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transformations; rational solutions.
2000 Mathematics Subject Classification. Primary 33E17; Secondary 37K10.

Introduction

In this paper, we obtain a necessary and sufficient condition for the A
(1)
4 Painlevé equation

to have a rational solution. The A
(1)
4 Painlevé equation is a generalization of the fourth

Painlevé equation. For the classification, we only use the residue calculus. In order to
get a necessary condition, we firstly use the residue calculus of a rational solution. By
the Bäcklund transformation, we secondly transform the parameters of the A

(1)
4 Painlevé

equation into the fundamental domain. In order to obtain a sufficient condition, we lastly
use the residue calculus of the principal part of the Hamiltonian, which is introduced in
Section 3.

Paul Painlevé and his pupil [16, 2] classified all differential equations of the form
y′′ = F (t, y, y′) on the complex domain D where F is rational in y, y′, locally analytic
in t ∈ D and for each solution, all the singularities which are dependent on the initial
conditions are poles. They found fifty equations of this type, forty four of which can be
solved or can be integrated in terms of solutions of ordinary linear differential equations,
or elliptic functions. The remaining six equations are called the Painlevé equations and
are given by

P1 y′′ = 6y2 + t,

P2 y′′ = 2y3 + 3ty + α,

P3 y′′ =
1

y
(y′)2 −

1

t
y′ +

1

t
(αy2 + β) + γy3 +

δ

y
,

P4 y′′ =
1

2y
(y′)2 +

3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y
,
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P5 y′′ =

(

1

2y
+

1

y − 1

)

(y′)2 −
1

t
y′ +

(y − 1)2

t2

(

αy +
β

y

)

+ γ
y

t
+ δ

y(y + 1)

y − 1
,

P6 y′′ =
1

2

(

1

y
+

1

y − 1
+

1

y − t

)

(y′)2 −

(

1

t
+

1

t − 1
+

1

y − t

)

y′

+
y(y − 1)(y − t)

t2(t − 1)2

(

α +
βt

y2
+

γ(t − 1)

(y − 1)2
+ δ

t(t − 1)

(y − t)2

)

,

where α, β, γ, δ are complex parameters.
Rational solutions of PJ (J = 2, 3, 4, 5, 6) were classified by Yablonski and Vorobev

[20, 19], Gromak [5, 4], Murata [9], Kitaev, Law and McLeod [6] and Mazzocco [8].
Especially, Murata [9] classified all of rational solutions of the fourth Painlevé equations
by using the Bäcklund transformations, which transform a solution into another solution
of the same equation with different parameters.

PJ (J = 2, 3, 4, 5, 6) have the Bäcklund transformation group. It is shown by Okamoto
[12] [13] [14] [15] that the Bäcklund transformation groups are isomorphic to the extended
affine Weyl groups. For P2, P3, P4, P5, P6, the Bäcklund transformation groups correspond
to A

(1)
1 , A

(1)
1

⊕

A
(1)
1 , A

(1)
2 , A

(3)
3 , D

(1)
4 , respectively.

Nowadays, the Painlevé equations are extended in many different ways. Garnier [3]
studied isomonodromic deformations of the second order linear equations with many reg-
ular singularities. Noumi and Yamada [10] discovered the equations of type A

(1)
l , whose

Bäcklund transformation groups are isomorphic to W̃ (A
(1)
l ). These equations are called

the A
(1)
l Painlevé equations. The A

(1)
2 and A

(1)
3 Painlevé equations correspond to the forth

and fifth Painlevé equations, respectively.
The A

(1)
4 Painlevé equation is defined by

A4(α0, α1, α2, α3, α4) :







































f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4

f0 + f1 + f2 + f3 + f4 = t,

where ′ is the differentiation with respect to t. For the A
(1)
4 Painlevé equation, we consider

the suffix of fi and αi as elements of Z/5Z. From the A
(1)
4 Painlevé equation, we have

∑4
i=0 αi = 1. The A

(1)
4 Painlevé equation is an essentially nonlinear equation with the

fourth order. By setting f3 ≡ f4 ≡ 0, we get the A
(1)
2 Painlevé equation which is defined
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by

A2(α0, α1, α2) :



















f ′
0 = f0(f1 − f2) + α0

f ′
1 = f1(f2 − f0) + α1

f ′
2 = f2(f0 − f1) + α2

f0 + f1 + f2 = t,

which is equivalent to the forth Painlevé equation. The A
(1)
4 Painlevé equation is the first

equation of the A
(1)
l Painlevé equations, which is not the original Painlevé equations. We

note that Veselov and Shabat [18], Adler [1] studied the symmetric forms of the Painlevé
equations from the viewpoint of soliton.

The Bäcklund transformation group of the A
(1)
4 Painlevé equation is generated by

s0, s1, s2, s3, s4 and π:

x s0(x) s1(x) s2(x) s3(x) s4(x) π(x)
f0 f0 f0 − α1/f1 f0 f0 f0 + α4/f4 f1

f1 f1 + α0/f0 f1 f1 − α2/f2 f1 f1 f2

f2 f2 f2 + α1/f1 f2 f2 − α3/f3 f2 f3

f3 f3 f3 f3 + α2/f2 f3 f3 − α4/f4 f4

f4 f4 − α0/f0 f4 f4 f4 + α3/f3 f4 f0

α0 −α0 α0 + α1 α0 α0 α0 + α4 α1

α1 α1 + α0 −α1 α1 + α2 α1 α1 α2

α2 α2 α2 + α1 −α2 α2 + α3 α2 α3

α3 α3 α3 α3 + α2 −α3 α3 + α4 α4

α4 α4 + α0 α4 α4 α4 + α3 −α4 α0

If fi ≡ 0 for some i = 0, 1, 2, 3, 4, we consider si as the identical transformation which is
given by

si(fj) = fj and si(αj) = αj (j = 0, 1, 2, 3, 4).

The Bäcklund transformation group 〈s0, s1, s2, s3, s4, π〉 is isomorphic to the extended

affine Weyl group W̃ (A
(1)
4 ).

In this paper, we completely classify rational solutions of the A
(1)
4 Painlevé equation

by using the method of Murata [9]. The result is that rational solutions of the A
(1)
4

Painlevé equation are decomposed to three classes, each of which is an orbit by the action
of W̃ (A

(1)
4 ).

This paper is organized as follows. Section 1 consists of two subsections. In Subsection
1.1, we calculate the Laurent series of a rational solution (fi)0≤i≤4 of A4(αi)0≤i≤4 at t = ∞.
The residues of fi (0 ≤ i ≤ 4) are expressed by the parameters αi (0 ≤ i ≤ 4). In
Proposition 1.1, 1.2, 1.3, we determine the Laurent series of fi (0 ≤ i ≤ 4) of A4(αi)0≤i≤4
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and obtain a sufficient condition for fi (0 ≤ i ≤ 4) to be uniquely expanded at t = ∞. In
Subsection 1.2, we get the Laurent series of a rational solution (fi)0≤i≤4 of A4(αi)0≤i≤4 at
t = c ∈ C following Tahara [17].

In Section 2, we firstly introduce shift operators, following Noumi and Yamada [11].
Secondly, from the residue theorem, we get a necessary condition for A4(αi)0≤i≤4 to have
a rational solution and prove that if A4(αi)0≤i≤4 has a rational solution, the parameters
αi (0 ≤ i ≤ 4) are rational numbers. In addition, we transform the parameters into the
set C which is defined by

C := {(αi)0≤i≤4 ∈ R
5 | 0 ≤ αi ≤ 1 (0 ≤ i ≤ 4)}.

In Section 3, we firstly introduce the Hamiltonian H of A4(αi)0≤i≤4 and its principal

part Ĥ following Noumi and Yamada [11]. Secondly, we calculate the residues of Ĥ at
t = ∞, c and prove Lemma 3.3, which is devoted to the residue calculus of Ĥ. We use
Lemma 3.3 in order to obtain a sufficient condition for A4(αi)0≤i≤4 to have a rational

solution. Thirdly, with the residue calculus of Ĥ , we prove Theorem 0.1 which gives us a
necessary and sufficient condition for A4(αi)0≤i≤4 to have a rational solution.

The main result of this paper was announced in [7].

Theorem 0.1. The A
(1)
4 Painlevé equation has a rational solution if and only if the

parameters αj (0 ≤ j ≤ 4) satisfy one of the following three conditions. The solution is
unique, if it exists.
(1) α0, α1, . . . , α4 ∈ Z.
(2) For some i = 0, 1, . . . 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

±1
3
(1, 1, 1, 0, 0) mod Z

±1
3
(1,−1,−1, 1, 0) mod Z.

(3) For some i = 0, 1, . . . , 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

j

5
(1, 1, 1, 1, 1) mod Z

j

5
(1, 2, 1, 3, 3) mod Z,

with some j = 1, 2, 3, 4.
(4) Furthermore, by a suitable Bäcklund transformation, the rational solution in the
class (1), (2), (3) above is respectively transformed into the following.

(i)

(f0, f1, f2, f3, f4) = (t, 0, 0, 0, 0) with (α0, α1, α2, α3, α4) = (1, 0, 0, 0, 0),
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(ii)

(f0, f1, f2, f3, f4) = (
t

3
,
t

3
,
t

3
, 0, 0) with (α0, α1, α2, α3, α4) = (

1

3
,
1

3
,
1

3
, 0, 0),

(iii)

(f0, f1, f2, f3, f4) = (
t

5
,
t

5
,
t

5
,
t

5
,
t

5
) with (α0, α1, α2, α3, α4) = (

1

5
,
1

5
,
1

5
,
1

5
,
1

5
).

Acknowledgments. The author wishes to express his sincere thanks to Professor
Yousuke Ohyama.

1 The Expansions of Rational Solutions

This section consists of two subsections. In Subsection 1.1, we suppose that (fj)0≤j≤4 is
a rational solution of A4(αj)0≤j≤4. We calculate the Laurent series of fj (0 ≤ j ≤ 4) at
t = ∞, c ∈ C. The residues of fj (0 ≤ j ≤ 4) at t = ∞ are expressed by the parameters
αj (0 ≤ j ≤ 4) and the Laurent series of fj (0 ≤ j ≤ 4) at t = ∞ are uniquely expanded
under the conditions in Proposition 1.3.

In Subsection 1.2, following Tahara [17], we compute the residues of fj (0 ≤ j ≤ 4) at
t = c ∈ C, which are integers.

1.1 the Laurent Series at t = ∞

In this subsection, we prove Proposition 1.1, 1.2 and 1.3. In Proposition 1.1, we determine
the order of a pole of fi (0 ≤ i ≤ 4) at t = ∞. In Proposition 1.2, we get the residues of
(fi)0≤i≤4 at t = ∞. In Proposition 1.3, we obtain a sufficient condition for the Laurent
series of fi (0 ≤ i ≤ 4) at t = ∞ to be uniquely expanded.

Proposition 1.1. Suppose that (f0, f1, f2, f3, f4) is a rational solution of
A4(α0, α1, α2, α3, α4) and some of f0, f1, f2, f3, f4 have a pole at t = ∞. Then
(f0, f1, f2, f3, f4) satisfies one of the following conditions:
(1) for some i = 0, 1, 2, 3, 4, fi has a pole at t = ∞ with the first order;
(2) for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+3 have a pole at t = ∞ with the first order;
(3) for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+2 have a pole at t = ∞ with the first order;
(4) all of f0, f1, f2, f3, f4 have a pole at t = ∞ with the first order.

We denote the case (1) by Type A (1), the case (2) by Type A (2), the case (3) by
Type B and the case (4) by Type C, respectively.
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Proof. We set

{

f0 =
∑n0

k=−∞
akt

k, f1 =
∑n1

k=−∞
bkt

k, f2 =
∑n2

k=−∞
ckt

k,

f3 =
∑n3

k=−∞
dkt

k, f4 =
∑n4

k=−∞
ekt

k,
(1.1)

where n0, n1, n2, n3, n4 are integers.
Since

∑4
k=0 fk = t, the following five cases occur.

I one rational function of (fk)0≤k≤4 has a pole at t = ∞,
II two rational functions of (fk)0≤k≤4 have a pole at t = ∞,
III three rational functions of (fk)0≤k≤4 have a pole at t = ∞,
IV four rational functions of (fk)0≤k≤4 have a pole at t = ∞,
V all the rational functions of (fk)0≤k≤4 have a pole at t = ∞.

Case I: one of rational function (fk)0≤k≤4 has a pole at t = ∞. By π, we assume
that f0 has a pole at t = ∞. Since

∑4
k=0 fk = t, it follows that

n0 = 1, nj ≤ 0 (1 ≤ j ≤ 4).

Therefore, we get Type A (1).

Case II: two rational functions of (fk)0≤k≤4 have a pole at t = ∞. Since the suffix
of fi and αi are considered as elements of Z/5Z, the following two cases occur.

(1) for some i = 0, 1, 2, 3, 4, fi, fi+1 have a pole at t = ∞,
(2) for some i = 0, 1, 2, 3, 4, fi, fi+2 have a pole at t = ∞.

Case II (1): fi, fi+1 have a pole at t = ∞. By π, we assume that f0, f1 have a
pole at t = ∞. Since

∑4
k=0 fk = t, it follows that

n0 = n1 ≥ 1, nj ≤ 0 (j = 2, 3, 4).

By comparing the highest terms in

f ′
0 = f0(f1 − f2 + f3 − f4) + α0,

we obtain
n0 − 1 = 2n0.

Therefore, we have n0 = −1, which contradiction.
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Case II (2): fi, fi+2 have a pole at t = ∞. By π, we assume that f0, f2 have a
pole at t = ∞. Since

∑4
k=0 fk = t, it follows that

n0 = n2 ≥ 1, nj ≤ 0 (j = 1, 3, 4).

By comparing the highest terms in

f ′
0 = f0(f1 − f2 + f3 − f4) + α0,

we obtain
n0 − 1 = 2n0.

Therefore, we have n0 = −1, which is contradiction.

Case III: three rational functions of (fk)0≤k≤4 have a pole at t = ∞. Since the
suffix of fi and αi are considered as elements of Z/5Z, the following two cases occur.

(1) for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+2 have a pole at t = ∞.
(2) for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+3 have a pole at t = ∞.

Case III (1): fi, fi+1, fi+2 have a pole at t = ∞. By π, we assume that f0, f1, f2

have a pole at t = ∞. Since
∑4

k=0 fk = t, the following four cases occur.

(i) n0 = n1 > n2 ≥ 1 (ii) n1 = n2 > n0 ≥ 1

(iii) n2 = n0 > n1 ≥ 1 (iv) n0 = n1 = n2 ≥ 1.

Case III (1) (i): n0 = n1 > n2 ≥ 1. By comparing the highest terms in

f ′
0 = f0(f1 − f2 + f3 − f4) + α0,

we have
n0 − 1 = 2n0.

Therefore, we have n0 = −1, which is contradiction.

Case III (1) (ii) and (iii): n1 = n2 > n0 ≥ 1 or n2 = n0 > n1 ≥ 1. We can show
contradiction in the same way.

Case III (1) (iv): n0 = n1 = n2 ≥ 1. By comparing the highest terms in










f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2,
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we have










bn1
− cn2

= 0

cn2
− an0

= 0

an0
− bn1

= 0.

Since
∑4

k=0 fk = t, it follows that

n0 = n1 = n2 = 1, a1 = b1 = c1 =
1

3
.

Therefore, we get Type B.

Case III (2): fi, fi+1, fi+3 have a pole at t = ∞. By π, we assume that f0, f1, f3

have a pole at t = ∞. Since
∑4

k=0 fk = t, the following four cases occur.

(i) n0 = n1 > n3, (ii) n1 = n3 > n0,

(iii) n3 = n1 > n0, (iv) n0 = n1 = n3.

If the cases III (1) (i), (ii) and (iii) occur, we can show contradiction in the same way as
the case II.

Case III (iv): n0 = n1 = n3. We suppose that n0 = n1 = n3 ≥ 2. By comparing
the highest terms in

f ′
0 = f0(f1 − f2 + f3 − f4) + α0,

we get
bn1

+ dn3
= 0.

Since
∑4

k=0 fk = t, it follows that an0
= 0, which is contradiction. Therefore, we obtain

n0 = n1 = n3 = 1

and get Type A (2).

Case IV: four rational functions of (fk)0≤k≤4 have a pole at t = ∞. By π, we
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assume that f0, f1, f2, f3 have a pole at t = ∞. Then the following eleven cases occur.

(i) n0 = n1 >

{

n2

n3

}

≥ 1 (ii) n0 = n2 >

{

n1

n3

}

≥ 1

(iii) n0 = n3 >

{

n1

n2

}

≥ 1 (iv) n1 = n2 >

{

n0

n3

}

≥ 1

(v) n1 = n3 >

{

n0

n2

}

≥ 1 (vi) n2 = n3 >

{

n0

n1

}

≥ 1

(vii) n0 = n1 = n2 > n3 ≥ 1 (viii) n0 = n1 = n3 > n2 ≥ 1

(ix) n1 = n2 = n3 > n0 ≥ 1 (x) n2 = n3 = n0 > n1 ≥ 1

(xi) n0 = n1 = n2 = n3 ≥ 1.

If the cases IV (i), (ii), . . . , (vi) occur, we can show contradiction in the same way as the
case II.

Case IV (vii) or (ix): n0 = n1 = n2 > n3 ≥ 1 or n1 = n2 = n3 > n0 ≥ 1. We
deal with the case IV (vii). The case IV (ix) can be proved in the same way. By
comparing the highest terms in

{

f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1,

we get
{

bn1
− cn2

= 0

cn2
− an0

= 0.

Since
∑4

k=0 fk = t, it follows that

an0
= bn1

= cn2
= 0,

which is contradiction.

Case IV (viii) or (x): n0 = n1 = n3 > n2 ≥ 1 or n2 = n3 = n0 > n1 ≥ 1. We
deal with the case IV (viii). The case IV (x) can be proved in the same way. By
comparing the highest terms in

f ′
2 = f2(f3 − f4 + f0 − f1) + α2,

we have
dn3

+ an0
− bn1

= 0.
9



Since
∑4

k=0 fk = t, it follows that
bn1

= 0,

which is contradiction.

Case IV (xi): n0 = n1 = n2 = n3 ≥ 1. By comparing the highest terms in



















f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3,

we obtain

bn1
− cn2

+ dn3
= 0 (1.2)

cn2
− dn3

− an3
= 0 (1.3)

dn3
+ an0

− bn1
= 0 (1.4)

−an0
+ bn1

− cn2
= 0. (1.5)

We assume that n0 = n1 = n2 = n3 ≥ 2. Since
∑4

k=0 fk = t, it follows that

an0
= −2cn2

, bn1
= cn2

, dn3
= 3cn2

.

Since
∑4

k=0 fk = t, it follows that
cn2

= 0,

which is contradiction.
We assume that n0 = n1 = n2 = n3 = 1. The equation (1.2) implies that

a1 + 2c1 = 1,

because
∑4

k=0 fk = t. The equations (1.3) and (1.4) imply that

d1 = 3c1 − 1, b1 = c1.

Since
∑4

k=0 fk = t, it follows that

1 = a1 + b1 + c1 + d1 = 3c1.

Therefore we obtain

c1 =
1

3
, d1 = 0,
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which is contradiction.

Case VI: all the rational functions of (fk)0≤k≤4 have a pole at t = ∞. Since
∑4

k=0 fk = t,
the following twelve cases occur.

(i) n0 = n1 >







n2

n3

n4







≥ 1, (ii) n0 = n2 >







n1

n3

n4







≥ 1,

(iii) n0 = n3 >







n1

n2

n4







≥ 1, (iv) n0 = n4 >







n1

n2

n3







≥ 1,

(v) n0 = n1 = n2 >

{

n3

n4

}

≥ 1, (vi) n0 = n1 = n3 >

{

n2

n4

}

≥ 1,

(vii) n0 = n1 = n4 >

{

n2

n3

}

≥ 1, (viii) n0 = n2 = n3 >

{

n1

n4

}

≥ 1,

(ix) n0 = n2 = n4 >

{

n1

n3

}

≥ 1, (x) n0 = n3 = n4 >

{

n1

n2

}

≥ 1,

(xi) n0 = n1 = n2 = n3 > n4 ≥ 1, (xii) n0 = n1 = n2 = n3 = n4 ≥ 1.

If the cases VI (i), . . . , (iv) occur, we can prove contradiction in the same way as the
case II. If the cases VI (v), . . . , (x) occur, we can prove contradiction in the same way as
the case III.

Case VI (xi): n0 = n1 = n2 = n3 > n4 ≥ 1. By comparing the highest terms
in































f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we have

bn1
− cn2

+ dn3
= 0 (1.6)

cn2
− dn3

− an0
= 0 (1.7)

dn3
+ an0

− bn1
= 0 (1.8)

−an0
+ bn1

− cn2
= 0 (1.9)

an0
− bn1

+ cn2
− dn3

= 0. (1.10)
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Since
∑4

k=0 fk = t, it follows that

an0
+ bn1

+ cn2
+ dn3

= 0. (1.11)

The equations (1.6) and (1.11) imply that

an0
= −2cn2

.

The equations (1.7) and (1.8) imply that

dn3
= 3cn2

, bn1
= cn2

.

The equation (1.11) implies that cn2
= 0, which is contradiction.

Case VI (xii): n0 = n1 = n2 = n3 = n4 ≥ 1. By comparing the highest terms
in































f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we obtain






























bn1
− cn2

+ dn3
− en4

= 0

cn2
− dn3

+ en4
− an0

= 0

dn3
− en4

+ an0
− bn1

= 0

en4
− an0

+ bn1
− cn2

= 0

an0
− bn1

+ cn2
− dn3

= 0.

Since the rank of












0 1 −1 1 −1
−1 0 1 −1 1
1 −1 0 1 −1
−1 1 −1 0 1
1 −1 1 −1 0













is four, it follows that

(an0
, bn1

, cn2
, dn3

, en4
) = α (1, 1, 1, 1, 1),

for some α ∈ C∗. Since
∑4

k=0 fk = t, it follows that

n0 = n1 = n2 = n3 = n4 = 1, a1 = b1 = c1 = d1 = e1 =
1

5
.

Therefore, we get Type C.
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In the following proposition, we obtain the residues of fi (0 ≤ i ≤ 4) at t = ∞ for
A(αi)0≤i≤4. The residues of fi (0 ≤ i ≤ 4) at t = ∞ are expressed by the parameters
αj (0 ≤ j ≤ 4).

Proposition 1.2. Suppose that (fj)0≤j≤4 is a rational solution of A4(αj)0≤j≤4.
(1) If fi has a pole at t = ∞ for some i = 0, 1, 2, 3, 4,































fi = t + (−αi+1 + αi+2 − αi+3 + αi+4)t
−1 + · · ·

fi+1 = αi+1t
−1 + · · ·

fi+2 = −αi+2t
−1 + · · ·

fi+3 = αi+3t
−1 + · · ·

fi+4 = −αi+4t
−1 + · · · .

(2) If fi, fi+1, fi+3 have a pole at t = ∞ for some i = 0, 1, 2, 3, 4,































fi = t + (1 − αi)t
−1 + · · ·

fi+1 = t + (1 − αi+1 − 2αi+2 + 2αi+4)t
−1 + · · ·

fi+2 = αi+2t
−1 + · · ·

fi+3 = −t + (−1 − αi+3 − 2αi+4)t
−1 + · · ·

fi+4 = −αi+4t
−1 + · · · .

(3) If fi, fi+1, fi+2 have a pole at t = ∞ for some i = 0, 1, 2, 3, 4,































fi = 1
3
t + (αi+1 − αi+2 − 3αi+3 − αi+4)t

−1 + · · ·

fi+1 = 1
3
t + (αi+2 − αi − αi+3 + αi+4)t

−1 + · · ·

fi+2 = 1
3
t + (αi − αi+1 + αi+3 + 3αi+4)t

−1 + · · ·

fi+3 = 3αi+3t
−1 + · · ·

fi+4 = −3αi+4t
−1 + · · · .

(4) If all the rational functions of (f0, f1, f2, f3, f4) have a pole at t = ∞,































f0 = 1
5
t + (3α1 + α2 − α3 − 3α4)t

−1 + · · ·

f1 = 1
5
t + (3α2 + α3 − α4 − 3α0)t

−1 + · · ·

f2 = 1
5
t + (3α3 + α4 − α0 − 3α1)t

−1 + · · ·

f3 = 1
5
t + (3α4 + α0 − α1 − 3α2)t

−1 + · · ·

f4 = 1
5
t + (3α0 + α1 − α2 − 3α3)t

−1 + · · · .
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Proof. Type A (1): for some i = 0, 1, 2, 3, 4, fi has a pole at t = ∞. By π, we assume that
f0 has a pole at t = ∞. Then it follows from Proposition 1.1 that

{

f0 =
∑1

k=−∞
akt

k, f1 =
∑n1

k=−∞
bkt

k, f2 =
∑n2

k=−∞
ckt

k,

f3 =
∑n3

k=−∞
dkt

k, f4 =
∑n4

k=−∞
ekt

k,

where n1, n2, n3, n4 ≤ 0. Since
∑4

k=0 fk = t, it follows that a1 = 1. By comparing the
coefficients of the term tn1+1 in

f ′
1 = f1(f2 − f3 + f4 − f0) + α1,

we get
n1 = −1, b−1 = α1, or f1 ≡ 0.

In the same way, we obtain

n2 = −1, c−1 = −α2, or f2 ≡ 0,

n3 = −1, d−1 = α3, or f3 ≡ 0,

n4 = −1, e−1 = −α4, or f4 ≡ 0.

Since
∑4

k=0 fk = t, it follows that

a0 = 0, a−1 = −α1 + α2 − α3 + α4.

Type A (2): for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+3 have a pole at t = ∞. By π, we assume
that f0, f1, f3 have a pole at t = ∞. Then it follows from Proposition 1.1 that

{

f0 =
∑1

k=−∞
akt

k, f1 =
∑1

k=−∞
bkt

k, f2 =
∑n2

k=−∞
ckt

k,

f3 =
∑1

k=−∞
dkt

k, f4 =
∑n4

k=−∞
ekt

k,
(1.12)

where n2, n4 ≤ 0. By comparing the coefficients of the term t2 in
{

f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1,

we have
{

b1 + d1 = 0

a1 + d1 = 0.

Since
∑4

k=0 fk = t, it follows that

a1 = b1 = 1, d1 = −1.
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By comparing the coefficients of the term t in

{

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we obtain
c0 = e0 = 0.

By comparing the constant terms in

{

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we have
c−1 = α2, e−1 = −α4.

By comparing the coefficients of the term t in

{

f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1,

we obtain
{

b0 + d0 = 0

a0 + d0 = 0.

Since
∑4

k=0 fk = t, it follows that

a0 = b0 = d0 = 0.

By comparing the constant terms in

{

f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1,

we have
{

a−1 = −2α2 + 2α4 + α0 − 1

d−1 = −α0 + α1 + 3α2 − 3α4.

Since
∑4

k=0 fk = t, it follows that

b−1 = −α1 − 2α2 + 2α4 + 1.
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Type B: for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+2 have a pole at t = ∞. By π, we assume that
f0, f1, f2 have a pole at t = ∞. Then it follows from Proposition 1.1 and its proof that

{

f0 = 1
3
t +

∑0
k=−∞

akt
k, f1 = 1

3
t +

∑0
k=−∞

bkt
k, f2 = 1

3
t +

∑0
k=−∞

ckt
k,

f3 =
∑n3

k=−∞
dkt

k, f4 =
∑n4

k=−∞
ekt

k,
(1.13)

where n3, n4 ≤ 0. By comparing the coefficients of the term t in

f ′
3 = f3(f4 − f0 + f1 − f2) + α3,

we obtain d0 = 0. By comparing the constant terms in

f ′
3 = f3(f4 − f0 + f1 − f2) + α3,

we have
d−1 = 3α3.

In the same way, we get
e0 = 0, e−1 = −3α4.

By comparing the coefficients of the term t in
{

f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1,

we obtain
{

b0 − a0 = 0

c0 − a0 = 0.

Since
∑4

k=0 fk = t, it follows that

a0 = b0 = c0 = 0.

By comparing the constant terms in










f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2,

we get










b−1 − c−1 = 1 − 3α0 − 3α3 − 3α4

c−1 − a−1 = 1 − 3α1 + 3α3 + 3α4

a−1 − b−1 = 1 − 3α2 − 3α3 − 3α4.
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Since
∑4

k=0 fk = t, it follows that











a−1 = α1 − α2 − 3α3 − α4

b−1 = −α0 + α2 − α3 + α4

c−1 = α0 − α1 + α3 + 3α4.

Type C: all the rational functions of f0, f1, f2, f3, f4 have a pole at t = ∞. Then it follows
from Proposition 1.1 and its proof that

{

f0 = 1
5
t +

∑0
k=−∞

akt
k, f1 = 1

5
t +

∑0
k=−∞

bkt
k, f2 = 1

5
t +

∑0
k=−∞

ckt
k,

f3 = 1
5
t +

∑0
k=−∞

dkt
k, f4 = 1

5
t +

∑0
k=−∞

ekt
k.

(1.14)

By comparing the coefficients of the term t in































f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we obtain






























b0 − c0 + d0 − e0 = 0

c0 − d0 + e0 − a0 = 0

d0 − e0 + a0 − b0 = 0

e0 − a0 + b0 − c0 = 0

a0 − b0 + c0 − d0 = 0.

Since the rank of












0 1 −1 1 −1
−1 0 1 −1 1
1 −1 0 1 −1
−1 1 −1 0 1
1 −1 1 −1 0













is four, it follows that
(a0, b0, c0, d0, e0) = β (1, 1, 1, 1, 1),

for some β ∈ C. Since
∑4

k=0 fk = t, it follows that

a0 = b0 = c0 = d0 = e0 = 0.
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By comparing the constant terms in






























f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we obtain






























1 = b−1 − c−1 + d−1 + e−1 + 5α0

1 = c−1 − d−1 + e−1 − a−1 + 5α1

1 = d−1 − e−1 + a−1 − b−1 + 5α2

1 = e−1 − a−1 + b−1 − c−1 + 5α3

1 = a−1 − b−1 + c−1 − d−1 + 5α4.

Since
∑4

k=0 fk = t, it follows that

a−1 + b−1 + c−1 + d−1 + e−1 = 0.

Therefore we get






























a−1 = 3α1 + α2 − α3 − 3α4,

b−1 = 3α2 + α3 − α4 − 3α0,

c−1 = 3α3 + α4 − α0 − 3α1,

d−1 = 3α4 + α0 − α1 − 3α2,

e−1 = 3α0 + α1 − α2 − 3α3.

In the following proposition, we get a sufficient condition for the Laurent series of
fj (0 ≤ j ≤ 4) at t = ∞ to be uniquely expanded.

Proposition 1.3. Suppose that (fj)0≤j≤4 is a rational solution on Proposition 1.2.
(1) If fi has a pole at t = ∞ and fi+1, fi+2, fi+3, fi+4 are regular at t = ∞ for some
i = 0, 1, 2, 3, 4, the Laurent series of fj (0 ≤ j ≤ 4) at t = ∞ are uniquely expanded.
(2) If fi, fi+1, fi+3 have a pole at t = ∞ and fi+2, fi+4 are regular at t = ∞ for some
i = 0, 1, 2, 3, 4, the Laurent series of fj (0 ≤ j ≤ 4) at t = ∞ are uniquely expanded.
(3) If fi, fi+1, fi+2 have a pole at t = ∞ and fi+3, fi+4 are regular at t = ∞ for some
i = 0, 1, 2, 3, 4, the Laurent series of fj (0 ≤ j ≤ 4) at t = ∞ are uniquely expanded.
(4) If all the rational functions of (fi)0≤i≤4 have a pole at t = ∞, the Laurent series of
fj (0 ≤ j ≤ 4) at t = ∞ are uniquely expanded.
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Especially, we have the following:
Type A (1): for some i = 0, 1, 2, 3, 4, fi has a pole at t = ∞ and fi+1, fi+2, fi+3, fi+4 are
regular at t = ∞. Then,



















fi+1 ≡ 0 if αi+1 = 0

fi+2 ≡ 0 if αi+2 = 0

fi+3 ≡ 0 if αi+3 = 0

fi+4 ≡ 0 if αi+4 = 0.

Type A (2): for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+3 have a pole at t = ∞ and fi+2, fi+4 are
regular at t = ∞. Then,

{

fi+2 ≡ 0 if αi+2 = 0

fi+4 ≡ 0 if αi+4 = 0.

Type B: for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+2 have a pole at t = ∞ and fi+3, fi+4 are
regular at t = ∞. Then,

{

fi+3 ≡ 0 if αi+3 = 0

fi+4 ≡ 0 if αi+4 = 0.

Proof. If there exists a rational solution of Type A (1), we have
{

f0 = t + a−1t
−1 +

∑−2
k=−∞

akt
k, f1 = b−1t

−1 +
∑−2

k=−∞
bkt

k, f2 = c−1t
−1 +

∑−2
k=−∞

ckt
k,

f3 = d−1t
−1 +

∑−2
k=−∞

dkt
k, f4 = e−1t

−1 +
∑−2

k=−∞
ekt

k,

where a−1, b−1, c−1, d−1, e−1 have been determined in Proposition 1.2. By comparing the
coefficients of the terms tk (k ≤ −2) in



















f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we get


















bk−1 = bk(k + 1) +
∑0

m=k bk−m(cm − dm + em − am)

ck−1 = −ck(k + 1) −
∑0

m=k ck−m(dm − em + am − bm)

dk−1 = dk+1(k + 1) +
∑0

m=k dk−m(em − am + bm − cm)

ek−1 = −ek+1(k + 1) −
∑0

m=k ek−m(am − em + cm − dm).

In Proposition 1.2, we have had

b−1 = α1, c−1 = −α2, d−1 = α3, e−1 = −α4.
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Therefore we get


















f1 ≡ 0 if α1 = 0

f2 ≡ 0 if α2 = 0

f3 ≡ 0 if α3 = 0

f4 ≡ 0 if α4 = 0.

Since
∑4

j=0 fj = t, it follows that

ak−1 = −bk−1 − ck−1 − dk−1 − ek−1.

Therefore, if there is a rational solution of Type A (1), the coefficients ak, bk, ck, dk, ek (k ≤
−2) are determined inductively and it is unique.

If there exists a rational solution of Type A (2), we have
{

f0 = t + a−1t
−1 +

∑−2
k=−∞

akt
k, f1 = t + b−1t

−1 +
∑−2

k=−∞
bkt

k, f2 = c−1t
−1 +

∑−2
k=−∞

ckt
k,

f3 = −t + d−1t
−1 +

∑−2
k=−∞

dkt
k, f4 = e−1t

−1 +
∑−2

k=−∞
ekt

k,

where a−1, b−1, c−1, d−1, e−1 have been determined in Proposition 1.2. By comparing the
coefficients of the terms tk (k ≤ −2) in

{

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we get
{

ck−1 = ck+1(k + 1) +
∑0

m=k c(k−m)(dm − em + am − bm)

ek−1 = −ek+1(k + 1) −
∑0

m=k ek−m(am − em + cm − dm).

In Proposition 1.2, we have had

c−1 = α2, e−1 = −α4.

Therefore the coefficients ck, ek (k ≤ −2) are determined inductively and we get
{

f2 ≡ 0 if α2 = 0

f4 ≡ 0 if α4 = 0

By comparing the coefficients of the terms tk (k ≤ −2) in











f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
3 = f3(f4 − f0 + f1 − f2) + α3,
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we get






































bk−1 + dk−1 = ck−1 + ek−1 − ak+1(k + 1)

−
∑0

m=k a(k−m)(bm − cm + dm − em)

−dk−1 − ak−1 = −ck−1 − ek−1 − bk+1(k + 1)

−
∑0

m=k bk−m(cm − dm + em − am)

−ak−1 + bk−1 = −ek−1 + ck−1 − dk+1(k + 1)

+
∑0

m=k dk−m(em − am + bm − cm).

Since
∑4

j=0 fj = t, it follows that

ak−1 + bk−1 + dk−1 = −ck−1 − ek−1.

Therefore, if there is a rational solution of Type A (2), the coefficients ak, bk, dk (k ≤ −2)
are determined inductively and it is unique.

If there exists a rational solution of Type B, we have

{

f0 = 1
3
t + a−1t

−1 +
∑−2

k=−∞
akt

k, f1 = 1
3
t + b−1t

−1 +
∑−2

k=−∞
bkt

k, f2 = 1
3
t + c−1t

−1 +
∑−2

k=−∞
ckt

k,

f3 = d−1t
−1 +

∑−2
k=−∞

dkt
k, f4 = e−1t

−1 +
∑−2

k=−∞
ekt

k,

where a−1, b−1, c−1, d−1, e−1 have been determined in Proposition 1.2. By comparing the
coefficients of the terms tk (k ≤ −2) in

{

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we obtain
{

dk−1 = −3(k + 1)dk+1 + 3
∑0

m=k dk−m(em − am + bm−m)

ek−1 = 3(k + 1)ek+1 − 3
∑0

m=k ek−m(am − bm + cm − dm).

In Proposition 1.2, we have had

d−1 = 3α3, e−1 = −3α4.

Therefore the coefficients dk, ek (k ≤ −2) are determined inductively and we get

{

f3 ≡ 0 if α3 = 0,

f4 ≡ 0 if α4 = 0.
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By comparing the coefficients of the terms tk (k ≤ −2) in











f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2,

we have










ck−1 − bk−1 = −3(k + 1)ak+1 + 3
∑0

m=k ak−m(bm − cm + dm − em)

ak−1 − ck−1 = −3(k + 1)bk+1 + 3
∑0

m=k bk−m(cm − dm + em − am)

bk−1 − ak−1 = −3(k + 1)ck+1 + 3
∑0

m=k ck−m(dm − em + am − bm).

Since
∑4

i=0 fi = t, it follows that

ak−1 + bk−1 + ck−1 = dk−1 − ek−1.

Therefore, if there is a rational solution of Type B, the coefficients ak, bk, ck (k ≤ −2) are
determined inductively and it is unique.

If there exists a rational solution of Type C, we have
{

f0 = 1
5
t + a−1t

−1 +
∑−∞

k=−2 akt
k, f1 = 1

5
t + b−1t

−1 +
∑−∞

k=−2 bkt
k, f2 = 1

5
t + c−1t

−1 +
∑−∞

k=−2 ckt
k,

f3 = 1
5
t + d−1t

−1 +
∑−∞

k=−2 dkt
k, f4 = 1

5
t + e−1t

−1 +
∑−∞

k=−2 ekt
k,

where a−1, b−1, c−1, d−1, e−1 have been determined in Proposition 1.2. By comparing the
coefficients of the terms tk (k ≤ −2) in































f ′
0 = f0(f1 − f2 + f3 − f4) + α0

f ′
1 = f1(f2 − f3 + f4 − f0) + α1

f ′
2 = f2(f3 − f4 + f0 − f1) + α2

f ′
3 = f3(f4 − f0 + f1 − f2) + α3

f ′
4 = f4(f0 − f1 + f2 − f3) + α4,

we get






























bk−1 − ck−1 + dk−1 − ek−1 = 5(k + 1)ak+1 − 5
∑0

m=k ak−m(bm − cm + dm − em)

ck−1 − dk−1 + ek−1 − ak−1 = 5(k + 1)bk+1 − 5
∑0

m=k bk−m(cm − dm + em − am)

dk−1 − ek−1 + ak−1 − bk−1 = 5(k + 1)ck+1 − 5
∑0

m=k ck−m(dm − em + am − bm)

ek−1 − ak−1 + bk−1 − ck−1 = 5(k + 1)dk+1 − 5
∑0

m=k dk−m(em − am + bm − cm)

ak−1 − bk−1 + ck−1 − dk−1 = 5(k + 1)ek+1 − 5
∑0

m=k ek−m(am − bm + cm − dm)
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Since the rank of












0 1 −1 1 −1
−1 0 1 −1 1
1 −1 0 1 −1
−1 1 −1 0 1
1 −1 1 −1 0













is four, bk−1, ck−1, dk−1, ek−1 can be expressed by

ai (k − 1 ≤ i ≤ 1), bj , cj , dj, ej (k ≤ j ≤ 1).

Since
∑4

k=0 fk = t, it follows that

ak−1 + bk−1 + ck−1 + dk−1 + ek−1 = 0.

Therefore, if there is a rational solution of Type C, the coefficients ak, bk, ck, dk, ek (k ≤
−2) are determined inductively and it is unique.

From Proposition 1.3, we have

Corollary 1.4. Let (fj)0≤j≤4 be a rational solution of A4(αj)0≤j≤4. Then, fj (0 ≤ j ≤ 4)
are odd functions.

Proof. A4(αj)0≤j≤4 is invariant under the transformation

s−1 : t −→ −t, fj −→ −fj (0 ≤ j ≤ 4).

Each of Type A, Type B, Type C on Proposition 1.1 is also invariant under s−1. Then
fj(t) = −fj(−t) (0 ≤ j ≤ 4), because the Laurent series of fj at t = ∞ on each of types
are unique. Therefore, fj are odd functions.

1.2 the Laurent Series at t = c ∈ C

In this subsection, we calculate the Laurent series of fj (0 ≤ j ≤ 4) at t = c ∈ C for
A4(αj)0≤j≤4, which are determined by Tahara [17]. The residues of fj (0 ≤ j ≤ 4) at
t = c ∈ C are integers.

Tahara [17] obtained the following proposition:

Proposition 1.5. If some of (fj)0≤j≤4 have a pole at t = c ∈ C, fj is expanded as the
following three types:
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(1) if fi, fi+1 have a pole at t = c ∈ C for some i = 0, 1, 2, 3, 4,























































fi = (t − c)−1 + c
2

+
(

1 + c2

12
− 1

3
αi −

2
3
αi+1 −

2
3
αi+3

)

(t − c)

+
(

−1
2
(qi+2,2 + qi+4,2) + c

8
+ c

4
(αi+2 + αi+4)

)

(t − c)2 + · · ·

fi+1 = −(t − c)−1 + c
2

+
(

1 − c2

12
− 2

3
αi −

1
3
αi+1 −

2
3
αi+3

)

(t − c)

+
(

−1
2
(qi+2,2 + qi+4,2) −

1
8
c − c

4
(αi+2 + αi+4)

)

(t − c)2 · · ·

fi+2 = −αi+2(t − c) + qi+2,2(t − c)2 + · · ·

fi+3 = αi+3

3
(t − c) + 0(t − c)2 + · · ·

fi+4 = −αi+4(t − c) + qi+4,2(t − c)2 · · · ,

where qi+2,2, qi+4,2 are arbitrary constants.
(2) if fi, fi+2 have a pole at t = c ∈ C for some i = 0, 1, 2, 3, 4,







































































fi = −(t − c)−1 +
(

1
2
c − qi+3,0

)

+
(

1
3
(2 + αi+1 − αi+2 − 3αi+3 − αi+4) + 2

3
qi+3,0 (c − qi+3,0 − 2qi+4,0) −

1
3

(

1
2
c − qi+3,0

)2
)

×(t − c) + · · ·

fi+1 = −αi+1(t − c) + · · ·

fi+2 = (t − c)−1 +
(

1
2
c − qi+4,0

)

+
(

1
3
(2 − αi + αi+1 − αi+3 − 3αi+4) −

2
3
qi+4,0(c − 2qi+3,0 − qi+4,0) + 1

3
(1

2
c − qi+4,0)

2
)

×(t − c) + · · ·

fi+3 = qi+3,0 +
(

qi+3,0(−c + qi+3,0 + 2qi+4,0) + αi+3

)

(t − c) + · · ·

fi+4 = qi+4,0 +
(

qi+4,0(c − 2qi+3,0 − qi+4,0) + αi+4

)

(t − c) + · · · ,

where qi+3,0, qi+4,0 are arbitrary constants.
(3) if fi+1, fi+2, fi+3, fi+4 have a pole at t = c ∈ C for some i = 0, 1, 2, 3, 4,







































fi = −αi

3
(t − c) + · · ·

fi+1 = 3(t − c)−1 +
(

c2

10
− 2

5
− 3

5
αi + 3

5
αi+2 + 1

5
αi+3 −

1
5
αi+4

)

(t − c) + · · ·

fi+2 = (t − c)−1 + c
2

+
(

c2

12
+ 2

3
+ αi + 1

3
αi+1 −

1
3
αi+3 + 1

3
αi+4

)

(t − c) + · · ·

fi+3 = −(t − c)−1 + c
2

+
(

− c2

12
+ 2

3
+ αi + 1

3
αi+1 −

1
3
αi+2 + 1

3
αi+4

)

(t − c) + · · ·

fi+4 = −3(t − c)−1 +
(

− c2

10
− 2

5
− 3

5
αi −

1
5
αi+1 + 1

5
αi+2 + 3

5
αi+3

)

(t − c) + · · · .

From Proposition 1.5, we obtain the following corollary:
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Corollary 1.6. Suppose that (fi)0≤i≤4 is a rational solution of A4(αi)0≤i≤4.
(1) If c ∈ C \ {0} is a pole of fi , −c is also a pole of fi and Rest=cfi = Rest=−cfi.
(2) If Rest=∞fi is an even integer, t = 0 is not a pole of fi. Therefore,

fi = ai,1t +

ni
∑

j=1

(

εi,j

t − ci,j

+
εi,j

t + ci,j

)

,

where ai,1 = 0,±1, 1
3
, 1

5
and εi,j = ±1,±3 and ci,j 6= 0.

(3) If Rest=∞fi is an odd integer, t = 0 is a pole of fi. Therefore,

fi = ai,1t +
εi,0

t
+

ni
∑

j=1

(

εi,j

t − ci,j

+
εi,j

t + ci,j

)

,

where εi,0, εi,j = ±1,±3 and ci,j 6= 0.

Proof. (1) Let c ∈ C \ {0} be a pole of fi. Then it follows from Proposition 1.5 and
Corollary 1.4 that fi has a pole at t = c with the first order and is an odd function:

fi(t) = −fi(−t).

Therefore, −c is also a pole of fi and Rest=cfi = Res−cfi.

(2) Suppose that t = 0 is a pole of fi. Let ±c1,±c2, · · · ± cni
∈ C \ {0} be

poles of fi. Then, it follows from the residue theorem that

−Rest=∞fi = Rest=0fi + 2

ni
∑

j=1

Rest=cj
fi,

which is contradiction because Rest=0fi = ±1 or ± 3.

(3) Suppose that t = 0 is not a pole of fi. Let ±c1,±c2, · · · ± cni
∈ C \ {0} be

poles of fi. Then, it follows from the residue theorem that

−Rest=∞fi = 2

ni
∑

j=1

Rest=cj
fi,

which is contradiction.
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2 A Necessary Condition

In this section, following Noumi and Yamada [10], we firstly introduce the shift operators
of the parameters (αi)0≤i≤4. Secondly we get a necessary condition for A4(αi)0≤i≤4 to have
a rational solution and prove that if A4(αi)0≤i≤4 has a rational solution, αi (0 ≤ i ≤ 4)
are rational numbers. Thirdly, we transform the parameters into the set C.

Noumi and Yamada [10] defined shift operators in the following way:

Proposition 2.1. For any i = 0, 1, 2, 3, 4, Ti denote shift operators which are expressed
by

T1 = πs4s3s2s1, T2 = s1πs4s3s2, T3 = s2s1πs4s3, T4 = s3s2s1πs4, T0 = s4s3s2s1π.

Then,
Ti(αi−1) = αi−1 + 1, Ti(αi) = αi − 1, Ti(αj) = αj (j 6= i − 1, i).

In Proposition 1.2 and 1.5, we have determined the residues of fi (0 ≤ i ≤ 4) at
t = ∞, c ∈ C, respectively. Therefore, the residue theorem gives a necessary condition
for A(αi)0≤i≤4 to have a rational solution.

Theorem 2.2. If the A4(αj)0≤j≤4 has a rational solution, (α0, α1, α2, α3, α4) satisfy one
of the following conditions:

(1) if A4(αj)0≤j≤4 has a rational solution of Type A, αi ∈ Z (0 ≤ i ≤ 4);

(2) if A4(αj)0≤j≤4 has a rational solution of Type B, for some i = 0, 1, 2, 3, 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡ (
n1

3
−

n3

3
,

n1

3
,

n1

3
+

n4

3
,

n3

3
, −

n4

3
) modZ,

where n1, n3, n4 = 0, 1, 2;

(3) if A4(αj)0≤j≤4 has a rational solution of Type C, for some i = 0, 1, 2, 3, 3, 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡ (
n1

5
+

2n2

5
+

3n3

5
,

n1

5
+

2n2

5
+

n3

5
,

n1

5
,

n1

5
+

n2

5
,

n1

5
+

n3

5
) modZ,

where n1, n2, n3 = 0, 1, 2, 3, 4.

In (1), (2) and (3), we consider the suffix of the parameters αi as elements of Z/5Z.

Proof. Proposition 1.5 implies that Rest=cfi = ±1,±3 (0 ≤ i ≤ 4) for t = c ∈ C. There-
fore, it follows from the residue theorem that Rest=∞fi ∈ Z (0 ≤ i ≤ 4).
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If Type A (1) occurs, it follows from Proposition 1.2 that αi+1, αi+2, αi+3, αi+4 ∈ Z,
which proves that αi ∈ Z because

∑4
k=0 αk = 1.

If Type A (2) occurs, we can show that αj ∈ Z (0 ≤ j ≤ 4) in the same way as Type
A (1).

If Type B occurs, it follows from Proposition 1.2 that Rest=∞fi+3 and Rest=∞fi+4 ∈ Z,
which means that

αi+3 =
n3

3
, αi+4 = −

n4

3
, n3, n4 ∈ Z.

Furthermore, Proposition 1.2 implies that Rest=∞fi+1 and Rest=∞fi+2 ∈ Z, which shows
that

αi+2 − αi −
n3

3
−

n4

3
= m1 ∈ Z

αi − αi+1 +
n3

3
− n4 = m2 ∈ Z.

By solving this system of equations of αi, αi+2, we obtain

αi = αi+1 −
n3

3
+ m2 + n4

αi+1 = αi+1

αi+2 = αi+1 +
n4

3
+ m1 + m2 + n4.

Since αi+3 = n3

3
, αi+4 = −n4

3
and

∑4
j=0 αj = 1, it follows that αi+1 = n1

3
for some integer

n1 ∈ Z, which implies that

(αi, αi+1, αi+2, αi+3, αi+4) ≡ (
n1

3
−

n3

3
,
n1

3
,
n1

3
+

n4

3
,
n3

3
,−

n4

3
) mod Z.

If Type C occurs, it follows from Proposition 1.2 that

3α1 + α2 − α3 − 3α4 = m0 ∈ Z

3α2 + α3 − α4 − 3α0 = m1 ∈ Z

3α3 + α4 − α0 − 3α1 = m2 ∈ Z

3α4 + α0 − α1 − 3α2 = m3 ∈ Z

3α0 + α1 − α2 − 3α3 = m4 ∈ Z.
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By solving this system of equations, we obtain

α0 = α3 −
3

5
m0 −

2

5
m1 −

2

5
m2 −

1

5
m3

α1 = α3 +
1

5
m1 −

2

5
m2 +

1

5
m3

α2 = α3 −
4

5
m0 −

3

5
m2 −

3

5
m3

α3 = α3

α4 = α3 −
3

5
m0 +

1

5
m1 −

3

5
m2.

Since
∑4

i=0 αi = 1, it follows that

αj =
nj

5
nj ∈ Z (0 ≤ j ≤ 4).

We substitute αj =
nj

5
into the residues of fj at t = ∞ again and get

3n1 + n2 − n3 − 3n4 ≡ 0 mod 5

3n2 + n3 − n4 − 3n0 ≡ 0 mod 5

3n3 + n4 − n0 − 3n1 ≡ 0 mod 5

3n4 + n0 − n1 − 3n2 ≡ 0 mod 5

3n0 + n1 − n2 − 3n3 ≡ 0 mod 5.

By solving this system of equations in the field Z/5Z, we obtain

n0 ≡ l1 + 2l2 + 3l3 mod 5

n1 ≡ l1 + 2l2 + l3 mod 5

n2 ≡ l1 mod 5

n3 ≡ l1 + l2 mod 5

n4 ≡ l1 + l3 mod 5.

By the Bäcklund transformations, we can transform the parameters obtained in Theo-
rem 2.2 into the set C. For the purpose, we study the relationship between the Bäcklund
transformations si (0 ≤ i ≤ 4) and Type A, Type B, Type C on Proposition 1.1 in the
following proposition:
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Proposition 2.3. The Bäcklund transformation si preserves Type A, Type B and Type
C on Proposition 1.1.

Type A (1): for some j = 0, 1, 2, 3, 4, fj has a pole at t = ∞. When j = i, i ± 1,
si preserves Type A (1). When j = i ± 2, si changes Type A (1) into Type A (2).

Type A (2): for some j = 0, 1, 2, 3, 4, fj , fj+1, fj+3 have a pole at t = ∞. When
j = i, i − 1, i + 2, si preserves Type A (2). When j = i + 1, i − 2, si changes Type A (2)
into Type A (1).

Type B and C are invariant under the Bäcklund transformations.

With the Bäcklund transformations, we transform the parameters (αi)0≤i≤4 in The-
orem 2.2 into the set C. In the set C, we have one, five, six kinds of parameters which
correspond to the parameters in (1), (2), (3) in Theorem 2.2, respectively.

Theorem 2.4. By some Bäcklund transformations, the parameters in (1), (2), (3)
in Theorem 2.2 can be transformed into the following parameters in the set C, respectively.

(1) The parameters are transformed into (1, 0, 0, 0, 0).

(2) The parameters in Theorem 2.2 (2) are transformed into one of

(
1

3
,
1

3
,
1

3
, 0, 0), (

2

3
, 0, 0,

1

3
, 0), (

1

3
, 0, 0,

2

3
, 0), (0,

1

3
, 0,

1

3
,
1

3
), (1, 0, 0, 0, 0).

The parameters in Theorem 2.2 (2) are transformed into (1
3
, 1

3
, 1

3
, 0, 0) if and only if

(n1, n3, n4) = (±1, 0, 0), (±1, 0,±1), (±1,±1, 0),±(0, 1,−1),

or if and only if for some i = 0, 1, . . . 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

±1
3
(1, 1, 1, 0, 0) mod Z

±1
3
(1,−1,−1, 1, 0) mod Z.

(3) The parameters in Theorem 2.2 (3) are transformed into one of

(
1

5
,
1

5
,
1

5
,
1

5
,
1

5
), (1, 0, 0, 0, 0), (

3

5
, 0,

1

5
,
1

5
, 0), (

1

5
, 0,

2

5
,
2

5
, 0), (

1

5
,
2

5
, 0, 0,

2

5
), (

3

5
,
1

5
, 0, 0,

1

5
).
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The parameters in Theorem 2.2 (3) are transformed into (1
5
, 1

5
, 1

5
, 1

5
, 1

5
) if and only if

(n1, n2, n3) = (1, 0, 0), (1, 2, 2), (1, 0, 1), (1, 2, 3), (1, 1, 0), (2, 0, 0),

= (2, 4, 4), (2, 0, 2), (2, 4, 1), (2, 2, 0), (2, 2, 1), (3, 0, 0),

= (3, 1, 1), (3, 3, 4), (3, 3, 0), (3, 0, 3), (3, 1, 4), (4, 0, 0),

= (4, 3, 3), (4, 4, 0), (4, 4, 2), (4, 3, 2), (4, 0, 4),

or if and only if for some i = 0, 1, . . . , 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

j

5
(1, 1, 1, 1, 1) mod Z

j

5
(1, 2, 1, 3, 3) mod Z,

with some j = 1, 2, 3, 4.

Proof. (1) We inductively prove that the parameters (n0, n1, n2, n3, n4) ni ∈ Z can be
transformed into (1, 0, 0, 0, 0).

i) Four of the parameters are 0.
By π, the parameters can be transformed into (1, 0, 0, 0, 0).

ii) Three of the parameters are 0.
(1) By T n1

1 , we have (n0, n1, 0, 0, 0) −→ (n0, 0, 0, 0, 0),
(2) By T n2

2 , we get (n0, 0, n2, 0, 0) −→ (n0, n2, 0, 0, 0),

iii) Two of the parameters are 0.
(1) By T n2

2 , we obtain (n0, n1, n2, 0, 0) −→ (n0, n1 + n2, 0, 0, 0),
(2) By T n3

3 , we have (n0, n1, 0, n3, 0) −→ (n0, n1, n3, 0, 0, 0),

iv) One of the parameters is 0.
By T n3

3 , we get (n0, n1, n2, n3, 0) −→ (n0, n1, n2 + n3, 0, 0).

v) None of the parameters is 0.
By T n4

4 , we obtain (n0, n1, n2, n3, n4) −→ (n0, n1, n2, n3 + n4, 0),

(2) By some Bäcklund transformations, we can transform the parameters

(α0, α1, α2, α3, α4) = (
n1

3
−

n3

3
,
n1

3
,
n1

3
+

n4

3
,
n3

3
,−

n4

3
) mod Z, n1, n3, n4 = 0, 1, 2,

into the set C. We have to consider 33 = 27 cases. Here, we show that (αi)0≤i≤4 can be
transformed into the set C in the following five cases. The other cases can be proved in
the same way.

30



When n1 = n3 = n4 = 0, the discussion on (1) implies that

(α0, α1, α2, α3, α4) −→ (1, 0, 0, 0, 0).

When n1 = 1, n3 = 0, n4 = 2, by π, we get

(
1

3
,
1

3
, 0, 0,

1

3
) −→ (

1

3
,
1

3
,
1

3
, 0, 0).

When n1 = 1 = n3 = n4 = 1, by s0 ◦ s4, we obtain

(0,
1

3
,
2

3
,
1

3
,−

1

3
) −→ (

1

3
, 0,

2

3
, 0, 0).

When n1 = 1, n3 = n4 = 2, by s0, we have

(−
1

3
,
1

3
, 0,

2

3
,
1

3
) −→ (

1

3
, 0, 0,

2

3
, 0).

When n1 = 1 = n3 = 1, n4 = 2, by π, we get

(0,
1

3
, 0,

1

3
,
1

3
) −→ (

1

3
, 0,

1

3
,
1

3
, 0).

(3) By some Bäcklund transformations, we can transform the parameters

(α0, α1, α2, α3, α4) = (
n1

5
+

2n2

5
+

3n3

5
,
n1

5
+

2n2

5
+

n3

5
,
n1

5
,
n1

5
+

n2

5
,
n1

5
+

n3

5
) mod Z

n1, n2, n3 = 0, 1, 2, 3, 4

into the set C. We have to consider 53 = 125 cases. Here, we only prove that (αi)0≤i≤4 can
be transformed into the set C in the following six cases. The other cases can be proved
in the same way.

When n1 = n2 = n3 = 0, by some shift operators, we get

(αi)0≤i≤4 −→ (1, 0, 0, 0, 0).

When n1 = 1, n2 = n3 = 0, by some shift operators, we obtain

(αi)0≤i≤4 −→ (
1

5
,
1

5
,
1

5
,
1

5
,
1

5
).

When n1 = 0, n2 = 2, n3 = 0, by π−1 ◦ s4 ◦ s0, we have

(−
1

5
,
4

5
, 0,

2

5
, 0) −→ (

3

5
, 0,

1

5
,
1

5
, 0).
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When n1 = 0, n2 = 1, n3 = 0, by some shift operators, we get

(αi)0≤i≤4 −→ (
2

5
,
2

5
, 0,

1

5
, 0).

When n1 = n2 = 0, n3 = 2, by some shift operators, we obtain

(αi)0≤i≤4 −→ (
1

5
,
2

5
, 0, 0,

2

5
).

When n1 = n2 = 0, n3 = 1, by some shift operators, we have

(αi)0≤i≤4 −→ (
3

5
,
1

5
, 0, 0,

1

5
).

3 A Sufficient Condition

In the previous section, we have shown a necessary condition for A4(αi)0≤i≤4 to have a
rational solution and have transformed (αi)0≤i≤4 ∈ R5 into the set C.

In this section, following Noumi and Yamada [10], we firstly introduce the Hamiltonian
H for A4(αi)0≤i≤4 and its principal part Ĥ. Secondly, from Proposition 1.2 and 1.5, we

calculate the residues of Ĥ at t = ∞, c. Thirdly, by the residue calculus of Ĥ , we decide
a sufficient condition for A4(αi)0≤i≤4 to have a rational solution.

Noumi and Yamada [11] defined the Hamiltonian H of A4(αj)0≤j≤4 by

H = f0f1f2 + f1f2f3 + f2f3f4 + f3f4f0 + f4f0f1

+
1

5
(2α1 − α2 + α3 − 2α4) f0 +

1

5
(2α1 + 4α2 + α3 + 3α4) f1

−
1

5
(3α1 + α2 − α3 + 2α4) f2 +

1

5
(2α1 − α2 + α3 + 3α4) f3

−
1

5
(3α1 + α2 + 4α3 + 2α4) f4.

Ĥ denotes the principal part of H which is defined by the equation

Ĥ = f0f1f2 + f1f2f3 + f2f3f4 + f3f4f0 + f4f0f1.

We suppose that (fj)0≤j≤4 is a rational solution of A4(αj)0≤j≤4. The order of a pole

of Ĥ at t = ∞ is at most three, because Proposition 1.1 implies that fi (0 ≤ i ≤ 4) have
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a pole at t = ∞ with the first order or are regular at t = ∞. Since Corollary 1.4 shows
that fi (0 ≤ i ≤ 4) are odd functions, the Laurent series of Ĥ at t = ∞ are given by

Ĥ := h∞,3t
3 + h∞,1t + h∞,−1t

−1 + O(t−3) at t = ∞.

In the following lemma, we calculate h∞,−1 by using the Laurent series of fi (0 ≤ i ≤ 4)
at t = ∞ in Proposition 1.2.

Lemma 3.1. Suppose that (fj)0≤j≤4 is a rational solution of A4(αj)0≤j≤4.

Type A (1): for some i = 0, 1, 2, 3, 4, fi has a pole at t = ∞. Then,

h∞,−1 = −αi+1αi+2 − αi+3αi+4 − αi+4αi+1.

Type A (2): for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+3 have a pole at t = ∞. Then,

h∞,−1 = −αi+2(αi + αi+3) + αi+4(αi+1 + αi+3) + αi+2αi+4.

Type B: for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+2 have a pole at t = ∞. Then,

h∞,−1 =
1

3

{

−(αi−αi+1+αi+3)
2−(αi+2−αi−αi+3+αi+4)(αi+2+αi+4−αi+1)−9αi+3αi+4

}

.

Type C: f0, f1, f2, f3, f4 have a pole at t = ∞. Then,

h∞,−1 =
1

5
(−a2

−1 + a−1e−1 − b2
−1 − a−1c−1 − c2

−1 + c−1d−1 + 2d−1e−1),

where

a−1 = 3α1 + α2 − α3 − 3α4, b−1 = 3α2 + α3 − α4 − 3α0, c−1 = 3α3 + α4 − α0 − 3α1,

d−1 = 3α4 + α0 − α1 − 3α2, e−1 = 3α0 + α1 − α2 − 3α3.

In the following lemma, we decide the residue of Ĥ at t = c by using the Laurent
series of fi (0 ≤ i ≤ 4) in Proposition 1.5.

Lemma 3.2. Suppose that (fi)0≤i≤4 is a rational solution of A4(αi)0≤i≤4 and some rational

functions of (fi)0≤i≤4 have a pole at t = c ∈ C. Then the residue of Ĥ at t = c is as
follows:
(1) if fi, fi+1 have a pole at t = c ∈ C for some i = 0, 1, 2, 3, 4,

Rest=cĤ = αi+2 + αi+4;
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(2) if fi, fi+2 have a pole at t = c ∈ C for some i = 0, 1, 2, 3, 4,

Rest=cĤ = αi+1;

(3) if fi+1, fi+2, fi+3, fi+4 have a pole at t = c ∈ C for some i = 0, 1, 2, 3, 4,

Rest=cĤ = αi+1 + αi+4.

From now on, let us study a rational solution of A4(αj)0≤j≤4 when (αi)0≤i≤4 is in the
set C. For the purpose, we have the following lemma:

Lemma 3.3. Suppose that the parameters (αj)0≤j≤4 ∈ R5 are in the set C. If A4(αj)0≤j≤4

has a rational solution (fj)0≤j≤4, then,

h∞,−1 ≥ 0.

Proof. Let c1, . . . , ck ∈ C be the poles of (fj)0≤j≤4. Since 0 ≤ αi ≤ 1 (0 ≤ i ≤ 4), it
follows from Lemma 3.2 that

Rest=cl
Ĥ ≥ 0 (1 ≤ l ≤ k).

Therefore it follows from the residue theorem that

h∞,−1 = −Rest=∞Ĥ =

k
∑

l=1

Rest=cl
Ĥ ≥ 0.

For the residue calculus of Ĥ, we make two tables about the residues of Ĥ at t = c ∈ C.

Table 1: the residues of Ĥ at t = c ∈ C in the case of (1
3
, 1

3
, 1

3
, 0, 0)

i 0 1 2 3 4
αi+2 + αi+4

1
3

1
3

1
3

2
3

1
3

αi+1
1
3

1
3

0 0 1
3

αi+1 + αi+4
1
3

2
3

1
3

1
3

1
3

By using Table 2, we study a rational solution of Type A of A4(1, 0, 0, 0, 0).
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Table 2: the residues of Ĥ at t = c ∈ C in the case of (1, 0, 0, 0, 0)

i 0 1 2 3 4
αi+2 + αi+4 0 1 0 1 0

αi+1 0 0 0 0 1
αi+1 + αi+4 0 1 0 0 1

Lemma 3.4. A4(1, 0, 0, 0, 0) has a unique rational solution of Type A which is given by

(f0, f1, f2, f3, f4) = (t, 0, 0, 0, 0).

Proof. If A4(1, 0, 0, 0, 0) has a rational solution of Type A, it follows from Lemma 3.1 that
h∞,−1 = 0. Furthermore Lemma 3.2 and Table 2 imply that the residue of Ĥ at t = c ∈ C

is nonnegative. Then it follows from the residue theorem that Rest=cĤ = 0. Therefore,
Table 2 implies that

(f0, f1), (f2, f3), (f4, f0)

(f0, f2), (f1, f3), (f2, f4), (f3, f0)

(f1, f2, f3, f4), (f3, f4, f0, f1), (f4, f0, f1, f2)

can have a pole at t = c ∈ C.
Proposition 1.1 shows that Type A (1) and Type A (2) can occur.

Type A (1): for some i = 0, 1, 2, 3, 4, fi has a pole at t = ∞. If f0 has a pole
at t = ∞, it follows from the uniqueness in Proposition 1.3 that

(f0, f1, f2, f3, f4) = (t, 0, 0, 0, 0).

We suppose that f1 has a pole at t = ∞ and show contradiction. The other four cases
can be proved in the same way. Proposition 1.2 implies that

−Rest=∞f1 = 1, f2 = f3 = f4 ≡ 0,−Rest=∞f0 = −1.

Since f2 = f3 = f4 ≡ 0, only (f0, f1) can have a pole in C. It follows from Proposition
1.5 that Rest=0f0 = 1, Rest=0f1 = −1, which contradicts the residue theorem.

Type A (2): for some i = 0, 1, 2, 3, 4, fi, fi+1, fi+3 have a pole at t = ∞.
When f0, f1, f3 have a pole at t = ∞, Proposition 1.2 shows that

−Rest=∞f0 = 0, −Rest=∞f1 = 1, f2 ≡ 0, −Rest=∞f3 = −1, f4 ≡ 0.
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Since f2 = f4 ≡ 0,
(f0, f1), (f1, f3), (f3, f0)

can have a pole in C. If (f0, f1) or (f3, f0) have a pole at t = c ∈ C, it follows from
Proposition 1.5 that Rest=cf0 = 1, which contradicts the residue theorem. If (f1, f3) have
a pole at t = c ∈ C, it follows from Proposition 1.5 that Rest=cf1 = −1, Rest=cf3 = 1,
which contradicts the residue theorem.

When f1, f2, f4 have a pole at t = ∞, it follows from Proposition 1.2 that

−Rest=∞f1 = 1, −Rest=∞f2 = 3, f3 ≡ 0, −Rest=∞f4 = −3, −Rest=∞f0 = −1.

Therefore
(f0, f1), (f4, f0) (f0, f2), (f2, f4), (f4, f0, f1, f2)

can have a pole in C because f3 ≡ 0. When (f4, f0), (f2, f4), (f4, f0, f1, f2) have a pole
at t = c ∈ C, it follows from Proposition 1.5 that Rest=cf4 = 1, 3, which contradicts the
residue theorem. If (f0, f1) have a pole at t = c ∈ C, it follows from Proposition 1.5 that
Rest=cf1 = −1, which contradicts the residue theorem. If (f0, f2) have a pole at t = c ∈ C,
it follows from Proposition 1.5 that Rest=cf0 = −1, Rest=cf2 = 1, which contradicts the
residue theorem.

When f2, f3, f0 have a pole at t = ∞, it follows from Proposition 1.2 that

−Rest=∞f2 = 1, −Rest=∞f3 = 1, f4 ≡ 0, −Rest=∞f0 = −1, −Rest=∞f1 = −1.

Then Corollary 1.6 shows that (f0, f1, f2, f3) have a pole at t = 0 because Rest=∞fj (0 ≤

j ≤ 4) are odd integers. Lemma 3.2 implies that Rest=0Ĥ = 1. Since −Rest=∞Ĥ =
h∞,−1 = 0 and Rest=cĤ is nonnegative, this contradicts the residue theorem.

When f3, f4, f1 have a pole at t = ∞, it follows from Proposition 1.2 that

−Rest=∞f3 = 1, −Rest=∞f4 = −1, −Rest=∞f0 = 1, −Rest=∞f1 = −1, f2 ≡ 0.

Therefore
(f0, f1), (f4, f0) (f1, f3), (f3, f0) (f3, f4, f0, f1)

can have a pole in C. Since f4 6≡ 0 and Rest=∞f4 6= 0, f4 has a pole at t = c ∈ C. If
(f4, f0) have a pole at t = c ∈ C, it follows from Proposition 1.5 that Rest=cf4 = 1, which
contradicts the residue theorem. If (f3, f4, f0, f1) have a pole at t = c ∈ C, it follows from
Proposition 1.5 that Rest=cf4 = 3, which contradicts the residue theorem.

When f4, f0, f2 have a pole at t = ∞, it follows from Proposition 1.2 that

−Rest=∞f4 = 1, −Rest=∞f0 = 0, f1 ≡ 0, −Rest=∞f2 = −1, f3 ≡ 0.

Since f1 = f3 ≡ 0,
(f4, f0) (f0, f2), (f2, f4)
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can have a pole in C. When (f4, f0) or (f0, f2) have a pole at t = c ∈ C, Proposition
1.5 shows that Rest=cf0 = −1, which contradicts the residue theorem. Therefore, f0 is
regular in C and (f2, f4) have a pole at t = c because Rest=∞f2 and Rest=∞f4 are not
zero. Proposition 1.5 and Corollary 1.6 imply that

f4 = t +
1

t
, f0 = t, f1 ≡ 0, f2 = −t −

1

t
, f3 ≡ 0,

because Rest=∞f4 and Rest=∞f2 are odd integers. By substituting this solution into
A4(1, 0, 0, 0, 0), we can show contradiction.

By using Table 1, we study a rational solution of Type B of A4(
1
3
, 1

3
, 1

3
, 0, 0).

Lemma 3.5. A4(
1
3
, 1

3
, 1

3
, 0, 0) has a unique rational solution of Type B which is given by

(f0, f1, f2, f3, f4) = (
t

3
,
t

3
,
t

3
, 0, 0).

Proof. Proposition 1.2 implies that fi, fi+1, fi+2 can have a pole at t = ∞ for some
i = 0, 1, 2, 3, 4.

If f0, f1, f2 have a pole at t = ∞, Proposition 1.2 and 1.3 show that

(f0, f1, f2, f3, f4) = (
t

3
,
t

3
,
t

3
, 0, 0).

If f1, f2, f3 have a pole at t = ∞, it follows from Proposition 1.2 that

−Rest=∞f1 = −Rest=∞f2 = 0,−Rest=∞f3 = 1, f4 ≡ 0,−Rest=∞f0 = −1.

Lemma 3.1 shows that h∞,−1 = 0. Furthermore Lemma 3.2 and Table 1 implies that

Rest=cĤ is nonnegative when (α0, α1, α2, α3, α4) = (1
3
, 1

3
, 1

3
, 0, 0). Thus, the residue theo-

rem shows that Rest=cĤ = 0. Therefore Lemma 3.2 and Table 1 implies that only (f2, f4)
and (f3, f0) can have a pole at t = c ∈ C. Since f4 ≡ 0, f4 cannot have a pole in C. If
(f3, f0) have a pole at t = c ∈ C, it follows from Proposition 1.5 that Rest=cf3 = −1 and
Rest=cf0 = 1, which contradicts the residue theorem.

If f2, f3, f4 have a pole at t = ∞, it follows from Lemma 3.1 that h∞,−1 = −4
9
, which

contradicts Lemma 3.3.
If f3, f4, f0 have a pole at t = ∞, it follows from Lemma 3.1 that h∞,−1 = −10

27
, which

contradicts Lemma 3.3.
If f4, f0, f1 have a pole at t = ∞, it follows from Proposition 1.2 that

−Rest=∞f4 = −1 − Rest=∞f0 = 0,−Rest=∞f1 = 0,−Rest=∞f2 = 1, f3 ≡ 0.
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Lemma 3.1 implies that h∞,−1 = 0. Table 1 shows that Rest=cĤ is nonnegative
when (α0, α1, α2, α3, α4) = (1

3
, 1

3
, 1

3
, 0, 0). Thus, it follows from the residue theorem that

Rest=cĤ = 0 for any c ∈ C. Therefore, Lemma 3.2 and Table 1 imply that only (f2, f4)
and (f3, f0) can have a pole in C. Since f3 ≡ 0, f3 cannot have a pole in C. If (f2, f4) have
a pole at t = c ∈ C, it follows from Proposition 1.5 that Rest=cf2 = −1 and Rest=cf4 = 1,
which contradicts the residue theorem.

By using Lemma 3.3, we prove the following lemma:

Lemma 3.6. A4(
2
3
, 0, 0, 1

3
, 0), A4(

1
3
, 0, 0, 2

3
, 0), A4(0,

1
3
, 0, 1

3
, 1

3
), A4(1, 0, 0, 0, 0) do not have

a rational solution of Type B.

Proof. If the equations in the lemma have a rational solution of Type B, it follows from
Lemma 3.1 that h∞,−1 < 0, which contradicts Lemma 3.3.

From Proposition 1.1, 1.2 and 1.3, we prove the following lemma:

Lemma 3.7. A4(
1
5
, 1

5
, 1

5
, 1

5
, 1

5
) has a unique rational solution of Type C which is given by

(f0, f1, f2, f3, f4) = (
t

5
,
t

5
,
t

5
,
t

5
,
t

5
).

By using Lemma 3.3, we prove the following lemma:

Lemma 3.8. A4(1, 0, 0, 0, 0), A4(
3
5
, 0, 1

5
, 1

5
, 0), A4(

1
5
, 0, 2

5
, 2

5
, 0), A4(

1
5
, 2

5
, 0, 0, 2

5
),

A4(
3
5
, 1

5
, 0, 0, 1

5
) do not have a rational solution of Type C.

Proof. If the equations in the lemma have a rational solution of Type C, it follows from
Lemma 3.1 that h∞,−1 < 0, which contradicts Lemma 3.3.

Theorem 2.2 proves that if A4(αi)0≤i≤4 has a rational solution of Type A, the param-
eters αi (0 ≤ i ≤ 4) are integers. Theorem 2.4 shows that (αi)0≤i≤4 can be transformed
into (1, 0, 0, 0, 0). Lemma 3.4 proves that A4(1, 0, 0, 0, 0) has a unique rational solution of
Type A which is given by

(f0, f1, f2, f3, f4) = (t, 0, 0, 0, 0).

Therefore, A4(αi)0≤i≤4 has a rational solution of Type A if and only if αi (0 ≤ i ≤ 4) are
integers. Furthermore, the rational solution is unique and can be transformed into

(f0, f1, f2, f3, f4) = (t, 0, 0, 0, 0) with (α0, α1, α2, α3, α4) = (1, 0, 0, 0, 0).

Theorem 2.2 implies that if A4(αi)0≤i≤4 has a rational solution of Type B, for some
i = 0, 1, 2, 3, 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡ (
n1

3
−

n3

3
,

n1

3
,

n1

3
+

n4

3
,

n3

3
, −

n4

3
) mod Z,
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where n1, n3, n4 = 0, 1, 2. Theorem 2.4 shows that the parameters (αi)0≤i≤4 can be trans-
formed into one of

(
1

3
,
1

3
,
1

3
, 0, 0), (

2

3
, 0, 0,

1

3
, 0), (

1

3
, 0, 0,

2

3
, 0), (0,

1

3
, 0,

1

3
,
1

3
), (1, 0, 0, 0, 0)

and that the parameters (αi)0≤i≤4 are transformed into (1
3
, 1

3
, 1

3
, 0, 0) if and only if for some

i = 0, 1, . . . 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

±1
3
(1, 1, 1, 0, 0) mod Z

±1
3
(1,−1,−1, 1, 0) mod Z.

Lemma 3.5 shows that A4(
1
3
, 1

3
, 1

3
, 0, 0) has a unique rational solution which is given by

(f0, f1, f2, f3, f4) = (
t

3
,
t

3
,
t

3
, 0, 0).

Lemma 3.6 shows that A4(
2
3
, 0, 0, 1

3
, 0), A4(

1
3
, 0, 0, 2

3
, 0), A4(0,

1
3
, 0, 1

3
, 1

3
), A4(1, 0, 0, 0, 0) do

not have a rational solution of Type B. Therefore, A4(αi)0≤i≤4 has a rational solution of
Type B if and only if for some i = 0, 1, . . . 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

±1
3
(1, 1, 1, 0, 0) mod Z

±1
3
(1,−1,−1, 1, 0) mod Z.

Furthermore the rational solution is unique and can be transformed into

(f0, f1, f2, f3, f4) = (
t

3
,
t

3
,
t

3
, 0, 0) with (α0, α1, α2, α3, α4) = (

1

3
,
1

3
,
1

3
, 0, 0).

Theorem 2.2 proves that if A4(αk)0≤k≤4 has a rational solution of Type C, for some
i = 0, 1, 2, 3, 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡ (
n1

5
+

2n2

5
+

3n3

5
,

n1

5
+

2n2

5
+

n3

5
,

n1

5
,

n1

5
+

n2

5
,

n1

5
+

n3

5
) mod Z,

where n1, n2, n3 = 0, 1, 2, 3, 4. Theorem 2.4 shows that the parameters (αk)0≤k≤4 can be
transformed into one of

(
1

5
,
1

5
,
1

5
,
1

5
,
1

5
), (1, 0, 0, 0, 0), (

3

5
, 0,

1

5
,
1

5
, 0), (

1

5
, 0,

2

5
,
2

5
, 0), (

1

5
,
2

5
, 0, 0,

2

5
), (

3

5
,
1

5
, 0, 0,

1

5
)

and that the parameters (αk)0≤k≤4 are transformed into (1
5
, 1

5
, 1

5
, 1

5
, 1

5
) if and only if for

some i = 0, 1, . . . , 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

j

5
(1, 1, 1, 1, 1) mod Z

j

5
(1, 2, 1, 3, 3) mod Z,

39



with some j = 1, 2, 3, 4. Lemma 3.7 implies that A4(
1
5
, 1

5
, 1

5
, 1

5
, 1

5
) has a unique rational

solution of Type C which is given by

(f0, f1, f2, f3, f4) = (
t

5
,
t

5
,
t

5
,
t

5
,
t

5
).

Lemma 3.8 shows that A4(1, 0, 0, 0, 0), A4(
3
5
, 0, 1

5
, 1

5
, 0), A4(

1
5
, 0, 2

5
, 2

5
, 0), A4(

1
5
, 2

5
, 0, 0, 2

5
) and

A4(
3
5
, 1

5
, 0, 0, 1

5
) do not have a rational solution of Type C. Therefore A4(αi)0≤i≤4 has a

rational solution of Type C if and only if for some i = 0, 1, . . . , 4,

(αi, αi+1, αi+2, αi+3, αi+4) ≡

{

j

5
(1, 1, 1, 1, 1) mod Z

j

5
(1, 2, 1, 3, 3) mod Z,

with some j = 1, 2, 3, 4. Furthermore, the rational solution is unique and can be trans-
formed into

(f0, f1, f2, f3, f4) = (
t

5
,
t

5
,
t

5
,
t

5
,
t

5
) with (α0, α1, α2, α3, α4) = (

1

5
,
1

5
,
1

5
,
1

5
,
1

5
).

We complete the proof of the main theorem.
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