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fun atend x nil = (x::nil) | fun split x y = split1 1 x nil yatend x (y::z) = y::(atend x z) fun app nil z = z |fun split1 v w x nil = (x::nil) | app (x::y) z = x::(app y z)split1 v w x (y::z) =if (v > w) then fun map x nil = nil |x::(split1 2 w (y::nil) z) map x (y::z) = (x y)::(map x z)else(split1 v+1 w (atend y x) z) fun reduce x nil = nil |reduce x (y::z) = (x y (reduce x z))Figure 1: Example list processing functionsThis conjecture was provided2 by an independent research group working on the developmentparallel systems from functional prototypes [14]. Their development process involves formalproof. Currently proofs are constructed by hand and represent a time consuming hurdle to theresearch project. Having failed to prove conjecture (1) by hand it was passed to us as a challengetheorem.In order to prove (1) we must �rst unfold the de�nition of split. An application of rewriterule (12) gives rise to a re�ned goal of the form:8t : list(A):8f : A! B:8n : IN:map(f; t) = reduce(�x:�y:app(x; y);map(�x:map(f; x); split1(1; n; nil; t))) (2)A proof of (2) requires induction. However, (2) must �rst be generalized in order for an inductiveproof attempt to succeed. An accumulator generalization is required. The generalized conjecturetakes the form:8t : list(A):8f : A! B:8n : IN:8l1 : IN:8l2 : list(A):map(f; app(l2; t)) = reduce(�x:�y:app(x; y);map(�x:map(f; x); split1(l1; n; l2; t))) (3)Note the two new universally quanti�ed variables l1 and l2. These act as accumulators ina subsequent inductive proof. We return to this example in x7. This paper addresses twoquestions: Firstly, how the need for such a generalization can be identi�ed and secondly, howthe construction of the required generalized conjecture can be automated.2 Background2.1 Proof Methods and CriticsWe build upon the notion of a proof plan [3] and tactic-based theorem proving [7]. While atactic encodes the low-level structure of a family of proofs a proof plan expressions the high-level structure. In terms of automated deduction, a proof plan guides the search for a proof.That is, given a collection of general purpose tactics the associated proof plan can be used toautomatically tailor a special purpose tactic to prove a particular conjecture.2With thanks to Greg Michaelson. 2



The basic building blocks of proof plans aremethods. Using a meta-logic, methods express thepreconditions for tactic application. The bene�ts of proof plans can be seen when a proof attemptgoes wrong. Experienced users of theorem provers, such as nqthm, are used to interveningwhen they observe the failure of a proof attempt. Such interventions typically result in theuser generalizing their conjecture or supplying additional lemmata to the prover. Through thenotion of a proof critic [10] we have attempted to automate this process. Critics provide theproof planning framework with an exception handling mechanism which enables the partialsuccess of a proof plan to be exploited in search for a proof. The mechanism works by allowingproof patches to be associated with di�erent patterns of precondition failure. We previouslyreported [11] various ways of patching of inductive proofs based upon the partial success of theripple method described below.2.2 A Method for Guiding Inductive ProofIn the context of mathematical induction the ripple method plays a pivotal role in guiding thesearch for a proof. The ripple method controls the selective application of rewrite rule in orderto prove step case goals.Schematically a step case goal can be represented as follows:� � �8b0: P[a; b0]| {z }hypothesis � � � ` P[c1(a); b]| {z }conclusionwhere c1(a) denotes the induction term. To achieve a step case goal the conclusion must berewritten so as to allow the hypothesis to be applied:� � � 8b0: P[a; b0] � � � ` c2(P[a; c3(b)])Note that in order to apply the induction hypothesis we must �rst instantiate b0 to be c3(b),i.e. � � �P[a; c3(b)] � � � ` c2(P[a; c3(b)])Induction and recursion are closely related. The application of an induction hypothesis cor-responds to a recursive call while the instantiation of an induction hypothesis corresponds tothe modi�cation of an accumulator variable. The need to instantiate induction hypotheses iscommonplace in inductive proof. Our technique, as will be explained below, exploits this fact.Syntactically an induction hypothesis and conclusion are very similar. More formally, thehypothesis can be expressed as an embedding within the conclusion. Restricting the rewriting ofthe conclusion so as to preserve this embedding maximizes the chances of applying an inductionhypothesis. This is the basic idea behind the ripple method. The application of the ripplemethod, or rippling, makes use of meta-level annotations called wave-fronts to distinguish theterm structures which cause the mismatch between the hypothesis and conclusion. Using shadingto represent wave-fronts then the schematic step case goal takes the form:� � � 8b0: P[a; b0] � � � ` P[ c1(a) "; bbc]The arrows are used to indicate the direction in which wave-fronts can be moved through theterm structure. The unshaded term structure is called the skeleton and corresponds to theembedding of the hypothesis within the conclusion. In order to distinguish terms within theconclusion which can be matched by accumulator variables in the hypothesis we use annotations3



called sinks, i.e. b: : :c. As will be explained below sinks play an important role in identifyingthe need for accumulator generalization.A successful application of the ripple method can be characterized as follows:� � � 8b0: P[a; b0] � � � ` c2(P[a; jc3(b) #k]) "Note that the term c3(b), i.e. the instantiation for b0, occurs within a sink. Rippling restrictsrewriting to a syntactic class of rules called wave-rules. Wave-rules make progress towardseliminating wave-fronts while preserving skeleton term structure. A wave-rule which achievesthe ripple given above takes the form3:P[ c1(X) "; Y]) c2(P[X; c3(Y) #]) " (4)Wave-rules are derived automatically from de�nitions and logical properties like substitution,associativity and distributivity etc. In general, a successful ripple will require multiple wave-ruleapplications as will be illustrated in x7. There are three elementary forms a ripple can take:outwards: the movement of wave-fronts into less nested term tree positions.sideways: the movement of wave-fronts between distinct branches in the term tree.inwards: the movement of wave-fronts into more nested term tree positions.Note that a sideways ripple is only performed if progress is made towards a sink. In general, awave-rule may combine all three forms. For a complete description of rippling see [1, 4].2.3 A Critic for Discovering GeneralizationsIn terms of the ripple method, the need for an accumulator generalization can be explained interms of the failure of a sideways ripple due to the absence of sinks. Schematically this failurepattern can be represented as follows:� � �P[a; d] � � � ` P[ c1(a) "; d]where d denotes a term which does not contain any sinks. We call the occurrence of d a blockageterm because it blocks the sideways ripple, in this case the application of wave-rule (4).The identi�cation of a blockage term triggers the generalization critic. The associated proofpatch introduces schematic terms into the goal in order to partially specify the occurrences ofan accumulator variable. In the example presented above this leads to a patched goal of theform: � � �8l0:P[a;M(l0)] � � � ` 8l:P[ c1(a) ";M(blc)]where M denotes a second-order meta-variable. Note that wave-rule (4) is now applicable,giving rise to a re�ned goal of the form:� � � 8l0:P[a;M(l0)] � � � ` 8l: c2(P[a; c3(M(blc)) #]) "The expectation is that an inward ripple will determine the identity of M. Our approach tothe problem of constraining the instantiation of schematic terms will be detailed in x5. We willrefer to the above generalization as the basic critic.3We use ) to denote rewrite rules and ! to denote logical implication.4



3 Limitations of the Basic CriticThe basic critic described in x2.3 has proved very successful [11]. Through our empirical testing,however, a number of limitations have been observed:1. Certain classes of example require the introduction of multiple accumulator variables. Thebasic critic only deals with single accumulators.2. The basic critic was designed in the context of equational proofs. An accumulator variableis assumed to occur on both sides of an equation. On the side opposite to the blockage termit is assumed that in the resulting generalized term structure the accumulator (auxiliary)will occur as an argument of the outermost functor.3. Accumulator term occurrences which are motivated by blockage terms are more con-strained than those which are not. This is not exploited by the basic critic during thesearch for a generalization.From these observations a number of natural extensions to the basic critic emerged. Theseextensions are described in the following sections.4 Specifying Accumulator TermsIn order to exploit the distinction between di�erent accumulator term occurrences hinted atabove we extend the meta-level annotations to include the notions of primary and secondarywave-fronts. A wave-front which provides the basis for a sideways ripple but which is notapplicable because of the presence of a blockage term is designated to be primary. All otherwave-fronts are designated to be secondary. To illustrate, consider the following schematicconclusion: g(f( c1(a; b) "; d); c1(a; b) ") (5)and the following wave-rules:f( c1(X; Y)"; Z) ) f(X; c2(Z; Y)#) (6)g(X; c1(Y; Z) ") ) c3(g(X; Y); Z) " (7)Assuming that the occurrence of d in (5) denotes a blockage term then wave-rule (6) is notapplicable. Wave-rule (7) is applicable and enables an outwards ripple, i.e.c3(g(f( c1(a; b) "; d); a); b) "Using subscripts4 to denote primary and secondary wave-fronts then the analysis presented abovegives rise to the following classi�cation of the wave-fronts appearing in (5):g(f( c1(a; b) "1; d); c1(a; b) "2) (8)4Note that wave-rules must also take account of the extension to the wave-front annotations.5



4.1 Primary Accumulator TermsFor each primary wave-front an associated accumulator term is introduced. We refer to theseas primary accumulator terms. The position of a primary accumulator term corresponds to theposition of the blockage term within the conclusion. The structure of a primary accumulatorterm is a function of the blockage term and is computed as follows:pri(X) = 8>>><>>>: Mi(blic) if X is a constantMi(X; blic) if X is a wave-frontF(pri(Y1); : : : ; pri(Yn)) otherwisewhere X � F(Y1; : : : ; Yn)Note thatMi denotes a higher-order meta-variable while li denotes a new object-level variable.Assuming d denotes a constant then pri(d) evaluates toM1(bl1c). Substituting this accumulatorterm for d in (8) gives a schematic conclusion of the form:g(f( c1(a; b) "1;M1(bl1c)); c1(a; b) "2) (9)4.2 Secondary Accumulator TermsFor each secondary wave-front we eagerly attempt to apply a sideways ripple by introducingoccurrences of the variables associated with the primary accumulator terms. These occurrencesare speci�ed again using schematic term structures and are called secondary accumulator terms.The construction of secondary accumulator terms are as follows. For each subterm, X, of theconclusion which contains a secondary wave-front, we compute a secondary accumulator termas follows: sec(X) =Mi(X; bl1c ; : : : ; blmc)where l1; : : : ; lm denote the vector of variables generated by the construction of the primaryaccumulator terms. To illustrate, consider again the schematic conclusion (9). Taking X tobe c1(a; b) "2 then the process of introducing secondary accumulator terms gives rise to a newschematic conclusion of the form:g(f( c1(a; b) "1;M1(bl1c));M2( c1(a; b) "2; bl1c)) (10)The selection of X represents a choice point which we delay discussion of until x6.5 Instantiating Accumulator TermsThe process of instantiating the accumulator terms introduced by the generalization critic isguided by the application of wave-rules. In general, the application of wave-rules in the presenceof schematic term structure requires higher-order uni�cation. In our application we only requiresecond-order uni�cation. Below we show in detail how the meta-level annotations of a sidewaysripple can be used to constrain the uni�cation process.Consider a schematic term of the form:M1( c1(a; b) "2; bl1c)6



and the wave-rule: f( c1(X; Y)"N; Z)) f(X; c2(Z; Y)#N)In order to apply the wave-rule we must unify the schematic term with the left-hand-side of thewave-rule. The process of uni�cation is constrained by �rstly performing a �rst-order match onthe wave-fronts and the wave-holes5. This partially instantiates the wave-rule as follows:f( c1(a; b) "2; Z)) f(a; c2(Z; b) #2)Secondly we higher-order unify the skeleton of the schematic term and the skeleton of the left-hand-side of the wave-rule. This further instantiates the wave-rule to give:f( c1(a; b) "2;M2(c1(a; b); bl1c))) f(a; c2(M2(c1(a; b); bl1c); b) #2)whereM1 is instantiated to be �x:�y:f(x;M2(x; y)). The application of the wave-rule gives riseto a re�ned schematic term of the form:f(a; c2(M2(c1(a; b); bl1c); b) #2)This should be compared with the proliferation of meta-variables introduced by uni�cation ifthe constraints of rippling are not exploited, i.e.f(M2(c1(a; b); l1); c2(M4(c1(a; b); l1);M3(c1(a; b); l1)))The application of an outwards ripple follows a similar pattern. In the case of an inwards ripplethe �rst-order match is only performed on the wave-fronts and not the wave-holes. To illustrate,consider the following schematic term:c2(M1(a; bl1c); b) #1and the application of a wave-rule of the form:c2(f(X; Z); Y)#N ) f( c1(X; Y)#N; Z)The schematic term resulting from the inwards ripple takes the form:f( c1(M2(a; bl1c); b) #1;M3(a; bl1c)) (11)whereM1 is instantiated to be �x:�y:f(M2(x; y);M3(x; y)). Note that in this case rippling doesnot reduce the number of meta-variables introduced by the uni�cation process. However, bymaintaining the sink annotations rippling does constrain the selection of subsequent projections.Projections are used to eagerly terminate inward ripples. A projection is applied whenever theimmediate superterm of an accumulator term is an inward directed wave-front. To illustrate, inthe case of (11) the sink annotation results in M2 being instantiated to be a projection onto itssecond argument, i.e. f(j c1(l1 ; b) #1k ;M3(a; bl1c))Note that while rippling is complete a meta-variable still remains. There are a number of waysin which one might attempt to instantiate such a meta-variable. We shall delay discussion,however, until x9. The strategy of eager instantiation of meta-variables may of course give riseto an over-generalization, i.e. a non-theorem. A conjecture disprover, therefore, is used to �ltercandidate instantiations of the schematic conjecture. On detecting an non-theorem the criticmechanism backtracks and attempts further rippling.5The wave-hole is the subterm of the skeleton term structure which occurs immediately beneath the wave-front.7



6 Organizing the Search SpaceIn controlling the search for a generalization we place a number of constraints on the proofplanning process:� Planning in the context of schematic term structures requires a bounded search strategy.We use an iterative deepening strategy based upon the length of ripple paths6.� Backtracking over the construction of secondary accumulator terms deals with the choicepoint issue raised in x4. To illustrate, consider again schematic conclusion (10). Failure to�nd a valid instantiation of (10), for a given ripple path depth, results in an incrementalincrease in the size of the secondary accumulator term, i.e.M2(g(f( c1(a; b) "1;M1(bl1c)); c1(a; b) "2); bl1c)By this process of revision all possible secondary accumulator term positions can be sys-tematcally explored. Note that no revision of primary accumulator terms is required.� Since primary accumulator terms are more constrained than secondary accumulator termspriority is given to the rippling of primary wave-fronts.7 Implementation and TestingThe extensions to the basic critic described above directly address the limitations highlightedin x3:1. The linkage of blockage terms with the introduction of primary accumulator terms withinthe schematic conjecture addresses the issue of multiple accumulator variables.2. The issue of positioning auxiliary accumulator variables is dealt with by the ability torevise the construction of secondary accumulator terms.3. By extending the meta-logic to include the notions of primary and secondary wave-frontswe are able to exploit the observation that certain accumulator occurrences are moreconstrained than others during the search for generalizations.Our extended critic has been implemented and integrated within the CLAM proof planner [5].The implementation makes use of the higher-order features of �-Prolog [15]. Below we documentthe testing of our implementation.7.1 Experimental ResultsThe results presented in [11] for the basic critic were replicated by the extended critic. Theextended critic, however, discovered generalizations which the basic critic missed. Moreover, anumber of new examples were generalized by the extended critic for which the application ofthe basic critic resulted in failure. Our results are documented in the tables given in appendixC. The example conjectures for which the extended critic improves upon the performance of the6Given a wave-front, its associated ripple paths are de�ned to be the sequence(s) of term tree positions whichcan be reached by the application of wave-rules. The length of a particular ripple path is de�ned to be the numberof wave-rule applications used in its construction. 8



basic critic are presented in table I. All the examples require accumulator generalization andtherefore cannot be proved automatically by other inductive theorem provers such as nqthm[2]. The relative performance of the basic and extended critics on the example conjectures isrecorded in table II. The lemmata used in motivating the generalizations are presented in tableIII while the actual generalized conjectures are given in table IV. All these generalizations arediscovered automatically, i.e. no user intervention.7.2 A Case StudyTo illustrate more fully the mechanism presented above consider again veri�cation conjecture(2) given in x1. We focus upon the role our extended critic plays in automating the proof. Inparticular, how it generates (3), the required generalization. The wave-rules required for thisproof are given in appendix B. With the exception of wave-rules (17) and (18) all the wave-rulesare derived from de�nitions.7.2.1 First proof attemptAn inductive proof of (2) requires induction on the structure of the list t. The base case goal istrivial. We focus here on the step case goal which gives rise to an induction hypothesis of theform: 8f0 : A! B:8n0 : IN:map(f0; t) = reduce(�x:�y:app(x; y);map(�x:map(f0; x); split1(1; n0; nil; t)))and an induction conclusion of the form:map(bfc ; h :: t ") = reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); split1(1; bnc ; nil; h :: t ")))Wave-rule (15) is applicable and gives rise to a conclusion of the form:(f@h) :: map(bfc ; t) " = reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); split1(1; bnc ; nil; h :: t ")))However, wave-rules (13) and (14) are not applicable because of the blockage terms 1 and nilwhich occur in the �rst and third argument positions of split1. Triggered by these blockageterms the extended generalization critic generates a schematic hypothesis of the form:8f0 : A! B:8n0 : 8l01 : IN:8l02 : list(A)map(f0;M3(t; l01; l02)) =reduce(�x:�y:app(x; y);map(�x:map(f0; x); split1(M1(l01); n0;M2(l02); t)))while the schematic conclusion takes the form:map(bfc ;M3(h :: t "2; bl1c ; bl2c)) =reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); split1(M1(bl1c); bnc ;M2(bl2c); h :: t "1)))Note that the blockage terms 1 and nil have been replaced by primary accumulator termsM1(bl1c) and M2(bl2c) respectively. Note also that the wave-front on the left-hand-side ofthe goal equation is classi�ed as secondary and consequently it is associated with a secondaryaccumulator term which contains occurrences of l1 and l2.9



7.2.2 Second proof attemptThe ripple method is now applied to the schematic goal. Priority is given to the rippling ofprimary wave-fronts so there is no choice as to which wave-rules should be initially applied. Theintroduction of accumulator terms M1(bl1c) and M2(bl2c) enable wave-rules (13) and (14) tobe applied. Jointly they motivate a case split on M1(l1) and n.Case: M1(l1) � nUsing wave-rule (13) a sideways ripple can be applied to the right-hand-side of the conclusion:: : : = reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); split1(j l1 + 1 #1k ; bnc ; jatend(h; l2 ) #1k ; t)))Note that M1 and M2 have been eagerly instantiated to be projections, i.e. �x:x. The left-hand-side of the conclusion contains a secondary accumulator term so rippling involves search.The sink instantiations, however, on the right-hand-side can be exploited in constraining thissearch, i.e. wave-rule (18) gives rise to:map(bfc ; app(atend(h;M4(h :: t; bl1c ; bl2c)) #2); t) = : : :which instantiates M3 to be �x:�y:�z:app(M4(x; y; z); x). Note that to be consistent with thesink instantiations on the right-hand-side of the conclusion, M4 must be instantiated to be aprojection of the form �x:�y:�z:z. The rippling in this branch of the case split is complete:map(bfc ; app(jatend(h; l2) #2k)) =reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); split1(j l1 + 1 #1k ; bnc ; jatend(h; l2) #1k ; t)))The induction hypothesis can be applied by instantiating l01 to be l1+1 and l02 to be atend(h; l2).The instantiations for M1, M2 and M3 are propagated through the remaining branch of thecase split.Case: l1 > nUsing wave-rule (14) the right-hand-side of the conclusion ripples to give:: : : = reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); l2 :: split1(j 2 #1k ; bnc ; jh :: nil #1k ; t) "1))By wave-rule (15) the conclusion ripples further to give7:: : : = reduce(�x:�y:app(x; y); map(f; l2) :: map(�x:map(bfc ; x); split1(j 2 #1k ; bnc ; jh :: nil #1k ; t)) "1)A further outward ripple using wave-rule (16) gives8:: : : = app(map(f; l2); reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); split1(j 2 #1k ; bnc ; jh :: nil #1k ; t)))) "17Note that the conclusion has been �-reduced automatically.8Again the conclusion has been �-reduced automatically.10



Using wave-rule (17) the left-hand-side of the conclusion becomes:app(map(f; l2); map(bfc ; app(jh :: nil #2k ; t))) "2 = : : :Finally, by wave-rule (19) the rippling of the conclusion is complete:map(bfc ; app(jh :: nil #2k ; t)) =reduce(�x:�y:app(x; y);map(�x:map(bfc ; x); split1(j 2 #1k ; bnc ; jh :: nil #1k ; t)))The induction hypothesis can be applied by instantiating l01 to be 2 and l02 to be h :: nil.To summarize, the ripple method in conjunction with the extended critic have automaticallygenerated (3), the required generalization of (2). A proof of (3) can be constructed by CLAMcompletely automatically.8 Related WorkJane Hesketh in her thesis work [9] also tackled the problem of accumulator generalization inthe context of proof planning. Her approach, however, did not deal with multiple accumulators.By introducing the primary and secondary classi�cation of wave-fronts we believe that ourapproach provides greater control in the search for generalizations. This becomes crucial as thecomplexity9 of examples increases. In addition, we use sink annotations explicitly in selectingpotential projections for higher-order meta-variables.Jane's work, however, was much broader than ours in that she uni�ed a number of di�erentkinds of generalization. Moreover, she was also able to synthesize tail-recursive functions givenequivalent naive recursive de�nitions [8].9 Future WorkOur results for the extended critic have been promising. More testing is planned. We believe thatour technique is not restricted to reasoning about functional programs. This will be re
ected infuture testing. Below we outline the key areas where we are looking to develop this work.9.1 Automatic Discovery of Loop InvariantsWe believe that our technique transfers directly to imperative programs. Discovering a loopinvariant is typically seen as a eureka step in the process of verifying an imperative program.This is re
ected in the fact that some of the major contributions in this area rely to a largeextent upon user interaction, e.g. in the gypsy veri�cation environment [6] all loop invariantsare supplied by the user. A common strategy for discovering invariants is to start with a desiredpost-condition from which the invariant is derived by a process of weakening. The notion ofa tail invariant [12] represents one such way of deriving an invariant. The search for a tailinvariant is appropriate when the desired post-condition takes the form:r = f(X; Y)9That is, as the number of de�nitions and lemmata available to the prover increases.11



where r denotes a program variable while f denotes a tail recursive function and X and Y denoteconstants. Given a post-condition of this form then the required (tail) invariant takes the form:f(x; r) = f(X; Y)where the initial value of the program variable x is X. A special case of this scheme occurs whenthe post-condition takes the form r = g(X)where g is not tail recursive. In such situations the tail invariant can be speci�ed by the followingschema: M(g(x); r) = g(X)where M denotes a second-order meta-variable. The problem of discovering the invariant is re-duced to �nding the identity ofM. There are strong similarities between step case and invariantproofs. The technique we have developed, therefore, can be used to guide the construction andinstantiation of such schematic invariants.9.2 Hardware Veri�cationWe also believe that our technique is applicable in the context of hardware veri�cation. Forinstance, we believe that it subsumes the procedure described in [16] for generalizing hardwarespeci�cations.9.3 User InteractionThe critic mechanism was motivated by a desire to build an automatic theorem prover whichwas more robust than the conventional provers. The high-level representation provided by aproof plan enabled us to achieve this goal. We believe, however, that the critic mechanism alsoprovides a basis for developing e�ective user interaction. To illustrate, consider conjecture C5from table I (appendix C). Based purely upon the de�nitions arising from the statement of theconjecture the extended critic, as currently implemented, automatically generates the followingpartial generalization:app(partition(evenel(X); Y;M1(X; Y;Z)); partition(oddel(X);M2(X; Y;Z); Z)) =partition(X; Y; Z)We are currently implementing an interactive version of the critic mechanism which will invitethe user to complete the instantiation of such partial generalizations. An obvious candidate hereis �x:�y:�z:nil which gives rise to the following generalized conjecture:app(partition(evenel(X); Y; nil); partition(oddel(X); nil; Z)) = partition(X; Y;Z)Note that this generalization of C5 is easily proved by CLAM.10 ConclusionThe search for inductive proofs cannot avoid the problem of generalization. In this paperwe describe extensions to a proof critic for automatically generalizing inductive conjectures.The ideas presented here build upon a proof patch mechanism documented in [11]. Theseextensions have signi�cantly improved the performance of the technique while preserving thespirit of original proof patch. Our implementation of the extended critic has been tested on theveri�cation of functional programs with some promising results. More generally, we believe thatour technique has wider application in terms of both software and hardware veri�cation.12



Appendix A: de�nitional rewrite rulesatend(X;nil) ) X :: nilatend(X; Y :: Z) ) Y :: atend(X;Z)split1(V;W;X;nil) ) X :: nilV �W! split1(V;W;X; Y :: Z) ) split1(V+ 1;W; atend(Y;X);Z)V> W! split1(V;W;X; Y :: Z) ) X :: split1(2;W; Y :: nil; Z)split(X; Y) ) split1(1; X; nil; Y) (12)app(nil; Z) ) Zapp(X :: Y; Z) ) X :: app(Y; Z)map(X;nil) ) nilmap(X; Y :: Z) ) (X@Y) ::map(X;Z)reduce(X;nil) ) nilreduce(X; Y :: Z) ) ((X@Y)@reduce(X;Z))rev(nil) ) nilrev(X :: Y) ) app(rev(Y); X :: nil)qrev(nil; Z) ) Zqrev(X :: Y; Z) ) qrev(Y;X :: Z)revflat(nil) ) nilrevflat(X :: Y) ) app(revflat(Y); X)qrevflat(nil; Z) ) Zqrevflat(X :: Y; Z) ) qrevflat(Y; app(X;Z))perm(nil; nil) ) trueperm(X :: Y; Z) ) perm(Y; delete(X;Z))^member(X;Z))evenel(nil) ) nileven(X)! evenel(X :: Y) ) X :: evenel(Y)odd(X)! evenel(X :: Y) ) evenel(Y)oddel(nil) ) nilodd(X)! oddel(X :: Y) ) X :: oddel(Y)even(X)! oddel(X :: Y) ) oddel(Y)partition(nil; Y; Z) ) app(Y; Z)even(W)! partition(W :: X; Y;Z) ) partition(X; atend(W;Y); Z)odd(W)! partition(W :: X; Y;Z) ) partition(X; Y; atend(W;Z))Appendix B: selection of example wave-rulesV �W! split1(V;W;X; Y :: Z "N) ) split1( V + 1 #N;W; atend(Y; X) #N; Z) (13)V> W! split1(bVc ;W; bXc ; Y :: Z "N) ) X :: split1(j 2 #Nk ;W; jY :: nil #Nk ; Z) "N (14)map(X; Y :: Z "N) ) (X@Y) :: map(X;Z) "N (15)reduce(X; Y :: Z "N) ) ((X@Y)@reduce(X;Z)) "N (16)map(W;app(bXc ; Y :: Z "N)) ) app(map(W;X); map(W;app(jY :: nil #Nk ; Z))) "N (17)app(X; Y :: Z "N) ) app( atend(Y; X) #N; Z) (18)app(X; Y) "M = app(X; Z) "N ) Y = Z (19)13



Appendix C: experimental resultsNo ConjectureC1 rev(X) = qrev(X;nil)C2 revflat(X) = qrevflat(X;nil)C3 qrev(qrev(X;nil); nil) = rev(rev(X))C4 permute(rev(X); qrev(X;nil))C5 app(evenel(X); oddel(X)) = partition(X;nil; nil)C6 map(F; X) = reduce(�x:�y:app(x; y);map(�x:map(F; x); split1(1;W;nil;X)))Table I: conjecturesNo Basic Critic Extended CriticC1 G1 G1, G2C2 G3 G3, G4C3 G5,G6,G7,G8,G9 G5,G6,G7,G8,G9,G10,G11C4 FAILURE G12,G13,G14C5 FAILURE G15C6 FAILURE G16The improved performance of the extended critic on conjectures C1, C2 and C3 can be attributed toits ability to revise the construction of secondary accumulator terms. The failure of the basic critic onconjecture C4 is due to its \arti�cial" restrictions on the placement of secondary accumulator terms. Thesame is true for C5 and C6 but in addition both these conjectures require multiple accumulators.Table II: performance of generalization criticsNo LemmaL1 app(app(X; Y); Z) = app(X; app(Y; Z))L2 app(app(X; Y :: nil); Z) = app(X; Y :: Z)L3 rev(app(X; Y :: nil)) = Y :: rev(X)L4 app(X; Y :: Z) = app(atend(Y; X); Z)L5 map(W;app(X; Y :: Z)) = app(map(W;X);map(W;app(Y :: nil; Z)))Table III: lemmata used to motivate generalizationsNo Generalization LemmataG1 rev(qrev(Y;X)) = qrev(X; Y)G2 app(rev(X); Y) = qrev(X; Y) L1G3 revflat(qrevflat(Y; X))G4 app(revflat(X); Y) = qrevflat(X; Y) L1G5 qrev(qrev(X; Y); nil) = app(rev(Y); rev(rev(X))) L2 & L3G6 qrev(qrev(X; Y); nil) = qrev(Y; rev(rev(X))) L3G7 qrev(qrev(X; Y); nil) = qrev(rev(rev(Y)); rev(rev(X))) L3G8 qrev(qrev(X; rev(Y)); nil) = app(Y; rev(rev(X))) L2 & L3G9 qrev(qrev(X; rev(rev(Y))); nil) = qrev(Y; rev(rev(X))) L3G10 qrev(qrev(X; Y);nil) = rev(app(rev(X); Y)) L1G11 qrev(qrev(X; Y); nil) = rev(rev(qrev(Y; X)))G12 perm(rev(qrev(X; Y)); qrev(X;Y))G13 perm(rev(qrev(Y;X)); qrev(X;Y))G14 perm(app(rev(X); Y); qrev(X; Y)) L1G15 app(app(Y; evenel(X)); app(Z; oddel(X))) = partition(X; Y; Z) L4G16 map(F; app(Y; X)) = reduce(�x:�y:app(x; y);map(�x:map(F; x); split1(Z;W;Y;X))) L4 & L5Note that di�erent combinations of lemmata give rise to di�erent generalizations. These are indicated bythe multiple references given in the third column. No entry appears if the generalization was discoveredusing purely de�nitional rewrite rules.Table IV: generalized conjectures14
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