then the schematic step case goal takes the form:

.--¥Yb'. Pla,b]--- F P[C1(a)T» |b]]

The arrows are used to indicate the direction in which wave-fronts can be moved through the
term structure. The unshaded term structure is called the skeleton and corresponds to the
embedding of the hypothesis within the conclusion. In order to distinguish terms within the
conclusion which can be matched by accumulator variables in the hypothesis we use annotations

called sinks, i.e. |...]. As will be explained below sinks play an important role in identifying
the need for accumulator generalization.

A successful application of the ripple method can be characterized as follows:
! T
<%0’ Pla, b+ ¢a(Pla, | es(b) |])

Note that the term c;3(b), i.e. the instantiation for b’, occurs within a sink. Rippling restricts
rewriting to a syntactic class of rules called wave-rules. Wave-tules make progress towards
eliminating wave-fronts while preserving skeleton term structure. A wave-rule which achieves

the ripple given above takes the form®:

Pl Y] = ea(PX, ea(1)']) (4)

Wave-rules are derived automatically from definitions and logical properties like substitution,
associativity and distributivity ete. In general, a successful ripple will require multiple wave-rule
applications as will be illustrated in §7. There are three elementary forms a ripple can take:

outwards: the movement of wave-fronts into less nested term tree positions.
sideways: the movement of wave-fronts between distinct branches in the term tree.

inwards: the movement of wave-fronts into more nested term tree positions.

Note that a sideways ripple is only performed if progress is made towards a sink. In general, a
wave-rule may combine all three forms. For a complete description of rippling see [1, 4].

2.3 A Critic for Discovering Generalizations

In terms of the ripple method, the need for an accumulator generalization can be explained in
terms of the failure of a sideways ripple due to the absence of sinks. Schematically this failure
pattern can be represented as follows:

---Pla,d]---F P[C1(0)T»d]

where d denotes a term which does not contain any sinks. We call the occurrence of d a blockage
term because it blocks the sideways ripple, in this case the application of wave-rule (4).

The identification of a blockage term triggers the generalization critic. The associated proof
patch introduces schematic terms into the goal in order to partially specify the occurrences of
an accumulator variable. In the example presented above this leads to a patched goal of the
form:

CYUPla, M(U)] -+ F YLP[er(a) |, M([L))]
where M denotes a second-order meta-variable. Note that wave-rule (4) is now applicable,

giving rise to a refined goal of the form:

-+ YU.Pla, M(V)] - - - = VL. ca(Pla, Cs(/\/l(M))l])T

The expectation is that an inward ripple will determine the identity of M. Our approach to
the problem of constraining the instantiation of schematic terms will be detailed in §5. We will
refer to the above generalization as the basic critic.

$We use = to denote rewrite rules and — to denote logical implication.

4

3 Limitations of the Basic Critic

The basic critic described in §2.3 has proved very successful [11]. Through our empirical testing,
however, a number of limitations have been observed:

1. Certain classes of example require the introduction of multiple accumulator variables. The
basic critic only deals with single accumulators.

2. The basic critic was designed in the context of equational proofs. An accumulator variable
is assumed to occur on both sides of an equation. On the side opposite to the blockage term
it is assumed that in the resulting generalized term structure the accumulator (auxiliary)
will occur as an argument of the outermost functor.

3. Accumulator term occurrences which are motivated by blockage terms are more con-
strained than those which are not. This is not exploited by the basic critic during the
search for a generalization.

From these observations a number of natural extensions to the basic critic emerged. These
extensions are described in the following sections.

4 Specifying Accumulator Terms

In order to exploit the distinction between different accumulator term occurrences hinted at
above we extend the meta-level annotations to include the notions of primary and secondary
wave-fronts. A wave-front which provides the basis for a sideways ripple but which is not
applicable because of the presence of a blockage term is designated to be primary. All other
wave-fronts are designated to be secondary. To illustrate, consider the following schematic
conclusion:

o(f(ci(a,b)",d), e1(a,b)") (5)
and the following wave-rules:

e X, 2) = (X (2, Y)) (6)

oX, a(¥,2)") = c(a(X,),2)' (7)

Assuming that the occurrence of d in (5) denotes a blockage term then wave-rule (6) is not
applicable. Wave-rule (7) is applicable and enables an outwards ripple, i.e.

" T
C3(g(f(C1(avb) vd)v a)vb)

Using subscripts? to denote primary and secondary wave-fronts then the analysis presented above
gives rise to the following classification of the wave-fronts appearing in (5):

o(f(e1(a, b)), d), e1(a, b)) (8)

4Note that wave-rules must also take account of the extension to the wave-front annotations.

4.1 Primary Accumulator Terms

For each primary wave-front an associated accumulator term is introduced. We refer to these
as primary accumulator terms. The position of a primary accumulator term corresponds to the
position of the blockage term within the conclusion. The structure of a primary accumulator
term is a function of the blockage term and is computed as follows:

Mi([W]) if X'is a constant
oy) M(X L) if X is a wave-front
pri(X) = F(pri(Yy),...,pri(Yn)) otherwise

where X = F(Yq,...,Y,)

Note that M; denotes a higher-order meta-variable while 1; denotes a new object-level variable.
Assuming d denotes a constant then pri(d) evaluates to M ([1;]). Substituting this accumulator
term for d in (8) gives a schematic conclusion of the form:

a(f(er(a,), My (L)), er(a, b)) (9)

4.2 Secondary Accumulator Terms

For each secondary wave-front we eagerly attempt to apply a sideways ripple by introducing
occurrences of the variables associated with the primary accumulator terms. These occurrences
are specified again using schematic term structures and are called secondary accumulator terms.
The construction of secondary accumulator terms are as follows. For each subterm, X, of the
conclusion which contains a secondary wave-front, we compute a secondary accumulator term
as follows:

sec(X) = Mi(X, [L],..., [Lm])

where ly,..., L, denote the vector of variables generated by the construction of the primary
accumulator terms. To illustrate, consider again the schematic conclusion (9). Taking X to

be ¢i(a, b); then the process of introducing secondary accumulator terms gives rise to a new
schematic conclusion of the form:

a(f(er(a,), My([L])), Ma(er(a, b)), (L)) (10)

The selection of X represents a choice point which we delay discussion of until §6.

5 Imstantiating Accumulator Terms

The process of instantiating the accumulator terms introduced by the generalization critic is
guided by the application of wave-rules. In general, the application of wave-rules in the presence
of schematic term structure requires higher-order unification. In our application we only require
second-order unification. Below we show in detail how the meta-level annotations of a sideways
ripple can be used to constrain the unification process.

Consider a schematic term of the form:

Mi(ei(a, b)), L))

and the wave-rule:) .
f(c1(X,Y)N,Z) = f(X, CZ(Z,Y)N)
In order to apply the wave-rule we must unify the schematic term with the left-hand-side of the

wave-rule. The process of unification is constrained by firstly performing a first-order match on
the wave-fronts and the wave-holes®. This partially instantiates the wave-rule as follows:

f(ci(a,b)!,2) = f(a, ca(Z,b)")

Secondly we higher-order unify the skeleton of the schematic term and the skeleton of the left-
hand-side of the wave-rule. This further instantiates the wave-rule to give:

f(C1(avb);M2(C1(avb)v U’ﬂ)) = f(av Cz(Mz(C1(avb)v U1J)vb)i)

where M is instantiated to be Ax.Ay.f(x, Mz(x,y)). The application of the wave-rule gives rise
to a refined schematic term of the form:

f(a, ex(Ma(ei(a, b), L)), b))

This should be compared with the proliferation of meta-variables introduced by unification if
the constraints of rippling are not exploited, i.e.

f(Mz(C](CL, b), 11), Cz(M4(C1(CL, b), 11), M3(01 (CL, b), 11)))

The application of an outwards ripple follows a similar pattern. In the case of an inwards ripple
the first-order match is only performed on the wave-fronts and not the wave-holes. To illustrate,
consider the following schematic term:

&(Mi(a, L)), b),

and the application of a wave-rule of the form:
1 1
Cz(f(X,Z),Y)N = 'IC(C](X,Y)N,Z)

The schematic term resulting from the inwards ripple takes the form:

f(er(Mo(a, LhJ)»b)f»Ms(a» (L)) (11)

where M, is instantiated to be Ax.Ay.f(My(x,y), M3(x,y)). Note that in this case rippling does
not reduce the number of meta-variables introduced by the unification process. However, by
maintaining the sink annotations rippling does constrain the selection of subsequent projections.
Projections are used to eagerly terminate inward ripples. A projection is applied whenever the
immediate superterm of an accumulator term is an inward directed wave-front. To illustrate, in
the case of (11) the sink annotation results in M, being instantiated to be a projection onto its
second argument, i.e.

(| er(li,)], Ms(a, (L))

Note that while rippling is complete a meta-variable still remains. There are a number of ways
in which one might attempt to instantiate such a meta-variable. We shall delay discussion,
however, until §9. The strategy of eager instantiation of meta-variables may of course give rise
to an over-generalization, i.e. a non-theorem. A conjecture disprover, therefore, is used to filter
candidate instantiations of the schematic conjecture. On detecting an non-theorem the critic
mechanism backtracks and attempts further rippling.

5The wave-hole is the subterm of the skeleton term structure which occurs immediately beneath the wave-front.

6 Organizing the Search Space

In controlling the search for a generalization we place a number of constraints on the proof
planning process:

e Planning in the context of schematic term structures requires a bounded search strategy.
We use an iterative deepening strategy based upon the length of ripple paths®.

¢ Backtracking over the construction of secondary accumulator terms deals with the choice
point issue raised in §4. To illustrate, consider again schematic conclusion (10). Failure to
find a valid instantiation of (10), for a given ripple path depth, results in an incremental
increase in the size of the secondary accumulator term, ¢.e.

T T
Ma(g(f(er(a,b) |, Ma([L])), er(a, b)), [L])
By this process of revision all possible secondary accumulator term positions can be sys-
tematcally explored. Note that no revision of primary accumulator terms is required.

e Since primary accumulator terms are more constrained than secondary accumulator terms
priority is given to the rippling of primary wave-fronts.

7 Implementation and Testing

The extensions to the basic critic described above directly address the limitations highlighted
in §3:

1. The linkage of blockage terms with the introduction of primary accumulator terms within
the schematic conjecture addresses the issue of multiple accumulator variables.

2. The issue of positioning auxiliary accumulator variables is dealt with by the ability to
revise the construction of secondary accumulator terms.

3. By extending the meta-logic to include the notions of primary and secondary wave-fronts
we are able to exploit the observation that certain accumulator occurrences are more
constrained than others during the search for generalizations.

Our extended critic has been implemented and integrated within the CIAM proof planner [5].
The implementation makes use of the higher-order features of A-Prolog [15]. Below we document
the testing of our implementation.

7.1 Experimental Results

The results presented in [11] for the basic critic were replicated by the extended critic. The
extended critic, however, discovered generalizations which the basic critic missed. Moreover, a
number of new examples were generalized by the extended critic for which the application of
the basic critic resulted in failure. Our results are documented in the tables given in appendix
C. The example conjectures for which the extended critic improves upon the performance of the

®Given a wave-front, its associated ripple paths are defined to be the sequence(s) of term tree positions which
can be reached by the application of wave-rules. The length of a particular ripple path is defined to be the number
of wave-rule applications used in its construction.

basic critic are presented in table I. All the examples require accumulator generalization and
therefore cannot be proved automatically by other inductive theorem provers such as NQTHM
[2]. The relative performance of the basic and extended critics on the example conjectures is
recorded in table II. The lemmata used in motivating the generalizations are presented in table
IIT while the actual generalized conjectures are given in table IV. All these generalizations are
discovered automatically, i.e. no user intervention.

7.2 A Case Study

To illustrate more fully the mechanism presented above consider again verification conjecture
(2) given in §1. We focus upon the role our extended critic plays in automating the proof. In
particular, how it generates (3), the required generalization. The wave-rules required for this
proof are given in appendix B. With the exception of wave-rules (17) and (18) all the wave-rules
are derived from definitions.

7.2.1 First proof attempt

An inductive proof of (2) requires induction on the structure of the list t. The base case goal is
trivial. We focus here on the step case goal which gives rise to an induction hypothesis of the
form:

Vi A — B.Yn': N,
map(f',t) = reduce(Ax.Ay.app(x,y), map(Ax.map(f, x), split;(1,n', nil, t)))
and an induction conclusion of the form:
map(|[f], ht T) = reduce(Ax.Ay.app(x,y), map(Ax.map([f],x), split;(1, [n] ,nil, h == t T)))

Wave-rule (15) is applicable and gives rise to a conclusion of the form:

(f@h) :: map([f] ,t)T = reduce(Ax.Ay.app(x,y), map(Ax.map([f] ,x), splity(1, [n],nil, h = tT)))

However, wave-rules (13) and (14) are not applicable because of the blockage terms 1 and nil
which occur in the first and third argument positions of split;. Triggered by these blockage
terms the extended generalization critic generates a schematic hypothesis of the form:

Vi A — B.yn' VLt IN.VL - List(A)
map(f', Ms(t,15,15)) =
reduce(Ax.Ay.app(x,y), map(Ax.map(f’, x), splits1(M; (1), ', M>(15), 1))

while the schematic conclusion takes the form:

map([f], Ms(hzt5, L], (L)) =
reduce(Ax.Ay.app(x,y), map(Ax.map(|f] ,x), split;(M ([L]), [n], M2(|l2]), h = tI)))

Note that the blockage terms 1 and nil have been replaced by primary accumulator terms
Mi(|4]) and My([12]) respectively. Note also that the wave-front on the left-hand-side of
the goal equation is classified as secondary and consequently it is associated with a secondary
accumulator term which contains occurrences of 1y and 1.

7.2.2 Second proof attempt

The ripple method is now applied to the schematic goal. Priority is given to the rippling of
primary wave-fronts so there is no choice as to which wave-rules should be initially applied. The
introduction of accumulator terms M;([1y]|) and M;,([l;]) enable wave-rules (13) and (14) to
be applied. Jointly they motivate a case split on M;(1l;) and n.

Case: M (1) <n
Using wave-rule (13) a sideways ripple can be applied to the right-hand-side of the conclusion:
... = reduce(Ax.Ay.app(x,y), map(Ax.map(|f] , x), splity({ L +1 ” , [, {atend(h, Lz)H 1))

Note that M; and M, have been eagerly instantiated to be projections, i.e. Ax.x. The left-
hand-side of the conclusion contains a secondary accumulator term so rippling involves search.
The sink instantiations, however, on the right-hand-side can be exploited in constraining this
search, i.e. wave-rule (18) gives rise to:

1
map(|[f], app(atend(h, Ma(h::t, (L], lej))z),t) =...
which instantiates M3 to be Ax.Ay.Az.app(Ma(x,y,z),x). Note that to be consistent with the

sink instantiations on the right-hand-side of the conclusion, My must be instantiated to be a
projection of the form Ax.Ay.Az.z. The rippling in this branch of the case split is complete:

map(|[f] ,appqatend(h, Lz)iJ) =

reduce(AxAy.app(x, y), map(Ax.map(|f] %), splity(| b +1,], [n], | atend(h, L), | 1))

The induction hypothesis can be applied by instantiating lj to be 1,41 and 1, to be atend(h, 1,).
The instantiations for M;, M, and M; are propagated through the remaining branch of the
case split.

Case: |1 >n

Using wave-rule (14) the right-hand-side of the conclusion ripples to give:

... = reduce(Ax.Ay.app(x,y), map(Ax.map(|f] ,x), 15 =2 splity({2” , [, {h * nﬂ” ,t) :))

By wave-rule (15) the conclusion ripples further to give7:

... = reduce(Ax.Ay.app(x,y), map(f, ;) :: map(Ax.map(|f],x), splity({2” , [, {h * nﬂ”) :)

A further outward ripple using wave-rule (16) gives®:

.. = app(map(f, 1,), reduce(Ax.Ay.app(x,y), map(Ax.map(|f] ,x),split1q2” , [, {h * nﬂ” ,t)))):

"Note that the conclusion has been B-reduced automatically.
8 Again the conclusion has been B-reduced automatically.

10

Using wave-rule (17) the left-hand-side of the conclusion becomes:

"
.1l
app(map(f, 1), map(|f] , app(| b :: mil; |) =
Finally, by wave-rule (19) the rippling of the conclusion is complete:

map(|[f], app({h % nilﬁJ) =
reduce(Ax.Ay.app(x,y), map(hemap(|f] ,x), splits(| 21|, [n) , | bz mily] 1))

The induction hypothesis can be applied by instantiating 1; to be 2 and 1, to be h :: nil.
To summarize, the ripple method in conjunction with the extended critic have automatically
generated (3), the required generalization of (2). A proof of (3) can be constructed by CIAM
completely automatically.

8 Related Work

Jane Hesketh in her thesis work [9] also tackled the problem of accumulator generalization in
the context of proof planning. Her approach, however, did not deal with multiple accumulators.
By introducing the primary and secondary classification of wave-fronts we believe that our
approach provides greater control in the search for generalizations. This becomes crucial as the
complexity”? of examples increases. In addition, we use sink annotations explicitly in selecting
potential projections for higher-order meta-variables.

Jane’s work, however, was much broader than ours in that she unified a number of different
kinds of generalization. Moreover, she was also able to synthesize tail-recursive functions given
equivalent naive recursive definitions [8].

9 Future Work

Our results for the extended critic have been promising. More testing is planned. We believe that
our technique is not restricted to reasoning about functional programs. This will be reflected in
future testing. Below we outline the key areas where we are looking to develop this work.

9.1 Automatic Discovery of Loop Invariants

We believe that our technique transfers directly to imperative programs. Discovering a loop
invariant is typically seen as a eureka step in the process of verifying an imperative program.
This is reflected in the fact that some of the major contributions in this area rely to a large
extent upon user interaction, e.g. in the aypsy verification environment [6] all loop invariants
are supplied by the user. A common strategy for discovering invariants is to start with a desired
post-condition from which the invariant is derived by a process of weakening. The notion of
a tail invariant [12] represents one such way of deriving an invariant. The search for a tail
invariant is appropriate when the desired post-condition takes the form:

r=f(X,Y)

?That is, as the number of definitions and lemmata available to the prover increases.

11

where 1 denotes a program variable while f denotes a tail recursive function and X and Y denote
constants. Given a post-condition of this form then the required (tail) invariant takes the form:

f(x,m) =f(X,Y)

where the initial value of the program variable x is X. A special case of this scheme occurs when
the post-condition takes the form
r=g(X)

where g is not tail recursive. In such situations the tail invariant can be specified by the following
schemas:

M(g(x), 1) = 9(X)
where M denotes a second-order meta-variable. The problem of discovering the invariant is re-
duced to finding the identity of M. There are strong similarities between step case and invariant
proofs. The technique we have developed, therefore, can be used to guide the construction and
instantiation of such schematic invariants.

9.2 Hardware Verification

We also believe that our technique is applicable in the context of hardware verification. For
instance, we believe that it subsumes the procedure described in [16] for generalizing hardware
specifications.

9.3 User Interaction

The critic mechanism was motivated by a desire to build an automatic theorem prover which
was more robust than the conventional provers. The high-level representation provided by a
proof plan enabled us to achieve this goal. We believe, however, that the critic mechanism also
provides a basis for developing effective user interaction. To illustrate, consider conjecture C5
from table I (appendix C). Based purely upon the definitions arising from the statement of the
conjecture the extended critic, as currently implemented, automatically generates the following
partial generalization:

app(partition(evenel(X), Y, M;(X,Y, Z2)), partition(oddel(X), Mx(X,Y,2),Z)) =
partition(X, Y, Z)

We are currently implementing an interactive version of the critic mechanism which will invite
the user to complete the instantiation of such partial generalizations. An obvious candidate here
is Ax.Ay.Az.nil which gives rise to the following generalized conjecture:

app(partition(evenel(X), Y, nil), partition(oddel(X), nil, Z)) = partition(X,Y, Z)
Note that this generalization of C5 is easily proved by CIAM.

10 Conclusion

The search for inductive proofs cannot avoid the problem of generalization. In this paper
we describe extensions to a proof critic for automatically generalizing inductive conjectures.
The ideas presented here build upon a proof patch mechanism documented in [11]. These
extensions have significantly improved the performance of the technique while preserving the
spirit of original proof patch. Our implementation of the extended critic has been tested on the
verification of functional programs with some promising results. More generally, we believe that
our technique has wider application in terms of both software and hardware verification.

12

Appendix A: definitional rewrite r

atend(X, nil)

atend(X,Y :: Z)

splity (V, W, X, nil)

V<W —splity (VW XY Z)
V>W — splitg) (V\W, X, Y1 Z)
split(X,Y)

app(nll Z)

,Z)
map(X nll)

map(X,Y :: Z)

reduce(X, nil)
reduce(X,Y :: Z)
rev(nil)

)
grev(nil, Z)
grev(X 1Y, Z)
revflat(nil)
revflat(X 1 Y)
grevflat(nil, Z)
grevflat(X :: Y, Z

rev(X

)
perm(nil, nil)
perm(X 1Y, Z)
)

evenel(nil
even(X) — evenel(X 1Y)
odd(X) — evenel(X 1Y)

oddel(nil)

odd(X) — oddel(X :: Y)

even(X) — oddel(X :: Y)
partition(nil, Y, Z)

even(W) — partition(W :: XY, Z)
odd(W) — partition(W :: XY, Z)

Appendix B: selection of example

V<W — splity (VW X, Y =
V>W — splity (| V], W, [X], Y =
map(X, Y Z)

reduce(X, Y :
map(W, app(|X|, Y Z L))
app(X, Y :: ZL)

T T
app(X, Y),, = app(X, Z)

ules

X nil

Y :: atend(X, Z)

X nil

splity (V + 1, W, atend(Y, X), Z)
X:splity (2, W, Y i nil, Z)
splity (1, X, nil,Y)

Z

X app(Y, Z)

nil
(Xay) :
nil
((Xa@y)@reduce(X, Z))

nil

U

map(X, Z)

app(rev(Y), X :: nil)

z

grev(Y, X :: Z)

nil

app(revflat(Y), X)

z

grevflat(Y, app(X, Z))

true

perm(Y, delete(X, Z)) A member(X, Z))
nil

X evenel(Y)

evenel(Y)

nil

Xt oddel(Y)

oddel(Y)

app(V, Z)

partition(X, atend(W,Y), Z)
partition(X, Y, atend(W, Z))

L | O L L | L e

wave-rules

splity (V + 15, W, atend(Y,X) L, 2)

X i spuhqzw W, {Y:: nugJ ,Z);

(XQY) :: map(X, Z) L

((X@Y)@reduce(X, 2)) |

app(map(W, X), map(W, app({Y :: nil%\JJ ,Z)))

app(atend(Y, X) L,Z)
Y=1Z

13

1

N

Appendix C: experimental results

| No | Conjecture
C1 rev(X) = grev(X, nil)
C2 revflat(X) = qrevflat(X, nil)
C3 grev(grev(X, nil), nil) = rev(rev(X))
C4 permute(rev(X), grev(X, nil))
C5 app(evenel(X), oddel(X)) = partition(X, nil, nil)
C6 | map(F, X) = reduce(Ax.Ay.app(x,y), map(Ax.map(F, x), split; (1, W, nil, X)))

Table I: conjectures

| No | Basic Critic | Extended Critic |
C1 G1 Gl1, G2
C2 G3 G3, G4
C3 | Gb,G6,G7,G8,GY | GH,G6,G7,GR,G9,G10,G11
C4 FAILURE G12,G13,G14
Ch FAILURE G15
C6 FAILURE G16

The improved performance of the extended critic on conjectures C1l, C2 and C3 can be attributed to
its ability to revise the construction of secondary accumulator terms. The failure of the basic critic on
conjecture C4 is due to 1ts “artificial” restrictions on the placement of secondary accumulator terms. The
same is true for Ch and C6 but in addition both these conjectures require multiple accumulators.

Table II: performance of generalization critics

| No | Lemma
L1 app(app(X,Y), Z) = app(X, app(Y, Z))
L2 app(app(X,Y :nil), Z) = app(X,Y :: Z)
L3 rev(app(X,Y = nil)) = Y rev(X)
L4 app(X,Y 1 Z) = app(atend(Y, X), Z)
L5 | map(W, app(X,Y :: Z)) = app(map(W, X), map(W, app(Y :: nil, Z)))

Table III: lemmata used to motivate generalizations

| No Generalization | Lemmata
Gl rev(grev(Y, X)) = qrev(X,Y)
G2 app(rev(X),Y) = gqrev(X,Y) L1
G3 revflat(grevflat(Y, X))
G4 app(revflat(X),Y) = grevflat(X,Y) L1
Gb grev(grev(X, YY), nil) = app(rev(Y), rev(rev(X))) L2 & L3
G6 grev(qrev(X,Y),nil) = grev(Y, rev(rev(X))) L3
G7 grev(qrev(X,Y),nil) = grev(rev(rev(Y)), rev(rev(X))) L3
G8 grev(grev(X, rev(Y)), nil) = app(Y, rev(rev(X))) L2 & L3
G9 grev(qrev(X, rev(rev(Y))), nil) = grev(Y, rev(rev(X))) L3
G10 grev(qrev(X,Y),nil) = rev(app(rev(X),Y)) L1
G11 grev(qrev(X,Y), nil) = rev(rev(grev(Y, X)))
G12 perm(rev(qrev(X,Y)), grev(X,Y))
G13 perm(rev(grev(Y, X)), grev(X,Y))
Gl4 perm(app(rev(X),Y), qrev(X,Y)) L1
G15 app(app(Y, evenel(X)), app(Z, oddel(X))) = partition(X,Y, Z) L4
G16 | map(F, app(Y, X)) = reduce(Ax.Ay.app(x,y), map(Ax.map(F, x), split; (Z, W,Y;X))) | L4 & L5

Note that different combinations of lemmata give rise to different generalizations. These are indicated by
the multiple references given in the third column. No entry appears if the generalization was discovered
using purely definitional rewrite rules.

Table IV: generalized conjectures

14

References

(1]

&0 N

D. Basin and T. Walsh. Difference unification. In Proceedings of the 13th IJCAI International
Joint Conference on Artificial Intelligence, 1993. Also available as Technical Report MPI-1-92-247,
Max-Planck-Institute fur Informatik.

R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979. ACM monograph series.

A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and R. Overbeek, editors,
9th Conference on Automated Deduction, pages 111-120. Springer-Verlag, 1988. Longer version
available from Edinburgh as DAI Research Paper No. 349.

A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic for guiding
inductive proofs. Artificial Intelligence, 62:185-253, 1993. Also available from Edinburgh as DAI
Research Paper No. 567.

A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In M.E. Stickel,
editor, 10th International Conference on Automated Deduction, pages 647-648. Springer-Verlag,
1990. Lecture Notes in Artificial Intelligence No. 449. Also available from Edinburgh as DAT Research
Paper 507.

D.I. Good. Mechanical proofs about computer programs. In C.A.R. Hoare and J.C. Shepherdson,
editors, Mathematical Logic and Programming Languages, chapter 3, pages 55-75. Prentice-Hall,
1985.

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF - A mechanised logic of computation,
volume 78 of Lecture Notes in Computer Science. Springer Verlag, 1979.

J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to control the synthesis of tail-
recursive programs. In Deepak Kapur, editor, 17th Conference on Automated Deduction, pages
310-324, Saratoga Springs, NY, USA, June 1992. Published as Springer Lecture Notes in Artificial
Intelligence, No 607.

J.T. Hesketh. Using Middle-Out Reasoning to Guide Inductive Theorem Proving. PhD thesis,
University of Edinburgh, 1991.

A. Treland. The Use of Planning Critics in Mechanizing Inductive Proofs. In A. Voronkov, editor,
International Conference on Logic Programmang and Automated Reasoning — LPAR 92, St. Peters-
burg, Lecture Notes in Artificial Intelligence No. 624, pages 178-189. Springer-Verlag, 1992. Also
available from Edinburgh as DAI Research Paper 592.

A. Treland and A. Bundy. Productive use of failure in inductive proof. Research Paper 716, Dept.
of Artificial Intelligence, Edinburgh, 1995. To appear in the special issue of JAR on inductive proof.

A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice Hall, London, 1990.

G. Kreisel. Mathematical logic. In T.L. Saaty, editor, Lectures on Modern Mathematics, volume III,
pages 95-195. John Wiley and Sons, 1965.

G. Michaelson and N. Scaife. Prototyping a parallel vision system in Standard ML. Journal of
Functional Programmang, 5:345-382, 1995.

D. Miller and G. Nadathur. An overview of AProlog. In R. Bowen, K. & Kowalski, editor, Proceedings
of the Fifth International Logic Programming Conference/ Fifth Symposium on Logic Programming.
MIT Press, 1988.

L Pierre. An automatic generalization method for the inductive proof of replicated and paral-
lel architectures. In R.Kumar & T.kropf, editor, Theorem Provers in Circuit Design. LNCS 901,
Springer-Verlag, 1995.

15

