Rational Solutions of the $A_{4}^{(1)}$ Painlevé Equation

Department of Engineering Science, Niihama National College of Technology, 7-1 Yagumo-chou, Niihama, Ehime, 792-8580.
By Kazuhide Matsuda

Abstract

We completely classify all of rational solutions of the $A_{4}^{(1)}$ Painlevé equation, which is a generalization of the fourth Painlevé equation. The rational solutions are classified to three by the Bäcklund transformation group.

Key words: the $A_{4}^{(1)}$ Painlevé equation; the affine Weyl group; the Bäcklund transformations; rational solutions. 2000 Mathematics Subject Classification. Primary 33E17; Secondary 37K10.

Introduction

In this paper, we obtain a necessary and sufficient condition for the $A_{4}^{(1)}$ Painlevé equation to have a rational solution. The $A_{4}^{(1)}$ Painlevé equation is a generalization of the fourth Painlevé equation. For the classification, we only use the residue calculus. In order to get a necessary condition, we firstly use the residue calculus of a rational solution. By the Bäcklund transformation, we secondly transform the parameters of the $A_{4}^{(1)}$ Painlevé equation into the fundamental domain. In order to obtain a sufficient condition, we lastly use the residue calculus of the principal part of the Hamiltonian, which is introduced in Section 3.

Paul Painlevé and his pupil [16, 2] classified all differential equations of the form $y^{\prime \prime}=F\left(t, y, y^{\prime}\right)$ on the complex domain D where F is rational in y, y^{\prime}, locally analytic in $t \in D$ and for each solution, all the singularities which are dependent on the initial conditions are poles. They found fifty equations of this type, forty four of which can be solved or can be integrated in terms of solutions of ordinary linear differential equations, or elliptic functions. The remaining six equations are called the Painlevé equations and are given by

$$
\begin{array}{ll}
P_{1} & y^{\prime \prime}=6 y^{2}+t \\
P_{2} & y^{\prime \prime}=2 y^{3}+3 t y+\alpha \\
P_{3} & y^{\prime \prime}=\frac{1}{y}\left(y^{\prime}\right)^{2}-\frac{1}{t} y^{\prime}+\frac{1}{t}\left(\alpha y^{2}+\beta\right)+\gamma y^{3}+\frac{\delta}{y} \\
P_{4} & y^{\prime \prime}=\frac{1}{2 y}\left(y^{\prime}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y},
\end{array}
$$

$$
\begin{aligned}
& P_{5} \quad y^{\prime \prime}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(y^{\prime}\right)^{2}-\frac{1}{t} y^{\prime}+\frac{(y-1)^{2}}{t^{2}}\left(\alpha y+\frac{\beta}{y}\right)+\gamma \frac{y}{t}+\delta \frac{y(y+1)}{y-1}, \\
& P_{6} \quad y^{\prime \prime}= \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(y^{\prime}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) y^{\prime} \\
& \quad+\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\frac{\beta t}{y^{2}}+\frac{\gamma(t-1)}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right),
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta$ are complex parameters.
Rational solutions of $P_{J}(J=2,3,4,5,6)$ were classified by Yablonski and Vorobev [20, 19], Gromak [5, 4], Murata [9], Kitaev, Law and McLeod [6] and Mazzocco [8]. Especially, Murata [9] classified all of rational solutions of the fourth Painlevé equations by using the Bäcklund transformations, which transform a solution into another solution of the same equation with different parameters.
$P_{J}(J=2,3,4,5,6)$ have the Bäcklund transformation group. It is shown by Okamoto [12] [13] [14] [15] that the Bäcklund transformation groups are isomorphic to the extended affine Weyl groups. For $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, the Bäcklund transformation groups correspond to $A_{1}^{(1)}, A_{1}^{(1)} \bigoplus A_{1}^{(1)}, A_{2}^{(1)}, A_{3}^{(3)}, D_{4}^{(1)}$, respectively.

Nowadays, the Painlevé equations are extended in many different ways. Garnier 3] studied isomonodromic deformations of the second order linear equations with many regular singularities. Noumi and Yamada [10] discovered the equations of type $A_{l}^{(1)}$, whose Bäcklund transformation groups are isomorphic to $\tilde{W}\left(A_{l}^{(1)}\right)$. These equations are called the $A_{l}^{(1)}$ Painlevé equations. The $A_{2}^{(1)}$ and $A_{3}^{(1)}$ Painlevé equations correspond to the forth and fifth Painlevé equations, respectively.

The $A_{4}^{(1)}$ Painlevé equation is defined by

$$
A_{4}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right):\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4} \\
f_{0}+f_{1}+f_{2}+f_{3}+f_{4}=t
\end{array}\right.
$$

where ' is the differentiation with respect to t. For the $A_{4}^{(1)}$ Painlevé equation, we consider the suffix of f_{i} and α_{i} as elements of $\mathbb{Z} / 5 \mathbb{Z}$. From the $A_{4}^{(1)}$ Painlevé equation, we have $\sum_{i=0}^{4} \alpha_{i}=1$. The $A_{4}^{(1)}$ Painlevé equation is an essentially nonlinear equation with the fourth order. By setting $f_{3} \equiv f_{4} \equiv 0$, we get the $A_{2}^{(1)}$ Painlevé equation which is defined
by

$$
A_{2}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right):\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{0}-f_{1}\right)+\alpha_{2} \\
f_{0}+f_{1}+f_{2}=t
\end{array}\right.
$$

which is equivalent to the forth Painlevé equation. The $A_{4}^{(1)}$ Painlevé equation is the first equation of the $A_{l}^{(1)}$ Painlevé equations, which is not the original Painlevé equations. We note that Veselov and Shabat [18], Adler [1] studied the symmetric forms of the Painlevé equations from the viewpoint of soliton.

The Bäcklund transformation group of the $A_{4}^{(1)}$ Painlevé equation is generated by $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ and π :

x	$s_{0}(x)$	$s_{1}(x)$	$s_{2}(x)$	$s_{3}(x)$	$s_{4}(x)$	$\pi(x)$
f_{0}	f_{0}	$f_{0}-\alpha_{1} / f_{1}$	f_{0}	f_{0}	$f_{0}+\alpha_{4} / f_{4}$	f_{1}
f_{1}	$f_{1}+\alpha_{0} / f_{0}$	f_{1}	$f_{1}-\alpha_{2} / f_{2}$	f_{1}	f_{1}	f_{2}
f_{2}	f_{2}	$f_{2}+\alpha_{1} / f_{1}$	f_{2}	$f_{2}-\alpha_{3} / f_{3}$	f_{2}	f_{3}
f_{3}	f_{3}	f_{3}	$f_{3}+\alpha_{2} / f_{2}$	f_{3}	$f_{3}-\alpha_{4} / f_{4}$	f_{4}
f_{4}	$f_{4}-\alpha_{0} / f_{0}$	f_{4}	f_{4}	$f_{4}+\alpha_{3} / f_{3}$	f_{4}	f_{0}
α_{0}	$-\alpha_{0}$	$\alpha_{0}+\alpha_{1}$	α_{0}	α_{0}	$\alpha_{0}+\alpha_{4}$	α_{1}
α_{1}	$\alpha_{1}+\alpha_{0}$	$-\alpha_{1}$	$\alpha_{1}+\alpha_{2}$	α_{1}	α_{1}	α_{2}
α_{2}	α_{2}	$\alpha_{2}+\alpha_{1}$	$-\alpha_{2}$	$\alpha_{2}+\alpha_{3}$	α_{2}	α_{3}
α_{3}	α_{3}	α_{3}	$\alpha_{3}+\alpha_{2}$	$-\alpha_{3}$	$\alpha_{3}+\alpha_{4}$	α_{4}
α_{4}	$\alpha_{4}+\alpha_{0}$	α_{4}	α_{4}	$\alpha_{4}+\alpha_{3}$	$-\alpha_{4}$	α_{0}

If $f_{i} \equiv 0$ for some $i=0,1,2,3,4$, we consider s_{i} as the identical transformation which is given by

$$
s_{i}\left(f_{j}\right)=f_{j} \text { and } s_{i}\left(\alpha_{j}\right)=\alpha_{j}(j=0,1,2,3,4)
$$

The Bäcklund transformation group $\left\langle s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \pi\right\rangle$ is isomorphic to the extended affine Weyl group $\tilde{W}\left(A_{4}^{(1)}\right)$.

In this paper, we completely classify rational solutions of the $A_{4}^{(1)}$ Painlevé equation by using the method of Murata [9]. The result is that rational solutions of the $A_{4}^{(1)}$ Painlevé equation are decomposed to three classes, each of which is an orbit by the action of $\tilde{W}\left(A_{4}^{(1)}\right)$.

This paper is organized as follows. Section 1 consists of two subsections. In Subsection 1.1, we calculate the Laurent series of a rational solution $\left(f_{i}\right)_{0 \leq i \leq 4}$ of $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ at $t=\infty$. The residues of $f_{i}(0 \leq i \leq 4)$ are expressed by the parameters $\alpha_{i}(0 \leq i \leq 4)$. In Proposition 1.1, 1.2, 1.3, we determine the Laurent series of $f_{i}(0 \leq i \leq 4)$ of $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$
and obtain a sufficient condition for $f_{i}(0 \leq i \leq 4)$ to be uniquely expanded at $t=\infty$. In Subsection 1.2, we get the Laurent series of a rational solution $\left(f_{i}\right)_{0 \leq i \leq 4}$ of $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ at $t=c \in \mathbb{C}$ following Tahara [17].

In Section 2, we firstly introduce shift operators, following Noumi and Yamada 11 . Secondly, from the residue theorem, we get a necessary condition for $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ to have a rational solution and prove that if $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ has a rational solution, the parameters $\alpha_{i}(0 \leq i \leq 4)$ are rational numbers. In addition, we transform the parameters into the set C which is defined by

$$
C:=\left\{\left(\alpha_{i}\right)_{0 \leq i \leq 4} \in \mathbb{R}^{5} \mid 0 \leq \alpha_{i} \leq 1(0 \leq i \leq 4)\right\}
$$

In Section 3, we firstly introduce the Hamiltonian H of $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ and its principal part \hat{H} following Noumi and Yamada [11]. Secondly, we calculate the residues of \hat{H} at $t=\infty, c$ and prove Lemma 3.3, which is devoted to the residue calculus of \hat{H}. We use Lemma 3.3 in order to obtain a sufficient condition for $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ to have a rational solution. Thirdly, with the residue calculus of \hat{H}, we prove Theorem 0.1 which gives us a necessary and sufficient condition for $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ to have a rational solution.

The main result of this paper was announced in [7].
Theorem 0.1. The $A_{4}^{(1)}$ Painlevé equation has a rational solution if and only if the parameters $\alpha_{j}(0 \leq j \leq 4)$ satisfy one of the following three conditions. The solution is unique, if it exists.
(1) $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{4} \in \mathbb{Z}$.
(2) For some $i=0,1, \ldots 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left\{\begin{array}{c}
\pm \frac{1}{3}(1,1,1,0,0) \quad \bmod \mathbb{Z} \\
\pm \frac{1}{3}(1,-1,-1,1,0) \quad \bmod \mathbb{Z}
\end{array}\right.
$$

(3) For some $i=0,1, \ldots, 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv \begin{cases}\frac{j}{5}(1,1,1,1,1) & \bmod \mathbb{Z} \\ \frac{j}{5}(1,2,1,3,3) & \bmod \mathbb{Z}\end{cases}
$$

with some $j=1,2,3,4$.
(4) Furthermore, by a suitable Bäcklund transformation, the rational solution in the class (1), (2), (3) above is respectively transformed into the following.

$$
\begin{equation*}
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=(t, 0,0,0,0) \text { with }\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=(1,0,0,0,0) \tag{i}
\end{equation*}
$$

(ii)

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{3}, \frac{t}{3}, \frac{t}{3}, 0,0\right) \text { with }\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)
$$

(iii)

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}\right) \text { with }\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right) .
$$

Acknowledgments. The author wishes to express his sincere thanks to Professor Yousuke Ohyama.

1 The Expansions of Rational Solutions

This section consists of two subsections. In Subsection 1.1, we suppose that $\left(f_{j}\right)_{0 \leq j \leq 4}$ is a rational solution of $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$. We calculate the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=\infty, c \in \mathbb{C}$. The residues of $\bar{f}_{j}(0 \leq j \leq 4)$ at $t=\infty$ are expressed by the parameters $\alpha_{j}(0 \leq j \leq 4)$ and the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=\infty$ are uniquely expanded under the conditions in Proposition 1.3,

In Subsection 1.2, following Tahara [17], we compute the residues of $f_{j}(0 \leq j \leq 4)$ at $t=c \in \mathbb{C}$, which are integers.

1.1 the Laurent Series at $t=\infty$

In this subsection, we prove Proposition 1.1, 1.2 and 1.3, In Proposition 1.1, we determine the order of a pole of $f_{i}(0 \leq i \leq 4)$ at $t=\infty$. In Proposition 1.2, we get the residues of $\left(f_{i}\right)_{0 \leq i \leq 4}$ at $t=\infty$. In Proposition 1.3, we obtain a sufficient condition for the Laurent series of $f_{i}(0 \leq i \leq 4)$ at $t=\infty$ to be uniquely expanded.

Proposition 1.1. Suppose that $\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)$ is a rational solution of $A_{4}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and some of $f_{0}, f_{1}, f_{2}, f_{3}, f_{4}$ have a pole at $t=\infty$. Then $\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)$ satisfies one of the following conditions:
(1) for some $i=0,1,2,3,4, f_{i}$ has a pole at $t=\infty$ with the first order;
(2) for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+3}$ have a pole at $t=\infty$ with the first order;
(3) for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+2}$ have a pole at $t=\infty$ with the first order;
(4) all of $f_{0}, f_{1}, f_{2}, f_{3}, f_{4}$ have a pole at $t=\infty$ with the first order.

We denote the case (1) by Type A (1), the case (2) by Type A (2), the case (3) by Type B and the case (4) by Type C, respectively.

Proof. We set

$$
\left\{\begin{array}{l}
f_{0}=\sum_{k=-\infty}^{n_{0}} a_{k} t^{k}, f_{1}=\sum_{k=-\infty}^{n_{1}} b_{k} t^{k}, f_{2}=\sum_{k=-\infty}^{n_{2}} c_{k} t^{k} \tag{1.1}\\
f_{3}=\sum_{k=-\infty}^{n_{3}} d_{k} t^{k}, f_{4}=\sum_{k=-\infty}^{n_{4}} e_{k} t^{k},
\end{array}\right.
$$

where $n_{0}, n_{1}, n_{2}, n_{3}, n_{4}$ are integers.
Since $\sum_{k=0}^{4} f_{k}=t$, the following five cases occur.
I one rational function of $\left(f_{k}\right)_{0 \leq k \leq 4}$ has a pole at $t=\infty$, II two rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$,
III three rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$,
IV four rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$,
V all the rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$.
Case I: one of rational function $\left(f_{k}\right)_{0 \leq k \leq 4}$ has a pole at $t=\infty$. By π, we assume that f_{0} has a pole at $t=\infty$. Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
n_{0}=1, n_{j} \leq 0(1 \leq j \leq 4)
$$

Therefore, we get Type A (1).

Case II: two rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$. Since the suffix of f_{i} and α_{i} are considered as elements of $\mathbb{Z} / 5 \mathbb{Z}$, the following two cases occur.
(1) for some $i=0,1,2,3,4, f_{i}, f_{i+1}$ have a pole at $t=\infty$,
(2) for some $i=0,1,2,3,4, f_{i}, f_{i+2}$ have a pole at $t=\infty$.

Case II (1): f_{i}, f_{i+1} have a pole at $t=\infty$. By π, we assume that f_{0}, f_{1} have a pole at $t=\infty$. Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
n_{0}=n_{1} \geq 1, n_{j} \leq 0(j=2,3,4)
$$

By comparing the highest terms in

$$
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0}
$$

we obtain

$$
n_{0}-1=2 n_{0} .
$$

Therefore, we have $n_{0}=-1$, which contradiction.

Case II (2): f_{i}, f_{i+2} have a pole at $t=\infty$. By π, we assume that f_{0}, f_{2} have a pole at $t=\infty$. Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
n_{0}=n_{2} \geq 1, n_{j} \leq 0(j=1,3,4)
$$

By comparing the highest terms in

$$
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0}
$$

we obtain

$$
n_{0}-1=2 n_{0}
$$

Therefore, we have $n_{0}=-1$, which is contradiction.
Case III: three rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$. Since the suffix of f_{i} and α_{i} are considered as elements of $\mathbb{Z} / 5 \mathbb{Z}$, the following two cases occur.
(1) for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+2}$ have a pole at $t=\infty$.
(2) for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+3}$ have a pole at $t=\infty$.

Case III (1): f_{i}, f_{i+1}, f_{i+2} have a pole at $t=\infty$. By π, we assume that f_{0}, f_{1}, f_{2} have a pole at $t=\infty$. Since $\sum_{k=0}^{4} f_{k}=t$, the following four cases occur.
(i) $n_{0}=n_{1}>n_{2} \geq 1$
(ii) $n_{1}=n_{2}>n_{0} \geq 1$
(iii) $n_{2}=n_{0}>n_{1} \geq 1$
(iv) $n_{0}=n_{1}=n_{2} \geq 1$.

Case III (1) (i): $n_{0}=n_{1}>n_{2} \geq 1$. By comparing the highest terms in

$$
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0}
$$

we have

$$
n_{0}-1=2 n_{0}
$$

Therefore, we have $n_{0}=-1$, which is contradiction.
Case III (1) (ii) and (iii): $n_{1}=n_{2}>n_{0} \geq 1$ or $n_{2}=n_{0}>n_{1} \geq 1$. We can show contradiction in the same way.

Case III (1) (iv): $n_{0}=n_{1}=n_{2} \geq 1$. By comparing the highest terms in

$$
\left\{\begin{array}{c}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
7
\end{array}\right.
$$

we have

$$
\left\{\begin{array}{l}
b_{n_{1}}-c_{n_{2}}=0 \\
c_{n_{2}}-a_{n_{0}}=0 \\
a_{n_{0}}-b_{n_{1}}=0
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
n_{0}=n_{1}=n_{2}=1, a_{1}=b_{1}=c_{1}=\frac{1}{3}
$$

Therefore, we get Type B.
Case III (2): f_{i}, f_{i+1}, f_{i+3} have a pole at $t=\infty$. By π, we assume that f_{0}, f_{1}, f_{3} have a pole at $t=\infty$. Since $\sum_{k=0}^{4} f_{k}=t$, the following four cases occur.
(i) $n_{0}=n_{1}>n_{3}$,
(ii) $n_{1}=n_{3}>n_{0}$,
(iii) $n_{3}=n_{1}>n_{0}$,
(iv) $n_{0}=n_{1}=n_{3}$.

If the cases III (1) (i), (ii) and (iii) occur, we can show contradiction in the same way as the case II.

Case III (iv): $n_{0}=n_{1}=n_{3}$. We suppose that $n_{0}=n_{1}=n_{3} \geq 2$. By comparing the highest terms in

$$
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0}
$$

we get

$$
b_{n_{1}}+d_{n_{3}}=0 .
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that $a_{n_{0}}=0$, which is contradiction. Therefore, we obtain

$$
n_{0}=n_{1}=n_{3}=1
$$

and get Type A (2).
Case IV: four rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$. By π, we
assume that $f_{0}, f_{1}, f_{2}, f_{3}$ have a pole at $t=\infty$. Then the following eleven cases occur.
(i) $n_{0}=n_{1}>\left\{\begin{array}{l}n_{2} \\ n_{3}\end{array}\right\} \geq 1$
(ii) $n_{0}=n_{2}>\left\{\begin{array}{l}n_{1} \\ n_{3}\end{array}\right\} \geq 1$
(iii) $n_{0}=n_{3}>\left\{\begin{array}{l}n_{1} \\ n_{2}\end{array}\right\} \geq 1$
(iv) $n_{1}=n_{2}>\left\{\begin{array}{l}n_{0} \\ n_{3}\end{array}\right\} \geq 1$
(v) $n_{1}=n_{3}>\left\{\begin{array}{l}n_{0} \\ n_{2}\end{array}\right\} \geq 1$
(vi) $n_{2}=n_{3}>\left\{\begin{array}{l}n_{0} \\ n_{1}\end{array}\right\} \geq 1$
(vii) $\quad n_{0}=n_{1}=n_{2}>n_{3} \geq 1$
(viii) $\quad n_{0}=n_{1}=n_{3}>n_{2} \geq 1$
(ix) $n_{1}=n_{2}=n_{3}>n_{0} \geq 1$
(x) $n_{2}=n_{3}=n_{0}>n_{1} \geq 1$
(xi) $\quad n_{0}=n_{1}=n_{2}=n_{3} \geq 1$.

If the cases IV (i), (ii), ..., (vi) occur, we can show contradiction in the same way as the case II.

Case IV (vii) or (ix): $n_{0}=n_{1}=n_{2}>n_{3} \geq 1$ or $n_{1}=n_{2}=n_{3}>n_{0} \geq 1$. We deal with the case IV (vii). The case IV (ix) can be proved in the same way. By comparing the highest terms in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1}
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{l}
b_{n_{1}}-c_{n_{2}}=0 \\
c_{n_{2}}-a_{n_{0}}=0
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{n_{0}}=b_{n_{1}}=c_{n_{2}}=0,
$$

which is contradiction.
Case IV (viii) or (x): $n_{0}=n_{1}=n_{3}>n_{2} \geq 1$ or $n_{2}=n_{3}=n_{0}>n_{1} \geq 1$. We deal with the case IV (viii). The case IV (x) can be proved in the same way. By comparing the highest terms in

$$
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2}
$$

we have

$$
\begin{gathered}
d_{n_{3}}+a_{n_{0}}-b_{n_{1}}=0 . \\
9
\end{gathered}
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
b_{n_{1}}=0,
$$

which is contradiction.
Case IV (xi): $n_{0}=n_{1}=n_{2}=n_{3} \geq 1$. By comparing the highest terms in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3}
\end{array}\right.
$$

we obtain

$$
\begin{align*}
b_{n_{1}}-c_{n_{2}}+d_{n_{3}} & =0 \tag{1.2}\\
c_{n_{2}}-d_{n_{3}}-a_{n_{3}} & =0 \tag{1.3}\\
d_{n_{3}}+a_{n_{0}}-b_{n_{1}} & =0 \tag{1.4}\\
-a_{n_{0}}+b_{n_{1}}-c_{n_{2}} & =0 . \tag{1.5}
\end{align*}
$$

We assume that $n_{0}=n_{1}=n_{2}=n_{3} \geq 2$. Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{n_{0}}=-2 c_{n_{2}}, b_{n_{1}}=c_{n_{2}}, d_{n_{3}}=3 c_{n_{2}}
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
c_{n_{2}}=0,
$$

which is contradiction.
We assume that $n_{0}=n_{1}=n_{2}=n_{3}=1$. The equation (1.2) implies that

$$
a_{1}+2 c_{1}=1
$$

because $\sum_{k=0}^{4} f_{k}=t$. The equations (1.3) and (1.4) imply that

$$
d_{1}=3 c_{1}-1, b_{1}=c_{1}
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
1=a_{1}+b_{1}+c_{1}+d_{1}=3 c_{1} .
$$

Therefore we obtain

$$
c_{1}=\frac{1}{3}, d_{10}=0,
$$

which is contradiction.
Case VI: all the rational functions of $\left(f_{k}\right)_{0 \leq k \leq 4}$ have a pole at $t=\infty$. Since $\sum_{k=0}^{4} f_{k}=t$, the following twelve cases occur.
(i) $n_{0}=n_{1}>\left\{\begin{array}{l}n_{2} \\ n_{3} \\ n_{4}\end{array}\right\} \geq 1$,
(ii) $n_{0}=n_{2}>\left\{\begin{array}{l}n_{1} \\ n_{3} \\ n_{4}\end{array}\right\} \geq 1$,
(iii) $n_{0}=n_{3}>\left\{\begin{array}{l}n_{1} \\ n_{2} \\ n_{4}\end{array}\right\} \geq 1$,
(iv) $n_{0}=n_{4}>\left\{\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right\} \geq 1$,
(v) $n_{0}=n_{1}=n_{2}>\left\{\begin{array}{l}n_{3} \\ n_{4}\end{array}\right\} \geq 1$,
(vi) $n_{0}=n_{1}=n_{3}>\left\{\begin{array}{c}n_{2} \\ n_{4}\end{array}\right\} \geq 1$,
(vii) $n_{0}=n_{1}=n_{4}>\left\{\begin{array}{l}n_{2} \\ n_{3}\end{array}\right\} \geq 1$,
(viii) $\quad n_{0}=n_{2}=n_{3}>\left\{\begin{array}{l}n_{1} \\ n_{4}\end{array}\right\} \geq 1$,
(ix) $n_{0}=n_{2}=n_{4}>\left\{\begin{array}{l}n_{1} \\ n_{3}\end{array}\right\} \geq 1$,
(x) $\quad n_{0}=n_{3}=n_{4}>\left\{\begin{array}{l}n_{1} \\ n_{2}\end{array}\right\} \geq 1$,
(xi) $n_{0}=n_{1}=n_{2}=n_{3}>n_{4} \geq 1$,
(xii) $\quad n_{0}=n_{1}=n_{2}=n_{3}=n_{4} \geq 1$.

If the cases VI (i), ..., (iv) occur, we can prove contradiction in the same way as the case II. If the cases VI (v), .., (x) occur, we can prove contradiction in the same way as the case III.

Case VI (xi): $n_{0}=n_{1}=n_{2}=n_{3}>n_{4} \geq 1$. By comparing the highest terms in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we have

$$
\begin{align*}
b_{n_{1}}-c_{n_{2}}+d_{n_{3}} & =0 \tag{1.6}\\
c_{n_{2}}-d_{n_{3}}-a_{n_{0}} & =0 \tag{1.7}\\
d_{n_{3}}+a_{n_{0}}-b_{n_{1}} & =0 \tag{1.8}\\
-a_{n_{0}}+b_{n_{1}}-c_{n_{2}} & =0 \tag{1.9}\\
a_{n_{0}}-b_{n_{1}}+c_{n_{2}}-d_{n_{3}} & =0 . \tag{1.10}
\end{align*}
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
\begin{equation*}
a_{n_{0}}+b_{n_{1}}+c_{n_{2}}+d_{n_{3}}=0 \tag{1.11}
\end{equation*}
$$

The equations (1.6) and (1.11) imply that

$$
a_{n_{0}}=-2 c_{n_{2}} .
$$

The equations (1.7) and (1.8) imply that

$$
d_{n_{3}}=3 c_{n_{2}}, \quad b_{n_{1}}=c_{n_{2}} .
$$

The equation (1.11) implies that $c_{n_{2}}=0$, which is contradiction.
Case VI (xii): $n_{0}=n_{1}=n_{2}=n_{3}=n_{4} \geq 1$. By comparing the highest terms in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
b_{n_{1}}-c_{n_{2}}+d_{n_{3}}-e_{n_{4}}=0 \\
c_{n_{2}}-d_{n_{3}}+e_{n_{4}}-a_{n_{0}}=0 \\
d_{n_{3}}-e_{n_{4}}+a_{n_{0}}-b_{n_{1}}=0 \\
e_{n_{4}}-a_{n_{0}}+b_{n_{1}}-c_{n_{2}}=0 \\
a_{n_{0}}-b_{n_{1}}+c_{n_{2}}-d_{n_{3}}=0 .
\end{array}\right.
$$

Since the rank of

$$
\left(\begin{array}{ccccc}
0 & 1 & -1 & 1 & -1 \\
-1 & 0 & 1 & -1 & 1 \\
1 & -1 & 0 & 1 & -1 \\
-1 & 1 & -1 & 0 & 1 \\
1 & -1 & 1 & -1 & 0
\end{array}\right)
$$

is four, it follows that

$$
\left(a_{n_{0}}, b_{n_{1}}, c_{n_{2}}, d_{n_{3}}, e_{n_{4}}\right)=\alpha(1,1,1,1,1)
$$

for some $\alpha \in \mathbb{C}^{*}$. Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
n_{0}=n_{1}=n_{2}=n_{3}=n_{4}=1, a_{1}=b_{1}=c_{1}=d_{1}=e_{1}=\frac{1}{5}
$$

Therefore, we get Type C.

In the following proposition, we obtain the residues of $f_{i}(0 \leq i \leq 4)$ at $t=\infty$ for $A\left(\alpha_{i}\right)_{0 \leq i \leq 4}$. The residues of $f_{i}(0 \leq i \leq 4)$ at $t=\infty$ are expressed by the parameters $\alpha_{j}(0 \leq \bar{j} \leq 4)$.

Proposition 1.2. Suppose that $\left(f_{j}\right)_{0 \leq j \leq 4}$ is a rational solution of $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$.
(1) If f_{i} has a pole at $t=\infty$ for some $i=0,1,2,3,4$,

$$
\left\{\begin{array}{l}
f_{i}=t+\left(-\alpha_{i+1}+\alpha_{i+2}-\alpha_{i+3}+\alpha_{i+4}\right) t^{-1}+\cdots \\
f_{i+1}=\alpha_{i+1} t^{-1}+\cdots \\
f_{i+2}=-\alpha_{i+2} t^{-1}+\cdots \\
f_{i+3}=\alpha_{i+3} t^{-1}+\cdots \\
f_{i+4}=-\alpha_{i+4} t^{-1}+\cdots
\end{array}\right.
$$

(2) If f_{i}, f_{i+1}, f_{i+3} have a pole at $t=\infty$ for some $i=0,1,2,3,4$,

$$
\left\{\begin{array}{l}
f_{i}=t+\left(1-\alpha_{i}\right) t^{-1}+\cdots \\
f_{i+1}=t+\left(1-\alpha_{i+1}-2 \alpha_{i+2}+2 \alpha_{i+4}\right) t^{-1}+\cdots \\
f_{i+2}=\alpha_{i+2} t^{-1}+\cdots \\
f_{i+3}=-t+\left(-1-\alpha_{i+3}-2 \alpha_{i+4}\right) t^{-1}+\cdots \\
f_{i+4}=-\alpha_{i+4} t^{-1}+\cdots
\end{array}\right.
$$

(3) If f_{i}, f_{i+1}, f_{i+2} have a pole at $t=\infty$ for some $i=0,1,2,3,4$,

$$
\left\{\begin{array}{l}
f_{i}=\frac{1}{3} t+\left(\alpha_{i+1}-\alpha_{i+2}-3 \alpha_{i+3}-\alpha_{i+4}\right) t^{-1}+\cdots \\
f_{i+1}=\frac{1}{3} t+\left(\alpha_{i+2}-\alpha_{i}-\alpha_{i+3}+\alpha_{i+4}\right) t^{-1}+\cdots \\
f_{i+2}=\frac{1}{3} t+\left(\alpha_{i}-\alpha_{i+1}+\alpha_{i+3}+3 \alpha_{i+4}\right) t^{-1}+\cdots \\
f_{i+3}=3 \alpha_{i+3} t^{-1}+\cdots \\
f_{i+4}=-3 \alpha_{i+4} t^{-1}+\cdots
\end{array}\right.
$$

(4) If all the rational functions of $\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)$ have a pole at $t=\infty$,

$$
\left\{\begin{array}{l}
f_{0}=\frac{1}{5} t+\left(3 \alpha_{1}+\alpha_{2}-\alpha_{3}-3 \alpha_{4}\right) t^{-1}+\cdots \\
f_{1}=\frac{1}{5} t+\left(3 \alpha_{2}+\alpha_{3}-\alpha_{4}-3 \alpha_{0}\right) t^{-1}+\cdots \\
f_{2}=\frac{1}{5} t+\left(3 \alpha_{3}+\alpha_{4}-\alpha_{0}-3 \alpha_{1}\right) t^{-1}+\cdots \\
f_{3}=\frac{1}{5} t+\left(3 \alpha_{4}+\alpha_{0}-\alpha_{1}-3 \alpha_{2}\right) t^{-1}+\cdots \\
f_{4}=\frac{1}{5} t+\left(3 \alpha_{0}+\alpha_{1}-\alpha_{2}-3 \alpha_{3}\right) t^{-1}+\cdots
\end{array}\right.
$$

Proof. Type A (1): for some $i=0,1,2,3,4, f_{i}$ has a pole at $t=\infty$. By π, we assume that f_{0} has a pole at $t=\infty$. Then it follows from Proposition 1.1 that

$$
\left\{\begin{array}{l}
f_{0}=\sum_{k=-\infty}^{1} a_{k} t^{k}, f_{1}=\sum_{k=-\infty}^{n_{1}} b_{k} t^{k}, f_{2}=\sum_{k=-\infty}^{n_{2}} c_{k} t^{k} \\
f_{3}=\sum_{k=-\infty}^{n_{3}} d_{k} t^{k}, f_{4}=\sum_{k=-\infty}^{n_{4}} e_{k} t^{k}
\end{array}\right.
$$

where $n_{1}, n_{2}, n_{3}, n_{4} \leq 0$. Since $\sum_{k=0}^{4} f_{k}=t$, it follows that $a_{1}=1$. By comparing the coefficients of the term $t^{n_{1}+1}$ in

$$
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1},
$$

we get

$$
n_{1}=-1, b_{-1}=\alpha_{1}, \text { or } f_{1} \equiv 0
$$

In the same way, we obtain

$$
\begin{aligned}
& n_{2}=-1, c_{-1}=-\alpha_{2}, \text { or } f_{2} \equiv 0, \\
& n_{3}=-1, d_{-1}=\alpha_{3}, \quad \text { or } f_{3} \equiv 0, \\
& n_{4}=-1, e_{-1}=-\alpha_{4}, \text { or } f_{4} \equiv 0
\end{aligned}
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{0}=0, a_{-1}=-\alpha_{1}+\alpha_{2}-\alpha_{3}+\alpha_{4} .
$$

Type A (2): for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+3}$ have a pole at $t=\infty$. By π, we assume that f_{0}, f_{1}, f_{3} have a pole at $t=\infty$. Then it follows from Proposition 1.1 that

$$
\left\{\begin{array}{l}
f_{0}=\sum_{k=-\infty}^{1} a_{k} t^{k}, f_{1}=\sum_{k=-\infty}^{1} b_{k} t^{k}, \quad f_{2}=\sum_{k=-\infty}^{n_{2}} c_{k} t^{k}, \tag{1.12}\\
f_{3}=\sum_{k=-\infty}^{1} d_{k} t^{k}, f_{4}=\sum_{k=-\infty}^{n_{4}} e_{k} t^{k},
\end{array}\right.
$$

where $n_{2}, n_{4} \leq 0$. By comparing the coefficients of the term t^{2} in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1}
\end{array}\right.
$$

we have

$$
\left\{\begin{array}{l}
b_{1}+d_{1}=0 \\
a_{1}+d_{1}=0
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{1}=b_{1}=1, d_{1}=-1
$$

By comparing the coefficients of the term t in

$$
\left\{\begin{array}{l}
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4},
\end{array}\right.
$$

we obtain

$$
c_{0}=e_{0}=0
$$

By comparing the constant terms in

$$
\left\{\begin{array}{l}
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we have

$$
c_{-1}=\alpha_{2}, e_{-1}=-\alpha_{4} .
$$

By comparing the coefficients of the term t in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1}
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
b_{0}+d_{0}=0 \\
a_{0}+d_{0}=0
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{0}=b_{0}=d_{0}=0
$$

By comparing the constant terms in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1}
\end{array}\right.
$$

we have

$$
\left\{\begin{array}{l}
a_{-1}=-2 \alpha_{2}+2 \alpha_{4}+\alpha_{0}-1 \\
d_{-1}=-\alpha_{0}+\alpha_{1}+3 \alpha_{2}-3 \alpha_{4}
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
b_{-1}=-\alpha_{1}-2 \alpha_{2}+2 \alpha_{4}+1 .
$$

Type B: for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+2}$ have a pole at $t=\infty$. By π, we assume that f_{0}, f_{1}, f_{2} have a pole at $t=\infty$. Then it follows from Proposition 1.1 and its proof that

$$
\left\{\begin{array}{l}
f_{0}=\frac{1}{3} t+\sum_{k=-\infty}^{0} a_{k} t^{k}, \quad f_{1}=\frac{1}{3} t+\sum_{k=-\infty}^{0} b_{k} t^{k}, f_{2}=\frac{1}{3} t+\sum_{k=-\infty}^{0} c_{k} t^{k}, \tag{1.13}\\
f_{3}=\sum_{k=-\infty}^{n_{3}} d_{k} t^{k}, \quad f_{4}=\sum_{k=-\infty}^{n_{4}} e_{k} t^{k},
\end{array}\right.
$$

where $n_{3}, n_{4} \leq 0$. By comparing the coefficients of the term t in

$$
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3}
$$

we obtain $d_{0}=0$. By comparing the constant terms in

$$
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3}
$$

we have

$$
d_{-1}=3 \alpha_{3}
$$

In the same way, we get

$$
e_{0}=0, e_{-1}=-3 \alpha_{4}
$$

By comparing the coefficients of the term t in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1}
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
b_{0}-a_{0}=0 \\
c_{0}-a_{0}=0
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{0}=b_{0}=c_{0}=0
$$

By comparing the constant terms in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2}
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{l}
b_{-1}-c_{-1}=1-3 \alpha_{0}-3 \alpha_{3}-3 \alpha_{4} \\
c_{-1}-a_{-1}=1-3 \alpha_{1}+3 \alpha_{3}+3 \alpha_{4} \\
a_{-1}-b_{-1}=1-3 \alpha_{2}-3 \alpha_{3}-3 \alpha_{4}
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
\left\{\begin{array}{l}
a_{-1}=\alpha_{1}-\alpha_{2}-3 \alpha_{3}-\alpha_{4} \\
b_{-1}=-\alpha_{0}+\alpha_{2}-\alpha_{3}+\alpha_{4} \\
c_{-1}=\alpha_{0}-\alpha_{1}+\alpha_{3}+3 \alpha_{4}
\end{array}\right.
$$

Type C: all the rational functions of $f_{0}, f_{1}, f_{2}, f_{3}, f_{4}$ have a pole at $t=\infty$. Then it follows from Proposition 1.1 and its proof that

$$
\left\{\begin{array}{l}
f_{0}=\frac{1}{5} t+\sum_{k=-\infty}^{0} a_{k} t^{k}, \quad f_{1}=\frac{1}{5} t+\sum_{k=-\infty}^{0} b_{k} t^{k}, \quad f_{2}=\frac{1}{5} t+\sum_{k=-\infty}^{0} c_{k} t^{k}, \tag{1.14}\\
f_{3}=\frac{1}{5} t+\sum_{k=-\infty}^{0} d_{k} t^{k}, \quad f_{4}=\frac{1}{5} t+\sum_{k=-\infty}^{0} e_{k} t^{k} .
\end{array}\right.
$$

By comparing the coefficients of the term t in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
b_{0}-c_{0}+d_{0}-e_{0}=0 \\
c_{0}-d_{0}+e_{0}-a_{0}=0 \\
d_{0}-e_{0}+a_{0}-b_{0}=0 \\
e_{0}-a_{0}+b_{0}-c_{0}=0 \\
a_{0}-b_{0}+c_{0}-d_{0}=0
\end{array}\right.
$$

Since the rank of

$$
\left(\begin{array}{ccccc}
0 & 1 & -1 & 1 & -1 \\
-1 & 0 & 1 & -1 & 1 \\
1 & -1 & 0 & 1 & -1 \\
-1 & 1 & -1 & 0 & 1 \\
1 & -1 & 1 & -1 & 0
\end{array}\right)
$$

is four, it follows that

$$
\left(a_{0}, b_{0}, c_{0}, d_{0}, e_{0}\right)=\beta(1,1,1,1,1)
$$

for some $\beta \in \mathbb{C}$. Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{0}=b_{0}=c_{0}=d_{0}=e_{0}=0
$$

By comparing the constant terms in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4},
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
1=b_{-1}-c_{-1}+d_{-1}+e_{-1}+5 \alpha_{0} \\
1=c_{-1}-d_{-1}+e_{-1}-a_{-1}+5 \alpha_{1} \\
1=d_{-1}-e_{-1}+a_{-1}-b_{-1}+5 \alpha_{2} \\
1=e_{-1}-a_{-1}+b_{-1}-c_{-1}+5 \alpha_{3} \\
1=a_{-1}-b_{-1}+c_{-1}-d_{-1}+5 \alpha_{4} .
\end{array}\right.
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{-1}+b_{-1}+c_{-1}+d_{-1}+e_{-1}=0
$$

Therefore we get

$$
\left\{\begin{array}{l}
a_{-1}=3 \alpha_{1}+\alpha_{2}-\alpha_{3}-3 \alpha_{4} \\
b_{-1}=3 \alpha_{2}+\alpha_{3}-\alpha_{4}-3 \alpha_{0} \\
c_{-1}=3 \alpha_{3}+\alpha_{4}-\alpha_{0}-3 \alpha_{1} \\
d_{-1}=3 \alpha_{4}+\alpha_{0}-\alpha_{1}-3 \alpha_{2} \\
e_{-1}=3 \alpha_{0}+\alpha_{1}-\alpha_{2}-3 \alpha_{3}
\end{array}\right.
$$

In the following proposition, we get a sufficient condition for the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=\infty$ to be uniquely expanded.

Proposition 1.3. Suppose that $\left(f_{j}\right)_{0 \leq j \leq 4}$ is a rational solution on Proposition 1.2.
(1) If f_{i} has a pole at $t=\infty$ and $f_{i+1}, f_{i+2}, f_{i+3}, f_{i+4}$ are regular at $t=\infty$ for some $i=0,1,2,3,4$, the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=\infty$ are uniquely expanded.
(2) If f_{i}, f_{i+1}, f_{i+3} have a pole at $t=\infty$ and f_{i+2}, f_{i+4} are regular at $t=\infty$ for some $i=0,1,2,3,4$, the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=\infty$ are uniquely expanded.
(3) If f_{i}, f_{i+1}, f_{i+2} have a pole at $t=\infty$ and f_{i+3}, f_{i+4} are regular at $t=\infty$ for some $i=0,1,2,3,4$, the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=\infty$ are uniquely expanded.
(4) If all the rational functions of $\left(f_{i}\right)_{0 \leq i \leq 4}$ have a pole at $t=\infty$, the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=\infty$ are uniquely expanded.

Especially, we have the following:
Type A (1): for some $i=0,1,2,3,4, f_{i}$ has a pole at $t=\infty$ and $f_{i+1}, f_{i+2}, f_{i+3}, f_{i+4}$ are regular at $t=\infty$. Then,

$$
\left\{\begin{array}{l}
f_{i+1} \equiv 0 \text { if } \alpha_{i+1}=0 \\
f_{i+2} \equiv 0 \text { if } \alpha_{i+2}=0 \\
f_{i+3} \equiv 0 \text { if } \alpha_{i+3}=0 \\
f_{i+4} \equiv 0 \text { if } \alpha_{i+4}=0 .
\end{array}\right.
$$

Type A (2): for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+3}$ have a pole at $t=\infty$ and f_{i+2}, f_{i+4} are regular at $t=\infty$. Then,

$$
\left\{\begin{aligned}
& f_{i+2} \equiv 0 \text { if } \alpha_{i+2}=0 \\
& f_{i+4} \equiv 0 \text { if } \alpha_{i+4}=0
\end{aligned}\right.
$$

Type B: for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+2}$ have a pole at $t=\infty$ and f_{i+3}, f_{i+4} are regular at $t=\infty$. Then,

$$
\left\{\begin{aligned}
& f_{i+3} \equiv 0 \text { if } \alpha_{i+3}=0 \\
& f_{i+4} \equiv 0 \text { if } \alpha_{i+4}=0
\end{aligned}\right.
$$

Proof. If there exists a rational solution of Type A (1), we have

$$
\left\{\begin{array}{l}
f_{0}=t+a_{-1} t^{-1}+\sum_{k=-\infty}^{-2} a_{k} t^{k}, f_{1}=b_{-1} t^{-1}+\sum_{k=-\infty}^{-2} b_{k} t^{k}, f_{2}=c_{-1} t^{-1}+\sum_{k=-\infty}^{-2} c_{k} t^{k}, \\
f_{3}=d_{-1} t^{-1}+\sum_{k=-\infty}^{-2} d_{k} t^{k}, f_{4}=e_{-1} t^{-1}+\sum_{k=-\infty}^{-2} e_{k} t^{k}
\end{array}\right.
$$

where $a_{-1}, b_{-1}, c_{-1}, d_{-1}, e_{-1}$ have been determined in Proposition 1.2. By comparing the coefficients of the terms $t^{k}(k \leq-2)$ in

$$
\left\{\begin{array}{l}
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{l}
b_{k-1}=b_{k}(k+1)+\sum_{m=k}^{0} b_{k-m}\left(c_{m}-d_{m}+e_{m}-a_{m}\right) \\
c_{k-1}=-c_{k}(k+1)-\sum_{m=k}^{0} c_{k-m}\left(d_{m}-e_{m}+a_{m}-b_{m}\right) \\
d_{k-1}=d_{k+1}(k+1)+\sum_{m=k}^{0} d_{k-m}\left(e_{m}-a_{m}+b_{m}-c_{m}\right) \\
e_{k-1}=-e_{k+1}(k+1)-\sum_{m=k}^{0} e_{k-m}\left(a_{m}-e_{m}+c_{m}-d_{m}\right) .
\end{array}\right.
$$

In Proposition 1.2, we have had

$$
b_{-1}=\alpha_{1}, c_{-1}=-\alpha_{2}, d_{-1}=\alpha_{3}, e_{-1}=-\alpha_{4} .
$$

Therefore we get

$$
\left\{\begin{array}{l}
f_{1} \equiv 0 \text { if } \alpha_{1}=0 \\
f_{2} \equiv 0 \text { if } \alpha_{2}=0 \\
f_{3} \equiv 0 \text { if } \alpha_{3}=0 \\
f_{4} \equiv 0 \text { if } \alpha_{4}=0
\end{array}\right.
$$

Since $\sum_{j=0}^{4} f_{j}=t$, it follows that

$$
a_{k-1}=-b_{k-1}-c_{k-1}-d_{k-1}-e_{k-1} .
$$

Therefore, if there is a rational solution of Type A (1), the coefficients $a_{k}, b_{k}, c_{k}, d_{k}, e_{k}(k \leq$ $-2)$ are determined inductively and it is unique.

If there exists a rational solution of Type A (2), we have

$$
\left\{\begin{array}{l}
f_{0}=t+a_{-1} t^{-1}+\sum_{k=-\infty}^{-2} a_{k} t^{k}, f_{1}=t+b_{-1} t^{-1}+\sum_{k=-\infty}^{-2} b_{k} t^{k}, f_{2}=c_{-1} t^{-1}+\sum_{k=-\infty}^{-2} c_{k} t^{k}, \\
f_{3}=-t+d_{-1} t^{-1}+\sum_{k=-\infty}^{-2} d_{k} t^{k}, f_{4}=e_{-1} t^{-1}+\sum_{k=-\infty}^{-2} e_{k} t^{k},
\end{array}\right.
$$

where $a_{-1}, b_{-1}, c_{-1}, d_{-1}, e_{-1}$ have been determined in Proposition 1.2. By comparing the coefficients of the terms $t^{k}(k \leq-2)$ in

$$
\left\{\begin{array}{l}
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{l}
c_{k-1}=c_{k+1}(k+1)+\sum_{m=k}^{0} c_{(k-m)}\left(d_{m}-e_{m}+a_{m}-b_{m}\right) \\
e_{k-1}=-e_{k+1}(k+1)-\sum_{m=k}^{0} e_{k-m}\left(a_{m}-e_{m}+c_{m}-d_{m}\right) .
\end{array}\right.
$$

In Proposition 1.2, we have had

$$
c_{-1}=\alpha_{2}, e_{-1}=-\alpha_{4}
$$

Therefore the coefficients $c_{k}, e_{k}(k \leq-2)$ are determined inductively and we get

$$
\left\{\begin{array}{l}
f_{2} \equiv 0 \text { if } \alpha_{2}=0 \\
f_{4} \equiv 0 \text { if } \alpha_{4}=0
\end{array}\right.
$$

By comparing the coefficients of the terms $t^{k}(k \leq-2)$ in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3}
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{r}
b_{k-1}+d_{k-1}=c_{k-1}+e_{k-1}-a_{k+1}(k+1) \\
\quad-\sum_{m=k}^{0} a_{(k-m)}\left(b_{m}-c_{m}+d_{m}-e_{m}\right) \\
-d_{k-1}-a_{k-1}=-c_{k-1}-e_{k-1}-b_{k+1}(k+1) \\
-\sum_{m=k}^{0} b_{k-m}\left(c_{m}-d_{m}+e_{m}-a_{m}\right) \\
-a_{k-1}+b_{k-1}=-e_{k-1}+c_{k-1}-d_{k+1}(k+1) \\
\quad+\sum_{m=k}^{0} d_{k-m}\left(e_{m}-a_{m}+b_{m}-c_{m}\right) .
\end{array}\right.
$$

Since $\sum_{j=0}^{4} f_{j}=t$, it follows that

$$
a_{k-1}+b_{k-1}+d_{k-1}=-c_{k-1}-e_{k-1} .
$$

Therefore, if there is a rational solution of Type A (2), the coefficients $a_{k}, b_{k}, d_{k}(k \leq-2)$ are determined inductively and it is unique.

If there exists a rational solution of Type B, we have

$$
\left\{\begin{array}{l}
f_{0}=\frac{1}{3} t+a_{-1} t^{-1}+\sum_{k=-\infty}^{-2} a_{k} t^{k}, f_{1}=\frac{1}{3} t+b_{-1} t^{-1}+\sum_{k=-\infty}^{-2} b_{k} t^{k}, f_{2}=\frac{1}{3} t+c_{-1} t^{-1}+\sum_{k=-\infty}^{-2} c_{k} t^{k}, \\
f_{3}=d_{-1} t^{-1}+\sum_{k=-\infty}^{-2} d_{k} t^{k}, f_{4}=e_{-1} t^{-1}+\sum_{k=-\infty}^{-2} e_{k} t^{k},
\end{array}\right.
$$

where $a_{-1}, b_{-1}, c_{-1}, d_{-1}, e_{-1}$ have been determined in Proposition 1.2. By comparing the coefficients of the terms $t^{k}(k \leq-2)$ in

$$
\left\{\begin{array}{l}
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
d_{k-1}=-3(k+1) d_{k+1}+3 \sum_{m=k}^{0} d_{k-m}\left(e_{m}-a_{m}+b_{m}-{ }_{m}\right) \\
e_{k-1}=3(k+1) e_{k+1}-3 \sum_{m=k}^{0} e_{k-m}\left(a_{m}-b_{m}+c_{m}-d_{m}\right)
\end{array}\right.
$$

In Proposition 1.2, we have had

$$
d_{-1}=3 \alpha_{3}, \quad e_{-1}=-3 \alpha_{4}
$$

Therefore the coefficients $d_{k}, e_{k}(k \leq-2)$ are determined inductively and we get

$$
\left\{\begin{array}{l}
f_{3} \equiv 0 \text { if } \alpha_{3}=0 \\
f_{4} \equiv 0 \text { if } \alpha_{4}=0
\end{array}\right.
$$

By comparing the coefficients of the terms $t^{k}(k \leq-2)$ in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2}
\end{array}\right.
$$

we have

$$
\left\{\begin{array}{l}
c_{k-1}-b_{k-1}=-3(k+1) a_{k+1}+3 \sum_{m=k}^{0} a_{k-m}\left(b_{m}-c_{m}+d_{m}-e_{m}\right) \\
a_{k-1}-c_{k-1}=-3(k+1) b_{k+1}+3 \sum_{m=k}^{0} b_{k-m}\left(c_{m}-d_{m}+e_{m}-a_{m}\right) \\
b_{k-1}-a_{k-1}=-3(k+1) c_{k+1}+3 \sum_{m=k}^{0} c_{k-m}\left(d_{m}-e_{m}+a_{m}-b_{m}\right)
\end{array}\right.
$$

Since $\sum_{i=0}^{4} f_{i}=t$, it follows that

$$
a_{k-1}+b_{k-1}+c_{k-1}=d_{k-1}-e_{k-1} .
$$

Therefore, if there is a rational solution of Type B , the coefficients $a_{k}, b_{k}, c_{k}(k \leq-2)$ are determined inductively and it is unique.

If there exists a rational solution of Type C, we have

$$
\left\{\begin{array}{l}
f_{0}=\frac{1}{5} t+a_{-1} t^{-1}+\sum_{k=-2}^{-\infty} a_{k} t^{k}, f_{1}=\frac{1}{5} t+b_{-1} t^{-1}+\sum_{k=-2}^{-\infty} b_{k} t^{k}, f_{2}=\frac{1}{5} t+c_{-1} t^{-1}+\sum_{k=-2}^{-\infty} c_{k} t^{k}, \\
f_{3}=\frac{1}{5} t+d_{-1} t^{-1}+\sum_{k=-2}^{-\infty} d_{k} t^{k}, f_{4}=\frac{1}{5} t+e_{-1} t^{-1}+\sum_{k=-2}^{-\infty} e_{k} t^{k},
\end{array}\right.
$$

where $a_{-1}, b_{-1}, c_{-1}, d_{-1}, e_{-1}$ have been determined in Proposition 1.2. By comparing the coefficients of the terms $t^{k}(k \leq-2)$ in

$$
\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}+f_{3}-f_{4}\right)+\alpha_{0} \\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{3}+f_{4}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{3}-f_{4}+f_{0}-f_{1}\right)+\alpha_{2} \\
f_{3}^{\prime}=f_{3}\left(f_{4}-f_{0}+f_{1}-f_{2}\right)+\alpha_{3} \\
f_{4}^{\prime}=f_{4}\left(f_{0}-f_{1}+f_{2}-f_{3}\right)+\alpha_{4}
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{l}
b_{k-1}-c_{k-1}+d_{k-1}-e_{k-1}=5(k+1) a_{k+1}-5 \sum_{m=k}^{0} a_{k-m}\left(b_{m}-c_{m}+d_{m}-e_{m}\right) \\
c_{k-1}-d_{k-1}+e_{k-1}-a_{k-1}=5(k+1) b_{k+1}-5 \sum_{m=k}^{0} b_{k-m}\left(c_{m}-d_{m}+e_{m}-a_{m}\right) \\
d_{k-1}-e_{k-1}+a_{k-1}-b_{k-1}=5(k+1) c_{k+1}-5 \sum_{m=k}^{0} c_{k-m}\left(d_{m}-e_{m}+a_{m}-b_{m}\right) \\
e_{k-1}-a_{k-1}+b_{k-1}-c_{k-1}=5(k+1) d_{k+1}-5 \sum_{m=k}^{0} d_{k-m}\left(e_{m}-a_{m}+b_{m}-c_{m}\right) \\
a_{k-1}-b_{k-1}+c_{k-1}-d_{k-1}=5(k+1) e_{k+1}-5 \sum_{m=k}^{0} e_{k-m}\left(a_{m}-b_{m}+c_{m}-d_{m}\right)
\end{array}\right.
$$

Since the rank of

$$
\left(\begin{array}{ccccc}
0 & 1 & -1 & 1 & -1 \\
-1 & 0 & 1 & -1 & 1 \\
1 & -1 & 0 & 1 & -1 \\
-1 & 1 & -1 & 0 & 1 \\
1 & -1 & 1 & -1 & 0
\end{array}\right)
$$

is four, $b_{k-1}, c_{k-1}, d_{k-1}, e_{k-1}$ can be expressed by

$$
a_{i}(k-1 \leq i \leq 1), b_{j}, c_{j}, d_{j}, e_{j}(k \leq j \leq 1)
$$

Since $\sum_{k=0}^{4} f_{k}=t$, it follows that

$$
a_{k-1}+b_{k-1}+c_{k-1}+d_{k-1}+e_{k-1}=0
$$

Therefore, if there is a rational solution of Type C, the coefficients $a_{k}, b_{k}, c_{k}, d_{k}, e_{k}(k \leq$ -2) are determined inductively and it is unique.

From Proposition 1.3, we have
Corollary 1.4. Let $\left(f_{j}\right)_{0 \leq j \leq 4}$ be a rational solution of $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$. Then, $f_{j}(0 \leq j \leq 4)$ are odd functions.

Proof. $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ is invariant under the transformation

$$
s_{-1}: t \longrightarrow-t, \quad f_{j} \longrightarrow-f_{j} \quad(0 \leq j \leq 4)
$$

Each of Type A, Type B, Type C on Proposition 1.1 is also invariant under s_{-1}. Then $f_{j}(t)=-f_{j}(-t)(0 \leq j \leq 4)$, because the Laurent series of f_{j} at $t=\infty$ on each of types are unique. Therefore, f_{j} are odd functions.

1.2 the Laurent Series at $t=c \in \mathbb{C}$

In this subsection, we calculate the Laurent series of $f_{j}(0 \leq j \leq 4)$ at $t=c \in \mathbb{C}$ for $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$, which are determined by Tahara [17]. The residues of $f_{j}(0 \leq j \leq 4)$ at $t=c \in \mathbb{C}$ are integers.

Tahara [17] obtained the following proposition:
Proposition 1.5. If some of $\left(f_{j}\right)_{0 \leq j \leq 4}$ have a pole at $t=c \in \mathbb{C}, f_{j}$ is expanded as the following three types:
(1) if f_{i}, f_{i+1} have a pole at $t=c \in \mathbb{C}$ for some $i=0,1,2,3,4$,

$$
\left\{\begin{array}{l}
f_{i}=(t-c)^{-1}+\frac{c}{2}+\left(1+\frac{c^{2}}{12}-\frac{1}{3} \alpha_{i}-\frac{2}{3} \alpha_{i+1}-\frac{2}{3} \alpha_{i+3}\right)(t-c) \\
\quad+\left(-\frac{1}{2}\left(q_{i+2,2}+q_{i+4,2}\right)+\frac{c}{8}+\frac{c}{4}\left(\alpha_{i+2}+\alpha_{i+4}\right)\right)(t-c)^{2}+\cdots \\
f_{i+1}=-(t-c)^{-1}+\frac{c}{2}+\left(1-\frac{c^{2}}{12}-\frac{2}{3} \alpha_{i}-\frac{1}{3} \alpha_{i+1}-\frac{2}{3} \alpha_{i+3}\right)(t-c) \\
\quad+\left(-\frac{1}{2}\left(q_{i+2,2}+q_{i+4,2}\right)-\frac{1}{8} c-\frac{c}{4}\left(\alpha_{i+2}+\alpha_{i+4}\right)\right)(t-c)^{2} \cdots \\
f_{i+2}=-\alpha_{i+2}(t-c)+q_{i+2,2}(t-c)^{2}+\cdots \\
f_{i+3}=\frac{\alpha_{i+3}}{3}(t-c)+0(t-c)^{2}+\cdots \\
f_{i+4}=-\alpha_{i+4}(t-c)+q_{i+4,2}(t-c)^{2} \cdots
\end{array}\right.
$$

where $q_{i+2,2}, q_{i+4,2}$ are arbitrary constants.
(2) if f_{i}, f_{i+2} have a pole at $t=c \in \mathbb{C}$ for some $i=0,1,2,3,4$,

$$
\left\{\begin{array}{l}
f_{i}=-(t-c)^{-1}+\left(\frac{1}{2} c-q_{i+3,0}\right) \\
\quad+\left(\frac{1}{3}\left(2+\alpha_{i+1}-\alpha_{i+2}-3 \alpha_{i+3}-\alpha_{i+4}\right)+\frac{2}{3} q_{i+3,0}\left(c-q_{i+3,0}-2 q_{i+4,0}\right)-\frac{1}{3}\left(\frac{1}{2} c-q_{i+3,0}\right)^{2}\right) \\
\quad \times(t-c)+\cdots \\
\quad f_{i+1}=-\alpha_{i+1}(t-c)+\cdots \\
f_{i+2}=(t-c)^{-1}+\left(\frac{1}{2} c-q_{i+4,0}\right) \\
\quad+\left(\frac{1}{3}\left(2-\alpha_{i}+\alpha_{i+1}-\alpha_{i+3}-3 \alpha_{i+4}\right)-\frac{2}{3} q_{i+4,0}\left(c-2 q_{i+3,0}-q_{i+4,0}\right)+\frac{1}{3}\left(\frac{1}{2} c-q_{i+4,0}\right)^{2}\right) \\
\quad \times(t-c)+\cdots \\
\\
f_{i+3}=q_{i+3,0}+\left(q_{i+3,0}\left(-c+q_{i+3,0}+2 q_{i+4,0}\right)+\alpha_{i+3}\right)(t-c)+\cdots \\
f_{i+4}=q_{i+4,0}+\left(q_{i+4,0}\left(c-2 q_{i+3,0}-q_{i+4,0}\right)+\alpha_{i+4}\right)(t-c)+\cdots,
\end{array}\right.
$$

where $q_{i+3,0}, q_{i+4,0}$ are arbitrary constants.
(3) if $f_{i+1}, f_{i+2}, f_{i+3}, f_{i+4}$ have a pole at $t=c \in \mathbb{C}$ for some $i=0,1,2,3,4$,

$$
\left\{\begin{array}{l}
f_{i}=-\frac{\alpha_{i}}{3}(t-c)+\cdots \\
f_{i+1}=3(t-c)^{-1}+\left(\frac{c^{2}}{10}-\frac{2}{5}-\frac{3}{5} \alpha_{i}+\frac{3}{5} \alpha_{i+2}+\frac{1}{5} \alpha_{i+3}-\frac{1}{5} \alpha_{i+4}\right)(t-c)+\cdots \\
f_{i+2}=(t-c)^{-1}+\frac{c}{2}+\left(\frac{c^{2}}{12}+\frac{2}{3}+\alpha_{i}+\frac{1}{3} \alpha_{i+1}-\frac{1}{3} \alpha_{i+3}+\frac{1}{3} \alpha_{i+4}\right)(t-c)+\cdots \\
f_{i+3}=-(t-c)^{-1}+\frac{c}{2}+\left(-\frac{c^{2}}{12}+\frac{2}{3}+\alpha_{i}+\frac{1}{3} \alpha_{i+1}-\frac{1}{3} \alpha_{i+2}+\frac{1}{3} \alpha_{i+4}\right)(t-c)+\cdots \\
f_{i+4}=-3(t-c)^{-1}+\left(-\frac{c^{2}}{10}-\frac{2}{5}-\frac{3}{5} \alpha_{i}-\frac{1}{5} \alpha_{i+1}+\frac{1}{5} \alpha_{i+2}+\frac{3}{5} \alpha_{i+3}\right)(t-c)+\cdots
\end{array}\right.
$$

From Proposition 1.5, we obtain the following corollary:

Corollary 1.6. Suppose that $\left(f_{i}\right)_{0 \leq i \leq 4}$ is a rational solution of $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$.
(1) If $c \in \mathbb{C} \backslash\{0\}$ is a pole of $f_{i},-c$ is also a pole of f_{i} and Res $s_{t=c} f_{i}=R e s_{t=-c} f_{i}$.
(2) If Res $s_{t=\infty} f_{i}$ is an even integer, $t=0$ is not a pole of f_{i}. Therefore,

$$
f_{i}=a_{i, 1} t+\sum_{j=1}^{n_{i}}\left(\frac{\varepsilon_{i, j}}{t-c_{i, j}}+\frac{\varepsilon_{i, j}}{t+c_{i, j}}\right),
$$

where $a_{i, 1}=0, \pm 1, \frac{1}{3}, \frac{1}{5}$ and $\varepsilon_{i, j}= \pm 1, \pm 3$ and $c_{i, j} \neq 0$.
(3) If Res $s_{t=\infty} f_{i}$ is an odd integer, $t=0$ is a pole of f_{i}. Therefore,

$$
f_{i}=a_{i, 1} t+\frac{\varepsilon_{i, 0}}{t}+\sum_{j=1}^{n_{i}}\left(\frac{\varepsilon_{i, j}}{t-c_{i, j}}+\frac{\varepsilon_{i, j}}{t+c_{i, j}}\right)
$$

where $\varepsilon_{i, 0}, \varepsilon_{i, j}= \pm 1, \pm 3$ and $c_{i, j} \neq 0$.
Proof. (1) Let $c \in \mathbb{C} \backslash\{0\}$ be a pole of f_{i}. Then it follows from Proposition 1.5 and Corollary 1.4 that f_{i} has a pole at $t=c$ with the first order and is an odd function:

$$
f_{i}(t)=-f_{i}(-t)
$$

Therefore, $-c$ is also a pole of f_{i} and $\operatorname{Res}_{t=c} f_{i}=\operatorname{Res}_{-c} f_{i}$.
(2) Suppose that $t=0$ is a pole of f_{i}. Let $\pm c_{1}, \pm c_{2}, \cdots \pm c_{n_{i}} \in \mathbb{C} \backslash\{0\}$ be poles of f_{i}. Then, it follows from the residue theorem that

$$
-\operatorname{Res}_{t=\infty} f_{i}=\operatorname{Res}_{t=0} f_{i}+2 \sum_{j=1}^{n_{i}} \operatorname{Res}_{t=c_{j}} f_{i}
$$

which is contradiction because $\operatorname{Res}_{t=0} f_{i}= \pm 1$ or ± 3.
(3) Suppose that $t=0$ is not a pole of f_{i}. Let $\pm c_{1}, \pm c_{2}, \cdots \pm c_{n_{i}} \in \mathbb{C} \backslash\{0\}$ be poles of f_{i}. Then, it follows from the residue theorem that

$$
-\operatorname{Res}_{t=\infty} f_{i}=2 \sum_{j=1}^{n_{i}} \operatorname{Res}_{t=c_{j}} f_{i}
$$

which is contradiction.

2 A Necessary Condition

In this section, following Noumi and Yamada [10, we firstly introduce the shift operators of the parameters $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$. Secondly we get a necessary condition for $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ to have a rational solution and prove that if $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ has a rational solution, $\alpha_{i}(0 \leq i \leq 4)$ are rational numbers. Thirdly, we transform the parameters into the set C.

Noumi and Yamada [10] defined shift operators in the following way:
Proposition 2.1. For any $i=0,1,2,3,4, T_{i}$ denote shift operators which are expressed by

$$
T_{1}=\pi s_{4} s_{3} s_{2} s_{1}, T_{2}=s_{1} \pi s_{4} s_{3} s_{2}, T_{3}=s_{2} s_{1} \pi s_{4} s_{3}, T_{4}=s_{3} s_{2} s_{1} \pi s_{4}, T_{0}=s_{4} s_{3} s_{2} s_{1} \pi
$$

Then,

$$
T_{i}\left(\alpha_{i-1}\right)=\alpha_{i-1}+1, T_{i}\left(\alpha_{i}\right)=\alpha_{i}-1, T_{i}\left(\alpha_{j}\right)=\alpha_{j}(j \neq i-1, i)
$$

In Proposition 1.2 and 1.5, we have determined the residues of $f_{i}(0 \leq i \leq 4)$ at $t=\infty, c \in \mathbb{C}$, respectively. Therefore, the residue theorem gives a necessary condition for $A\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ to have a rational solution.

Theorem 2.2. If the $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ has a rational solution, $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ satisfy one of the following conditions:
(1) if $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ has a rational solution of Type $A, \alpha_{i} \in \mathbb{Z}(0 \leq i \leq 4)$;
(2) if $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ has a rational solution of Type B, for some $i=0,1,2,3,4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left(\frac{n_{1}}{3}-\frac{n_{3}}{3}, \frac{n_{1}}{3}, \frac{n_{1}}{3}+\frac{n_{4}}{3}, \frac{n_{3}}{3},-\frac{n_{4}}{3}\right) \quad \bmod \mathbb{Z}
$$

where $n_{1}, n_{3}, n_{4}=0,1,2$;
(3) if $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ has a rational solution of Type C, for some $i=0,1,2,3,3,4$,
$\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left(\frac{n_{1}}{5}+\frac{2 n_{2}}{5}+\frac{3 n_{3}}{5}, \frac{n_{1}}{5}+\frac{2 n_{2}}{5}+\frac{n_{3}}{5}, \frac{n_{1}}{5}, \frac{n_{1}}{5}+\frac{n_{2}}{5}, \frac{n_{1}}{5}+\frac{n_{3}}{5}\right) \bmod \mathbb{Z}$,
where $n_{1}, n_{2}, n_{3}=0,1,2,3,4$.
In (1), (2) and (3), we consider the suffix of the parameters α_{i} as elements of $\mathbb{Z} / 5 \mathbb{Z}$.
Proof. Proposition 1.5 implies that $\operatorname{Res}_{t=c} f_{i}= \pm 1, \pm 3(0 \leq i \leq 4)$ for $t=c \in \mathbb{C}$. Therefore, it follows from the residue theorem that $\operatorname{Res}_{t=\infty} f_{i} \in \mathbb{Z}(0 \leq i \leq 4)$.

If Type $\mathrm{A}(1)$ occurs, it follows from Proposition 1.2 that $\alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4} \in \mathbb{Z}$, which proves that $\alpha_{i} \in \mathbb{Z}$ because $\sum_{k=0}^{4} \alpha_{k}=1$.

If Type $\mathrm{A}(2)$ occurs, we can show that $\alpha_{j} \in \mathbb{Z}(0 \leq j \leq 4)$ in the same way as Type A (1).

If Type B occurs, it follows from Proposition 1.2 that $\operatorname{Res}_{t=\infty} f_{i+3}$ and $\operatorname{Res}_{t=\infty} f_{i+4} \in \mathbb{Z}$, which means that

$$
\alpha_{i+3}=\frac{n_{3}}{3}, \alpha_{i+4}=-\frac{n_{4}}{3}, n_{3}, n_{4} \in \mathbb{Z}
$$

Furthermore, Proposition 1.2 implies that $\operatorname{Res}_{t=\infty} f_{i+1}$ and $\operatorname{Res}_{t=\infty} f_{i+2} \in \mathbb{Z}$, which shows that

$$
\begin{aligned}
& \alpha_{i+2}-\alpha_{i}-\frac{n_{3}}{3}-\frac{n_{4}}{3}=m_{1} \in \mathbb{Z} \\
& \alpha_{i}-\alpha_{i+1}+\frac{n_{3}}{3}-n_{4}=m_{2} \in \mathbb{Z}
\end{aligned}
$$

By solving this system of equations of α_{i}, α_{i+2}, we obtain

$$
\begin{aligned}
& \alpha_{i}=\alpha_{i+1}-\frac{n_{3}}{3}+m_{2}+n_{4} \\
& \alpha_{i+1}=\alpha_{i+1} \\
& \alpha_{i+2}=\alpha_{i+1}+\frac{n_{4}}{3}+m_{1}+m_{2}+n_{4}
\end{aligned}
$$

Since $\alpha_{i+3}=\frac{n_{3}}{3}, \alpha_{i+4}=-\frac{n_{4}}{3}$ and $\sum_{j=0}^{4} \alpha_{j}=1$, it follows that $\alpha_{i+1}=\frac{n_{1}}{3}$ for some integer $n_{1} \in \mathbb{Z}$, which implies that

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left(\frac{n_{1}}{3}-\frac{n_{3}}{3}, \frac{n_{1}}{3}, \frac{n_{1}}{3}+\frac{n_{4}}{3}, \frac{n_{3}}{3},-\frac{n_{4}}{3}\right) \bmod \mathbb{Z} .
$$

If Type C occurs, it follows from Proposition 1.2 that

$$
\begin{aligned}
& 3 \alpha_{1}+\alpha_{2}-\alpha_{3}-3 \alpha_{4}=m_{0} \in \mathbb{Z} \\
& 3 \alpha_{2}+\alpha_{3}-\alpha_{4}-3 \alpha_{0}=m_{1} \in \mathbb{Z} \\
& 3 \alpha_{3}+\alpha_{4}-\alpha_{0}-3 \alpha_{1}=m_{2} \in \mathbb{Z} \\
& 3 \alpha_{4}+\alpha_{0}-\alpha_{1}-3 \alpha_{2}=m_{3} \in \mathbb{Z} \\
& 3 \alpha_{0}+\alpha_{1}-\alpha_{2}-3 \alpha_{3}=m_{4} \in \mathbb{Z} .
\end{aligned}
$$

By solving this system of equations, we obtain

$$
\begin{aligned}
& \alpha_{0}=\alpha_{3}-\frac{3}{5} m_{0}-\frac{2}{5} m_{1}-\frac{2}{5} m_{2}-\frac{1}{5} m_{3} \\
& \alpha_{1}=\alpha_{3}+\frac{1}{5} m_{1}-\frac{2}{5} m_{2}+\frac{1}{5} m_{3} \\
& \alpha_{2}=\alpha_{3}-\frac{4}{5} m_{0}-\frac{3}{5} m_{2}-\frac{3}{5} m_{3} \\
& \alpha_{3}=\alpha_{3} \\
& \alpha_{4}=\alpha_{3}-\frac{3}{5} m_{0}+\frac{1}{5} m_{1}-\frac{3}{5} m_{2} .
\end{aligned}
$$

Since $\sum_{i=0}^{4} \alpha_{i}=1$, it follows that

$$
\alpha_{j}=\frac{n_{j}}{5} \quad n_{j} \in \mathbb{Z} \quad(0 \leq j \leq 4)
$$

We substitute $\alpha_{j}=\frac{n_{j}}{5}$ into the residues of f_{j} at $t=\infty$ again and get

$$
\begin{aligned}
& 3 n_{1}+n_{2}-n_{3}-3 n_{4} \equiv 0 \bmod 5 \\
& 3 n_{2}+n_{3}-n_{4}-3 n_{0} \equiv 0 \bmod 5 \\
& 3 n_{3}+n_{4}-n_{0}-3 n_{1} \equiv 0 \bmod 5 \\
& 3 n_{4}+n_{0}-n_{1}-3 n_{2} \equiv 0 \bmod 5 \\
& 3 n_{0}+n_{1}-n_{2}-3 n_{3} \equiv 0 \bmod 5 .
\end{aligned}
$$

By solving this system of equations in the field $\mathbb{Z} / 5 \mathbb{Z}$, we obtain

$$
\begin{array}{ll}
n_{0} \equiv l_{1}+2 l_{2}+3 l_{3} \bmod 5 \\
n_{1} \equiv l_{1}+2 l_{2}+l_{3} & \bmod 5 \\
n_{2} \equiv l_{1} & \bmod 5 \\
n_{3} \equiv l_{1}+l_{2} & \bmod 5 \\
n_{4} \equiv l_{1}+l_{3} & \bmod 5
\end{array}
$$

By the Bäcklund transformations, we can transform the parameters obtained in Theorem 2.2 into the set C. For the purpose, we study the relationship between the Bäcklund transformations $s_{i}(0 \leq i \leq 4)$ and Type A, Type B, Type C on Proposition 1.1 in the following proposition:

Proposition 2.3. The Bäcklund transformation s_{i} preserves Type A, Type B and Type C on Proposition 1.1.

Type A (1): for some $j=0,1,2,3,4, f_{j}$ has a pole at $t=\infty$. When $j=i, i \pm 1$, s_{i} preserves Type A (1). When $j=i \pm 2, s_{i}$ changes Type A (1) into Type A (2).

Type A (2): for some $j=0,1,2,3,4, f_{j}, f_{j+1}, f_{j+3}$ have a pole at $t=\infty$. When $j=i, i-1, i+2$, s_{i} preserves Type A (2). When $j=i+1, i-2$, s_{i} changes Type A (2) into Type A (1).

Type B and C are invariant under the Bäcklund transformations.

With the Bäcklund transformations, we transform the parameters $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ in Theorem 2.2 into the set C. In the set C, we have one, five, six kinds of parameters which correspond to the parameters in (1), (2), (3) in Theorem 2.2, respectively.

Theorem 2.4. By some Bäcklund transformations, the parameters in (1), (2), (3) in Theorem 2.2 can be transformed into the following parameters in the set C, respectively.
(1) The parameters are transformed into (1, 0, 0, 0, 0).
(2) The parameters in Theorem 2.2 (2) are transformed into one of

$$
\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right),\left(\frac{2}{3}, 0,0, \frac{1}{3}, 0\right),\left(\frac{1}{3}, 0,0, \frac{2}{3}, 0\right),\left(0, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right),(1,0,0,0,0)
$$

The parameters in Theorem 2.2 (2) are transformed into ($\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0$) if and only if

$$
\left(n_{1}, n_{3}, n_{4}\right)=(\pm 1,0,0),(\pm 1,0, \pm 1),(\pm 1, \pm 1,0), \pm(0,1,-1)
$$

or if and only if for some $i=0,1, \ldots 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left\{\begin{array}{c}
\pm \frac{1}{3}(1,1,1,0,0) \quad \bmod \mathbb{Z} \\
\pm \frac{1}{3}(1,-1,-1,1,0) \quad \bmod \mathbb{Z}
\end{array}\right.
$$

(3) The parameters in Theorem 2.2 (3) are transformed into one of

$$
\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right),(1,0,0,0,0),\left(\frac{3}{5}, 0, \frac{1}{5}, \frac{1}{5}, 0\right),\left(\frac{1}{5}, 0, \frac{2}{5}, \frac{2}{5}, 0\right),\left(\frac{1}{5}, \frac{2}{5}, 0,0, \frac{2}{5}\right),\left(\frac{3}{5}, \frac{1}{5}, 0,0, \frac{1}{5}\right)
$$

The parameters in Theorem 2.2 (3) are transformed into $\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$ if and only if

$$
\begin{aligned}
\left(n_{1}, n_{2}, n_{3}\right) & =(1,0,0),(1,2,2),(1,0,1),(1,2,3),(1,1,0),(2,0,0), \\
& =(2,4,4),(2,0,2),(2,4,1),(2,2,0),(2,2,1),(3,0,0) \\
& =(3,1,1),(3,3,4),(3,3,0),(3,0,3),(3,1,4),(4,0,0), \\
& =(4,3,3),(4,4,0),(4,4,2),(4,3,2),(4,0,4),
\end{aligned}
$$

or if and only if for some $i=0,1, \ldots, 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv \begin{cases}\frac{j}{5}(1,1,1,1,1) & \bmod \mathbb{Z} \\ \frac{j}{5}(1,2,1,3,3) & \bmod \mathbb{Z}\end{cases}
$$

with some $j=1,2,3,4$.
Proof. (1) We inductively prove that the parameters $\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right) n_{i} \in \mathbb{Z}$ can be transformed into $(1,0,0,0,0)$.
i) Four of the parameters are 0 .

By π, the parameters can be transformed into ($1,0,0,0,0$).
ii) Three of the parameters are 0 .
(1) By $T_{1}^{n_{1}}$, we have $\left(n_{0}, n_{1}, 0,0,0\right) \longrightarrow\left(n_{0}, 0,0,0,0\right)$,
(2) By $T_{2}^{n_{2}}$, we get $\left(n_{0}, 0, n_{2}, 0,0\right) \longrightarrow\left(n_{0}, n_{2}, 0,0,0\right)$,
iii) Two of the parameters are 0 .
(1) By $T_{2}^{n_{2}}$, we obtain $\left(n_{0}, n_{1}, n_{2}, 0,0\right) \longrightarrow\left(n_{0}, n_{1}+n_{2}, 0,0,0\right)$,
(2) $\mathrm{By} T_{3}^{n_{3}}$, we have $\left(n_{0}, n_{1}, 0, n_{3}, 0\right) \longrightarrow\left(n_{0}, n_{1}, n_{3}, 0,0,0\right)$,
iv) One of the parameters is 0 .

By $T_{3}^{n_{3}}$, we get $\left(n_{0}, n_{1}, n_{2}, n_{3}, 0\right) \longrightarrow\left(n_{0}, n_{1}, n_{2}+n_{3}, 0,0\right)$.
v) None of the parameters is 0 .

By $T_{4}^{n_{4}}$, we obtain $\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right) \longrightarrow\left(n_{0}, n_{1}, n_{2}, n_{3}+n_{4}, 0\right)$,
(2) By some Bäcklund transformations, we can transform the parameters

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{n_{1}}{3}-\frac{n_{3}}{3}, \frac{n_{1}}{3}, \frac{n_{1}}{3}+\frac{n_{4}}{3}, \frac{n_{3}}{3},-\frac{n_{4}}{3}\right) \bmod \mathbb{Z}, n_{1}, n_{3}, n_{4}=0,1,2
$$

into the set C. We have to consider $3^{3}=27$ cases. Here, we show that $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ can be transformed into the set C in the following five cases. The other cases can be proved in the same way.

When $n_{1}=n_{3}=n_{4}=0$, the discussion on (1) implies that

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \longrightarrow(1,0,0,0,0) .
$$

When $n_{1}=1, n_{3}=0, n_{4}=2$, by π, we get

$$
\left(\frac{1}{3}, \frac{1}{3}, 0,0, \frac{1}{3}\right) \longrightarrow\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)
$$

When $n_{1}=1=n_{3}=n_{4}=1$, by $s_{0} \circ s_{4}$, we obtain

$$
\left(0, \frac{1}{3}, \frac{2}{3}, \frac{1}{3},-\frac{1}{3}\right) \longrightarrow\left(\frac{1}{3}, 0, \frac{2}{3}, 0,0\right)
$$

When $n_{1}=1, n_{3}=n_{4}=2$, by s_{0}, we have

$$
\left(-\frac{1}{3}, \frac{1}{3}, 0, \frac{2}{3}, \frac{1}{3}\right) \longrightarrow\left(\frac{1}{3}, 0,0, \frac{2}{3}, 0\right) .
$$

When $n_{1}=1=n_{3}=1, n_{4}=2$, by π, we get

$$
\left(0, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right) \longrightarrow\left(\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}, 0\right)
$$

(3) By some Bäcklund transformations, we can transform the parameters

$$
\begin{gathered}
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{n_{1}}{5}+\frac{2 n_{2}}{5}+\frac{3 n_{3}}{5}, \frac{n_{1}}{5}+\frac{2 n_{2}}{5}+\frac{n_{3}}{5}, \frac{n_{1}}{5}, \frac{n_{1}}{5}+\frac{n_{2}}{5}, \frac{n_{1}}{5}+\frac{n_{3}}{5}\right) \bmod \mathbb{Z} \\
n_{1}, n_{2}, n_{3}=0,1,2,3,4
\end{gathered}
$$

into the set C. We have to consider $5^{3}=125$ cases. Here, we only prove that $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ can be transformed into the set C in the following six cases. The other cases can be proved in the same way.

When $n_{1}=n_{2}=n_{3}=0$, by some shift operators, we get

$$
\left(\alpha_{i}\right)_{0 \leq i \leq 4} \longrightarrow(1,0,0,0,0) .
$$

When $n_{1}=1, n_{2}=n_{3}=0$, by some shift operators, we obtain

$$
\left(\alpha_{i}\right)_{0 \leq i \leq 4} \longrightarrow\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right) .
$$

When $n_{1}=0, n_{2}=2, n_{3}=0$, by $\pi^{-1} \circ s_{4} \circ s_{0}$, we have

$$
\left(-\frac{1}{5}, \frac{4}{5}, 0, \frac{2}{5}, 0\right) \longrightarrow\left(\frac{3}{5}, 0, \frac{1}{5}, \frac{1}{5}, 0\right)
$$

When $n_{1}=0, n_{2}=1, n_{3}=0$, by some shift operators, we get

$$
\left(\alpha_{i}\right)_{0 \leq i \leq 4} \longrightarrow\left(\frac{2}{5}, \frac{2}{5}, 0, \frac{1}{5}, 0\right) .
$$

When $n_{1}=n_{2}=0, n_{3}=2$, by some shift operators, we obtain

$$
\left(\alpha_{i}\right)_{0 \leq i \leq 4} \longrightarrow\left(\frac{1}{5}, \frac{2}{5}, 0,0, \frac{2}{5}\right) .
$$

When $n_{1}=n_{2}=0, n_{3}=1$, by some shift operators, we have

$$
\left(\alpha_{i}\right)_{0 \leq i \leq 4} \longrightarrow\left(\frac{3}{5}, \frac{1}{5}, 0,0, \frac{1}{5}\right) .
$$

3 A Sufficient Condition

In the previous section, we have shown a necessary condition for $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ to have a rational solution and have transformed $\left(\alpha_{i}\right)_{0 \leq i \leq 4} \in \mathbb{R}^{5}$ into the set C.

In this section, following Noumi and Yamada [10], we firstly introduce the Hamiltonian H for $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ and its principal part \hat{H}. Secondly, from Proposition 1.2 and 1.5, we calculate the residues of \hat{H} at $t=\infty, c$. Thirdly, by the residue calculus of \hat{H}, we decide a sufficient condition for $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ to have a rational solution.

Noumi and Yamada [11] defined the Hamiltonian H of $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ by

$$
\begin{aligned}
H & =f_{0} f_{1} f_{2}+f_{1} f_{2} f_{3}+f_{2} f_{3} f_{4}+f_{3} f_{4} f_{0}+f_{4} f_{0} f_{1} \\
& +\frac{1}{5}\left(2 \alpha_{1}-\alpha_{2}+\alpha_{3}-2 \alpha_{4}\right) f_{0}+\frac{1}{5}\left(2 \alpha_{1}+4 \alpha_{2}+\alpha_{3}+3 \alpha_{4}\right) f_{1} \\
& -\frac{1}{5}\left(3 \alpha_{1}+\alpha_{2}-\alpha_{3}+2 \alpha_{4}\right) f_{2}+\frac{1}{5}\left(2 \alpha_{1}-\alpha_{2}+\alpha_{3}+3 \alpha_{4}\right) f_{3} \\
& -\frac{1}{5}\left(3 \alpha_{1}+\alpha_{2}+4 \alpha_{3}+2 \alpha_{4}\right) f_{4} .
\end{aligned}
$$

\hat{H} denotes the principal part of H which is defined by the equation

$$
\hat{H}=f_{0} f_{1} f_{2}+f_{1} f_{2} f_{3}+f_{2} f_{3} f_{4}+f_{3} f_{4} f_{0}+f_{4} f_{0} f_{1}
$$

We suppose that $\left(f_{j}\right)_{0 \leq j \leq 4}$ is a rational solution of $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$. The order of a pole of \hat{H} at $t=\infty$ is at most three, because Proposition 1.1 implies that $f_{i}(0 \leq i \leq 4)$ have
a pole at $t=\infty$ with the first order or are regular at $t=\infty$. Since Corollary 1.4 shows that $f_{i}(0 \leq i \leq 4)$ are odd functions, the Laurent series of \hat{H} at $t=\infty$ are given by

$$
\hat{H}:=h_{\infty, 3} t^{3}+h_{\infty, 1} t+h_{\infty,-1} t^{-1}+O\left(t^{-3}\right) \text { at } t=\infty .
$$

In the following lemma, we calculate $h_{\infty,-1}$ by using the Laurent series of $f_{i}(0 \leq i \leq 4)$ at $t=\infty$ in Proposition 1.2,

Lemma 3.1. Suppose that $\left(f_{j}\right)_{0 \leq j \leq 4}$ is a rational solution of $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$.
Type A (1): for some $i=0,1,2,3,4, f_{i}$ has a pole at $t=\infty$. Then,

$$
h_{\infty,-1}=-\alpha_{i+1} \alpha_{i+2}-\alpha_{i+3} \alpha_{i+4}-\alpha_{i+4} \alpha_{i+1} .
$$

Type A (2): for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+3}$ have a pole at $t=\infty$. Then,

$$
h_{\infty,-1}=-\alpha_{i+2}\left(\alpha_{i}+\alpha_{i+3}\right)+\alpha_{i+4}\left(\alpha_{i+1}+\alpha_{i+3}\right)+\alpha_{i+2} \alpha_{i+4} .
$$

Type B: for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+2}$ have a pole at $t=\infty$. Then, $h_{\infty,-1}=\frac{1}{3}\left\{-\left(\alpha_{i}-\alpha_{i+1}+\alpha_{i+3}\right)^{2}-\left(\alpha_{i+2}-\alpha_{i}-\alpha_{i+3}+\alpha_{i+4}\right)\left(\alpha_{i+2}+\alpha_{i+4}-\alpha_{i+1}\right)-9 \alpha_{i+3} \alpha_{i+4}\right\}$.

Type $C: f_{0}, f_{1}, f_{2}, f_{3}, f_{4}$ have a pole at $t=\infty$. Then,

$$
h_{\infty,-1}=\frac{1}{5}\left(-a_{-1}^{2}+a_{-1} e_{-1}-b_{-1}^{2}-a_{-1} c_{-1}-c_{-1}^{2}+c_{-1} d_{-1}+2 d_{-1} e_{-1}\right),
$$

where

$$
\begin{aligned}
a_{-1} & =3 \alpha_{1}+\alpha_{2}-\alpha_{3}-3 \alpha_{4}, b_{-1}=3 \alpha_{2}+\alpha_{3}-\alpha_{4}-3 \alpha_{0}, c_{-1}=3 \alpha_{3}+\alpha_{4}-\alpha_{0}-3 \alpha_{1}, \\
d_{-1} & =3 \alpha_{4}+\alpha_{0}-\alpha_{1}-3 \alpha_{2}, e_{-1}=3 \alpha_{0}+\alpha_{1}-\alpha_{2}-3 \alpha_{3} .
\end{aligned}
$$

In the following lemma, we decide the residue of \hat{H} at $t=c$ by using the Laurent series of $f_{i}(0 \leq i \leq 4)$ in Proposition 1.5,

Lemma 3.2. Suppose that $\left(f_{i}\right)_{0 \leq i \leq 4}$ is a rational solution of $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ and some rational functions of $\left(f_{i}\right)_{0 \leq i \leq 4}$ have a pole at $t=c \in \mathbb{C}$. Then the residue of \hat{H} at $t=c$ is as follows:
(1) if f_{i}, f_{i+1} have a pole at $t=c \in \mathbb{C}$ for some $i=0,1,2,3,4$,

$$
\operatorname{Res}_{t=c} \hat{H}=\alpha_{i+2}+\alpha_{i+4}
$$

(2) if f_{i}, f_{i+2} have a pole at $t=c \in \mathbb{C}$ for some $i=0,1,2,3,4$,

$$
\operatorname{Res}_{t=c} \hat{H}=\alpha_{i+1}
$$

(3) if $f_{i+1}, f_{i+2}, f_{i+3}, f_{i+4}$ have a pole at $t=c \in \mathbb{C}$ for some $i=0,1,2,3,4$,

$$
\operatorname{Res}_{t=c} \hat{H}=\alpha_{i+1}+\alpha_{i+4} .
$$

From now on, let us study a rational solution of $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ when $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ is in the set C. For the purpose, we have the following lemma:

Lemma 3.3. Suppose that the parameters $\left(\alpha_{j}\right)_{0 \leq j \leq 4} \in \mathbb{R}^{5}$ are in the set C. If $A_{4}\left(\alpha_{j}\right)_{0 \leq j \leq 4}$ has a rational solution $\left(f_{j}\right)_{0 \leq j \leq 4}$, then,

$$
h_{\infty,-1} \geq 0
$$

Proof. Let $c_{1}, \ldots, c_{k} \in \mathbb{C}$ be the poles of $\left(f_{j}\right)_{0 \leq j \leq 4}$. Since $0 \leq \alpha_{i} \leq 1(0 \leq i \leq 4)$, it follows from Lemma 3.2 that

$$
\operatorname{Res}_{t=c_{l}} \hat{H} \geq 0(1 \leq l \leq k) .
$$

Therefore it follows from the residue theorem that

$$
h_{\infty,-1}=-\operatorname{Res}_{t=\infty} \hat{H}=\sum_{l=1}^{k} \operatorname{Res}_{t=c_{l}} \hat{H} \geq 0
$$

For the residue calculus of \hat{H}, we make two tables about the residues of \hat{H} at $t=c \in \mathbb{C}$.

Table 1: the residues of \hat{H} at $t=c \in \mathbb{C}$ in the case of $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)$

i	0	1	2	3	4
$\alpha_{i+2}+\alpha_{i+4}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$
α_{i+1}	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$
$\alpha_{i+1}+\alpha_{i+4}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

By using Table 2, we study a rational solution of Type A of $A_{4}(1,0,0,0,0)$.

Table 2: the residues of \hat{H} at $t=c \in \mathbb{C}$ in the case of $(1,0,0,0,0)$

i	0	1	2	3	4
$\alpha_{i+2}+\alpha_{i+4}$	0	1	0	1	0
α_{i+1}	0	0	0	0	1
$\alpha_{i+1}+\alpha_{i+4}$	0	1	0	0	1

Lemma 3.4. $A_{4}(1,0,0,0,0)$ has a unique rational solution of Type A which is given by

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=(t, 0,0,0,0)
$$

Proof. If $A_{4}(1,0,0,0,0)$ has a rational solution of Type A, it follows from Lemma 3.1 that $h_{\infty,-1}=0$. Furthermore Lemma 3.2 and Table 2 imply that the residue of \hat{H} at $t=c \in \mathbb{C}$ is nonnegative. Then it follows from the residue theorem that $\operatorname{Res}_{t=c} \hat{H}=0$. Therefore, Table 2 implies that

$$
\begin{aligned}
& \left(f_{0}, f_{1}\right),\left(f_{2}, f_{3}\right),\left(f_{4}, f_{0}\right) \\
& \left(f_{0}, f_{2}\right),\left(f_{1}, f_{3}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{0}\right) \\
& \left(f_{1}, f_{2}, f_{3}, f_{4}\right),\left(f_{3}, f_{4}, f_{0}, f_{1}\right),\left(f_{4}, f_{0}, f_{1}, f_{2}\right)
\end{aligned}
$$

can have a pole at $t=c \in \mathbb{C}$.
Proposition 1.1 shows that Type A (1) and Type A (2) can occur.
Type A (1): for some $i=0,1,2,3,4, f_{i}$ has a pole at $t=\infty$. If f_{0} has a pole at $t=\infty$, it follows from the uniqueness in Proposition 1.3 that

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=(t, 0,0,0,0)
$$

We suppose that f_{1} has a pole at $t=\infty$ and show contradiction. The other four cases can be proved in the same way. Proposition 1.2 implies that

$$
-\operatorname{Res}_{t=\infty} f_{1}=1, f_{2}=f_{3}=f_{4} \equiv 0,-\operatorname{Res}_{t=\infty} f_{0}=-1
$$

Since $f_{2}=f_{3}=f_{4} \equiv 0$, only $\left(f_{0}, f_{1}\right)$ can have a pole in \mathbb{C}. It follows from Proposition 1.5 that $\operatorname{Res}_{t=0} f_{0}=1, \operatorname{Res}_{t=0} f_{1}=-1$, which contradicts the residue theorem.

Type A (2): for some $i=0,1,2,3,4, f_{i}, f_{i+1}, f_{i+3}$ have a pole at $t=\infty$.
When f_{0}, f_{1}, f_{3} have a pole at $t=\infty$, Proposition 1.2 shows that

$$
-\operatorname{Res}_{t=\infty} f_{0}=0,-\operatorname{Res}_{t=\infty} f_{1}=1, f_{2} \equiv 0,-\operatorname{Res}_{t=\infty} f_{3}=-1, f_{4} \equiv 0
$$

Since $f_{2}=f_{4} \equiv 0$,

$$
\left(f_{0}, f_{1}\right),\left(f_{1}, f_{3}\right),\left(f_{3}, f_{0}\right)
$$

can have a pole in \mathbb{C}. If $\left(f_{0}, f_{1}\right)$ or $\left(f_{3}, f_{0}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition [1.5 that $\operatorname{Res}_{t=c} f_{0}=1$, which contradicts the residue theorem. If $\left(f_{1}, f_{3}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{1}=-1, \operatorname{Res}_{t=c} f_{3}=1$, which contradicts the residue theorem.

When f_{1}, f_{2}, f_{4} have a pole at $t=\infty$, it follows from Proposition 1.2 that

$$
-\operatorname{Res}_{t=\infty} f_{1}=1,-\operatorname{Res}_{t=\infty} f_{2}=3, f_{3} \equiv 0,-\operatorname{Res}_{t=\infty} f_{4}=-3,-\operatorname{Res}_{t=\infty} f_{0}=-1
$$

Therefore

$$
\left(f_{0}, f_{1}\right),\left(f_{4}, f_{0}\right)\left(f_{0}, f_{2}\right),\left(f_{2}, f_{4}\right),\left(f_{4}, f_{0}, f_{1}, f_{2}\right)
$$

can have a pole in \mathbb{C} because $f_{3} \equiv 0$. When $\left(f_{4}, f_{0}\right),\left(f_{2}, f_{4}\right)$, $\left(f_{4}, f_{0}, f_{1}, f_{2}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{4}=1$, 3, which contradicts the residue theorem. If $\left(f_{0}, f_{1}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{1}=-1$, which contradicts the residue theorem. If $\left(f_{0}, f_{2}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{0}=-1$, $\operatorname{Res}_{t=c} f_{2}=1$, which contradicts the residue theorem.

When f_{2}, f_{3}, f_{0} have a pole at $t=\infty$, it follows from Proposition 1.2 that

$$
-\operatorname{Res}_{t=\infty} f_{2}=1,-\operatorname{Res}_{t=\infty} f_{3}=1, f_{4} \equiv 0,-\operatorname{Res}_{t=\infty} f_{0}=-1,-\operatorname{Res}_{t=\infty} f_{1}=-1
$$

Then Corollary 1.6 shows that $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ have a pole at $t=0$ because $^{\operatorname{Res}}{ }_{t=\infty} f_{j}(0 \leq$ $j \leq 4$) are odd integers. Lemma 3.2 implies that $\operatorname{Res}_{t=0} \hat{H}=1$. Since $-\operatorname{Res}_{t=\infty} \hat{H}=$ $h_{\infty,-1}=0$ and $\operatorname{Res}_{t=c} \hat{H}$ is nonnegative, this contradicts the residue theorem.

When f_{3}, f_{4}, f_{1} have a pole at $t=\infty$, it follows from Proposition 1.2 that

$$
-\operatorname{Res}_{t=\infty} f_{3}=1,-\operatorname{Res}_{t=\infty} f_{4}=-1,-\operatorname{Res}_{t=\infty} f_{0}=1,-\operatorname{Res}_{t=\infty} f_{1}=-1, f_{2} \equiv 0
$$

Therefore

$$
\left(f_{0}, f_{1}\right),\left(f_{4}, f_{0}\right)\left(f_{1}, f_{3}\right),\left(f_{3}, f_{0}\right)\left(f_{3}, f_{4}, f_{0}, f_{1}\right)
$$

can have a pole in \mathbb{C}. Since $f_{4} \not \equiv 0$ and $\operatorname{Res}_{t=\infty} f_{4} \neq 0, f_{4}$ has a pole at $t=c \in \mathbb{C}$. If $\left(f_{4}, f_{0}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{4}=1$, which contradicts the residue theorem. If $\left(f_{3}, f_{4}, f_{0}, f_{1}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{4}=3$, which contradicts the residue theorem.

When f_{4}, f_{0}, f_{2} have a pole at $t=\infty$, it follows from Proposition 1.2 that

$$
-\operatorname{Res}_{t=\infty} f_{4}=1,-\operatorname{Res}_{t=\infty} f_{0}=0, f_{1} \equiv 0,-\operatorname{Res}_{t=\infty} f_{2}=-1, f_{3} \equiv 0
$$

Since $f_{1}=f_{3} \equiv 0$,

$$
\left(f_{4}, f_{0}\right)\left(f_{0}, f_{2}\right),\left(f_{2}, f_{4}\right)
$$

can have a pole in \mathbb{C}. When $\left(f_{4}, f_{0}\right)$ or $\left(f_{0}, f_{2}\right)$ have a pole at $t=c \in \mathbb{C}$, Proposition 1.5 shows that $\operatorname{Res}_{t=c} f_{0}=-1$, which contradicts the residue theorem. Therefore, f_{0} is regular in \mathbb{C} and $\left(f_{2}, f_{4}\right)$ have a pole at $t=c$ because $\operatorname{Res}_{t=\infty} f_{2}$ and $\operatorname{Res}_{t=\infty} f_{4}$ are not zero. Proposition 1.5 and Corollary 1.6 imply that

$$
f_{4}=t+\frac{1}{t}, f_{0}=t, f_{1} \equiv 0, f_{2}=-t-\frac{1}{t}, f_{3} \equiv 0
$$

because $\operatorname{Res}_{t=\infty} f_{4}$ and $\operatorname{Res}_{t=\infty} f_{2}$ are odd integers. By substituting this solution into $A_{4}(1,0,0,0,0)$, we can show contradiction.

By using Table 1, we study a rational solution of Type B of $A_{4}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)$.
Lemma 3.5. $A_{4}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)$ has a unique rational solution of Type B which is given by

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{3}, \frac{t}{3}, \frac{t}{3}, 0,0\right)
$$

Proof. Proposition 1.2 implies that f_{i}, f_{i+1}, f_{i+2} can have a pole at $t=\infty$ for some $i=0,1,2,3,4$.

If f_{0}, f_{1}, f_{2} have a pole at $t=\infty$, Proposition 1.2 and 1.3 show that

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{3}, \frac{t}{3}, \frac{t}{3}, 0,0\right) .
$$

If f_{1}, f_{2}, f_{3} have a pole at $t=\infty$, it follows from Proposition 1.2 that

$$
-\operatorname{Res}_{t=\infty} f_{1}=-\operatorname{Res}_{t=\infty} f_{2}=0,-\operatorname{Res}_{t=\infty} f_{3}=1, f_{4} \equiv 0,-\operatorname{Res}_{t=\infty} f_{0}=-1
$$

Lemma 3.1 shows that $h_{\infty,-1}=0$. Furthermore Lemma 3.2 and Table 1 implies that $\operatorname{Res}_{t=c} \hat{H}$ is nonnegative when $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)$. Thus, the residue theorem shows that $\operatorname{Res}_{t=c} \hat{H}=0$. Therefore Lemma 3.2 and Table 1 implies that only $\left(f_{2}, f_{4}\right)$ and $\left(f_{3}, f_{0}\right)$ can have a pole at $t=c \in \mathbb{C}$. Since $f_{4} \equiv 0, f_{4}$ cannot have a pole in \mathbb{C}. If $\left(f_{3}, f_{0}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{3}=-1$ and $\operatorname{Res}_{t=c} f_{0}=1$, which contradicts the residue theorem.

If f_{2}, f_{3}, f_{4} have a pole at $t=\infty$, it follows from Lemma 3.1 that $h_{\infty,-1}=-\frac{4}{9}$, which contradicts Lemma 3.3.

If f_{3}, f_{4}, f_{0} have a pole at $t=\infty$, it follows from Lemma 3.1 that $h_{\infty,-1}=-\frac{10}{27}$, which contradicts Lemma 3.3.

If f_{4}, f_{0}, f_{1} have a pole at $t=\infty$, it follows from Proposition 1.2 that

$$
-\operatorname{Res}_{t=\infty} f_{4}=-1-\operatorname{Res}_{t=\infty} f_{0}=0,-\operatorname{Res}_{t=\infty} f_{1}=0,-\operatorname{Res}_{t=\infty} f_{2}=1, f_{3} \equiv 0
$$

Lemma 3.1 implies that $h_{\infty,-1}=0$. Table 1 shows that $\operatorname{Res}_{t=c} \hat{H}$ is nonnegative when $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)$. Thus, it follows from the residue theorem that $\operatorname{Res}_{t=c} \hat{H}=0$ for any $c \in \mathbb{C}$. Therefore, Lemma 3.2 and Table 1 imply that only $\left(f_{2}, f_{4}\right)$ and $\left(f_{3}, f_{0}\right)$ can have a pole in \mathbb{C}. Since $f_{3} \equiv 0, f_{3}$ cannot have a pole in \mathbb{C}. If $\left(f_{2}, f_{4}\right)$ have a pole at $t=c \in \mathbb{C}$, it follows from Proposition 1.5 that $\operatorname{Res}_{t=c} f_{2}=-1$ and $\operatorname{Res}_{t=c} f_{4}=1$, which contradicts the residue theorem.

By using Lemma 3.3, we prove the following lemma:
Lemma 3.6. $A_{4}\left(\frac{2}{3}, 0,0, \frac{1}{3}, 0\right), A_{4}\left(\frac{1}{3}, 0,0, \frac{2}{3}, 0\right), A_{4}\left(0, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right), A_{4}(1,0,0,0,0)$ do not have a rational solution of Type B.

Proof. If the equations in the lemma have a rational solution of Type B, it follows from Lemma 3.1 that $h_{\infty,-1}<0$, which contradicts Lemma 3.3.

From Proposition 1.1, 1.2 and 1.3, we prove the following lemma:
Lemma 3.7. $A_{4}\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$ has a unique rational solution of Type C which is given by

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}\right)
$$

By using Lemma 3.3, we prove the following lemma:
Lemma 3.8. $A_{4}(1,0,0,0,0), \quad A_{4}\left(\frac{3}{5}, 0, \frac{1}{5}, \frac{1}{5}, 0\right), \quad A_{4}\left(\frac{1}{5}, 0, \frac{2}{5}, \frac{2}{5}, 0\right), \quad A_{4}\left(\frac{1}{5}, \frac{2}{5}, 0,0, \frac{2}{5}\right)$, $A_{4}\left(\frac{3}{5}, \frac{1}{5}, 0,0, \frac{1}{5}\right)$ do not have a rational solution of Type C.

Proof. If the equations in the lemma have a rational solution of Type C , it follows from Lemma 3.1 that $h_{\infty,-1}<0$, which contradicts Lemma 3.3.

Theorem 2.2 proves that if $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ has a rational solution of Type A, the parameters $\alpha_{i}(0 \leq i \leq 4)$ are integers. Theorem 2.4 shows that $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ can be transformed into ($1,0,0,0,0$). Lemma 3.4 proves that $A_{4}(1,0,0,0,0)$ has a unique rational solution of Type A which is given by

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=(t, 0,0,0,0)
$$

Therefore, $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ has a rational solution of Type A if and only if $\alpha_{i}(0 \leq i \leq 4)$ are integers. Furthermore, the rational solution is unique and can be transformed into

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=(t, 0,0,0,0) \text { with }\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=(1,0,0,0,0)
$$

Theorem 2.2 implies that if $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ has a rational solution of Type B , for some $i=0,1,2,3,4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left(\frac{n_{1}}{3}-\frac{n_{3}}{3}, \frac{n_{1}}{38}, \frac{n_{1}}{3}+\frac{n_{4}}{3}, \frac{n_{3}}{3},-\frac{n_{4}}{3}\right) \bmod \mathbb{Z}
$$

where $n_{1}, n_{3}, n_{4}=0,1,2$. Theorem 2.4 shows that the parameters $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ can be transformed into one of

$$
\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right),\left(\frac{2}{3}, 0,0, \frac{1}{3}, 0\right),\left(\frac{1}{3}, 0,0, \frac{2}{3}, 0\right),\left(0, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right),(1,0,0,0,0)
$$

and that the parameters $\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ are transformed into $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)$ if and only if for some $i=0,1, \ldots 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left\{\begin{array}{c}
\pm \frac{1}{3}(1,1,1,0,0) \quad \bmod \mathbb{Z} \\
\pm \frac{1}{3}(1,-1,-1,1,0) \quad \bmod \mathbb{Z}
\end{array}\right.
$$

Lemma 3.5 shows that $A_{4}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)$ has a unique rational solution which is given by

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{3}, \frac{t}{3}, \frac{t}{3}, 0,0\right)
$$

Lemma 3.6 shows that $A_{4}\left(\frac{2}{3}, 0,0, \frac{1}{3}, 0\right), A_{4}\left(\frac{1}{3}, 0,0, \frac{2}{3}, 0\right), A_{4}\left(0, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right), A_{4}(1,0,0,0,0)$ do not have a rational solution of Type B. Therefore, $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ has a rational solution of Type B if and only if for some $i=0,1, \ldots 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left\{\begin{array}{c}
\pm \frac{1}{3}(1,1,1,0,0) \quad \bmod \mathbb{Z} \\
\pm \frac{1}{3}(1,-1,-1,1,0) \quad \bmod \mathbb{Z}
\end{array}\right.
$$

Furthermore the rational solution is unique and can be transformed into

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{3}, \frac{t}{3}, \frac{t}{3}, 0,0\right) \text { with }\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0\right)
$$

Theorem 2.2 proves that if $A_{4}\left(\alpha_{k}\right)_{0 \leq k \leq 4}$ has a rational solution of Type C , for some $i=0,1,2,3,4$,
$\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left(\frac{n_{1}}{5}+\frac{2 n_{2}}{5}+\frac{3 n_{3}}{5}, \frac{n_{1}}{5}+\frac{2 n_{2}}{5}+\frac{n_{3}}{5}, \frac{n_{1}}{5}, \frac{n_{1}}{5}+\frac{n_{2}}{5}, \frac{n_{1}}{5}+\frac{n_{3}}{5}\right) \bmod \mathbb{Z}$,
where $n_{1}, n_{2}, n_{3}=0,1,2,3,4$. Theorem 2.4 shows that the parameters $\left(\alpha_{k}\right)_{0 \leq k \leq 4}$ can be transformed into one of

$$
\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right),(1,0,0,0,0),\left(\frac{3}{5}, 0, \frac{1}{5}, \frac{1}{5}, 0\right),\left(\frac{1}{5}, 0, \frac{2}{5}, \frac{2}{5}, 0\right),\left(\frac{1}{5}, \frac{2}{5}, 0,0, \frac{2}{5}\right),\left(\frac{3}{5}, \frac{1}{5}, 0,0, \frac{1}{5}\right)
$$

and that the parameters $\left(\alpha_{k}\right)_{0 \leq k \leq 4}$ are transformed into $\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$ if and only if for some $i=0,1, \ldots, 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv \begin{cases}\frac{j}{5}(1,1,1,1,1) & \bmod \mathbb{Z} \\ \frac{j}{5}(1,2,1,3,3) & \bmod \mathbb{Z}\end{cases}
$$

with some $j=1,2,3,4$. Lemma 3.7 implies that $A_{4}\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$ has a unique rational solution of Type C which is given by

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}\right)
$$

Lemma 3.8 shows that $A_{4}(1,0,0,0,0), A_{4}\left(\frac{3}{5}, 0, \frac{1}{5}, \frac{1}{5}, 0\right), A_{4}\left(\frac{1}{5}, 0, \frac{2}{5}, \frac{2}{5}, 0\right), A_{4}\left(\frac{1}{5}, \frac{2}{5}, 0,0, \frac{2}{5}\right)$ and $A_{4}\left(\frac{3}{5}, \frac{1}{5}, 0,0, \frac{1}{5}\right)$ do not have a rational solution of Type C. Therefore $A_{4}\left(\alpha_{i}\right)_{0 \leq i \leq 4}$ has a rational solution of Type C if and only if for some $i=0,1, \ldots, 4$,

$$
\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \alpha_{i+4}\right) \equiv\left\{\begin{array}{lc}
\frac{j}{5}(1,1,1,1,1) & \bmod \mathbb{Z} \\
\frac{j}{5}(1,2,1,3,3) & \bmod \mathbb{Z}
\end{array}\right.
$$

with some $j=1,2,3,4$. Furthermore, the rational solution is unique and can be transformed into

$$
\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(\frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}, \frac{t}{5}\right) \text { with }\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right) .
$$

We complete the proof of the main theorem.

References

[1] Adler, V. E.: Nonlinear chains and Painlevé equations, Physica, D 73, (1994), 335351.
[2] Gambier, B.: Sur les équations différentielles du second ordre et du premier degre dont l'intégrale est á points critiques fixes, Acta Math, 33, (1909), 1-55.
[3] Garnier, R.: Sur des equations differentielles du troisieme ordre dontl'integrale generale est uniforme et sur une classe d'equationsnouvelles d'ordre superieur dont l'integrale generale a sespoints critiques fixes. Ann. Ecol. Norm. Sup. Ser. 3, 29 (1912), 1-126.
[4] Gromak, V. I.: Algebraic solutions of the third Painlevé equation (Russian), Dokl. Akad. Nauk BSSR., 23, (1979), 499-502.
[5] Gromak, V. I. Reducibility of the Painlevé equations, Differential Equations 20, (1983), 1191-1198.
[6] Kitaev, A. V., Law, C. K. and McLeod, J. B.: Rational solutions of the fifth Painlevé equation. Differential Integral Equations, 7, (1994), 967-1000.
[7] Matsuda, K.: Rational solutions of the A_{4} Painlevé equation. Proc. Japan Acad. Ser. A. 81, No. 5, (2005), 85-88.
[8] Mazzocco, M.: Rational Solutions of the Painlevé VI Equation. Kowalevski Workshop on Mathematical Methods of Regular Dynamics (Leeds, 2000). J. Phys. A., 34, (2001), 2281-2294.
[9] Murata, Y.: Rational solutions of the second and the fourth Painlevé equations. Funkcial. Ekvac., 28, (1985), 1-32.
[10] Noumi, M., Yamada, Y.: Affine Weyl Groups, Discrete Dynamical Systems and Painlevé Equations. Comm. Math. Phys., 199, (1998), 281-295.
[11] Noumi, M. and Yamada, Y.: Higher order Painlevé equations of type $A_{l}^{(1)}$, Funkcial. Ekvac. 41, (1998), 483-503.
[12] Okamoto, K.: Studies on the Painleve equations. III. Second and fourth Painleve equations, P_{II} and P_{IV}, Math. Ann. 275, no. 2, (1986), 221-255.
[13] Okamoto, K.: Studies on the Painlevé equations. I. Sixth Painleve equation P_{VI}, Ann. Mat. Pura Appl. (4) 146, (1987), 337-381.
[14] Okamoto, Kazuo.: Studies on the Painleve equations. II. Fifth Painleve equation P_{V}, Japan. J. Math. (N.S.) 13, no. 1, (1987), 47-76.
[15] Okamoto, K.: Studies on the Painleve equations. IV. Third Painleve equation $P_{\text {III }}$, Funkcial. Ekvac. 30, no. 2-3, (1987), 305-332.
[16] Painlevé, P.: Sur les équations différentielles du second ordre et dórdre supérieur dont l'intégrale générale est uniforme, Acta Math. 25, (1902), 1-85.
[17] Tahara, N.: An augmentation of the phase space of the system of type $A_{4}^{(1)}$, Kyushu J. Math. 58, no. 2, (2004), 393-425.
[18] Veselov. A. P and Shabat. A. B: A dressing chain and the spectral theory of the Schlesinger operator, Funct. Anal. Appl 27, (1993), 81-96.
[19] Vorob'ev, A. P.: On the rational solutions of the second Painlevé equation, Differential Equations, 1, (1965), 58-59.
[20] Yablonskii A. I. On rational solutions of the second Painlevé equation (Russian), Vesti. A. N. BSSR, Ser. Fiz-Tekh. Nauk., 3, (1959), 30-35.

