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Introduction

In this paper, we obtain a necessary and sufficient condition for the Ail) Painlevé equation
to have a rational solution. The Afll) Painlevé equation is a generalization of the fourth
Painlevé equation. For the classification, we only use the residue calculus. In order to
get a necessary condition, we firstly use the residue calculus of a rational solution. By
the Backlund transformation, we secondly transform the parameters of the Afll) Painlevé
equation into the fundamental domain. In order to obtain a sufficient condition, we lastly
use the residue calculus of the principal part of the Hamiltonian, which is introduced in
Section 3.

Paul Painlevé and his pupil [16], 2] classified all differential equations of the form
y" = F(t,y,y’) on the complex domain D where F' is rational in y,y’, locally analytic
in t € D and for each solution, all the singularities which are dependent on the initial
conditions are poles. They found fifty equations of this type, forty four of which can be
solved or can be integrated in terms of solutions of ordinary linear differential equations,
or elliptic functions. The remaining six equations are called the Painlevé equations and
are given by
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where «, 3,7, 6 are complex parameters.

Rational solutions of P; (J = 2,3,4,5,6) were classified by Yablonski and Vorobev
[20, 19], Gromak [5], 4], Murata [9], Kitaev, Law and McLeod [6] and Mazzocco [§].
Especially, Murata [9] classified all of rational solutions of the fourth Painlevé equations
by using the Backlund transformations, which transform a solution into another solution
of the same equation with different parameters.

P; (J =2,3,4,5,6) have the Backlund transformation group. It is shown by Okamoto
[12] [13] [14] [15] that the Béacklund transformation groups are isomorphic to the extended
afﬁne Weyl groups For Pg, P3, Py, Ps, Py, the Backlund transformation groups correspond
to A1 VA @A A, ,Aé?’ ,Df), respectively.

Nowadays, the Pamleve equations are extended in many different ways. Garnier [3]
studied isomonodromic deformations of the second order linear equations with many reg-
ular singularities. Noumi and Yamada [10] discovered the equations of type Al(l), whose

Backlund transformation groups are isomorphic to W(Al(l)). These equations are called

the Al(l) Painlevé equations. The Aél) and Aél) Painlevé equations correspond to the forth
and fifth Painlevé equations, respectively.
The Afll) Painlevé equation is defined by

(fo=Tfolfi— fot+ f3— f1) + g
fi=flfe—fs+ fo—fo) +u
fo=Fo(fs = fa+ fo— f1) + oz
fa=fa(fs— fo+ f1— f2) + az
f3)
t

Ay(og, 0, a2, g, )

AAA/_\

fi=filfo—fi+ fo— + oy
(ot it ot fa+ fu=t,

where ’ is the differentiation with respect to ¢t. For the AS) Painlevé equation, we consider
the suffix of f; and «; as elements of Z/5Z. From the Ail) Painlevé equation, we have
Zf oa; = 1. The A(l) Painlevé equation is an essentially nonlinear equation with the
fourth order. By setting f3 = f, = 0, we get the A( Painlevé equation which is defined



Jo=folfi = f2) + o
fi=flfa— fo) +
fs=folfo— fi) + o
Jot+ i+ fa =1,

which is equivalent to the forth Painlevé equation. The Afll) Painlevé equation is the first

Az(ao,al,%) :

equation of the Al(l) Painlevé equations, which is not the original Painlevé equations. We
note that Veselov and Shabat [18], Adler [I] studied the symmetric forms of the Painlevé
equations from the viewpoint of soliton.

The Bécklund transformation group of the Afll) Painlevé equation is generated by
So, S1, S2, 83, S4 and 7

x So(z) s1(x) So(x) s3(x) s4() 7(x)
Jo Jo fo—ai/fi Jo Jo Jfotad/fa| fu
|l i Hao/fo fi fi —ao/fs fi fi fa
Jo f2 fot+ai/fi fo fo—as3/fs fa /3
/3 J3 J3 fs +aa/fo J3 fs—au/fa| fa
fo || fa—ao/fo 4 J4 fit+as/fs fa fo
Qg —Qp Qg + o1 Qg Q Qg + 0y aq
aq a1 + og —Q o1 + Qo o (o7 Qo
Qo Qo Qg + o —Qg Qg + a3 Qo Q3
Q3 Qg Qg a3 + Qo —Q3 a3+ oy oy
Oy QY + (7)) iy Oy QY + Qa3 —Qy Qp

If f; =0 for some i = 0,1, 2, 3,4, we consider s; as the identical transformation which is
given by

Si(fj) = fj and Si(Oéj) = Oy (j = 0, 1, 2, 3, 4)
The Bécklund transformation group (s, s, 2, S3, S4, ) is isomorphic to the extended
affine Weyl group W (A).

In this paper, we completely classify rational solutions of the Afll) Painlevé equation
by using the method of Murata [9]. The result is that rational solutions of the AS)
Painlevé equation are decomposed to three classes, each of which is an orbit by the action
of W(AM).

This paper is organized as follows. Section 1 consists of two subsections. In Subsection
1.1, we calculate the Laurent series of a rational solution (f;)o<i<4 of As(a;)o<i<a at t = o0.
The residues of f; (0 < i < 4) are expressed by the parameters «; (0 < i < 4). In
Proposition [[LT], 2] [L3, we determine the Laurent series of f; (0 < i <4) of As(a;)o<i<a
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and obtain a sufficient condition for f; (0 <i < 4) to be uniquely expanded at ¢ = co. In
Subsection 1.2, we get the Laurent series of a rational solution (f;)o<i<4 of As(;)o<i<a at
t = ¢ € C following Tahara [17].

In Section 2, we firstly introduce shift operators, following Noumi and Yamada [11].
Secondly, from the residue theorem, we get a necessary condition for Ay(a;)o<i<4 to have
a rational solution and prove that if A4(c;)o<i<s has a rational solution, the parameters
a; (0 < i < 4) are rational numbers. In addition, we transform the parameters into the
set C' which is defined by

C = {(Oéi)()gi§4 - R5 | 0< o; < 1 (0 < < 4)}

In Section 3, we firstly introduce the Hamiltonian H of A4(«;)o<i<4 and its principal
part H following Noumi and Yamada [I1]. Secondly, we calculate the residues of H at
t = 00, ¢ and prove Lemma [3.3] which is devoted to the residue calculus of H. We use
Lemma B3 in order to obtain a sufficient condition for A4(a;)o<i<4 to have a rational
solution. Thirdly, with the residue calculus of H , we prove Theorem [0.1] which gives us a
necessary and sufficient condition for A4(a;)o<i<4 to have a rational solution.

The main result of this paper was announced in [7].

Theorem 0.1. The Afll) Painlevé equation has a rational solution if and only if the
parameters o (0 < j < 4) satisfy one of the following three conditions. The solution is
unique, if it exists.
(1) o, Ay ..., 0y € L.
(2)  For somei=0,1,...4,
(v, Qg1 Qiga, Qigs, Qiya) = { £5(11,1,0,0) modZ
D sy ey +2(1,—1,-1,1,0) modZ.

(3) Forsomei=0,1,...,4,

J
(Qtis i1, Qiga, Vg3, Qipa) = { 15(
5 Y

with some 7 =1,2,3,4.
(4)  Furthermore, by a suitable Bdcklund transformation, the rational solution in the
class (1), (2), (3) above is respectively transformed into the following.

(i)

(anflaf27f3af4) = (t,0,0,0,0) with (a07alaa2aa37a4) - (1a070a070)a



(i)

t tt ) 111
(f07f17f27f37f4) = (§7 gv 57070) with (@0,@1,&2,@3,&4) = (§7 gv 57070)7
(iii)
ttttt, . 11111
(f07 f17 f27 f37 f4) = (gv gv gv 37 g) with (Oé(], ay, G, (i3, OK4) = (g7 gv gv 37 g)
Acknowledgments. The author wishes to express his sincere thanks to Professor
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1 The Expansions of Rational Solutions

This section consists of two subsections. In Subsection 1.1, we suppose that (f;)o<j<a is
a rational solution of As(a;)o<j<4. We calculate the Laurent series of f; (0 < j < 4) at
t = 00,c € C. The residues of f; (0 < j < 4) at t = oo are expressed by the parameters
a; (0 < j <4) and the Laurent series of f; (0 < j <4) at t = co are uniquely expanded
under the conditions in Proposition [L.3]

In Subsection 1.2, following Tahara [17], we compute the residues of f; (0 < j <4) at
t = ¢ € C, which are integers.

1.1 the Laurent Series at t =

In this subsection, we prove Proposition [T}, [[.21and [.3] In Proposition[L.I], we determine
the order of a pole of f; (0 <i <4) at t = co. In Proposition [[L2, we get the residues of
(fi)o<i<a at t = oo. In Proposition [[.3], we obtain a sufficient condition for the Laurent
series of f; (0 <i < 4) at t = 0o to be uniquely expanded.

Proposition 1.1. Suppose that (fo, f1, fo, f3, f1) s a rational solution of
Ay(ao, a1, ag, as,aq) and some of fo, f1, f2, f3, f1 have a pole at t = oo. Then
(fo, f1, f2, f3, fa) satisfies one of the following conditions:
(1)  for somei=0,1,2,3,4, f; has a pole at t = oo with the first order;
(2)  for somei=0,1,2,3,4, fi, fix1, firs have a pole at t = oo with the first order;
(8)  for somei=0,1,2,3,4, fi, fix1, fire have a pole at t = oo with the first order;
(4) all of fo, f1, fa, f3, f4 have a pole at t = oo with the first order.

We denote the case (1) by Type A (1), the case (2) by Type A (2), the case (3) by
Type B and the case (4) by Type C, respectively.



Proof. We set

{fo =3 ot =300 bttt =300t (1.1)

fs=>02 dith, fi=3"00  exth,

where ng, ny, ne, ng, ny are integers.
Since ) ,_, fr = t, the following five cases occur.

I one rational function of (f)o<k<s has a pole at t = oo,

IT  two rational functions of (fi)o<r<4 have a pole at ¢t = oo,
IIT  three rational functions of (fi)o<k<s4 have a pole at t = oo,
IV four rational functions of (f;)o<r<s4 have a pole at t = oo,
V  all the rational functions of (fx)o<r<4 have a pole at t = oco.

Case I: one of rational function (fx)o<k<s has a pole at ¢ = oco. By m, we assume
that fy has a pole at t = co. Since Zi:o fr = t, it follows that

no=1mn; <0 (1<j5<4).
Therefore, we get Type A (1).

Case II: two rational functions of (fi)o<k<s have a pole at t = oo. Since the suffix
of f; and «; are considered as elements of Z/57Z, the following two cases occur.

(1) for some i =0,1,2,3,4, f;, fix1 have a pole at t = oo,
(2) forsomei=0,1,2,3,4, f;, firo have a pole at t = co.

Case II (1): fi, fix1 have a pole at t = oo. By m, we assume that fy, fi have a
pole at t = co. Since Zi:o fr = t, it follows that

ng =Ny > 1, n; <0 (j :2,3,4)
By comparing the highest terms in

fo=folhh — fo+ f3— fa) + 0,

we obtain
nNg — 1= 2710.

Therefore, we have ng = —1, which contradiction.
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Case II (2): fi, fizo have a pole at t = oo. By m, we assume that fy, fo have a
pole at ¢t = co. Since Zi:o fr = t, it follows that

ng=mny>1,n; <0 (j=1,3,4).
By comparing the highest terms in
fo=Ffolfr = fa + f3 = fa) + o,

we obtain
nog — 1= 2710.
Therefore, we have ny = —1, which is contradiction.
Case III: three rational functions of (fg)o<k<s have a pole at ¢ = oo. Since the

suffix of f; and «a; are considered as elements of Z/5Z, the following two cases occur.

(1) forsomei=0,1,2,3,4, f;, fix1, firo have a pole at t = co.
(2) forsomei=0,1,2,3,4, f;, fir1, fir3 have a pole at t = co.

Case IIT (1): fi, fix1, fize have a pole at t = oco. By m, we assume that fy, f1, fo
have a pole at t = co. Since Zizo fr = t, the following four cases occur.

(1) Ng=mn1 >Ny > 1 (11) ny=mng >ng > 1
(111) Ng =ng>n1 > 1 (IV) ng =n; = ng > 1.

Case III (1) (i): mg = n1 > ny > 1. By comparing the highest terms in
fo=folfi = fa+ fs = fa) + o,

we have
nNg — 1= 2710.

Therefore, we have ng = —1, which is contradiction.

Case III (1) (ii) and (iii): ny = ng > ng > 1 or ny = ng > ny; > 1. We can show
contradiction in the same way.

Case III (1) (iv): ng = ny = ny > 1. By comparing the highest terms in

fo=flfi—fotfa—fu)+ o
fi=hfo=fas+ fa—fo) +

fo=falfs = fa+ fo — f1) + ag,
7



we have
bp, — Cp, =0

Cny — Apy = 0

Qpy — bp, = 0.
Since 3",_, fx = t, it follows that

1
noznlzngzl, alzblzclz—.

3
Therefore, we get Type B.

Case IIT (2): fi, fix1, firs have a pole at ¢ = oco. By m, we assume that fo, f1, f3
have a pole at t = oo. Since Zizo fr = t, the following four cases occur.

(1) ng = N1 > ns, (11) ny = ns > no,

(111) ns = niy > Ny, (IV) Nng = N1 = N3.

If the cases IIT (1) (i), (ii) and (iii) occur, we can show contradiction in the same way as
the case IL.

Case III (iv): my = ny; = n3. We suppose that ng = ny = n3 > 2. By comparing
the highest terms in
fo=folfi = fo+ f3— fa) + 0,

we get
by + dpy = 0.

Since Zi:o fr =t, it follows that a,,, = 0, which is contradiction. Therefore, we obtain
Ng =nN1 = N3z = 1
and get Type A (2).

Case IV: four rational functions of (fg)o<k<s have a pole at t = oo. By w, we



assume that fo, f1, f2, f3 have a pole at t = co. Then the following eleven cases occur.

(i) n0:n1>{”2}z1 (ii) n0:n2>{”1}21
ns n3
(i) n0:n3>{zl}21 (iv) n1:n2>{;‘°}21

2 3

(V) n1:n3>{n0}21 (Vl) n2:n3>{n0}21
N2 m

(Vll) Ng="n1 =ng >ng > 1 (Vlll) Ng=mn1=mn3 >ng >1

(ix) ny=mng=mn3>ng>1 (x) me=mnz3=mng>n; >1

(xi) mog=mn1=mny=mn3>1.
If the cases IV (i), (ii), ..., (vi) occur, we can show contradiction in the same way as the
case II.
Case IV (vil) or (ix): ng = ny = ng > ng > lormny = nyg = ng > ny > 1. We

deal with the case IV (vii). The case IV (ix) can be proved in the same way. By
comparing the highest terms in

fo=flfi—fo+fs—fi)+
fi=flfe = fs+ fo— fo) + o,

we get
b, —Cny =0
Cny — Apy = 0.

ng = bny = Cpy =0,

Since Zi:o fr = t, it follows that

which is contradiction.

Case IV (viii) or (x): ng = ny = ng > ny > lormng = ng = ng > n; > 1. We
deal with the case IV (viii). The case IV (x) can be proved in the same way. By
comparing the highest terms in

fo=folfs = fa+ fo— f1) + as,

we have
dpy + any — by, = 0.
9



Since 22:0 fr = t, it follows that

which is contradiction.
Case IV (xi): ng = ny = ny = n3z > 1. By comparing the highest terms in

fo=Jfolfi—fot fo—fi) +
fi=flfe—=fs+ fa—fo) +u
fo=Ffolfs—fat+ fo—fi) +
f3=f3(fa— fo+ f = f2) + as,

we obtain

bp, — Cny +dp, =0
Cpy — dpg — Qpy =0
dpy + Gpy — by =0

_a'no _I_ bnl - an — 0
We assume that ng = ny = ny = nz > 2. Since Zi:o fr = t, it follows that
Apy = —2Cny, by, = Cpy, dpy = 3Cp,.

Since Y4_, fx = t, it follows that

which is contradiction.
We assume that ng = n; = ny = nz = 1. The equation (I.2)) implies that

a1 +2c =1,
because Y ,_, fr = t. The equations (1.3) and (1.4) imply that
di =3¢, — 1, by = ¢y.
Since Zi:o fr = t, it follows that
l=a1+b1+c1+d = 3c.

Therefore we Obtain 1
- d; =0
3 , U1 9

10
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which is contradiction.

Case VI: all the rational functions of (fx)o<r<4 have a pole at t = co. Since Zi:o fr =1,
the following twelve cases occur.

No n
(1) Nng =nyi > ns > 1, (11) Ng = Ny > ns > 1,
Ny Ty
n1 n1
(iii)) np=n3 > ny p >1, (iv) mo=mng>4q ng p>1,
Ty ng
(V) n0:n1:n2>{n3}21, (VI) n0:n1:n3>{n2}21,
ez Ty
(Vll) Nng=mn1 = N4 > { "2 } > 1, (Vlll) Ng =Ng = N3 > { m } > ].,
n3 !
(lX) n0:n2:n4>{22}21, (X) n0:n3:n4>{Z;}21,
(Xl) n0:n1:n2:n3>n421, (Xll) Ng =N1 =Ny = N3 =ny > 1.

If the cases VI (i), ..., (iv) occur, we can prove contradiction in the same way as the
case II. If the cases VI (v), ..., (x) occur, we can prove contradiction in the same way as
the case III.

Case VI (xi): ng = my = ny = nz > ng > 1. By comparing the highest terms
in

folfi = fo+ fs = f1) + o

1( — fa+ fa— fo) +

= fa(fs = fat fo— f1) + @

=fs(fa—fot fi—fo) tas
( f3)

f4—f4f0—f1+f2 + oy,
we have
bp, — Cny + dns (1.6)
Cny — Ay — Qg =0 (1.7)
dpy + apy — by, =0 (1.8)
—0py + by, — Cpy =0 (1.9)
Ay — by + Cpy — dpy = 0. (1.10)
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Since Zi:o fr = t, it follows that

tny + b, + Cy + iy = 0. (1.11)
The equations (1.6) and (1.11) imply that
(py = —2Cp,-
The equations (1.7) and (1.8) imply that
dpy = 3Cnyy by = Cp,y.

The equation (1.11) implies that ¢,, = 0, which is contradiction.

Case VI (xii): ng = ny = ny = n3 = ng > 1. By comparing the highest terms
in

Jo(fi = fa+ fs — fa) + ao
1( —fa+fi—fo)+
= fo(fs = fa+ fo— f1) + a2
= fs(fa— fo+ f1 — f2) + a3
( f3)

f4—f4 Jo—fi+ foa—

(

bp, — Cpy +dpy — €, =0
Cpy — Qg + €py — Apy =0
{ dpy —€ny +apy — by, =0
€ny — Qng +bny —Cpy =0
Ay — bpy + Cpy — dpy = 0.

+ (g,
we obtain

Since the rank of

is four, it follows that
(anoabnlacngadn3a6n4) - (13171?171)
for some o € C*. Since Zi:o fr = t, it follows that
1
n0:n1:n2:n3:n4:1, a1261201:d1:61:—.

Therefore, we get Type C. O
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In the following proposition, we obtain the residues of f; (0 < i < 4) at t = oo for
A(ai)o<i<a. The residues of f; (0 < i < 4) at t = oo are expressed by the parameters
a; (0<j<A4).

Proposition 1.2. Suppose that (fj)o<j<a is a rational solution of As(a;j)o<j<a-
(1) If f; has a pole at t = oo for some i =0,1,2,3,4,

(fi =t+ (—Oéi_H + Qo — Qg3 + Oéi+4)t_1 + -

fir1 = apt™ 4

fira = —aipat™ + -
fivs = qipat™ 4+
| fira = —Qipat™ 4+

(2) If fi, fix1, fixs have a pole at t = oo for some i =0,1,2,3,4,

(fi=t+ (1 —a)t+--

fir1 =t + (1 — i1 — 20040 + 2054)t 7" + - -
fizo = ot ™H 4 -+

fivz = —t+ (=1 —aip3 — 2004)t 7+ - -

_ -1
| fira = —Qigpat™ + -1

(3)  If fi, fix1, fize have a pole at t = oo for some i =0,1,2,3,4,

( 1

fi= 5t + (g1 — Qigo — 3 — aipa)t™ 4 -+
fir1 = 3t + (Qip2 — i — @iz + ipa)t ™ 4 -+
q fire = 5t + (@ — iy + Qips + 3t -
firs = 3aipat™ + -+

| fira = —3aupat™ + -

(4)  If all the rational functions of (fo, f1, f2, f3, f1) have a pole at t = oo,

( 1

fo=1t+ (Baq +az — ag — 3as)t ™ + -
fi=2t+ Bago+ a3 — oy — 3ot + -
fo=tt+ (Bas + oy — ag — 3a )t + -
fs = tt+ (3o + g — ay — Bap)t ™ + -
(o= 3t + (Bag+a; —ay —3az)t™" 4 -

13



Proof. Type A (1): for some i =0, 1,2, 3,4, f; has a pole at t = co. By 7, we assume that
fo has a pole at t = oco. Then it follows from Proposition [[LT] that

fo= Z;lg:_oo art®, fr=300 bttt fo =300t
f3 - Zgz_oo dktk> f4 = 224:_00 ektk>

where ny,ns,n3,n4 < 0. Since Zizo fr = t, it follows that a; = 1. By comparing the
coefficients of the term t™*+! in

fi=filfo— fs+ fa— fo) + ou,

we get
ny=—1, b_y =aq, or f =0.
In the same way, we obtain
ne =—1,c_1 = —an, or fo =0,
ng=—1,d_1 =asz, or f3=0,
ng=—1,e_1 = —ay, or f =0.

Since ,_, fx = t, it follows that
ag = O,Cl_l = —Qq + Qg — Q3 + Qy.

Type A (2): for some i =0,1,2,3,4, fi, fix1, firs have a pole at t = co. By m, we assume
that fo, f1, f3 have a pole at ¢t = co. Then it follows from Proposition [[LT] that

Jo= leg:—oo agt, f1 = Z;lf:_oo bit®, foa =12 ath,
fo= S it fa= 30 etk

where ny,n4 < 0. By comparing the coefficients of the term t2 in

{f(l) = fo(fi — fo+ f3s — fa) + a0

(1.12)

fi=flfe = fs+ fo— fo) + o,

we have
bl —|-d1 =0
ay —l—dl = 0.

Since 22:0 fr = t, it follows that

alzblzl, dlz—l.
14



By comparing the coefficients of the term ¢ in

fo=folfs = fa+ fo— f1) + a2
fi= falfo— fi+ fa— f3) + au,

we obtain
Cop = €y = 0.

By comparing the constant terms in

fo=folfs = fa+ fo— f1) + a2
fi= falfo— fi+ fa— f3) + au,

we have
C_1 =g, €_1 = —Q4.

By comparing the coefficients of the term ¢ in

fo=flfi—fo+fs—fi)+
fi=flfe = fs+ fo— fo) + o,

we obtain
bo +dyp =0
ag + do =0.
Since Zi:o fr = t, it follows that
ag = b(] = do = 0.

By comparing the constant terms in

fo=flfi—fo+fs—fi)+
fi=flfe = fs+ fo— fo) + o,

we have
a_q1 = —20&2 + 20&4 + oy — 1
d_1 = —0g+ o1 + 30&2 — 30&4.

Since Zi:o fr = t, it follows that

b_l = —01 — 20&2 + 20&4 + 1.
15



Type B: for some i = 0, 1,2, 3,4, f;, fit1, fire have a pole at t = co. By 7, we assume that
fo, f1, f2 have a pole at t = oo. Then it follows from Proposition [Tl and its proof that

{fO = %t + Zgz—oo aktk7 fl = %t + 22:—00 bktk’ f2 = %t + 22:—00 thk’

" n 1.13
f3 = ki_oo dktkv f4 = k4:—oo ektka ( )

where nz,ny < 0. By comparing the coefficients of the term ¢ in

f3=fs(fa— fo+ fr — f2) + a3,

we obtain dy = 0. By comparing the constant terms in

f3=fs(fa— fo+ fr — f2) + a3,

we have
d_1 = 30(3.

In the same way, we get
€y = 0, €_1 = —30é4.

By comparing the coefficients of the term ¢ in

fo=flfi—fotfa—fi)+
fi=h(fa = fs+ fa— fo) +a,

we obtain
b(] — Qo — 0
Co — Qg = 0.

aOZbOICOIO.

Since 22:0 fr = t, it follows that

By comparing the constant terms in

fo=flfi—fotfa—fu)+ o
fi=hlfe—fs+ fo—fo) T+
fo = falfs = fa+ fo — f1) + ag,

we get
b_l — C_1 = 1-— 30&0 — 30&3 — 3064
c.1—a_1=1—30; +3as+ 3au

a_, — b_l =1- 30&2 — 30&3 — 30&4.
16



Since Zi:o fr = t, it follows that

CL_1:OK1—042—30(3—OK4
b_12—040+042—043+044

c_1 =g — a1+ asg+ 3ay.

Type C: all the rational functions of fy, f1, f2, f3, fs have a pole at t = co. Then it follows
from Proposition [[.T] and its proof that

{fo =+ att, =Y htt =t ath, (1.14)

fs=1t+ S L dith i = L+ S0 etk

By comparing the coefficients of the term ¢ in

(fi=folhi = Fat fs— f1) + a0
fi=filfa= fs+ fa— fo) +
fo=Ffolfs = fat+ fo— fi) + a2
fi=ffi—fo+t fi—f2) + a3
fa = falfo— fi+ fa— f3) + au,

we obtain )
bo—Co+d0—60:0

co—do+eg—ayg=0
dy — ey +ag—by =0
eo—ag+byg—cop=0
(a0 — by +co —do = 0.

Since the rank of

is four, it follows that
(a07 b07 Co, d07 60) = ﬁ (17 17 17 17 1)7

for some (€ C. Since Zizo fr = t, it follows that

CLOIbO:CO:dOIQOIO.
17



By comparing the constant terms in

(f5= folfr = fot f5— fu) + g
fi=filfa= fs+ fa— fo) +
fo=Fo(fs = fat+ fo— f1) +
fa=fs(fa—fo+ fi—fo) + a3

| fi=falfo— fi+ fo— f3) + au,

we obtain )
1= b_l —C_1+ d_l +e_1+ 50(0

l=c1—d1+e_1—a_1+bm
l=d_1—e_14+a_1—b_1+ by
l=e_1—a_1+b_1—c_1+bas
(1=a-1—bq+c1—da+5ay.

Since Zi:o fr = t, it follows that

a—_1 + b_l +c_q1+ d_l +e_1 = 0.

Therefore we get

'a_l =31 + as — ag — 3oy,
b_1 = 3an + a3 — ay — 3ay,
c_1 = 3as+ oy — ag — 3aq,

d_1 = 30(4 +ap — o — 30(2,

\6_1 = 30&0 + o1 — Qo — 30(3.
]

In the following proposition, we get a sufficient condition for the Laurent series of
fi (0 <j <4)at t = o0 to be uniquely expanded.

Proposition 1.3. Suppose that (f;)o<j<a is a rational solution on Proposition [L.2

(1) If fi has a pole at t = oo and fii1, fire, firs, fira are regular at t = oo for some
i=0,1,2,3,4, the Laurent series of f; (0 < j <4) att = oo are uniquely expanded.

(2) If fi, fix1, fixs have a pole at t = oo and fiyo, fira are regular at t = oo for some
i=0,1,2,3,4, the Laurent series of f; (0 < j <4) att = oo are uniquely expanded.

(8)  If fi, fix1, fiz2 have a pole at t = oo and fiys, fira are reqular at t = oo for some
i=0,1,2,3,4, the Laurent series of f; (0 < j <4) att = oo are uniquely expanded.

(4)  If all the rational functions of (f;)o<i<a have a pole at t = oo, the Laurent series of
i (0<j<4) att=o0 are uniquely expanded.

18



Especially, we have the following:
Type A (1): for some i = 0,1,2,3,4, f; has a pole at t = 0o and fii1, fire, firs, fira are
reqular at t = oco. Then,
Jiri=01f a1 =0
firta=0if ajpa =0
fira=0if ajp3=0
Jira=01f ajpqa =0.
Type A (2): for some i =0,1,2,3,4, f;, fir1, firs have a pole at t = 0o and fiyo, fira are
reqular at t = oco. Then,

firta=0if a2 =0
Jira=04f ajpg = 0.

Type B: for some i = 0,1,2,3,4, f;, fix1, fize have a pole at t = oo and fiy3, fira are
reqular at t = oo. Then,

fira=E0if aipqa =0.

Proof. If there exists a rational solution of Type A (1), we have

fo=t+a it + Z;ﬁ_oo agt®, fi=b_qt7t + Z/ﬁ_oo bpt®, fo=c_qt7! + Z/ﬁ_oo cxt”,
fo=dat T+ 320 dith, fi=etT 02 enth,

{fi+3 =0if a3 =0

where a_1,b_1,c_1,d_1,e_; have been determined in Proposition [[.2. By comparing the
coefficients of the terms t* (k < —2) in

fi=hlfa=fs+ fa—fo) +
fs=Ffolfs = fat fo— fi) + a2
fa=fa(fa—fo+ fr—fo) T3
fi=falfo— fi+ fo— f3) +ay,

we get
b1 =bp(k+1)+ an:k be—m(Cm — dm + €m — a)
cp—1=—cp(k+1)— an:k Chm(d — €m + am — bpy)
A1 = dipr(k + 1) + 30 i dim(€m — @m + b — )
er_1 = —epr1(k+1)— Z?n:k Ch—m(Am — €m + Cm — dp)-
In Proposition [[.2], we have had

by =aq, coy = —q,d_y = a3,e_1 = —y.
19



Therefore we get

f=0if a; =0
f2=0if ag =0
fa=0if az =0
fa=0if ay=0.
Since Z?:o f; =t, it follows that
ag—1 = —bp_1 — Ccp—1 — dp—1 — ep—1.

Therefore, if there is a rational solution of Type A (1), the coefficients ay, b, ¢, dg, e (k <
—2) are determined inductively and it is unique.
If there exists a rational solution of Type A (2), we have

fo=t+at™ + 32 Latt, fi=t4+batT + 32 bth, fo=contT + 32t
f=—t+d gt + 50 dith, fi=eatT 00 et

where a_1,b_1,c_1,d_1,e_1 have been determined in Proposition [[.2. By comparing the
coefficients of the terms t* (k < —2) in

{fﬁ = folfs = fa+ fo— fi) + @
fi=falfo— fi+ fa— f3) + au,
we get
o1 = (B +1)+ 30 Clh—m) (i — €m + A — biy)
er—1 = —epr1(k+1) — ngzk Chm(Am — €m + Cpy — di).
In Proposition [[.2], we have had

C_1 = Qg, €_1 = —Q4.
Therefore the coefficients ¢y, e (k < —2) are determined inductively and we get
fo=0if ag =0
fi=0if ay =0

By comparing the coefficients of the terms t* (k < —2) in

fo=flfi—fotfa—fu)+ o
fi=hlfo=fs+ fa—fo) +

fa = fs(fa— fo+ f1 — f2) + as,
20



we get
(b1 +dpy = cr1 + ex1 — apei(k+1)
- Z(r]n,:k A(k—m) (b = Co + din — €1)
—djp—1 — ap—1 = —Cp—1 — €—1 — b1 (k+ 1)
= o b (o — o + € — )
—ap_1 + b1 = —ep_1 + 1 — dpa (K + 1)
\ + Z(,]n:k i—m(€m — Ay + by — C).

Since Z?:o f; =t, it follows that

ap—1 +bp—1 +dp—1 = —Cr—1 — €p_1.

Therefore, if there is a rational solution of Type A (2), the coefficients ay, by, di (k < —2)
are determined inductively and it is unique.
If there exists a rational solution of Type B, we have

fo=St+atT + 32 ath, =St b gt 302 bkt o=ttt et 30 ath,
fo=dat T+ 3020 dith, fi=etT 02 ent”,

where a_;,b_1,c_q1,d_1,e_, have been determined in Proposition [[2l By comparing the
coefficients of the terms t* (k < —2) in

fa=fs(fa—fo+ fi—f2) +as
fi= falfo— fi+ fa— f3) + au,

we obtain

dk—l = _B(k + l)dk—i-l + 3 Z?n:k dk—m(em — am + bm_m)
CL_1 = 3(1{3 + 1)6k+1 -3 Z?n:k ek_m(am — bm +Ccm — dm)

In Proposition [I.2] we have had
d_l = 30&3, €_1 = —30é4.
Therefore the coefficients dy, e, (k < —2) are determined inductively and we get

f3EOifQ{3:0,
f1=0if ay=0.
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By comparing the coefficients of the terms t* (k < —2) in

fo=folfi=fo+ fs—f1) +
f=hlfa=fa+fa—fo) +
fo = falfs = fa+ fo — f1) + ag,

we have

o1 — bt = =3(k + Dagr1 + 3oy @i (b — o + doy — €)
Q-1 — Cp—1 = _3(1{: + ]-)bk—i-l +3 Zgnzk bk—m(cm - dm +ém — am)
Dot — ap—1 = —3(k + )eprs +3 3oy Chom(din — € + A — by).

Since Z?:o fi = t, it follows that
ag—1 + bp—1 + cp—1 = dp—1 — ex_1.

Therefore, if there is a rational solution of Type B, the coefficients ay, by, ¢ (k < —2) are
determined inductively and it is unique.
If there exists a rational solution of Type C, we have

fo=tt+a st + 3 anth, fr=tt bt 3 btk o = bt et 4+ Y0, ot
fo= bt doat™ S ditt, fa= Skt E T e

where a_;,b_1,c_1,d_1,e_ have been determined in Proposition [[2l By comparing the
coefficients of the terms t* (k < —2) in

fo—fo(fl fot fs— fu) +
fi=fLlfa—fa+ fa—fo) +
fo=Fo(fs = fat+ fo— f1) +
fi=h(fi—fot fi—f2) +as
L f1 = Jal f3)

fo—fit+ fa— + Qy,

we get

(b1 — Cho1 + djy — €41 = 5(k+ 1)agss — 5 Zm i Uomin (b, — € + dpy — €1)
k-1 —dp_1+er—1 —ag_1 =5(k+ 1)bgy1 — 5 Zm 2 De—m ( )
Qdp_1—ep1+ar1—br1=5Fk+1)cgs1 —5 Zm v Chim (A, — € + A — biy)
ek — a1+ by —cp1 =5k + Dy — 530, dim( )
(k+1) ( )

L@kt = b1+ ey — dpoy = 5(k + Dexpr =53 €xm
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Since the rank of

is four, by_1,cr_1,dp_1,€er_1 can be expressed by
ai(k_l <1< 1)7 ij Gy, dj7 6](1{3§j§ 1)
Since 22:0 fr = t, it follows that
ag_1+ bk—l + Cr_1 + dk—l +ep_1 = 0.

Therefore, if there is a rational solution of Type C, the coefficients ay, by, cx, di, ex (k <
—2) are determined inductively and it is unique. 0

From Proposition [[.3] we have

Corollary 1.4. Let (fj)OSjS‘l be a rational solution Of A4(aj)0SjS4' Then, fj (0 Sj < 4)
are odd functions.

Proof. A4(a;)o<j<4 is invariant under the transformation
sqit——t, fi——f; (0<j<4).

Each of Type A, Type B, Type C on Proposition [Tl is also invariant under s_;. Then
fi(t) = —f;(—t) (0 < j <4), because the Laurent series of f; at t = 0o on each of types
are unique. Therefore, f; are odd functions. O

1.2 the Laurent Series at t =c € C

In this subsection, we calculate the Laurent series of f; (0 < j < 4) at t =
Ay(ej)o<j<a, which are determined by Tahara [I7]. The residues of f; (0 < j < 4) at
t = c € C are integers.

Tahara [I7] obtained the following proposition:

Proposition 1.5. If some of (fj)o<j<4 have a pole at t = ¢ € C, f; is expanded as the
following three types:
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(1) if fi, fix1 have a pole att = ¢ € C for some i =0,1,2,3,4,

(
fi = (t — C)_l -+ % + <1 -+ % — %Oéi — %Oéﬂ_l — %O&H_g) (t — C)
+ (=5 (Gir22 + Givaz) + § + S(ipo + iga)) (t =) + -+
fi—i—l = —(t - C)_l —+ % -+ <]_ — % — %O{Z — %Oéi_},l — %Oéi+3) (t - C)
+ (—%(in,z + Givaz) — %C — flaiy2 + ai+4)) (t—c)?--
firo = —ipa(t — ) + Girop(t — ) + - -
firs =22t — ) +0(t — )’ + -+

| fira = —iza(t —¢) + Giyaa(t —¢)* -+,

where Giy22, ¢iva 2 are arbitrary constants.
(2) if fi, fixa have a pole at t = ¢ € C for some i =0,1,2,3,4,

(fi=—(t—c) + (3¢ — qissp)
+ <% (24 Qi1 — Qigs — 3ips — Qigs) + 3Girs0 (¢ — Girso — 2Gipa0) — 5 (3¢ — %-}—3,0)2)
X(t—c)+---
firn=—ai(t—c)+---
firz= (=) + (5¢ = Gita0)
+ (%(2 — 0 + Q1 — Qigg — 3Q4a) — §Qi+4,0(0 — 2¢i+30 — Qita0) + %(%C — Qi+4,0)2)
X(t—c)+---
firs = Qiv30 + (Qz‘+3,0(—0 + Gi+3,0 + 20i+a0) + Oéi+3) (t—c)+---
| fira = Gisa0 + (Gia0(¢ — 26430 — Giva0) + Qiga) ([t =€) + -+,

where gi13.0, gi+a,0 are arbitrary constants.
(3) Zf fi+1> fi+2> fi+3> fi+4 have a pole att=ceC fO’f’ some i = 07 1a 27 3a 47

(=) b
firn=3(t—c '+ <% — 2 2ai+ aipa 4 30us — éaz’+4> t—c)+---
fi+2:(t—c)_1+§+ <%+%+OK¢+%O&¢+1—%Ozi+3+%ai+4> (t—C)+"'

frs=—(t—o) + 5+ (‘% + 2+ g0 — 5+ %ai+4) (t—c)+--

| fira=—=3(t -0+ (‘% — % —dai — soup g0 + gai+3> (t—c)+---.

From Proposition [[L5, we obtain the following corollary:
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Corollary 1.6. Suppose that ( f;)o<i<a is a rational solution of As(c)o<i<a-
(1) Ifc € C\ {0} is a pole of f; , —c is also a pole of f; and Resy—.f; = Resy—_.f;.
(2) If Resi—oo fi s an even integer, t = 0 is not a pole of f;. Therefore,

where a;; = Ozl:l,é,écmd&t” +1,4+3 and ¢;; # 0.

(3) If Resi—oo fi is an odd integer, t = 0 is a pole of f;. Therefore,

Ei,j Ei,j
t— Cij t -+ Ci,j ’

fi=

where €;,€;; = £1,£3 and ¢; ; # 0.

Proof. (1) Let ¢ € C\ {0} be a pole of f;. Then it follows from Proposition and

Corollary [[.4] that f; has a pole at t = ¢ with the first order and is an odd function:

fit) = = fi(—1).

Therefore, —c is also a pole of f; and Res;—.f; = Res_.f;.

(2)  Suppose that t = 0 is a pole of f;. Let *c¢j,+co,--- £ ¢,, € C\ {0} be

poles of f;. Then, it follows from the residue theorem that

—Resi=oo fi = Resi=o fi + 2 Z Resi=, i,

Jj=1

which is contradiction because Res;— f; = £1or + 3.

(3)  Suppose that ¢ = 0 is not a pole of f;. Let +cy,+co, - £ ¢, € C\ {0} be

poles of f;. Then, it follows from the residue theorem that
—Resi—oo fi = 2 Z Resi=c, fi,
j=1

which is contradiction.
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2 A Necessary Condition

In this section, following Noumi and Yamada [10], we firstly introduce the shift operators
of the parameters (a;)o<;<4. Secondly we get a necessary condition for A4(a;)o<i<a to have
a rational solution and prove that if A4(a;)o<;<4 has a rational solution, «a; (0 < i < 4)
are rational numbers. Thirdly, we transform the parameters into the set C.

Noumi and Yamada [I0] defined shift operators in the following way:

Proposition 2.1. For any i = 0,1,2,3,4, T; denote shift operators which are expressed
by

T1 = TS4535251, T2 = 51785453852, T3 = 59851754853, T4 = 53598517 Sy, TO — S§483S59S51T.

Then,
Ti(az’—l) = a1 + 1, Tz’(az‘) =a; — 1, Ti(%’) = &y (j 7é i — 1>i)-

In Proposition and [[L5, we have determined the residues of f; (0 < i < 4) at
t = oo, ¢ € C, respectively. Therefore, the residue theorem gives a necessary condition
for A(a;)o<i<4 to have a rational solution.

Theorem 2.2. If the Ay(a;)o<j<a has a rational solution, (ap, ar, e, g, ) satisfy one
of the following conditions:

(1) if As(j)o<j<a has a rational solution of Type A, a; € Z (0 < i < 4);

(2) if As(j)o<j<a has a rational solution of Type B, for some i =0,1,2,3,4,

_ ng N1 N1 Ng N3 Ny
(aiaai+1>ai+2>ai+3>ai+4) = (? - g, g, ? E, E, —?) modZ,

where ny,n3,ng = 0,1,2;

(3) if Au(j)o<j<a has a rational solution of Type C, for some i =0,1,2,3,3,4,

s 2712 3713 T 2712 ng My M1 N9 7’L1+713

i 2ha  ON3 e’ e d7
st Tt s s 5T 5t Mol

(0, g1, Qg Qiys, Qi) = (
where ny,no,ng = 0,1,2,3,4.

In (1), (2) and (3), we consider the suffix of the parameters «; as elements of Z/57Z.

Proof. Proposition implies that Res;—.f; = +1,£3 (0 < i < 4) for t = ¢ € C. There-
fore, it follows from the residue theorem that Res;— f; € Z (0 < i < 4).
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If Type A (1) occurs, it follows from Proposition that a1, Qiyo, Qiys, Qi € 7,
which proves that «; € Z because Zizo o = 1.

If Type A (2) occurs, we can show that a; € Z (0 < j < 4) in the same way as Type
A (1).

If Type B occurs, it follows from Proposition [.2 that Res;—« fi13 and Resj—o fira € Z,
which means that

ns Ty
Qjp3 = —,0j4q4 = ——, N3, Ny € 7.

3 3

Furthermore, Proposition implies that Res;—o fi11 and Res;— fir2 € Z, which shows
that
ns Ny
Oéi+2—04i—§—§:m1€z

n3
Oéi—ai+1+?—n4 =mg € 7.

By solving this system of equations of «;, ;1 2, we obtain

ns
(67 :ai+1—§+m2+n4

Qi1 = Oy

Ty
Qiyos = iyl + 3 +my + mg + ngy.

Since a3 = %, ipq = —% and ijzo aj =1, it follows that a;1y = 7% for some integer
ny € Z, which implies that

—~

(i, Qig1, i, Qiga, Qigg)
If Type C occurs, it follows from Proposition that

301+ g — a3 — 3y = Mg € Z
3ag + a3 —ay —3ag =my € Z
3as+ a4 — oy — 31 =my € Z
3oy + g — a1 — 3y =ms € Z

3ag+ oy —ay — 3ag =my € Z.
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By solving this system of equations, we obtain

3 2 2 1
g = (g — gmo — gml — gmg — gmg
1 2 1
o = a3+ gml — gm2 + gmg
4 3 3
Qo = Q3 — gmo - 37"12 - gm?,
Q3 = Q3
1
Qy = Q3 — gmo + gml - gmg.

Since Y.+, a; = 1, it follows that

We substitute a; = %

Oéj:% TLjEZ (0§]§4)

into the residues of f; at ¢ = oo again and get

3n; +ng —n3 — 3ny =0 mod 5
3ng +n3 — ng — 3ny = 0 mod 5
3ns +n4s —ng — 3n; =0 mod 5
3n4 +ng —ny — 3ny =0 mod 5

3ng + ny — ny — 3ns = 0 mod 5.

By solving this system of equations in the field Z/57Z, we obtain

ng =11 4+ 2ls + 3l3 mod 5
ny =1l +2lp+13 mod?H

ny =0 mod 5
ng =10+ mod 5
ng =0 +1; mod 5.

O

By the Backlund transformations, we can transform the parameters obtained in Theo-
rem into the set C. For the purpose, we study the relationship between the Backlund
transformations s; (0 < i < 4) and Type A, Type B, Type C on Proposition [T in the

following proposition:
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Proposition 2.3. The Backlund transformation s; preserves Type A, Type B and Type
C on Proposition [11.

Type A (1): for some j = 0,1,2,3,4, f; has a pole at t = oco. When j = i,i £ 1,
s; preserves Type A (1). When j =142, s; changes Type A (1) into Type A (2).

Type A (2): for some j = 0,1,2,3,4, f;, fi+1, fi+s have a pole at t = oco. When
j=14,i—1,i+ 2, s; preserves Type A (2). When j =i+ 1,1 —2, s; changes Type A (2)
into Type A (1).

Type B and C are invariant under the Backlund transformations.

With the Bécklund transformations, we transform the parameters (a;)o<i<4 in The-
orem into the set C. In the set C, we have one, five, six kinds of parameters which
correspond to the parameters in (1), (2), (3) in Theorem [Z2], respectively.

Theorem 2.4. By some Bdcklund transformations, the parameters in (1), (2), (3)
in Theorem[2.2 can be transformed into the following parameters in the set C, respectively.

(1)  The parameters are transformed into (1,0,0,0,0).

(2)  The parameters in Theorem[2.2 (2) are transformed into one of

111
z Z.0,=,2),(1 .
7370)7(073707373)7( 7070707())

The parameters in Theorem[Z3 (2) are transformed into (3, %, 3,0,0) if and only if
(n1, 3, n4) = (£1,0,0), (£1,0, £1), (£1, £1,0), £(0, 1, —1),

or if and only if for some i =0,1,...4,

+4(1,1,1,0,0) modZ

(Oéi, A1, 042, Ot 3, O4H—4) = {i%(lu _17 _17 1’ 0) mod 7Z.

(3)  The parameters in Theorem[2.2 (3) are transformed into one of

1 1 2 2 1 2 2
’S’O)’(_ 0 0)7(

22 !
57 ?5’5?

3
0,0,=),(<,=,0,0
? Y )7(5757 ? Y

12 !
555

5)'
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The parameters in Theorem[23 (3) are transformed into (é . 1.5.2) if and only if

7575
(n17n27n3> = (1 0 O) (1 272) (1 0, 1) ( )7(17170) (27070)7
=1(2,4,4),(2,0,2),(2,4 )7(2 2 ,0),(2,2,1),(3,0,0),
(3,1,1) (3,3,4), (3, 3 ,0), (3,0 3),(3,1,4),(4,0,0),
~ (4,3,3),(4,4,0), (4,4,2), (4,3,2), (4,0,4),
or if and only if for some i =0,1,...,4,
(o, 0 ' ' ) = £(1,1,1,1,1) modZ
Oy, Oy, Oy, O 3, 01 g) = %(1’2’1’3’3) mOdZ,

with some 7 =1,2,3,4.

Proof. (1) We inductively prove that the parameters (ng, nq,n2,ng,ns)n; € Z can be
transformed into (1,0,0,0,0).

i)  Four of the parameters are 0.
By 7, the parameters can be transformed into (1,0,0,0,0).

ii)  Three of the parameters are 0.
By T1n17 we have <n07 ny, 07 Ov 0) — (n(]a Ov 07 Ov 0)7
(2) By T2n2a we get (n0a07n270a0) - (nOan2>0aO>0)a

iii) Two of the parameters are 0.
(1) By Ty?, we obtain (ng, ny,ns,0,0) — (ng,ny + ns,0,0,0),
(2) By 13", we have (ng,n1,0,n3,0) — (ng, n1,n3,0,0,0),

iv)  One of the parameters is 0.
BY T?ZLB’ we get (n0> ni, ng, N3, 0) - (n0> ni,Ng + ns, 0? O)

v)  None of the parameters is 0.
By T4n4a we obtain (nOa ny, ng, N3, n4) — (n0> ni,Na, N3 + Ny, O)a

(2) By some Bécklund transformations, we can transform the parameters

(ap, a1, 9, i3, 01y) = (% - %, % % + 7;4 7;3 %) mod Z, ny,ng,ng = 0,1,2,

into the set C. We have to consider 3% = 27 cases. Here, we show that (a;)o<i<a can be
transformed into the set C' in the following five cases. The other cases can be proved in

the same way.
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When n; = n3 = ny = 0, the discussion on (1) implies that
(Oéo, an, Qg, O3, Oé4) - (17 07 07 07 O)
When ny = 1,n3 = 0,n4 = 2, by 7, we get

11 1
Z 0.0~
(3>3>a>3)_)(

When ny =1 =mn3 =n4 =1, by s¢ 0 s4, we obtain

11
~5,0,0).
7373?7)

Wl =

121 1 1 2
0,=,2,2,—= ~,0,2,0,0).
(a3a3737 3)—>(3a73a7)
When ny = 1,n3 = ngy = 2, by s, we have
11 21 1 2
(_§’§7O’§’§)H(§7O’O7§’0)'
When ny =1 =n3 =1,n4 =2, by 7, we get
1 11 1 11
0,-,0,=, - 0,2, -,0).
(737 7373)—>(37 73737 )

(3) By some Bécklund transformations, we can transform the parameters

nq 2712 3713 nq 2712 ng ni Ny nNo Ny ng
— (e o, Al T T M, T2 T T8 0d Z
(0, a0, 05,00) = (FH+ "+ g+ 55 Ty g T p)m
n17n27n32071727374

into the set C. We have to consider 5% = 125 cases. Here, we only prove that (a)o<i<a can
be transformed into the set C' in the following six cases. The other cases can be proved
in the same way.

When n; = ny = n3 = 0, by some shift operators, we get
(ci)o<i<a — (1,0,0,0,0).

When ny = 1,no, = ng = 0, by some shift operators, we obtain

(i)ocica — (2o or s ).

When n; = 0,n9 = 2,n3 =0, by 77! 0 54 0 59, we have

14 2 3 1
0,-,0 -0, -
) 7)H(57757

5505 0)
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When n; = 0,15 = 1,n3 = 0, by some shift operators, we get
22 1
) ) R Oa = 0).
(a)0§§4—>(5 5 )
When n; = ny = 0,n3 = 2, by some shift operators, we obtain

12 2
) ) _>_>0a07_'
(a)0§§4—>(5 5 5)

When ny = ny = 0,13 = 1, by some shift operators, we have

31 1
) ) _>_>0a07_'
(a)0§§4—>(5 5 5)

3 A Sufficient Condition

In the previous section, we have shown a necessary condition for A4(q;)o<i<4 to have a
rational solution and have transformed (;)o<i<4 € R?® into the set C.

In this section, following Noumi and Yamada [10], we firstly introduce the Hamlltonlan
H for As(a;)o<i<s and its principal part H. Secondly, from Proposition [2 and .5,
calculate the residues of H at ¢t = 00, ¢. Thirdly, by the residue calculus of H, we demde

a sufficient condition for A, (;)o<i<4 to have a rational solution.

Noumi and Yamada [11] defined the Hamiltonian H of A4(cj)o<j<a by

H = fofifa+ fifofs + fofsfa + fafafo + fafofi

5

1
)

1
- g (30&1 + a9 + 40&3 + 20(4) f4.

1 1
—|——(2a1—a2+a3—2a4)f0+3(2a1—|—4a2+a3—|—3a4)f1

1
(30&1 + g — (0% + 20(4) f2 —+ g (20&1 — Qg + Qs + 30&4) f3

H denotes the principal part of H which is defined by the equation

H= fofifo+ fifafs + fafsfa+ fafafo+ fafofi-

We suppose that (f;)o<j<s is a rational solution of A4(c;)o<j<s. The order of a pole
of H at t = oo is at most three, because Proposition [Tl implies that f; (0 <i < 4) have
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a pole at ¢ = oo with the first order or are regular at ¢ = co. Since Corollary [L.4] shows
that f; (0 <14 <4) are odd functions, the Laurent series of H at ¢t = oo are given by

H = hoo 5t + hoo 1t + hoo 1t + O(t7%) at t = 0.

In the following lemma, we calculate ho, _1 by using the Laurent series of f; (0 <i < 4)
at t = oo in Proposition

Lemma 3.1. Suppose that (f;)o<j<a is a rational solution of As(a;)o<j<a-
Type A (1): for somei=0,1,2,3,4, f; has a pole at t = co. Then,

Poo,—1 = —Qip10642 — QGiy3Qipg — QipaQliyy.

Type A (2): for somei=0,1,2,3,4, fi, fix1, firs have a pole at t = co. Then,

Poo,—1 = —Qita(0G + igs) + 0iya(ipr + 0Gig) + Qipo0yya.

Type B: for some i =0,1,2,3,4, f;, fix1, fire have a pole at t = co. Then,

1
hoo,—1 = 3 { — (i — g1+ aigs) — (Qipa — i — Qiss+ipa) (Qiga+Qipa — gy — 9ai+3ai+4}-

Type C: fo, f1, f2, f3, f+ have a pole at t = co. Then,

1
hoo,—l = g(—a2_1 +a_1e_1 — b2_1 — a_1C_1 — C2_1 + C_1d_1 + Qd_le_l),

where

a_1 = 3@1 + gy — g3 — 30(4, b_l = 3042 + a3 — oy — 30(0,6_1 = 3043 + a4 — g — 30(1,

d_1 =304+ g — a1 — 3an,e_1 = 3ag + a1 — ag — 3.

In the following lemma, we decide the residue of Hatt=c by using the Laurent
series of f; (0 < i < 4) in Proposition [[LA

Lemma 3.2. Suppose that ( f;)o<i<a is a rational solution of Ay(c;)o<i<a and some rational
functions of (fi)o<i<a have a pole at t = ¢ € C. Then the residue of H at t = ¢ is as
follows:

(1) if fi, fix1 have a pole att = c € C for some i =0,1,2,3,4,

A

Res;—cH = a9 + qijiy;
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(2) if fi, fixa have a pole at t = ¢ € C for some i =0,1,2,3,4,

~

Res;—cH = ayq;

(3) Zf fi+17 fi+27 fi+37 fi+4 have a pOle att=rce C fOT some 1 = 07 17 273747

A

Rest:cH = (41 + Q1 4.

From now on, let us study a rational solution of A4(c;j)o<j<a When (o;)o<i<4 is in the
set C. For the purpose, we have the following lemma:

Lemma 3.3. Suppose that the parameters (a;)o<j<s € R® are in the set C. If Ay(ar;)o<j<a
has a rational solution (f;)o<j<4, then,

h'oo,—l Z 0.

Proof. Let ¢y,...,¢, € C be the poles of (f;)o<j<a. Since 0 < oy < 1 (0 < i < 4), it
follows from Lemma that

Resi—o, H >0 (1 <1< k).

Therefore it follows from the residue theorem that

k
hoo -1 = —Rest:oofl = Z Rest:cllff > 0.

=1
0

For the residue calculus of H , we make two tables about the residues of Hatt=ceC.

Table 1: the residues of H at t = ¢ € C in the case of (3,%,3,0,0)

l 011,234
aptais [ 32323
iy HEIIRE
o ta 312131313

By using Table 2, we study a rational solution of Type A of A4(1,0,0,0,0).

34



Table 2: the residues of H at t = ¢ € C in the case of (1,0,0,0,0)

) 01112134

[O7AT)) + (67 Ew| O(1|10|1]60
(07| 0j]0j0]0]|1
(AN} + (O7RW] 017001

Lemma 3.4. A4(1,0,0,0,0) has a unique rational solution of Type A which is given by

(fo, f1, f2, f3, fa) = (¢,0,0,0,0).

Proof. 1f A4(1,0,0,0,0) has a rational solution of Type A, it follows from Lemma 3.1l that
hoo.—1 = 0. Furthermore Lemma[3.21 and Table 2 imply that the residue of H at t =c € C

A

is nonnegative. Then it follows from the residue theorem that Res;—.H = 0. Therefore,
Table 2 implies that

(f(]vfl)? (f27f3)7 (f47f0>
(f07f2)7 (f17f3)7 (f27f4)7 (f37f0>
(.fl>f2af3>.f4)> (.f3>f4af0>.fl)’ (f4>.f0afl>f2)

can have a pole at t = c € C.
Proposition [Tl shows that Type A (1) and Type A (2) can occur.

Type A (1): for some i = 0,1,2,3,4, f; has a pole at t = 0. If fy has a pole
at t = 00, it follows from the uniqueness in Proposition that

(fo, f1, f2, f3, fa) = (¢,0,0,0,0).

We suppose that f; has a pole at t = oo and show contradiction. The other four cases
can be proved in the same way. Proposition implies that

—Resi—oc /1 =1, fo = f3 = f1 =0, -Resi— fo = —1.

Since fy = f3 = f4 = 0, only (fo, f1) can have a pole in C. It follows from Proposition
that Res;—ofo = 1, Res;—ofi = —1, which contradicts the residue theorem.

Type A (2): for some i = 0,1,2,3,4, f;, fir1, firs have a pole at t = oo.
When fy, f1, f3 have a pole at t = oo, Proposition shows that

—Resi—oofo =0, —Resi—oo f1 =1, fo =0, —Resj—c f3 = —1, f4 =0.
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Since fo = f, =0,
(f(]vfl)? (f17f3)7 (f37f0>

can have a pole in C. If (fo, f1) or (fs, fo) have a pole at t = ¢ € C, it follows from
Proposition [[LHl that Res;—.fo = 1, which contradicts the residue theorem. If (f1, f3) have
a pole at t = ¢ € C, it follows from Proposition that Resi—.fi = —1, Res;—.f3 = 1,
which contradicts the residue theorem.

When fi, fo, f4 have a pole at t = oo, it follows from Proposition that

—Resi—oo f1 =1, —Resi—oofo =3, f3=0, —Resj—oo f1 = =3, —Resj—ofo = —1.

Therefore

(anf1)> (f4>.f0) (f0>.f2)a (f27f4)? (.f4af0>.flaf2)

can have a pole in C because f3 = 0. When (fy, fo), (f2, f1), (f1, fo, f1, fo) have a pole
at t = ¢ € C, it follows from Proposition that Res;—.f1 = 1, 3, which contradicts the
residue theorem. If (fy, f1) have a pole at t = ¢ € C, it follows from Proposition that
Res;—.f1 = —1, which contradicts the residue theorem. If (fy, f2) have apoleat t = ¢ € C,
it follows from Proposition that Resi—.fo = —1, Res;—.fo = 1, which contradicts the
residue theorem.

When f5, f3, fo have a pole at t = oo, it follows from Proposition that

—Resi—oofo =1, —Resi—ofz3 =1, f41 =0, —Resj—o fo = —1, —Resj—oo f1 = —1.

Then Corollary shows that (fo, f1, f2, f3) have a pole at ¢t = 0 because Resi— f; (0
j < 4) are odd integers. Lemma implies that Restzoff = 1. Since —Rest:oofl
hoo—1 = 0 and Rest:clf] is nonnegative, this contradicts the residue theorem.

When f3, f4, f1 have a pole at t = oo, it follows from Proposition that

I IA

—Resi=wof3 =1, —ReSi=cfa = =1, —Resi=ocfo = 1, —Resi=oc /1 = —1, o =0.

Therefore

(fo, f1), (fa, fo) (1, f3), (f3: fo) (f3s fa, fo, f1)
can have a pole in C. Since f; # 0 and Res;—of1 # 0, f1 has a pole at t = ¢ € C. If
(f1, fo) have a pole at t = ¢ € C, it follows from Proposition that Res;—.fs = 1, which
contradicts the residue theorem. If (f3, f4, fo, f1) have a pole at t = ¢ € C, it follows from
Proposition that Res;—.fs = 3, which contradicts the residue theorem.
When f4, fo, fo have a pole at t = oo, it follows from Proposition that

—Resi—oofs = 1, —Resi—o fo =0, f1 =0, —Resj—c fo = —1, f3=0.

Since f; = f3 =0,

(f1, fo) (fo, f2), (f2, fa)
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can have a pole in C. When (fy, fo) or (fo, fo) have a pole at t = ¢ € C, Proposition
shows that Res;—.fy = —1, which contradicts the residue theorem. Therefore, f; is
regular in C and (fs, f4) have a pole at t = ¢ because Res;— fo and Res;— f1 are not
zero. Proposition and Corollary imply that

1 1
f4:t+;7 fOZtv flzou f2:_t_;7 f3507

because Res;—o f1 and Res;— fo are odd integers. By substituting this solution into
A4(1,0,0,0,0), we can show contradiction. a

By using Table 1, we study a rational solution of Type B of A4(%, %, %, 0,0).

Lemma 3.5. A,(%,1,1,0,0) has a unique rational solution of Type B which is given by
3:373

(f0>.flaf2>f3>f4):( 070)

t
?3?

W =+

Y

W =+

Proof. Proposition implies that f;, fir1, fire can have a pole at ¢ = oo for some
i=0,1,2,3,4.
If fo, f1, fo have a pole at t = oo, Proposition and show that

t tt
3733
If f1, f2, f3 have a pole at t = oo, it follows from Proposition that

(f0>.f1af2>f3>f4):( 070)

—Resi=wof1 = —Resi=oc fo = 0, —Resi=wo f3 = 1, 1 = 0, —Resj—oc fo = —1.

Lemma [3.1] shows that ho _; = 0. Furthermore Lemma and Table 1 implies that
Res;_.H is nonnegative when (v, a1, gy (g, ) = (%, %, %,0,0). Thus, the residue theo-
rem shows that Res,_.H = 0. Therefore Lemma 3.2 and Table 1 implies that only (fa, f1)
and (f3, fo) can have a pole at t = ¢ € C. Since f; = 0, f; cannot have a pole in C. If
(f3, fo) have a pole at t = ¢ € C, it follows from Proposition that Res;—.f3 = —1 and
Resi—.fo = 1, which contradicts the residue theorem.

If fo, f5, f1 have a pole at t = oo, it follows from Lemma 3.1 that hoo 1 = —%, which
contradicts Lemma [3.3]

If fs, f1, fo have a pole at t = oo, it follows from Lemma [3.1] that he 1 = —;—(7], which
contradicts Lemma

If f4, fo, f1 have a pole at t = oo, it follows from Proposition that

—Resi=wo fs = —1 — Resi=oo fo = 0, —Resi=oo f1 = 0, —Resi=oc fo = 1, f3 = 0.

37



Lemma [B.J implies that Ay = 0. Table 1 shows that Res;_.H is nonnegative
when (ag, o, g, vz, vy) = (3, 3 3,O 0). Thus, it follows from the residue theorem that

Res,—.H = 0 for any ¢ € C. Therefore, Lemma and Table 1 imply that only (fs, f1)
and (fs, fo) can have a pole in C. Since f3 =0, f3 cannot have a pole in C. If (f5, f4) have
a pole at t = ¢ € C, it follows from Proposition that Res;—.fo = —1 and Res;—.fy = 1,
which contradicts the residue theorem. O

By using Lemma 3.3, we prove the following lemma:

Lemma 3.6. A4(2,0,0,%,0), As(3,0,0,2,0), 44(0, 3,0, 3, 3), 44(1,0,0,0,0) do not have

)30 ) 30 ») 395373
a rational solution of Type B.

Proof. 1f the equations in the lemma have a rational solution of Type B, it follows from
Lemma B that ho, —1 < 0, which contradicts Lemma [3.3] O

From Proposition [ and [[L3] we prove the following lemma:

Lemma 3.7. A4(%, %, %, %, %) has a unique rational solution of Type C which is given by

(f0>flaf2>.f3>.f4) (_ = _a_>_)'

By using Lemma [3.3] we prove the following lemma:
Lemma  3.8. A(1,0,0,0,0), A4(2,0,1,1,0), As(3,0,2,2,0), A4}, 2,0,0,2),

)59 5
Ay(2,1,0,0,1) do not have a rational solutzon of Type C.

Proof. 1f the equations in the lemma have a rational solution of Type C, it follows from
Lemma B that ho, —1 < 0, which contradicts Lemma [3.3] O

Theorem proves that if A4(a;)o<i<4 has a rational solution of Type A, the param-
eters a; (0 < i < 4) are integers. Theorem 2.4 shows that (c;)o<i<4 can be transformed
into (1,0,0,0,0). Lemma B4 proves that A4(1,0,0,0,0) has a unique rational solution of
Type A which is given by

(fo, f1s f2, f3, f2) = (,0,0,0,0).

Therefore, Ay(a;)o<i<q has a rational solution of Type A if and only if a; (0 < i < 4) are
integers. Furthermore, the rational solution is unique and can be transformed into

(fo, f1, f2, f3, f1) = (£,0,0,0,0) with (ag, a1, g, a3, o) = (1,0,0,0,0).
Theorem implies that if A4(a;)o<i<4 has a rational solution of Type B, for some
i=0,1,2,3,4,
non
3

ny nyp ng N3 Ty
Mg T ™, M4 Ns T 47
%’3’3+3’3’ 3) modZ,

w

(i, i1, Qi Qg 0Gya) = (

wo



where ny,n3,ng = 0,1, 2. Theorem 2.4 shows that the parameters (a;)o<;<4 can be trans-
formed into one of

111 2 1 1 2 1 11
- -,-,0,0),(=%,0,0,-,0),(%,0,0,-,0),(0,-,0,=,=),(1,0,0,0,0
(373’3’ ) )’(37 Y 737 )’(37 Y ?37 )’( 73’ 73 3) ( )
and that the parameters (o;)o<i<4 are transformed into (3, 3, 5,0, 0) if and only if for some

1=0,1,...4,

(04, Qs Qs i, igg) = +1(1,1,1,0,0) modZ
i ity (i, Qs Gied) = | £ 11 1, -1,1,0)  mod Z.

Lemma shows that A4(%, %, %, 0,0) has a unique rational solution which is given by
t tt
-, =,=,0,0).
(f07f17f27f37f4) <3 3 37 ) )

Lemma [B.6] shows that A4(2,0,0,1,0), A4(3,0,0,2,0), A4(0, 5,0, 5, 1), A4(1,0,0,0,0) do
0<i<4

not have a rational solution of Type B. Therefore Ao has a rational solution of
Type B if and only if for some ¢ = 0,1, ...4,

(05, Qi1 e, G, i a) = +5(1,1,1,0,0) modZ
i ity Qie2, Qi Qied) = 1 £1(1, -1, -1,1,0)  mod Z,
Furthermore the rational solution is unique and can be transformed into
(1 11
37373

k)o<k<a has a rational solution of Type C, for some

(fos f1, fo, f3, ) = (3, 0,0).

Theorem proves that if
i=0,1,2,34,

tt
i 0 O) with (Oé(],Oél,Oég,Oég,Oé4> =
373
Ag(a

T 2712 3713 T 2712 ng Ny Ny N9
i) Z ) Z ) 7/ ) Z = = e —7 = = _’ _’ s = = dZ’
(v, Qig1, Qig, Vig3, Qiga) (5+5+5 5+5+5 5 5+5 5+5)mo
where ny,ng,n3 = 0,1,2,3,4. Theorem [2.4] shows that the parameters (oy)o<k<4 can be

transformed into one of

11111 3 11 1 2 2 12 231 1

————— 1,0,0,0,0), (2,0, =, =,0),(=,0,%,2,0),(z,,0,0,2), (2, -,0,0, =

(5 5 5 5 5) ( ) Y ) (5 5 57 )7(57 75757 )7(5757 Y 75)7(5757 Y 75)
and that the parameters (ag)o<k<s4 are transformed into (%, %, %, %, é) if and only if for
some 1 =0,1,...,4,

(1
(i, i1, Qo g3, Qi) = {15(1
5 Y
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with some j = 1,2,3,4. Lemma B.7 implies that A4(%, £, %, % 1) has a unique rational

575757575
solution of Type C which is given by

ttttt
(f07 f17 f27 f37 f4) - (g7 37 57 gv g)
Lemma 3.8 shows that A4(1,0,0,0,0), Ay(2,0,1,£,0), A4(£,0,2,2,0), As(£,2,0,0,2) and
A4(2,£,0,0,%) do not have a rational solutlon of Type C Therefore Ay(a;)o<i<a has a
rational solutlon of Type C if and only if for some i = 0,1,...,4,
(O, i1, Qi i, Qg g) = £(1,1,1,1,1) modZ
UL T TS T T 00(1,2,1,3,3) mod Z,

with some j = 1,2, 3,4. Furthermore, the rational solution is unique and can be trans-
formed into

(anfl f2,f3>f4) (— TR B —)Wlth(ao,al,ag,ag,CM) (—,—,—,—,—)~

We complete the proof of the main theorem.
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