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Abstract—in this paper, we develop a new multiscale modeling performance [5]. For instance, performance predictions based
framework for characterizing positive-valued data with long- on classical traffic models are often far too optimistic when
range-dependent correlations [/ f noise). Using the Haar wavelet .o nnared against actual performance with real data. Fractal

transform and a special multiplicative structure on the wavelet traff dels h ided i insiahts int i
and scaling coefficients to ensure positive results, the model raflic models have provided exciting new Insights into net-

provides a rapid O(N) cascade algorithm for synthesizingV- Work behavior and promise new algorithms for network data
point data sets. We study both the second-order and multifractal prediction and control.
properties of the model, the latter after a tutorial overview of The fractional Brownian motion(fBm) B(t) has been the

multifractal analysis. We derive a scheme for matching the model ,~ct broadly applied fractal signal model [5]-[7]. Its power
to real data observations and, to demonstrate its effectiveness,,. . . . N . . Y
lies in its simplicity: fBm is statistically self-similar

apply the model to network traffic synthesis. The flexibility and
accuracy of the model and fitting procedure result in a close fit to jd g

the real data statistics (variance-time plots and moment scaling) B(at) = a" B(t). (1)

and queuing behavior. Although for illustrative purposes we o . L . . .
focus on applications in network traffic modeling, the multifractal  Thus while it has rich statistical properties, it remains
wavelet model could be useful in a number of other areas amenable to a tractable analysis. The fBm is not stationary,

involving positive data, including image processing, finance, and put its increments form the stationafyactional Gaussian

geophysics. noise (fGn) process. When thelurst parameterd > 1/2,
Index Terms—Long-range dependence, multifractals, network fGn exhibits LRD.
traffic, positive 1/f noise, wavelets. N samples of fGn can be simulated exactly via direct

Cholesky factorization@(N?) computational complexity) [4]
or Levinson’s recursion®(N?) complexity) [8]. These costs
can become overbearing, especially in networking applications
where often N > 10°. For such problems, approximate
synthesis techniquesD(N) complexity) based on wavelets
HE DISCOVERY of thefractal, self-similay or 1/f have been developed.
nature of many phenomena has led to exciting break-The discrete wavelet transform represents a one-dimensional
throughs in a variety of scientific disciplines, including1-D) real signalX(¢) in terms of shifted and dilated versions
physics, chemistry, astronomy, biology, meteorology, hydrabf a prototype bandpass wavelet functigift) and shifted
ogy, and soil science [1], [2]. In signal and image processingersions of a low-pass scaling functias(¢) [9], [10]. For

fractals have been applied in fields such as computer graphigsecial choices of the wavelet and scaling functions, the atoms
texture modeling, image compression, and pattern recognition

[3], [4] Pin(t) =222t — k) (2)
Fractal models have made a major impact in the area of bin(t) == 2242t — k),  jkeZ (3)

communications recently, particularly in the area of computer ) ]

data networks. As the work of Lelare al. [5] and subsequent for_m an orthonormal basis, and we have the signal represen-

studies have demonstrated, network traffic loads exhibit fractafion [9], [10]

properties such as self-similarity, burstiness, #&mly-range o0

dependencéRD). Inadequately modeled by classical Poisson ~ X(8) = > _ Us xdsn(®) + D > Wisthin(t)  (4)

or Markov models, these properties strongly influence network k j=Jo k

I. INTRODUCTION

A. Fractal Signal Models

Manuscript received February 1998; revised September 1998. This W(VMlthz
was supported by the National Science Foundation under Grant MIP-
9457438, the Office of Naval Research under Grant N00014-95-1-0849, W, = /X(t)z/;jk(t) dt (5)
DARPA/AFOSR under Grant F49620-97-1-0513, and Texas Instruments. The ’ ’
material in this paper was presented in part at the IEEE-SP International
Symposium on Time-Frequency and Time-Scale Analysis, Pittsburgh, PA, Ujp = /X(t)¢j7k(t) dt. (6)
October 1998.
The authors are with the Department of Electrical and Computer Engi- o L ) o
neering, Rice University, Houston, TX 77005 USA (e-mail: riedi@rice.edu; The equality is in the sense of finite-dimensional distributions.
mcrouse@rice.edu; vinay@rice.edu; richb@rice.edu). 2We consider the signak (¢) to be random and so use capital letters for
Publisher Item Identifier S 0018-9448(99)02265-8. all quantities derived from it.

0018-9448/99$10.001 1999 IEEE



RIEDI et al.: MULTIFRACTAL WAVELET MODEL WITH APPLICATION TO NETWORK TRAFFIC 993

1) of these qualities are explicitly non-Gaussian. Second, many
22 | 0k signals exhibit LRD but also display short-term correlations
m , and scaling behavior inconsistent with the strict self-similarity
O w27 kv1)2? of (1).
Za - Yl B. A Multifractal Wavelet Model (MWM)
0 In this paper, we develop a new wavelet-based signal model

0" k2 Ldpkerpo?
@

for positive, stationary, and LRD data. While characterizing
positive data in the wavelet domain is problematic for general
wavelets, for the Haar wavelet, we have the simple condition:
X(t) is positive if and only if|W; ;| < U; ; for all j, k.

In the multifractal wavelet mode(MWM), we ensure a
positive signal output by modeling the wavelet coefficients
as Wy = A;U;k, with the multipliers A; ;. independent
random variables supported dr1,1]. For simplicity, we

Q+1,2k+1 chooseg (beta) and simple point mass distributions for the
multipliers.

The MWM flows as a multiscale, coarse-to-fine synthesis
down the tree in Fig. 1(b): given the approximationX¢t) at

I{+2,4 Q+2,4k+2 Q+2,4k+3 resolution2~/ (thel/; ;,), we compute the wavelet coefficients
Wir = A; U, with random A; ;. The approximation to
(b) X () at resolution2=U+L) (the U;41 1) is then obtained from
Fig. 1. (a) The Haar scaling and wavelet functions;. (t) and v; x(t). scaled sums and differences of g, andW; ;.. This process
(b) Binary tree of scaling coefficients from coarse to fine scales. can be iterated until any desired resolution/signal-length is

reached; the total cost is a meade(N) operations for an
N-point output.

For a wavelets(t) centered at time zero and frequency Like fGn models, the MWM can closely model the power
fo, the wavelet coefficieni¥; , measures the signal contenspectrum, and hence the LRD, of a set of training data if
around time2—7k and frequency2’ f,. Thescaling coefficient the variances of the multipliets; ;. are chosen appropriately.
U, , measures the local mean around tigmé k. In the wavelet Unlike fGn models, the MWM can also match positivity and
transform,j indexes thescale of analysis:.J, indicates the higher order statistics due to its multiplicative construction.
coarsest scale or lowest resolution of analysis, and lafger For example, Fig. 2 compares real data (Bellcore Ethernet
correspond to higher resolutions of the analysis. packet interarrival data, August 1989) with synthetic MWM

The Haar scaling and wavelet functions [see Fig. 1(ednd fGn data, at different aggregation levels. Both models
provide the simplest example of an orthonormal wavel&tatch the mean, variance, and correlation decay of the real
basis. Because of (3), the supports of the fine-scale scalfi@gfa. Evident from the figure are the large number of (un-
functions nest inside the supports of those at coarser scaf&geptable) negative values of fGn, caused by the real data
this can be neatly represented by the binary tree structurePging a high standard deviation to mean ratio. The MWM
Fig. 1(b). Row (scale) of this scaling coefficient tree containsdata much more closely matches the chara_cteristiqs of Fhe real
an approximation taX (¢) of resolution27. Row j of the data. Moreover, a length*® MWM synthesis required just
complementary wavelet coefficient tree (not shown) contaiffght seconds of workstation run time, in contrast to eighteen
the details in scalg + 1 of the scaling coefficient tree thathours for a Levinson fGn synthesis.
are suppressed in scafe In fact, theU;, ; consist simply
of scaled sums and differences of tbig; and W 4. C. Cascades and Multifractals

The wavelet transform closely approximates the The multiplicative construction of the MWM process is
Karhunen-LeVe transform for fBm and fGn [11]-[13]. This reminiscent of thebinomial measurea classicamultifractal
fact has been leveraged into efficient approximate fBm apglocess. Multifractals were first introduced to model dissipa-
fGn models [14]: we posit that the wavelet coefficieM5 . tion of energy in turbulence [15], [16] and have proved well-
are simply independent zero-mean Gaussian random variaygied to modeling nonhomogeneous phenomena [17], [18].
with power-law decaying variancear(W; ;) o 2777, with  More recently, the multifractal nature of network traffic has
v =2H 41 for fBm and~y = 2H — 1 for fGn. been demonstrated convincingly, firstin [19] and subsequently

Unfortunately, despite their great simplicity, fractal modin [20] and [21]. The beauty of the multifractal formalism
els such as fBm and fGn have significant limitations fdias motivated considerable research effort in mathematics
modeling certain types of natural and man-made process2]-[32]; however, few multifractal data models have been
First, fBm and fGn are Gaussian models, whereas many LRIgveloped to date.
processes, including network traffic, turbulence, financial data,In the most simple terms, multifractals possess a local
and images, are inherentlgositive and oftenspiky Both smoothnessd, that depends om in an erratic way. Equiv-
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Fig. 2. Interarrival times of groups of packets of (a) Bellcore August 1980ag data [5], (b) one realization of the multifractal wavelet model (MWM)
synthesis, and (c) one realization of fGn synthesis. The top, middle, and bottom plots correspond to interarrivals of 100 packets, 10 packetkeind 1 pa
respectively. The ten- and one-packet plots correspond to the last tenth of the data from the 100- and 10-packet plots, respectively, as irdicated by t
vertical dotted lines. Approximately 30% of the fGn values are negative.

alently, multifractals have moments that scale nonlinearly. Byultiplicative cascades and reveals the relationship between
matching the multifractal properties of training data, the MWNhe MWM and the binomial cascade. We give a brief
can capture and synthesize rare events in addition to globaloduction to multifractal analysis (MFA), relate the MFA
behavior. Random products are “usually” small, but “somée wavelets and LRD, and perform an MFA of the MWM in
times” extremely large. This results in the burstiness se&ection VI. To illustrate the effectiveness of the MWM, in
in Fig. 2(b). Models based on fBm/fGn, on the other han&ection VII, we employ it to generate high-quality synthetic
exhibit a nonvarying behavior in botH, and moments—they network traffic data. We confirm the accuracy of the synthesis
are “monofractal.” in terms of both statistical measures and queuing behavior
With regards to network traffic, self-similar additiveand comment on possible physical reasons for the presence
schemes model traffic arrivals as a mean rate with supef-multiplicative processes in network traffic. We close with
imposed fGn fluctuations. This agrees with the conception af discussion and conclusions in Section VIII. In Appendix
traffic as the superposition of individual components and & we give a tutorial review of the MFA. The proof of the
accurate on large time scales. Multiplicative models, on tmeultifractal formalism for the MWM appears in Appendix B.
other hand, represent traffic arrivals as the product of random
multipliers, which mimicks the partitioning of total traffic Il. FRACTALS, SCALING, AND WAVELETS
throughput into parts. This point of view is appealing when

considering small time scales [33]. Fractals are geometric objects exhibiting an intricate, highly

irregular appearance on all resolutions [34]. Tiactal di-
mensiondim(FE) [35] measures the degree of irregularity or
roughness of a sef. Here, we are mainly interested in
After some background on fractals and wavelets ifmactal signals, i.e., signals having a fractal graph. Most known
Section Il, we provide the construction and basic propertiésctals areself-similar;if we “zoom” (in or out) of the fractal,
of the MWM in Section Ill. In Section IV, we develop thewe obtain a picture similar to the original. In a deterministic
modeling framework and provide a procedure for fittingetting, this imposes strong restrictions on the fractal, and the
the MWM to actual data measurements. Section V reviewasiest way to obtain such an object is to apply a simple

D. Organization
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geometrical rule iteratively to obtain details up to infinitely The fGn with1/2 < H < 1 has proven useful for signal
fine resolution. Consequently, deterministic fractals consist wfodeling, because it has LRD yet permits tractable theoretical
highly repetitive patterns. Real-world phenomena can rarely bBealysis due to (7). In particular, thH-sssi property (7)
described using such simple models. Nevertheless, “similartygether with (8) imply that

on all scales” sometimes holds in a statistical sense, leading fd

to the notion of random fractals. Gl = m'H G n). (12)

Processes for whickar(Z[n]) = m? 2" var(Z(™[n]) are
termedsecond-order self-similar processgy. For such pro-
cesses, a log-log plot of the variance$f)[n] as a function

For processes, the notion of “similarity on all scales” cagf ;;,—the variance-time plot—is strictly linear with a slope
be made precise in various ways. A very strict one is that gf 2 — 24 [5]. The variance-time plot can be used to detect
self-similar with stationary increment# processY” is H-sssi  the self-similarity and LRD of a trace and can be applied to
if it has Stationary increments and for all> 0 non-Gaussian, nonzero-mean data as §\/e||

Y(at) & oy (1) @)

A. Fractional Brownian Motion and Fractional
Gaussian Noise

C. Wavelets and/f Processes

[cf. ()] . . The inherent scaling property of the wavelet basis is well-
The preeminent random fractal signal model at Ioresesnﬁited for analyzing self-similar processes. Wavelets serve
is the fBm B(¢). This process is uniquely defined through yzing b :

two properties:H-sssi and Gaussianity [7], [36]. The Hurstas an approximate Karhunen transform forl/J pro-

parameter lies in the range< H < 1; smallerH corresponds cesses [11], including fBm [12] and fGn [13]. These highly-
to fBm’s with “wilder” or rougher Io,oking local behavior correlated, LRD signals become nearly uncorrelated in the

Although fBm is useful for theoretical analysis, its increyvavelet domain. This property has lead to the widespread use
9 N ysiS, of wavelets for the analysis and synthesis of fractal and LRD

ments process (for finite increments) .

signals [14].
Gln] .= B(nAt) — B((n — 1)At), (8) In particular, the energy of the wavelet coefficients of a
. . . , continuous fBm exhibits a power-law decay with scale [12].
known adfractional Gaussian noisgGn), is often more useful . )

The variance progression of the wavelet transform of sampled

In practice. Wh"e. ﬂ?,m.|s nons ta‘uoqary, fGn 'S stationary. fBm and fGn does not follow a strict power-law, but rather
For fBm, self-similarity (7) is equivalent to its autocorrela-

. S o . includes scale-dependent factors [12], [13]. Kaplan and Kuo
tion functionr(#, ) 2_ E[B(#)B(s)] having the form [13] have shown that for the Haar wavelet, the variance

ru(t,s) = %(MQH F|sPH e — sPH) 9) progression of the wavelet transform of fGn satisfies

(T —j(2H-1)
or its (generalized) power spectral density behaving as var(Wig) o< 271 : (13)

Pi(f) oc [f|~GHHD [12]. 1t follows from (9) that fGn has \oreover, the wavelet coefficients of fGn are typically much
an autocoereIatlon function less correlated than those of the underlying sampled fBm
o rocess. Kaplan and Kuo use these facts to develop a robust
g = —|At]*H 124 —12H g 2Hy, (10) P P ) P
ralrl 2 AT + 17 4 I | 7). (10) wavelet-based estimator for tlié of an fGn submerged in ad-
As with fBm, fGn has a discrete-time power spectrum thalitive white Gaussian noise. Similar wavelet-based estimators
behaves a¥'¢(f) o |f|~"=Y for f near zero. Thus fBm for H compare favorably with standard estimation techniques

and fGn are often called/f noise [37] and have been applied to practical problems such as
network traffic analysis [14].
B. Long-Range Dependence Wavelets can also be used to synthesize approximafe

While the rigid correlation structure of fGn is somewhagrocesses with _gen_erallzed spectra of thz fm(ry‘i.) o< |77,
restrictive for modeling purposes, the tail decayrefr] has <7 <2 YVh'Ch includes fBm and fGh.Playing off the
proven to be of importance in itself. In particular, it inspiregarhunen—Leve F’mpefty of the wavelet tr.ansform, Worngll
weaker notions of “similarity on all scales” in terms of seconc%;nerat[es Zero-mean, mdepend_ent Gaussian random variables
order statistics only. % With power scaling according to [11]

It is easy to see that (10) decays likg[r] ~ 72" ~2. For var(W 1) o< 2797, (14)
1/2 < H < 1, the correlation is strictly positive and decays so
slowly that it is nonsummable. A proce&swith this property He then inverts the wavelet transform to obtain the syn-
(3, 7z[r] = o0) is said to exhibitlong-range dependencethesized process. Even though the mean and variance of
(LRD), since it possesses strong correlations at large lags. LHB synthesized signal are stationary, this approach generally
can be equivalently characterized in terms of the behavior i&Bults in a nonstationary Gaussian process with time-varying

the aggregated processes 3 Although the Hurst parametéf is sometimes used strictly in the context

1 km of fGn, we will view H as a variance-time plot parameter to characterize
Z(m) [n] - Z Z[L] (11) LR;D processes in genera!. . .
Processes corresponding to a wider range’sfcan also be synthesized,

i=(k—1)m+1 using wavelets with regularity greater than two [12].
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correlation function (see Section IlI-D). However, thime- for £ = 0,--.,27™ — 1. Equation (15) is similar to (8) with

averagedcorrelation and spectrum do approximate that of At = 277,

1/f process [11]. Though only approximate, this method’s To be useful in real applications, our model must be simple,

O(N) computational cost compares favorably with (heV?2) produce a fast analysis and synthesis, and closely match the

cost of the Levinson algorithm for exact synthesis [8] and th@ocess’s positive, hon-Gaussian marginals and its LRD. We

O(N3) cost of direct Cholesky factorization [4]. will now show how this is possible using a simple Haar
wavelet construction of the increments procésg) [k].

D. Moving Beyond fBm

Although fBm and fGn are powerful and tractable signa'?‘ - Positivity Through Multiplication

models, their strict self-similarity is too restrictive to ade- Wavelet-domain modeling of positive processes is com-

quately characterize many types of signals [19], [38]. Fd¥icated by the fact that the wavelet coefficient constraints
instance, we have the following. required to ensure a positive output are nontrivial. Quite

1) Many signals possess significant LRD, but display shome contrary for the Haar wavelet, however. For the Haar

term correlations and scaling behavior inconsistent Wi@{avelet, t_helscallng ‘::m(;j wgvelet transform coefficients can
strict self-similarity. € recursively computed using

2) Ir) many signals, the s_caling be_hgvior of moments as the Ujp = 2_1/2(Uj+1,2k + Upyroke1) (16)
signal is aggregated is a nontrivial (nonlinear) function
of the moment order. and

3) Many signals have increments that are inherently posi- Wjg =22 (Ujsak — Ujpr41)- 17)
tive and hence non-Gaussian.

Signals with th ties fall naturally into the cl &thhermore, in the Haar transform of positive data, we know
Ignas wi ©se properties fal natraty into e ciass ghat ail U;x = 0, since eaclU; ;. equals a scaled local mean.
multifractal processesMultifractal signal models are posmveR : ’

measures or distributions possessing self-similarity but non_earranglng (16) and (17) to

homogeneous scaling. The goal of this paper is a multifractal Uigr0k = 2_1/2([]]',k + W)

extension of traditional fBm and fGn signal models suitable f

analyzing, characterizing, and synthesizing positive processes 12

with LRD. As with fractals, we will find the wavelet transform Ujti,2641 = 2 (U = Wik) (18)

useful for consiructing and analyzing our model. we thus find a simple constraint to guarantee that the process

is positive
lll. A M ULTIFRACTAL WAVELET MODEL W, k| < Uj g (19)

The primary goal of this paper is to develop a wavelet- ) o
domain model for a positive stationary LRD sigr@{t) and Although we havg _derlved (19_) as a necessary condition, it is
its integral D(¢). (The integral will be more convenient for€asy to see that it is also sufficient. For more general wavelet
the analysis in Section V.) systems (with longer, overlapping wavelets), the conditions

In practice, we will work with a discrete-time signaf™[x] are considerably more complex. ,
that approximates’(t) at resolution2—". To reflect this in  We wish to build a statistical model for the’; ;’s that
the wavelet transform, we replace the semi-infinite sum in (&jtomatically incorporates (19). This leads us to a simple
with a sum over the finite number of scales< j < n, Multiplicative signal model. LetA;; be a random variable
j,n € Z.. Here, we also set, without loss of generalitySuPported on the interval-1,1] and define the wavelet
the coarsest scald, = 0, meaning that the first sum incoe€fficients by
(4) reduces to the single terii ¢¢o.0. This corresponds to
a single scaling coefficient tree approximatidg¢) on the
interval [0, 1]. While we will emphasize this case in the seque|n section 11I-D1, we will place some additional constraints
in certain cases (as in Section IV-D below), we will find ign the Ajy.
convenient to employ a forest dt trees rooted aft scaling  Themultifractal wavelet modeMWM) consists of the Haar

coefficientsUo x, k = 0,1,---, R—1. In this case, the processyayelet transform and the structure constraint (20).
C(¢) is assumed to lie in the intervd, R].

Using the Haar wavelet, the discrete prog%@ [k] takes g sy nihesis Procedure
values that correspond to the integral @ft) in the interval ) ) )
[k2=™, (k +1)2~"]. Such processes have a natural interpreta-The MWM can be interpreted as a simple coarse-to-fine

Wj,k = Aj7kUj7k. (20)

tion as an increment process synthesis running as follows (see Fig. 3):
1) Setj = 0. Fix or compute the coarsest (root) scal-
C™k] == D((k+1)27") — D(k2™) ing coefficientlU, o (modeling of Uy o is discussed in

(o2 Section IV-D).
:/ Ct)dt=2""?U,,  (15) 2) At scalej, generate the random multiplies; , and
k2—n ’ calculate eachVv; 5, via (20) fork =0,---,27 — 1.
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J > 0 [see Fig. 3(a)]. Let;, j > 0, be the variable indexing
the possible shifts of the descendanté/pt, at scalej. We can
relate the shiff; of a scaling coefficient to the shift of one of

its two direct descendants (childrey), 1 via k;j 1 = 2k;+k;,

with &% = 0 corresponding to the left descendant drjd= 1

the right descendant [see Fig. 3(a)]. From this, we can express
k; as a binary expansion in terms of the(i =0,---,j — 1)

j—1
k= k27 (22)

=0

Moreover, k; = Lkﬂ'—;lj andk; = kjy1 — 2ij2+lj, with |z]
the largest integer less than or equalztoNote that fixing a
sequencé:; specifies not only:;, but a “line of descendants”
of Uiy, (¢ =0,---,7) from Up o down toUj .

Using this notation, we can derive closed-form expressions
for the MWM wavelet and scaling coefficients.

Proposition 1: Define the wavelet coefficients of the Haar
wavelet system through (20), with the random variables
supported orj—1, 1]. We then have the general relations

j—1
—i/2 1254
Ujp, = 2792000 [ [1 4 (1) Ai s ] (23)
(b) =
Fig. 3. (a) More detailed tree structure of scaling coefficients. (b) MWM -1
construction. At scalej, we form the wavelet coefficient as the product —j/2 %
W,k = A; 1Uj r, with A; ;. a random variable distributed [r-1, 1]. Then, Wj:kj =2 / Aj:kj UO,O H [1 + (_1) ZAi,kf]- (24)
at scalej 4 1, we form the scaling coefficientS; 1 o, andUj; ox41 as i=0

sums and differences @f; ;, andW; ; (normalized byl/v/2).
D. Properties of the MWM

3) Atscalej, usel/; . andW, ;. in (18) to calculaté/; 1 o 1) Additional Constraints on the MultipliersThe  Haar
andl/, 1 241, the scaling coefficients at scajer 1 for wavelet coefficients of a stationary signal will be, using (5),
k= 07__7_72j _ 1 identically distributed within each scale witk[V; ;] = 0.

To model these properties in the MWM, we will assume that,

within each scalej, we have the following:

y’:l) The multipliersA; ,, k=0, ---,2/~1 areidenticallydis-

4) lterate steps 2) and 3), replacingby j + 1 until the

finest scalej = n is reached.

Since we generate the scaling coefficients simultaneousl | . |
with the wavelet coefficients, there is no need to invert the  Uibuted according to some random variablg;) <
wavelet transform. The finest-scale scaling coefficients are in [-1,1]. .
fact the MWM output process, i.eG™[k] = 27721, 4, b) The A(;) are symmetricabout zero.

k =0,--.,2* — 1. The total cost for computingd MWM c) (Simplifying assumptlo_n) Theﬁlj,_k are independenbf
signal samples i©(N). both_ the coarsest spalmg coefficieliy o and the A;

Because of the simple structure of the Haar transform, Steps N finer scaled > 5.

2) and 3) above can be combined, eliminating the wavelet2) Marginal Density and StationarityUnder the above as-

coefficients altogether sumptions, Proposition 1 leads us to the marginal density and
stationarity properties of(*)[k]. Settingj = n in (22) and
Uy pron = <1 + \gj”“>lfj,k (23), and setting: = k,, in (15) yield$
n—1
and . COE] = 27" Uno [] (1+ (1% A54,)
Uosanns = (77 ) @ =
L2 [T (1+4g)- (25)
C. Closed-Form Coefficient Expressions j=0

Because of its simplicity, we can easily obtain explicithus C()[k] is first-order stationary and identically dis-
formulas for the MWM's fine-scale Haar wavelet and scalingibuted. Note that without the requirement thai;, be
coefficients in terms of the scaling coefficients and multipliers. . . ) .

. .. . . Strictly speaking, for our development we need only assume independence
at coarser scales. We begin by d(?flnlng an |_ndeX|n9 .SCheHIlﬁwg “lines of descendants.” That is, multipliers on different scales can be
to relate the coarsest-scale scaling coefficiéfaty to its dependent as long as one is not a descendant of the other.
“descendants” at finer scales, the scaling coefficidnig, 6The symbol 2" denotes equality in distribution.
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symmetric, the marginal distribution 67 [%] would depend be shown that this model corresponds to (20), again with
on k£ and (25) would not hold. Hence, symmetry of thehe A;;'s identically-distributed within each scale, but with
multipliers is key for modeling stationary processes. eachA, ;, distributed according to a mixture density dependent
However, C™[k] will not be second-order stationary inon the value ofU; .. Although this model proves to be
general. Due to the dyadic structure of the wavelet transforguite flexible and accurate for characterizing positive LRD
wide-sense stationarity of(™)[k] is unattainable using adata, it requires iterative maximum-likelihood (expectation-
wavelet-domain model with uncorrelated wavelet coefficienteaximization) training, has numerous parameters, and is dif-
(except in the trivial case of white noise). In the MWM, for dicult to characterize analytically.
fixed shiftm, E[C™ [k 4+ m]C™[k]] will vary as a function
of k in relation to the size of the smallest subtree containing IV. DATA MODELING USING THE MWM
both C™ [k + m] and C™[k]. If the A;; multipliers are
independent and identically distributed (iid), then the Sma”?&
the subtree, the stronger the potential correlation.
Given our independence assumptions, the moments
C™[k] are readily calculable from (25) via

To complete our model, we now specify probability density

nctions (pdf’'s) for the coarsest scaling coefficiéft, and

fo; the A¢; multipliers at each scale. We can use the degrees

of freedom in these pdf's in order to control two key signal

properties. First, we control the correlations and LRD of
n—1 1445\ the output signal?™[k] through the wavelet energy decay.

E[C™[k]] = B[UZ,) H ]EKTJ) } (26) Second, we control the higher order moments and marginal
5=0 pdf of C™[k] through the scaling coefficient moments.

As we increase the number of scales in the wavelet
transform (n — oc), an appropriately scaled version ofA. Controlling the Wavelet Energy Decay
C™[k] converges to a lognormal random variable as long To approximate the correlation behavior of a target signal,
as E[log(A(;))?] is bounded forj > 0. This follows from e vary the wavelet energy decay across scale. We choose the
the application tdog(C[k]) of the Berry—Esseen theorempdf's for the A;)’s to control the wavelet coefficients’ scaling
[39], a Central Limit Theorem for nonidentically distributedbehavior via (24). The fact that this scaling behavior allows
random variables. us to model correlations can be explained as follows.

3) Wavelet-Domain Dependency Structuté: we assume  Consider the Karhunen—Ewe properties of the wavelet
that theA; ;’s are independent both between scales and withiransform. Previous work [11], [12], [47] has demonstrated that
scales, then the wavelet coefficients will be dependent, kthe wavelet transform approximately decorrelates or whitens a
uncorrelated. This lack of correlation follows from the facgeneral class of LRD signals, includirig f processes. If the
that terms of the formk[A; ;] factor out of any correlation decorrelation were exact, then specifying the correct variances

calculation, withIE[A;;] = 0. However, a higher order of the wavelet coefficients would fully capture the correlation
dependency structure remains, which is of course key fstructure of the signal. Since this decorrelation is approximate,
preserving signal positivity. we can approximately control the correlation behavior by

While a dependency structure with no correlations beppropriately setting the second moments (energies) of the
tween wavelet coefficients may at first seem somewhat umavelet coefficients at each scale.
natural, such models are not entirely unrealistic. For in- The simplest way to control energy scaling is to fix the
stance, wavelet coefficients of random signals can exhilitergy at the coarsest scdle= 0) and then set the ratios of
minimal second-order correlations (approximately decorrgnergy for the other scales witf) := %7 0<j<n.
lated via the Karhunen-lawe transform), yet still have stronggq, 5 stationaryl/f process, we see from (13) that =

dependencies in higher order moments. For instance, many -1 s constant. Using Proposition 1, we can calculate the
real-world data sets exhibit strong dependencies in the eneNs of the MWM via

of the wavelet coefficients, corresponding to fourth-order

cross-moments [40], [41]. o ]E[WjQ—l,k]
C ]E[Wf,k]
E. Related Work 2]E[A%j_1):|]E[Uj2—1,k:|
Constructions similar to the MWM were developed earlier = 2
in [42] and [43]. A similar multiplicative model fofwavelet ]E[A%j)] E[(1+4;-1) ]]E[UJ'Q—I,k]
coefficients has been developed in [44] and [45], where it is ]E[Aﬁj_l)]
applied to wavelet-domain Bayesian estimation of the intensity = 2]E[A§.)] (1 T ]E[A%J. 1)]) . (27)

of a Poisson process. There, tHe;’s are independent mul-
tipliers that, within each scale, are identically-distributed as To match a given variance decay, we can recursively solve
mixtures of 3 random variables. The primary difference witH(27) for ]E[A%j)] in terms of n; and ]E[A%j_l)] for j =

this work is that we model the data directly, whereas [44] and2,---,n» — 1. We initialize the calculation at the coarsest
[45] model a wavelet-domain prior density for the intensitgcale(; = 0) through

function of a Poisson process. ]E[Wg ]
In other related work, [46] models the wavelet coeffi- B[AY)] = ——°. (28)
cients using a context-based hidden Markov model. It can ]E[Uo,o]
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4 ‘ with 0 < r, ¢ < 1. Although seemingly not as rich as the
3, this distribution has two parameters and thus can match an
additional higher order moment of the signal.

The point-mass distribution has variancer(A) = 2rc?.
The higher order moments dft£4), which are useful for
characterizing the scaling coefficient moments [see (26)], are
given by

E[(#)q} =2"((1-c)?+ (1409
+279(1 - 2r). (34)

a —

Fig. 4. Examples of the pliable pdfs(a) of the 3(p. p) random variable D, Distribution for the Root Scaling Coefficient
A, for different values ofp. Forp = 0.2, A resembles a binomial random

variable, and forp = 1 it has a uniform density. Fop > 1, the density What remains is to model the density & o, the root of

resembles a truncated Gaussian density, with the resemblance increasing i tree in Fig. 3. In theory, this distribution should be strictly

b positive. However, if there are enough scales in the wavelet
transform, we can appeal to Central Limit Theorem-type

B. Controlling the Moments of the Scaling Coefficients arguments (although LRD makes precise analysis somewhat
It is easily shown that the moments of the scaling coeffrumbersome) that the root scaling coefficient is approximately
cients scale according to Gaussian, thus characterized only through its me&aii o]

and the variancear(Uy o). Crucial to this assumption is that
the mean greatly outweighs the variance so that the probability
of a negative value is negligible.

_ ) Although our development has focused on a single wavelet
Through (29) we can control the scaling of the higher ordgfe ith a single scaling coefficietly o, in certain synthesis

(and even negative) moments of the scaling CoeﬁiCie”tS_a&leications it is useful for the MWM to employ several
thus of C)[kl—through the moments of the;)'s. wavelet trees with one root scaling coefficient per tree. For
instance, we may wish to synthesize a trace of ler2gth but

C. Distributions for the Multipliers have only enough coarse-scale information to form a model
We will investigate two distributions for the multipliers, theover n < nq scales. In this case, we can concaterzite ™

symmetric/3 distribution and a symmetric point-mass distrilength2™ traces, which corresponds to an MWM wit> ="

bution. Both of these distributions are compactly supporteif] coarsest-scale scaling coefficierits ». Of course, an iid

easily shaped, and amenable to closed-form calculations. assumption for thé/ ;. is suboptimal in that it destroys LRD
1) Symmetric Beta DistributionA S(p,p) random vari- over time lags greater tha2*. This problem, along with a

able A, symmetrically distributed over—1,1), has pdf potential solution, is discussed further in Section IV-F.

[48]

E[U]_ 4]

_ 0q/2 , -1
E7,] E[(1+4G-0)] " (9

1+ a)r~1(1 - a)r—! E. Modeling Positivel/ f Noise
By, 2 (%0

gala) = We next investigate how to parameterize the MWM in order

] . ) to model a stationary positive-valudd f increments process
Here B(-, -) is the beta function, and > 0 is a shape factor \yith Hurst paramete, or spectrum decay f~H-1_ |t

(s_ee_ Fig_. 4). For large, theﬁ(p,p) a_pproximates a Gaussiang easily seen from (13) that we should chooge= 227~
distribution [48]. The variance is given by independently of scale. This leads to:

var(A) = E[A%] = L . (31) Proposition 2: Assume that thed; ; in (20) are iid within
2p+1 each scalg (distributed asd;)), supported orj—1, 1], sym-
Combined with (27), (31) tells us how to choose fiieto metric about 0, and such that
obtain the desired scaling behavior as parameterized)yia o2 2
: : 2 E[A2_ ]

Denoting byp;) the beta parameter at scglewe find that ]E[ A%)] _ [ , & 1]) (35)

J 1+E[AZ

; (3-1)
MnIJQQw—n+1W—U2 (32)

o o Then the MWM output process ™ [k] = 2="/21J, , is posi-
When we uses-distributed multipliers, we call the model thetjye and exhibits power-law behavior of the wavelet coefficient

# multifractal wavelet mode{SMWM ). energies (14) with exponeftd — 1. Moreover
2) Point-Mass Distribution: The point mass distribution
we consider is defined at three points lim E[A7)] =2*7*" -1, 1/2<H <1  (36)
]—)OC

PrlA=¢ =Pr[Ad=—=r

33 The first part, i.e., (35), follows from (27). By solving (35
PrfA=0]=1-2r (33) p (35) (27). By g (35)

for the fixed point, we obtain (36). A simple analysis of (36)
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TABLE |
ASYMPTOTIC VALUES FOR THE SHAPE p AND VARIANCE IE(A?) OF THE 3 MULTIPLIERS A; j, As A FUNCTION OF H
H 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
P 0.077 | 0.175 0.301 0.470 0.707 1.06 1.66 2.86 6.47
IE[A%] | 0.866 | 0.741 0.625 0.516 0.414 0.320 0.231 0.149 0.072

shows that forl/2 < H < 1 the iteration is well-defined on positive moments of4; ; are bounded above by those of a
all scales, since the variance 4f;, must lie in[0, 1] for all . random variable with point masses of weigli at —1 and at
If we use a3 distribution for the multipliers, the fixed point 1. The moment scaling of certain data may lead to multiplier
formula for the variancdt[A4?] leads to a fixed point fop moment constraints outside these bounds that cannot be fit
of the form exactly. This could occur, for example, if the data exhibited
_ 92H-1 _ dependencies between thg ;, and U ;.
V. MULTIPLICATIVE CASCADES

Table | provides typical fixed-point values fprand the vari- Lo . AT
ancelE[4?] given the desired. There is no such expression Multiplicative cascades generalize the self-similarity of fBm

. : . fferi flexibili ich li ies.
for the point-mass distribution, since even though the vanan? orering greater eX|b|_|ty an(_j richer scaling properties

. ) entifying the MWM algorithm with a multiplicative cascade
converges, an extra degree of freedom remains available Q

. . bws us to benefit from the accumulated theoretical and prac-
matching higher order moments.
We conclude that the MWM can approximate a positive

tical knowledge of the field of multifractals, including a precise
. understanding of the convergence of the algorithm, properties
ya!u_ed 1/ f process \.N'th Hurst parametey2 < H < 1 to of the marginal distributions, advantages over monofractal fGn
infinitely fine resolution. : / ;
models, and a range of possible refinements and extensions
. [15], [16], [22]-[32], [49]-[57]. The theory of cascades comes
F. Fitting the MWM to Data Measurements with a dedicated set of tools for analysis, both theoretical and
We now develop a procedure for fitting the MWM tonumerical, that we will outline in the next two sections (see
actual data measurements. The first step in the fitting Appendixes A and B for more details).
a wavelet analysis: we compute the wavelet coefficients ofAt this point, our discussion will become decidedly more
the measurements (a length-signal) using a Haar wavelettechnical, mainly because we wish to extend the MWM to
transform algorithm (filter bank, etc. [9], [10]) The numbera continuous-time process. Though indispensable for a true
of wavelet scales in the transformis chosen as mentionedunderstanding of multiplicative processes, readers may, at least
below. at first reading, wish to bypass the following two sections for
We requirevar(W; ), j = 0,---,n — 1 and E[UU§ (] to  Section VII, where we present an application of the MWM
fit the MWM via (27) and (28). (Values for the higher ordeframework to computer network traffic modeling.
scaling coefficient moments (29) may also be useful if the
multiplier densities have more than one free parameter.) Theke The MWM is a Binomial Cascade

exist two reasonable approaches for selecting these values. WeL e MWM extends the simple, classical multifractal—the

can either plug in the empiri_cal wavelet variancgs directly, Hinomial measure, [22], [53], [54], [57]—in a natural fashion.
we can assume a parametric model for the variances and $ggy measure, is most conveniently constructed iteratively

the measured data FQ fit the model.. , through a so-calledascadestructure, where it is often ad-
If we plug the empirical moments directly into (27) and (28)y-0sseq as hinomial cascadeAs we will show, its distribu-

we must ensure that we have enough data to collect reliaQis, . ction D, (#) := ([0, +)) coincides with the integrab
statistics. This problem is most pressing for the coarsest-sc She MWM signa'llC[k] ’

wavelet and scaling coefficients, of which we have the fewest.tg jierative cascade construction is illustrated in Fig. 5.
In practice, we set the number of levelsf the Haar ransform g, ing from a uniform distribution on the unit interval of

such that the numbefiV2""| of coarsest-scale wavelet andqa| mass 2, we “redistribute” this mass by splitting it
scaling coefficients is sufficient for estimatirig[\V; ,] and between the t’vvo subintervals of half size in the rafif}
E[UFo]. ) ) to Mi, with M3 + M] = 1. Proceeding iteratively, we
A parametric model for the moment scaling would allow U§yyain after, steps a distribution that is uniform on intervals
to extrapolate the coarse-scale scaling and wavelet coeffici At._ [k2=", (k + 1)2=") and assigns to these intervals the
moments that we have difficulty measuring due to lack ?’ﬁass ’
data. It would also render the modeling more robust and () B B
provide a more concise representation of the data’s behaviorCs ~ [kn] := Dy((kr +1)27") — Dy((kn)27") = ()

Parametric models fon; as a function of scale are currently =My - MpTh e My - M. (38)

under investigation. . .
9 |[;lere we again use the notation (22) at scale n. The tree

In some cases, it may be impossible to exactly match t Fructure of Fig. 3 translates easily into the present situation:
moment scaling of the data using the MWM. The scalin§1 . 9. . . y int . P '
e intervall} lies within the intervald; (i =0,---,n—1)

of moments of the actual data may be inconsistent with theh_ h 1 q W — hen 7i+! is th
possible moments of thet;, multipliers. For instance, the Which form a nested sequence. ff = 0, then 7", 'is the
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1) Ordinary Convergence dP(¢): In the limit the above

M, iterative construction will converge, meaning thatis well

h 1 defined for allt. This is due essentially to two simple prop-
erties of distribution functions such d3: they are increasing
and continuous from the right. Thus it is enough to define
D at all dyadic points, and to take limits from the right at
nondyadic points. At stage, we define D(k2~") through

(38) with the conventionD(0) = 0. At later steps of the
construction, these values remain unchanged due to (39). This
completes the argument.

Let us note that the increme@t™ [k,,] of D between dyadic
points tends to zero as— ~o due to (38) and the fact that the
Fig. 5. lterative construction of the binomial cascade. In the second imagnultipliers are less than one. Consequenilyis continuous.
the productsM; - M give the area of the respective shaded region, i.e., 2) Distributional Convergence Gﬁ'(t): We have con-
the incremencfl) of D over I}, etc. The height of a rectangle of Iengthstructed D through its dyadic incrementéf(")[k] and by

27™ is thus2™ . Cf”. Relation (39) guarantees that the areas add up in t ; o S FiA : -
right way. In particular, the height of the shaded rectangles\i§’ times the Tfassmg to the limit of infinitely fine resolutlo(m - OO)

height of the respective “parent rectangle.” This is how “spikiness” is createk@t€r, we will be mainly interested in the increments
small heights give rise to at least one even smaller child, while large on€8™)[k]. Nevertheless, definingD itself is handy, since
produce at least one even larger child. A more precise statement can be foynds ™ 5 continuous-time process and provides a compact
in Section C of Appendix A from which it can be inferred that in the limit the . .

spikes will actually be infinitely large on a rather large dense subsgtof.  representation of the increment processes (38) and (15) at

various resolutions..
) ) ) S L Moreover, we cannot define a “process(t) with D(t) =

left subinterval of its parent interval ; if &7 = 1, it lies on fot C(s)ds in the usual sense. Indeed, the approximations
th?b”ggtr;erate a rando,, we choose the variouk/; to be Clka™) ~ 2"C[k,] (plotted in Fig. 5) tend either to

9 . o T ! zero oroco (cf. Section C of Appendix A). In particular, the
random variables. Their distributions may dependiand ! oo ) .

; L . derivative D’ of D is zero almost everywhere, as follows from

and are arpltrary, as long as they are positive and provid ) in Section A of Appendix A. Thus the essential growth
that for all j and &, of D happens “at” the points wher®’ does not exist. This

0.75

Mék + Mék =1 (39) explains the spiky appearance of the incremefit®)[k] for
it it large n.
almost surely. This introduces a strong dependency betweerd he proper way to defin€'(¢) is in the distributional sense
“siblings,” i.e., the multipliers at the two child nodes sharing om_1
the same parent. We will require for gl and %; that all /g(t)O(t) dt = lim Z g(k2—n)0(n) %]
multipliers appearing in (38) are mutually independent. We T =0
will call this propertyindependence along lines of descendants 2" 1
A compact way of writing this is = lim > ak27u(Iy)
k=0

if I c I/, thenM} andM; are independent (40)

— [ ott)dute). (42)
As long as the two dependency requirements (39) and (40) _ . o
are satisfied, we are completely free to introduce additiond$ @ particular case, the wavelet and scaling coefficients of
correlation structure. C(t) are properly defined, and it is an easy task to check that
Comparison with Proposition 1 (applied with= ») or, they are indeed given by (23) and (24). _
more pointedly, with (25) reveals that the MWM is a random To emphasize the fact th&t(¢) is not a proper function
binomial cascade. Indeed, settidd) = D,(1) — D,(0) := In the cases of interest here, let us show that Itheorm
Up o and of its wavelet coefficients is infinite, at least in expectation.
Indeed, using Proposition 1 we find after a short calcula-
tion thaﬂE[Zj,kle‘f;kIQ] = 2o X var(Wip) = E[UF o]
E;’ZQ]E[A@)] IT:Zo E[(1 + Agy)?]. For this expression to
remain finite asn — oo, ]E[A%J.)] would have to decay
to zero (asj — oo) due to E[(1 + A;;)?] > 1. This
equirement, however, leads to processes with uninteresting
ine scale behavior, and it certainly does not hold in the
presence of LRD [see (36)].
- ] The fact that the MWM algorithm does not furnish an
B. Additional Properties of the MWM L2-signal in the limit n — oo provides a further strong
Since the MWM_'S a b'.nom'al cascade, known results ON7since the Haar transform is orthonormal, tie norm of the wavelet
cascades transfer immediately. coefficients equals th&2 norm of the output signal.

T+ (=D*—14, 1,
wy, = T E b (@1)

the incrementsOf") [k] of this binomial distribution function
Dy, [cf. (38)] coincide with the increment§)[k] of integral
D of the MWM signal [cf. (25)]. Thus we drop the subscrip{
“y" in the sequel.
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argument toward leaving the usual framework of waveletgith

when performing multiplicative iteration schemes. Given the . 1 .
decay of the wavelet coefficients (cf. Section VI-C) we can o, =~ logy A [Y] (44)
determine in whichBesov spacethe limiting MWM signal A} [V] = [Y((ky + 1)277) = Y (kp2™™)| (45)

C(¢) lives (see Section B6 of Appendix A).

3) Marginals of C®[k]: Our next observation concernsandk, = 0,---,2" — 1.
the marginals of the discrete approximatiGH™[k] to the The smaller thex(t), the fasterY” grows att. Considering
MWM signal C(t). If we assume that the multiplier8/ only ¢ € [0, 1] for simplicity, the frequency of occurrence of
appearing in (38) are mutually independent with finite thired given strengthy at coarse scales can be measured by the
moments, then the logarithms of the increme$’[k] of coarse (grained) multifractal spectrum
D are approximately Gaussian due to the Law of Large 1
Numbers (LLN). A cascade process has, thus approximately(«) := lim lim — IOgQ#{OcZn €la—c,a +s)}. (46)
lognormal marginalg> (™ [k]. Note that these marginals have smonTeon
finite moments of the same order of the multipliers appearitg this setting, fc takes values between zero and one and is
in (38). often shaped like & (concave). The smallefs(«) is, the

The theory of cascades, which in mathematics are addres§ewver” points ¢ act like a(t) ~ «. If a denotes the value
as T-martingales [22], [52], provides a wealth of possible(t) assumed by “most” points then fo(a) = 1 (cf. Section
generalizations. Softening the conservation conditidgfh+ C of Appendix A).
M; = 1 almost surely” to E[My + M;] = 1” (consistency ~ 2) Non-Gaussianity and Higher Order Momentsike any
in the mean), we can use multiplied with lognormal Gaussian process, fBm is completely determined by its second-
distribution. Then, the marginals of the increment process areder statistics. Things are quite the contrary for cascades such
exactly lognormal on all scales. In this case, convergenceas the MWM. Being especially interested in thealing of

guaranteed by martingale arguments. moments, we define theartition function

Also of considerable importance is the possibility to go ) o1
beyond the bln_ary structure |mposed_by the Haar wavelet T(q) := lim — log, E Z ( Ay [Y])q . @)
system and to introduce randomness in the geometry of the n—oo —7n it

construction [24], [25] and—as a particular case—wide sense . .
stationarity in the signal. To describe such systems is, howevdlpte thatT" is always concave. For a typical plot ¢¢ and

beyond the scope of this paper. T, see Fig. 6.
3) The Multifractal Formalism: The multifractal spectrum
VI. MULTIFRACTAL ANALYSIS OF THE MWM fa(a) andT(q) are closely related, as the following quick and

So far we have noted two attractive properties of cascadéity argument shows. Omitting in the sum of (47) all terms
their increment processes are spiky and have non-Gausdihthe ones withyy; ~ « and using (46), we obtain
marginals. Surprisingly, these two properties are strongly e
rglated, and much effort has been expended connecting t_hem Z (Ar [Y])q > Z (Tna)q
rigorously under various assumptions [23]-[32]. The scaling
of moments, which is captured with the simple and efficient
partition functionT(g), acts as the bridge. This function can
be viewed as a concise way of describing various features of
cascades and of processes in general.

kn=0 Qv

~ onfa(a)g—nga
= g~ nlaa—fala)) (48)

; . . . We conclude that we should “exped?q) to be smaller than
After introducing the variousmultifractal spectra f(«) _ fe(a), or equivalentlyfa(a) < go — T(g). Since this
(measures of spikiness) and relating thenTlw), we show g — JGl\), q Yiela) = qo -

holds for all « and ¢, we find

that fBm has a degenerate multifractal structure. It is, thus
of limited use for modeling purposes in view of h.igher order T(q) < f4(q) := inf(ga — fa(a)) (49)
moments. Next, we relate the multifractal analysis (MFA) to «
the wavelet transform of a signal and unravel the connecti
between MFA and LRD. We end this section by computing fa(o) <T*() := inf(qe — T(q)). (50)
the multifractal spectrum of the MWM explicitly. !

A thorough review of the key features of multifractaiThis relation is established rigorously in Section B of Appen-
analysis is given in Appendix A. dix A.

) The transforml™(«) appearing in (50) is called thke-

A. Multifractal Spectra gendre transformIf 7"(¢q) < 0, then we find by simple

1) Spikiness:The strength of growth, also called tHegree calculus that
of Holder coqtinuity of an increasing process at timet can T*(a) = qa — T(q)
be characterized by

and

n , (51)
(T (a)=q at a=T(q).

o 43) We may write this equivalently as the dual formdldg) =
kn2=m—t " go — T*(a), T'(q) = v at ¢ = (T*) (). This is illustrated



RIEDI et al.: MULTIFRACTAL WAVELET MODEL WITH APPLICATION TO NETWORK TRAFFIC 1003

In order to numerically estimat&(q), we will first ignore

the expectation, which is fair for large under an ergodicity
assumption. (This procedure is also viable in more general
circumstances, as we show in Section B4 of Appendix A.)
Then, we seek a relation of the forzfr 7(@ ~ S, (4), which

we obtain numerically from a linear plot ddg, .S;(g) against

i =1--n).

C. Multifractal Analysis and Wavelets

Wavelet decompositions contain considerable information
on the singularity behavior of a proce¥s Indeed, adapting
the argument of [60, p. 291] and correcting for thewavelet
normalization used in this paper, it is easily shown that
[Y(s) — Y(t)| = O(|s — t|*) implies that

[ Y6 (5)ds

if k,, is chosen as usual to satisty2™" < ¢ < (k, +1)27".
This holds for anya > 0 and any compactly supported
wavelet. Given knowledge on the decay of the maximum
of the wavelet coefficients in the vicinity dfand sufficient
wavelet regularity, this relation can be inverted. For a precise
statement, see [60] and [9, Theorem 9.2]. This suggests that
replacing the increments in the definition (43)ft) by the
left-hand side of (53) would produce an alternative description
of the local behavior ofY. In nice cases, we expect the
resulting scaling exponent to be equali@). This could prove
particularly useful for more general classes of processes.

2n/2

=0(27) (53)

o5 0 os 4 15 2 55 3 Let us rejoin the MWM. By construction, we actually

o = know the wavelet coefficients of the MWM sign&l, which
is the distributional derivative of the increasing procd3s
differentiable function such as the spectrum giMWM [(66) with p = 1.66,  Following the above recipe we may define, thusaltifractal

H =0.85]. Seta = T"(¢); thenT™(«) is such that the tangent &, T'(¢)) ~ scaling exponent based on waveléds C
passes through0, —T*(«)). In other words,—T™(«) + go = T'(q) [see

Fig. 6. The Legendre transfortii — T in the simple case of a concave

(51)]. By symmetry, the tangent &&, 7*(«)) has slope; and passes through o (t) -— lim &% [C] ask. 27" ¢
(0,—T(q)). There are two special values @f Trivially, T'(0) = —1, hence ] n—oo  Fn "
the maximum off™ is one. In addition, every positive increment process has n 1 n)2 (54)
T(1) = 0, henceT™ touches the bisector. ag,, [C] = n log, (2 |Wn,kn )
in Fig. 6. Since is typically differentiable and always Since D(t = J, C(s)ds, we expectac)() to be closely
concave, (51) is sufficient for our purposes. More details dglated th( ) Adaptlng (47) to (54) results in
the Legendre transform are given in Section B of Appendix A. ) o1

This relation via t_he Legendre_transform_ is typical in the the- fq(q) lim — 10g2]E Z 2"'1/2|Wn,k|'1 . (55)
ory of large deviations [58], which establishes relations such nTmee — =0

as equality in (50) under the weakest possible assumptions.
In proper terminology.fc is the rate functionof a so-called An analysis using (55) is of particular interest in the context
Large Deviation PrinciplgLDP): it measures how frequentlymc Besov spacesas is explained further in Section B6 of
or how likely the observedy; deviates from the “expected Appendix A. . .
value” @. We will elaborate on this, especially the use of a All general results on the multifractal formalism hold also
theorem of @rtner—Ellis [59] toward an improvement of (50t & and 7, in particular (50) and Lemma 5, Theorem 6,
in Appendix A (cf. Theorems 6 and 9). Lemr_na 7, and Corollary_ 8 of t_he_ Append|?< A. We should
mention that [21] uses this fact in its analysis of cascades.
For the Haar wavelet coefficients of an MWM, we have
Wy . = An 1Uy . Provided that thei,, ; converge in distri-
For the MWM, we haveA7[D] = C™[k] = 27"/2Unk,  pution asn — oo, they do not contribute to the scaling law
and the sum in (47) becomes Tic1(q). For the sum in (55), we have then tHE{S,,(q)] =
271 271 2" E[|Am|?] E[S,(¢)] using (52). Hence
Sul@) = > (AR [D))* Z 2720, k7. (52) )
kp=0 Tie(q) = —q+T(q). (56)

B. Numerical Estimation of’(q)
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Let us assume in addition that there exists> 0 such that argument using the variances has to be corrected to read
|A, x| > € for all n, k. Then,(1/n)logy Ay g, — 0 for all ¢, 27220=A+TE) ~ K[| Z20)|2] = var(ZM) +E[Z]? ~

and using agaire="/2U,, ;, = A?[D] we find var(Z)2/?H=2) L B[Z]?, noting thatlE[Z(™)] is independent
1 of the scalen. Since2H —2 < 0 we may, thus still expect the
&icy(t) = — lim = log, (22U 1, |) same relation (58), at least in the limit of very fine resolution
n—oo 1, i

(small . and ).
The variance-time plot method above is known to be an
reliable (but simple) estimator of LRD behavior [8], while
rgle wavelet method of [37] is more robust. Since we are

=—1+aft). (57)

This is exactly the relation we expect between the scali
exponents of a process and its (distributional) derivative,* ! N
unless the process contains more complex oscillatory behaig@ling with |n9r2ebr[nelnt processes, we need to apply (13):
such as chirps [61]. var(Wj,) = 279271, Recalling that we can obtaii(2)

Differentiating (56), we findf7.;(g) = —1 +T"(g), which {rough (55) and (56), we find by stationaritgr(WV;,) =
is by Legendre transform (51) in agreement with (57). From * E[27[W;i[?] ~ 2792700+Ta@) = 2797®) and the
this it becomes clear that all results on the MFA of the Mwngame relation (58) follows again in the limit to fine resolution
processD(t) translate directly into a scaling analysis of its — ©° _ . _
distributional derivativeC(t). In particular, see Corollary 3, Finally, checking the valu#(2) predicted by theory in (66),

(65) and (66) below, as well as Theorems 9 and 11, and (108 adain find agreement with (58). The same is actually true
for much larger classes of cascade multifractals.

D. Multifractal Scaling of Moments and LRD

The multifractal scaling exponerif’(2) of a processY E. The Multifractal Spectrum of fBm

is closely related to LRD parametéf, since both measure We now show that fBm does not possess a rich multifractal

the power-law behavior of second-order statistiddore pre- Structure. Stationarity of increments and self-similarity yield

cisely,7(2) captures the scaling behavior of the second sampremediately that

moments, whileH captures the decay of the covariances. 2" 1
For a processY with zero-meanincrements, this rela- ]E[Z (Ap [B])*

tion can be made precise. To this end we use the fact k., =0

that H can be measured through a scaling of the sam- = 27 "eH B B(0)|4] (59)

ple variance derived from (12) [2]. Therefore, |1&{k] =

A7[Y] denote the increment process bf at some given and thus

= 2"E[B(27)[]

(finest) resolutior2=". Following (11), we let thenz(™)[k] Bm: T(q) — {4 —1 forg>-—1 60

be the aggregated increment process, i.e., at aggregation level m: T(q) = {—oo forg < —1 (60)

m = 2 the processmZ™[k] = AF'[Y] is the in-

crement of Y at resolutionm/2" = 2¢—", According to T*(a) = {—00 fora<H (61)

(12) the variance ofZ(™ scales asvar(Z(™)/var(Z) ~ 1+H -« foro>H.

m? =2 = 2/CH=2) for an LRD proces¥". On the other hand,  This means that there are no value§t) < H to be

var(Z20) = m2E[lmZM™ ] = 27 E[|AT[Y]P] =  observed. This is somewhat in agreement with a result of Adler

272 2U-mU+T(2) according to (47). Comparing the scalings?] that states that the degree obldér continuity of fBm is

terms2’, we find that2H — 2 = -2+ (14 7(2)), or H everywhere irf0, 1] with probability one. The formula also

T(2) + 1 indicates thatx(¢) > H will be observed. This is due to the

H= (58) fact that the increments of fBm are zero-mean Gaussian on

2 all scales, where there is a considerable probability of finding

for zero-mean processes. For fBm, this is in agreement wiall increments, i.e., large}. In other wordsq?, converges
(60) below. very nonuniformly toa(t) = H.

Multifractal measures such as the MWM sigd&™ [k] are  In conclusion, theT'(¢) of fBm is linear, i.e., a degenerate
not second-order stationary. Hence, LRD cannot be defingshcave function. This captures the monofractal structure of
through the decay of the autocovariances. However, alternatfgen in simple terms. Real-world signals such as network
fractal properties, such as the decay of aggregate variances idffic, however, exhibit truly multifractal behavior, i.e., they
or wavelet coefficients (13)—which are equivalent to LRD ipossess a strictly conca@q) (see Fig. 9).
the presence of second-order stationarity—can still be defined
and calculated. F. The Multifractal Spectrum of MWM

As a further difficulty, processes obtained from cas-

cades have positive increments[k], so that the above We begin by stating a corollary to Theorem 9.

8While we may define an MFA for an arbitrary process as in (43), the _Corolla_ry_3. Consider an MWM as _glven_ In (25.) O.r (38)’
interpretation in terms of Blder continuity is valid only for increasing With multipliers A;; symmetrical and identically distributed
processes with positive increments. Moreover, here we neglect the fact that
T(2) is defined through a limit of arbitrary fine resolutions while LRD is an °Since fBm is not an increasing process, the notion oltler regularityH
asymptotic law for large scales. In other words, we assume that scalingnig introduce in Secton A of Appendix A has to repladg). A wavelet-based
perfect on all relevant scales. analysis usingx and S usually reflects Adler’s result more closely.
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within scale and independent along any line of descendahtaving now two parameters available provides more flexi-
(cf. (40)). Assume furthermore that thd ;y converge in bility. This will be used in Section VII-A to match not only
distribution asj — oc. Then, we have with probability onethe energy decay, i.€Z(2) as is done with thggMWM, but
that also the first negative moment, i.&(—1). Fitting negative
fola) = T*(a) (62) moments results in better matching of small values. These cor-
¢ respond to larger (43), i.e., to negativeg and the decreasing
on the entire interva{« : T*(«) > 0}, i.e., on{ae = T"(g) : part of T* (cf. Fig. 9).
qT’(q) > T(q)}, which corresponds to theinterval bounded  More generally, in a mixture model the moments are convex
by the two values; and g where the tangent &'(q) passes combinations of the moments of the mixing distributions.
through the origin. Thus 7" is readily available for such cases using (65). The
This result follows as a consequence of the work of [22hdditional parameters introduced in this way allow for even
[24], [25], and [32] together with (100) under the additionagreater flexibility.
assumption that thel,,, are all identically distributed. With  In conclusion, the partition functio#’(¢) displays a diverse
Theorem 11 we show in Appendix B how to generalize tharray of statistical properties of a signal in a concise way.
argument of [24] to our case. The parameters of the MWM, however, should not be looked
Let the assumptions of the corollary be in force for théor among theT(g) but rather among the parameters of the
remainder of this section. Then, the multipliées? generating underlying distributions of the multipliers.
a binomial cascade equivalent to the MWM [cf. (41)] are
independent along lines of descendants (40). Also, they are VII. A PPLICATION TOo NETWORK TRAFFIC

identically distributed within scale due to the symmetry of .
A Let us now turn to a problem of considerable current

practical interest—computer network traffic modeling. Data
1+ Aoy (63) traffic models are an invaluable asset to the network analyst.
2 ' In network analysis, model parameters are used to capture
These two facts allow the following calculation, which issnd summarize important characteristics of data traffic. With
the basic step toward calculatiffy q). We denote by}’ the simple models, the impact of various parameters on network
sum over allk,, = 0,---,2™ — 1 and use again the notationperformance can be studied through analytical means [6],
of (22). Then [63]-[67]. In cases where theoretical analysis is intractable,
/ models are routinely used to synthesize test data traces for
E[S,(¢)] = Z]E[(Ml?;)q] ...]E[(Mg)q] simulation purposes [68]. Here, computational efficiency of
, the synthesis becomes as important as the accuracy.
:Z]E[(M(n))q] —EB[(M)1] We begin with some historical remarks. Although LRD
N models have long been known to characterize a variety of
_ ]E[(Mé))q] QnH]E[(M(i))q]_ (64) phenomena,. only reqently has LRD begn pliscovered in dgta
network traffic [5]. This has lead to new insights about traffic
and network performance [5], primarily that high levels of
Let us add now the fact that thé,,) (respectivelyM ™) con- | Rp lead to poor network performance and that classical
verge in distribution to a random variable, sayrespectively models like Markov and Poisson processes are too optimistic
M = (1+ A)/2). Then, we find in their performance predictions. As a consequence, incorpo-
MWM: T(q) = —1 — log, IE[M{] rating LRD i_n traffic models for n_et\_/vork analysig has lead to
— g —1—logy B[(1 + A)] (65) more realistic results, and self-similar models like fGn have
4 82 ’ been suggested for modeling LRD traffic.
As an example, consider titMWM defined in Proposition  Norros [66] surveys the theoretical bounds for the queu-
2 with symmetrical 3 multipliers A,). Since the variance ing performance of self-similar traffic. Here, the total traffic
of the multipliers converges by (36), so does the onlgrriving up to timet is modeled by
parameter p.,, and, hence, the whole distribution. The
limiting random variable A has the standard symmetrical Z(t) = )\H‘\/JBH@) (67)
g distribution, supported orf0, 1]. Its parameter isp =
(22F=1 —1)/(2—22"=1) for 1/2 < H < 1 by (37). Using
the well-known formula for the moments of @ distribution
we find forg > —p

Mp L M0 =

i=1

whereBy is fBm (with Hurst exponent andvar(By (1)) =
1), anda and X are constants. In other words, the incoming
traffic Z(t+h)— Z(t) is assumed to arrive with a mean rate
superimposed on a colored Gaussian noise (fGn) process. The
AMWM: T(q) = —1 — log, I'(p+ ¢)I'(2p) (66) Parametew controls the overall variance.
I'(2p+ ¢)l'(p) The successes of self-similar models such as (67) have
with T(q) = —oc for ¢ < —p. For the point masgé)- lain mainly in their ability to capture LRD while permit-

distribution (33) the obvious formula results using (34) ting ftractable theoretical analysis. However, self-similar mo_d-
els like fBm/fGn have three severe drawbacks: 1) Gaussian

SMWM: T'(q) = g — 1 — logo[r((1 — ¢)? marginals, meaning the process must take negative values;
+ 14+ +(1—2r)]. 2) computational inefficiency for exact synthesis; and 3)
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degenerate multifractal properties. While the first two clearly -14

limit the use of self-similar models for synthesis, it is the ﬁ Pﬁ&iﬁ”eH

object of ongoing research to establish the importance of the =18

third for queuing performance. The MWM exhibits power 5"_18

spectra, marginals, and multifractal behavior consistent with \'\‘g

actual traffic while providing arO(N) synthesis algorithm 2 20 S

for N-point output traces. g S .
In this section, we synthesize network traffic data by training -22 T

the MWM on real data. This data-fitting exercise demonstrates 0 2 4 6 logs( ;o 2 14 16

o (M

the accuracy of the model not only in statistical terms (mul-
tifractal properties), but also through queuing experimentsg. 7. Variance-time plot of the BellcopAugdata “x” and one realization
Though we are not claiming to present a physical mod }De;3MWM synthesis %.” Here, m d_enotes the level of aggregation and
for network traffic, the close fit of the multiplicative process? /(n) the aggregated process defined through (1)
underlying the MWM to the real data provides valuable insight

into the mechanisms of buffering and multiplexing of networkrom linearity is at the very finest resolution of analysis—a
traffic. fact that is enhanced in Fig. 8(b), where the increments of the

Interesting quantities for simulation include packet inteteg—log plot are displayed. With 16 octaves (five decades) of
arrival times, packets-per-time, and bytes-per-time. Paclkeicellent scaling, we can be confident in concluding fi#aig
interarrival times can be converted directly into packets-peis multifractall® The only noticeable deviation from linearity
time by binning the packet arrivals into time bins of thés at the very finest resolution of analysis. The linearity of the
required size, whereas bytes-per-time includes the additiof@j—log plots can be more closely verified in Fig. 8(b), which
information of packet size. Here, we train on a sel pf-like displays the increments of the log—log plot from Fig. 8(a).
packet interarrival time data, since interarrival times, being Extracting T'(¢) using (52) from Fig. 8 and applying the
continuous-valued, are most natural for the MWM. In additior,egendre transform (51), we obtain the multifractal spectrum
analysis of interarrival times avoids the problem of choosinf;(«) of Fig. 9. As indicated by the multifractal formalism
an appropriate time unit as in packets-per-time and bytes-pésee Section VI-A3, Corollary 3, and Theorems 6 and 9), this
time. However, we could as well apply the MWM to approxfunction gives the large deviations from the “most frequent”
imate discrete-valued packet-per-time or bytes-per-time. Fsingularity exponent and thus displays valuable information
these cases, we could quantize the MWM'’s continuous-valuabdout the occurrence of rare events such as bursts (sfhall
output into discrete-valued data or follow the approach of [45Fig. 9 reveals a rich multifractal spectrum. In contrast, fBm

has a trivial spectrum consisting only of one point indicating
that it has the same “burstinesa(t) = H everywhere [70].
A. Synthesis Via Matching 2) Synthetic Data:Having established the LRD and multi-

1) Real Data: We focus on the August 1989 Bellcore Ethfractal characteristics of thpAug trace, we will next model
ernet tracepAug of 10° interarrival times [Fig. 2(a)], as these properties using th#MWM. To train the SMWM, we
measured by Lelanét al. [5]. Although slightly dated, this use the approach outlined in Section IV-F. We choose the
data set provides a well-known benchmark useful for examiftmber of wavelet scales = 16 to synthesize data sets
ing the fractality and LRD of network traffic. of 216 points. This allows us to collect multiple realizations

First, we analyze the properties of the trace. Recognizi®y) the wavelet coefficients and root scaling coefficient, and
its limitations as an LRD estimator, we use the varianc#ius form reliable mean and variance estimates. For the root
time plot (Fig. 7) to obtain a qualitative characterization ofcaling coefficient, we use the Gaussian assumption discussed
the correlations present in the data. From the plot, we find tie Section IV-D.
trace exhibits LRD withil = 0.79. Since the plot is somewhat ~ With trained SMWM in hand, we synthesize 15 length®2
“kinked,” the trace most likely does not exhibit a strict secondgubtraces and concatenate them to form a trace of approxi-
order scaling. As Fig. 2 plainly shows, modelipgugas an mately length-18, the size of the real data set. We now apply
fGn process withH = 0.79 and the same mean and variancthe same battery of tests to this trace as we applied to the actual
leads to nearly 30% of the synthesized data being negati@glicore pAugdata. Fig. 2(b) shows that the synthesized data
The culprit is the large standard deviation to mean ratio 6&ptures much of the gross structure of the Bellcore data at
1.8 of pAug The oft used butd hoc procedure of setting different aggregation levels, including the one-sided marginal
all negative points to zero would clearly result in a procesiensity. In addition, the variance-time plots of Fig. 7 depict
with very different statistics to those required. In general, f{Gan excellent match of the correlation structtie.
models are of limited utility for positive data with small mean
and large variance. 103ince we characterize traffic interarrival times, our result does not conflict

Moving beyond second-order statistics, we measure thith that of [69], which concluded that theytes-per-timeand packets-per-
multifractal properties opAug As discussed in Section VI-B, time of the August 1989 Bellcore traces were not multifractal. Multifractal

. . . scaling of similar quality over five decades has been reported for several TCP
we estimatel'(g) as the slope of a linear fit of the Iog—logtr‘,j‘cesgin [19]. qualty P

plot of the sample mpmentgj(Q) at resolut.|0n2—f aga'_ns't 11We remind the reader that the variance-time plot must be interpreted with
the scalej (52). In Fig. 8(a), the only noticeable deviatiorcare due to the nonstationarity of the wavelet-synthesized data.
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Fig. 9. Multifractal spectra (51) of the BellcogAug data, BMWM syn-

thesis, and a hybrid MWM employing beta distributions at coarse scales and
point masses at fine scales. The spectra were obtained through the Legendre
transform of the scaling of the moments (see Figs. 8 and 10). The close match
in the upper left part, which correspondsdwalues Eslopes of tangents to

2 000000000, 1 the spectrum) between zero and two, indicates thattMe&/M matches these

low (gth)-order moments very well. The divergence of the spectra on the
right indicates that the chance of observing largén the SMWM data is
somewhat too high. This behavior is improved significantly by adding point
mass multipliers in the fine scales.

* + x 0
* + x0

This may be indicative of different phenomena in the fine
N N scales of the real data as compared to the coarse scales.

] Using /3 distributions in the coarse scales and point mass
distributions in the fine scales, we can largely correct this

> 4 © O * + x O

|
H
a
a
a
a
>

—6¢ ! problem, synthesizing data with a minimum value 1~
. while preserving the other features of thRIWM (see Fig. 9).
0 S |10. 15 We choose the point mass parameters (see Section IV-C2) to
scale] match both the wavelet energy decay and the scaling of the
() negative first moment of the real data in (29). We do not

Fig. 8. (a) Scaling of log momentsg,(S;(q)) versus scalg for the 16  claim that the point mass multipliers are realistic—using point
Bellcore interarrival timepAugwith ¢ ranging from—3.2 to 3.2 ang ranging mass multipliers at all scales results in syntheses that look
from 1 to 19, withy = 19 the finest scale. (To compare with Fig. 7, note hat artificial. H ] lv illustrate the fact that
logy(m) = 19 — j.) (b) Increments of the log scaling shown in (a). TheSOMewnat artificial. _ere, W_e s_lmp_y fliustrate the tac a we
closeness of the linear fits in (a), as indicated by the stable behavior of @@n choose the multiplier distributions to better match higher
increments in (b), indicates that the interarrival times are indeed multifractglyder or lower order moments of the data.

We next measure the multifractal properties of the synthegc Queuing Behavior
trace. From the linearity of the log—log plots in Fig. 10(a), i
we see that the synthetic trace exhibits a multifractal scaling,S @ final test of the accuracy of the match of WM
except forg strongly negative ang large. In converting these ©© e PAUg target data, we now compare their queuing
plots into the multifractal spectrum of Fig. 9, we see th ehav'lors. The queuing behavior of traffic is |mpprtant because
spectrum of the synthesized data closely matchesptheg of its mf_luence on _network management algorithms, such as
spectrum fora near one. The close match in the upper leffONnection ad_m|53|on control, that strive to support certain
part, which corresponds tg values Eslopes of tangents duality of service (QoS) demands [71], [72]. o
to the spectrum) between zero and two, indicates that thel "€ Presence of LRD in traffic has been shown to signifi-
AMWM matches these lowgth) order moments very well. cgntly affect queuing performance [65]. For statpnary trafﬁc
The divergence of the spectra on the right indicates that tWéth only short-range dependence (SRD)’ class,lc_al queuing
chance of observing large in the SMWM data is somewhat results for Markov m_odels_ show that the tail of Fhe dlstr|bl_1t|_0n_
too high. Since larger correspond to fast decay, this meangf th_e queu_e—l_ength in a single server queue with deterministic
that the SMWM trace has values that are too small. In facSe'Vice satisfies
the minimum value of the wavelet-synthesized trace is on the
order of 107*2, whereas the minimum gfAugis on the order Pr(Q > z] ~ ¢7"" (68)
of 107°. This is due to the fact that, unlike the coarser s¢hle
multipliers A, , the fine-scalgd multipliers have pdf's with where the positive constaatdepends on the service rate at
significant mass neat1. Clearly, from (25) we see that thisthe queue and the statistical properties of the arrivals process.
results in small values for the synthesized proc€$®)[k]. Unlike (68), fBm-based models for LRD traffic exhibit Weibull
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Fig. 10. (a) Log-log moment scaling and (b) incremental scaling for the 0 20 40 60 80 100
BMWM synthesized data. (See Fig. 8 for more detail.) The synthetic data buffer size "x" (packets) —
exhibits a linear multifractal scaling, with the exception of strongly negative (b)
q's and largej.
Fig. 11. Here, we partition theAugtrace into 15 subtraces of equal number
of packets and compare their queuing behavior with that of 15 synthesized
tail distributions of the form traces of the same length. In (a), observe that the real subtraces have a wide
variation in tail queue behavior. In (b), observe that the synthesized traces
Pr[Q > a:] ~ 6_5,;27211 (69) display a similar variation in tail queue behavior.

where H is the Hurst exponent [6], [63], [73]. Clearly, weunderlying real process. We compare the queuing performance
see from (68) and (69) that the tail queue probability of seléf thesepAug subtraces against 15 synthetic traces obtained
similar traffic decays at a much slower rate than that of SRibom theMWM in Fig. 11. Note the similarly widely varying
traffic. With the LRD of Ethernet traffic being establishegerformance of both the real and synthetic traces. This result
beyond doubt, it is important for traffic models to incorporatidicates that we should expect such variations and should
LRD, without which the prediction of queuing performancde cautious drawing conclusions from the average tail queue
can be overly optimistic. However, as mentioned earlier, f{Gntshavior.

Gaussian marginals makes it unsuitable forpid@igdata set;  We next compare the queuing performance of the entire
it is meaningless to perform queuing experiments with th@Augtrace with that of 20 traces of approximately the same
data of Fig. 2(c). length (16 points) generated using tHiMWM (see Fig. 12).

In the simulations that follow, we consider the performancehe simulated traces in Fig. 12(a) exhibit a wide variation in
of an infinite-length single server queue with a single trace t&l queue behavior. The results of the previous experiment
input. We assume a constant service rate of 500 packets/s. iRdicate that this is to be expected. We also observe that the
simplicity we assume all packets to be of equal size. average tail queue behavior of the simulated traces matches

The ideal experiment comparing the queuing behavior tfat of the real trace surprisingly well [see Fig. 12(b)]. How-
real world and synthesized traces would be to compute tleer, as the previous experiment suggests, the real data cannot
average tail queue behavior of several realizations of the rbal expected to always exhibit the same queuing behavior as
pAug process as well as several realizations of WM. the average of several simulated traces.

Unfortunately, typically only one realization of the real trace In summary, these queuing experiments demonstrate that
is available. To circumvent this setback, we partition the reaur SMWM synthesized traffic traces not only match real
pAug trace into 15 subtraces each of lengtf packets and traffic in terms of its various statistical properties but also
assume that each subtrace is an independent realization ofithés queuing behavior.
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0 ‘ ; ON periods lead to LRD similar to that observed in actual
Q traffic. Convincing modeling results have made a strong case
—0-5’2\\% ] for this point of view [74], [75]. However, ON/OFF models
» * are accurate only in the limit darge time scaleg¢seconds and
i longer), and they do not account for the actual queuing and
%_15 multiplexing occurring in the network.
g_’/ A complete description of data network traffic requires
=5 -2 understanding of its dynamic nature over not just large but
5’_2 5 alsosmall time scaleghundreds of milliseconds and shorter).
’ The flow of packets over fine time scales is shaped mainly by
=3-[___ 20 full_size simulated traces 1 the protocols and end-to-end congestion control mechanisms
¢ avg. of 20 simulated traces (e.g., TCP) that regulate the complex interactions between the
—3-50 50 100 150 200 250 300 different cqnnections ona n.etwork. Indeed, it is not ha}rd to see
buffer size "x" (packets) — that buffering and multiplexing can create bursts, for instance,
@) when packets arrive at a server at a moderate rate, rest queued
up, and then race off at the service rate. Since the traffic rate
0 ‘ ‘ : " ' is strictly positive, this kind of short-term volatility (spiky
—— avg. of 20 simulated traces . . L
---  pAug trace non-Gaussian behavior) cannot come from an additive process.

The MWM matches this small-scale behavior of traffic.
Rather than modeling the traffic rate as an additive superposi-
tion of components, we model it as a multiplicative partitioning
of the rate of traffic flow The coarse scaling coefficiebh o
provides the mean traffic rate (or equivalently its inverse, the
mean interarrival time) and the multiplications byt A; ; at
each scale [cf. (25)] provide perturbations in the arrival rates
due to the effects of network phenomena at different time
scales, such as speed ups and delays due to traffic protocols,

J

—2-50 200 400 600 800 1000 1200 interference from competing traffic, and the like.
buffer size "x" (packets) — When trained on real network data, the behavior of the mul-
(b) tipliers A; , changes with scale, with extremely low variance

Fig. 12. Comparison of the queuing behavior pAug with 20 full-size at_ C(_)arse S_Cales and high variance at fine scales_. Amazingly,
synthesized traces. Displayed are the tail probabilities of buffer occuparidis iS consistent with both the small-scale behavior of actual
versus buffer size. In (a), observe the variability of the queue performancetphffic and the large-scale properties of the ON/OFF model.
the synthesized traces. In (b), observe that the average queue performance,of: ; : ~
simulated traces and that of the real trace match closely. %t fme Sca!es_’ a; we have alrea,‘dy seen In Sectlons V-B and
VII-A, multiplicative schemes with large variances produce
_ _ bursts like those in real data (recall Fig. 2). At coarse scales,
C. Physical Interpretation the scaling coefficients (which correspond to the arrival times
We have argued for the use of the MWM for syntheof large amounts of traffic) involve only a handful of low-
sizing network traffic in terms of statistical properties (se¢ariance multipliersd; .. From (25) we can write, for exam-
Sections VII-A and B). The quality of the matching challengeRle, at the third-coarsest scale
the current understanding of networking and performance

analysis by suggesting that some of the mechanisms shaping sd Uop
the traffic flow might carry an inherent multiplicative structure. Var = 2 (1 + A(O)) (1 + A(l))
Our motivation for providing a possible explanation for the fd Upo
A . . . ~—(14+A Ay
presence of multiplicative mechanisms is twofold. First, we 2 ( tAo T (1)) (70)

hope that multiplicative models will inspire research in net-

working and trust that they will lead to a deeper understandifidnus for a fixedU ¢ at the coarsest scale, to a first-order
of the forces shaping traffic characteristics. Promising stepsdpproximation, the MWM isadditive at the coarse scales
this direction have already been made in [20], [33], and [38}rovided the random variabled ;) are small in amplitude.
Second, such an explanation will further support the use foreover, theA;, are approximatelysaussiarfor these low-
the MWM network traffic synthesizer. variance (highp) symmetric3 multipliers [48]. Hence, coarse-

It is generally agreed that today’s network traffic is create@solution MWM outputs will exhibit an additive, Gaussian-
by a large number of independent individual sources. A simgike behavior consistent with that of the previously justified
but powerful model assumes that these sources switch betw@WOFF models and notions of client behavior as a superpo-
two states, the “ON” state in which they produce traffic aition of sources.
constant rate and the “OFF” state in which they are silent. Of course, this is not a rigorous physical development of
Aggregating these traffic loads yields the total traffic loadow and why this multiplicative procedure takes place in
observed at, say, a gateway. With this model, heavy-taileghlity. However, our preliminary results are promising and
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suggest where to look for multiplicative cascades: on smalsing the notation of (22), i.e.,

time scales, most likely in the TCP flow-control layer. B B
te k27" (k,+1)277) (72)

VIil. CoNcLUSION we can then simplify by noting that((k,+2)2"") =Y ((k, —

The multiplicative wavelet model (MWM) combines thel)2™") < Y (t + &) — Y(t — &) < Y((kn—o + 2)27712)
power of multifractals with the efficiency of the wavelet-Y((k,_» — 1)27"+2) provided » is chosen such that
transform in a flexible framework natural for characterizz"t! < ¢ < 2772, In summary?
ing and synthesizing positive LRD data. As our numerical L n
experiments have shown, the MWM is particularly suited 1t = lminfHy
to the analysis and synthesis of network traffic loads. In 1 " " "
addition, the MWM could find application in areas as diverse Hy, = n log,| (A%, 1+ AF, + A%, ) Y]]

as f"’?a”Cia! time-series character_izatior), geophysics [usmgTraditionaI multifractal analysis(MFA) of multiplicative
two-dimensional (2-D) and three-dimensional (3-D) wavelets, . ., jo5 aims to describe the singularity structure of processes

; a
and qgadtrees and octtrees], and .texture modeling. Sev?ﬁ?iugh the simpler but more restrictifeexponenta(t) from
extensions to the model hold promise.

: o (43).
1) A parametric characterization of the wavelet-domain o5 mentioned earlier, for fBm we findf, = H for all

energy decay (rather than the current empirical variang€aimost surely; this process has a degenerate multifractal
measurements) would yield a more parsimonious aRfycture. For the binomial measure, on the other haid,
robust model. o ~and a(t) will depend crucially—and discontinuously—an

2) The choice ofj-distributed wavelet multipliersi; . is 1o convince yourself, recall the iterative process of Section V-
not essential. As illustrated by our preliminary work withy 3nd descend first down in the cascade to a poirty
point mass distributions, we can use distributions Wltfbuowing always the smaller of the two multipliers. Then
more parameters to maich both wavelet energy decg¥scend by following always the larger one. The decay rate

and the scaling coefficient moments. _ of the increment ofD, (38), i.e.,a(t), will differ drastically
3) To model correlations in the wavelet-domain, we Cap the two cases.

introduce dependencies between the wavelet multipliersgor 5 measure constructed using a cascadeyi.e:, Dy, the
(for example, in their signs). . range ofa(t) will always be a positive interval containing the
4) Instead of tackling the increments process directly, Wgjue one. Values:(¢) smaller than one correspond to points
could use the MWM as a model for an underlyingyhere D, is not differentiable. If(t) > 1, on the other hand,
Poisson intensity process (analogous to the work gfgn D)(t) = 0, i.e., D, behaves at like the functionz* at

[44]). This could be useful for fitting network traffic . _ o ‘A typical range ofa(t) for a real-world signal might
packets- or bytes-per-time, which are discrete-valugg [0.6,2] or [0.8,1.2].

(73)

LRD processes. The MFA structure can be given either in geometrical or

5) Insights from the multifractal theory can be leveragegatistical terms. Here, we will be mainly interested in the
into more general (e.g., stationary and nondyadic) MWsatistical description.

tiplicative constructions. Before going into details let us note a simple fact about
Clearly, we have not exhausted the possibilities of multiplicahe occurrence of(t) for the deterministic binomialD,. In
tive multiscale modeling. this special case, all multiplier3/;> (see Section V-A and
Section A of Appendix B) are deterministic, i.e., we assume
APPENDIX A that there are two fixed numbers, andm; that add to 1 and
KEY CONCEPTS OFMULTIFRACTAL ANALYSIS thatM;' = my,  almost surely. Referring to Fig. 5 a step in
In this section, we will make rigorous the points left vagu#e iterative construction amounts now to splitting the area of
in Section VI. a region in the fixed proportions “they-th part on the left,
the m1-th part on the right.”
A. Introduction D, being deterministic, we consider notwto be random

The erratic behavior of a continuous procésés) at a in order to apply a limiting theorem from probability theory.

given timet can be characterized to a first approximation by 12For general processes this does not hold. A multifractal analysis (MFA)

comparison with an algebraic function. Tliegree of local with this simplified version will result in a different description of the
’ singularity behavior of the process that can, nevertheless, provide useful

Holder regularity H is the best (largest) such that there is information [32], [70]. If a process has both positive and negative increments,
a polynomial P, such that|Y'(s) — P;(s)| < C|s — t|* for s then the continuous-time supremum in the original versionZof (71)

s ; ; _ cannot be estimated numerically. In this case, the wavelet modulus maxima
SuffICIently close tof. If 3 is a constant, I'ePt(S) - Y(t)’ method provides arguably the most accurate information on locddied”

as is the case with cascades, then regularity [76]. Adapted to detecting singularities of oscillating functions, on
1 the other hand, wavelets have a disadvantage in the MFA of positive increment
H, =liminf ————1log, sup |Y(s)—Y(¢)]. (71) processes: they are not efficient for detecting large valuestbéat correspond
=0 10g2(25) |s—t|<e to more regular parts in the process. This is why we restrict the discussion to

positive increment processes and the simplified versioH of

Fortunately, we can rgplace .the SUPfemumYW +e) = 13As we note later, replacingf(t) by a(t) does not change the outcome
Y (t —¢) for processes with positive increments. Furthermorey cascades.
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Recall that (22) uses the binary digitg for ¢ [cf. (72)]. generalized to broken, or fractal dimensions. First, note that a
Choosing these digits to be 0 or 1 with equal probabilittandomly selectedrobeline in space will most likely intersect
amounts to picking the point randomly with a uniform a given plane, but not a given line. For random fractals this

distribution. The LLN then implies that for almost ll generalizes to: a randoprobe fractal will intersect a second
" given fractal only if their fractal dimensions add up at least to
ap = 1 Zbg? my — ]Et[—logQ mk,_] (74) the dimension of the embedding space. Second, a plane has
Py ! i more degrees of freedom than a line, i.e., a square can be

segmented inte- 62 pieces of sizes, an interval only into
. ~&~1. A fractal will ideally partition into§—" pieces of size
— oo . 6 where+« is its fractal dimension.
a(t) 5 (1082 (m0) + logy (my)). (75) 2) Large Deviation Spectrunfic: In  practice, measure-
Note that this limiting value is strictly larger than 1 unlesgnentof the “burstiness” of a process has to rely on numerically
mo = m; = 1/2. Consequently, the deterministic binomiamore accessible methods and notions than Enter the
measure has zero derivative at almost all poinfBhis brings Statistical description of multifractal structure. To this end we
home a point made in Section V-B: the distributién(¢) = consider a histogram of thej, 's taken at some finite level
1([0,#]) = Pr,[z < #] associated with the binomial measurer. [Recall (74) for a formula ofay;  for the deterministic
has no density, for if it had one it would have to equal zerdinomial measure.] The histogram will show a nontrivial
Again in other words, we cannot writB, (¢ asfo Dj(s)ds, distribution of values that increasingly concentrates around
since the latter is zero for afl the expected value (75) due to the LLN: values other than the
Usually, one is happy with an “almost sure” result such @xpected one must occur less and less often.
(74). Here, we would like to ask two additional questions: It is here that LDP’s [58], [59] turn out to be invaluable. As
(1) can there be points with f converging to a number & generalization of the Chernoff-Cramer bound [77, Theorem
different from (75), and (2) if so, what can we say aboufl-3], which we present below, LDP’s suggest that probabilities
such pointst? Indeed, we find immediately that at= 0 we Of rare events decay exponentially fast. For a sequence of iid
have«(0) = log, m. Actually, we will find the same limit at random variables¥,, with IE[W] < a andPr[W > a] # 0,
all dyadic pointst, since their dyadic expansion shows onlg€tV,, := W1 +--- + W,. Then, we find for ally > 0 that
finitely many 1's. This certainly justifies our quest. Pr[(1/n)V, > a] = Pr[27% > 2749

S ]E[2an]2—nqa
= (E[27"]271)", (78)

hence

B. The Multifractal Spectra

1) Hausdorff Spectrunfy: Ideally, we would like to
quantify the values and frequencies of limitingt). In other Here we have used the Tschebischev inequality and in the last

words, we are interested in the “sizes” of the sets step the iid property. It follows that
Ko ={t:a(t)=a}. (76) (1/n)log, Pr[(1/n)V, > a
This is the geometrical approach to MFA. For fBm, replacing < inf <l log, IE[27""] — qa>
a(t) by the more appropriatéd;, K, is either the whole T >0\ n
line (if « = H) or empty. Consequently, fBm is said to be = in%(logQ E[29Y] - qa). (79)
q>

“monofractal”, since it has only one fractal scaling exponent.
The concatenation of¢ fom-s Y with Hurst exponent?® Theorems on LDP’s generalize such results to arbitrary se-
in the intervalli/K, (i + 1)/ K[ would form a process with quencesV,, and show when the bound is sharp in the limit
Ky = [i/K, (i + 1)/K]. n — oo [69]. For our purposes, we set
For more general processes, the gétsare highly interwo-
ven and each of them may lie dense on the line. Consequently, Vi i=log, AR [Y] (80)
the right notion of “size” is that of the fractal Hausdorff di'yielding o = V,/n as desired. In the special case of the
mension, which leads us to defining tHausdorff multifractal random binomial or MWM.V, can indeed be written as a
spectrum sum as above withv,, = log, M} [cf. (38) and (74)].
Fr(@) = dim(K,). (77) It is important not to confuse the randomness relevant for
the LDP with the randomness ii. Here, we explicitly fix
Unfortunately, Hausdorff dimensions are impossible to calcgne realization (or path) df. Then, we consider the location
late numerically in any real-world situation, and we have tg encoded byk,, as the only randomness relevant for the
rely on the multifractal formalism (coming up next) (100) andDP. Sincek, can take only2™ different values that we
(104) to estimatefy under certain assumptions. assume to be equally likely, probabilitiestimre calculated by
For a definition of fractal dimensions, see [29], [32], or [35]simple counting* As we have just learned, we can expect an
Here, we only mention thatim(£) is a positive real number, exponential decay of “rare event probabilities” such as (79).
and the larger it is the “larger” the sdf. We explain this |, .
To avoid confusion, we will writePr; andIE; to designate randomness

notion of “Iargepess by Compa”ng a plane and aline. Thoug\hh respect to the positiohandPr,., andIE,, to designate randomness with
a plane and a line have integer dimensions, our methods candagect to the process.
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In other words there is reason to hope that the limiting “rate > ¢ with s(ag) = g(ap). We find the value ofg* at
function” f we introduced in (46) and callezbarse-grained ¢o = ¢'(ag) to be [cf. (51)]
multifractal spectrumwill exist:

. 9"(d'(a0)) = aog'(ao) — g(ao). (87)

fa(a) = lim lim —log, Nu(a,€) (81)  For example, the functiop(a) = —|a — 1| + 2 is concave

_ in all points, but it is not differentiable at = 1. Its Legendre
with transform is easily computed: forl < ¢ < 1 we may
onb. [om chooseay = 1 and obtaing*(q) = ¢ — 2 by (86). For

No(@) := 2" Pri[ag, € (a—e,a+e)] B2)  other ¢ we find g*(q) = —oo by applying the definition.
=#{op, €la—e,a+e)}. (83) Remarkably, the Legendre transform gf gives g back.

Indeed,inf,(ga — g* =inf_ a—1)+2) = gla).
(The factor2™ is added for convenience.) This rate functiofqre gengr(glly vf/]e(gxzi?l establilsﬁrilﬁgﬁ(* — (?q*)* )equ!:]iis;

fc is defined (provided the limit exists) for every path¥f ¢q, every concave functiom.

and is, hence, random, i.e., a function af _ . To prove this, let us show first that is a concave function
The counting in (83) relates to the notion of dimension: F)rovidedg is. Indeed,g*(q) < aq — g(a) for all ¢ and a
Ja(a) = 1, then all or at least a considerable part of #lje’'s  py the definition ofg*. Now let us fixa, say, atag. Then,
are approximatively equal ta. More precisely N, () ~ 2. s(q) = aoq — glao) is a linear function that is larger than
Such is the case for me, wmh:HaImo_st surely (see [32]). g* and we have, in the notation of (86)(qo) = ¢*(qo).
Furthermore, if a certain constant fracthn @f 's equala,  \we conclude thay* is concave ing,. Moreover, we see that
we have fg(a) = 1 almost surely, as is the case for the,, ) < 40q—g*(q) (still by the definition ofg*), with equality
concate_natlon_of fBm’s described abqve (see also [70])_. at qo. But this means nothing more tharf*(ag) = g(ao).
Only if certal_n values otyzn are considerably more SPUrOUSEjnally, it is not difficult to see that there is am, (which
than others will we observgs(«) < 1. To draw again an may lie at-cc) as in (86) for everyg with ¢*(go) £ —oc.
analogy, let us assume for a moment tha a vector in Consequentlyg* is concave everywhere.
3-D space. The maximum of¢ in this case will be at the e continue by noting thaf* is alwaysa concave function.
expecteda value with f¢ = 3. If the pointst whereay, IS The reason is simple: there is a concave funcosuch that
approximately equal to a given build a surface (spurious in jig graph is the concave hull of the graphgfSinceg andg
3-D space), therfc(a) = 2 < 3. If they fill a curve only, then paye the same Legendre transform, ig., the claim holds.
Ja(a) =1. So, there is hope thafi:() relates todim(Ka).  However, 7 being concave, the above argument shows that
Indeed it can be shown that [29], [32] applying the Legendre transform g will bring us back to
g, which is in general different frong. In summary:
fir(@) < fal) (84) * ’ i g

Lemma 4: The Legendre transforgi* of any functiong is
for every path. concave. Moreoverg™ = g.
3) Legendre Transformin large deviations, the transform  Sjnce concave functions are necessarily continuous and
that appears on the right side of (79) plays an importake.r almost everywhere differentiable, we might wonder what the

Let g(a) be any function and define itsegendre transform edges ofy* correspond to. As the exampjéa) = —|a— 1|+2
g* by above shows, points of linearity gf(respectivelyg if ¢ is not
. ) concave), correspond to points of nondifferentiability ¢f

g"(q) = a}é}{)\(“q — g(a)). (85)  and vice versa. While this situation holds quite generally, it

] ) _ is instructive to verify it assuming that is C? and strictly

Let us assume first that is concave ato, by which we  oncave §"(a0) < 0) at ap: Using the implicit function
mean that there is a linear functiaiia) = ago ++ such that hegrem, we find indeed thay* is then differentiable at
g(a) < s(a) with equality inag (cf. Fig. 6). This situation is o = ¢'(ao) With (¢*)(q0) = ao.
particularly well suited for the Legendre transform and allows 4) | egendre Spectrurfy,: The spectrumfc, though nu-
us to computey™(go). Note that there might be several merically accessible, is hard to estimate directly on real-world
meeting the requirements. We claim thatlgo) = —r. BUt gata, in particular because of the double limit in (81). Here, the
this follows from the fact thaiiqo — g(a) 2 ago — 5(a) = = | egendre transform in combination with (79) proves useful.
for all « with equality ata = ao. Moreover, we actually found pye to the simple distribution of as used in the LDP, the

that moment generating functiod£[27'»] reduces to a sample
N moment. Thus let us set
9" (90) = aogo — g(ao). (86) .
. . o = — lim —log, S, 88
There is some general wisdom to this: givgrthe Legendre 7(0) oo 182 (@) (88)

transform finds the best linear functienof slope g that lies _ on Vol i
above the functio. The intercept of with thepordinate axis where Si(q) = 2"IE[27], i.e.,
is —g"(q). ~
If we assume now that is concave and in addition Sa(q) =Y (AR Y])™. (89)
differentiable atag, then there can be only one linear function kn=0
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Depending on the context(q) is called thepartition function Theorem 6: Assume thatr(g) exists and is differentiable
or the free energy[15], [78], [79]. Again, we have added afor all real q. Then, the double limitfc(«) exists for all,
factor 2 for convenience. and, moreover
A closer look at (48) reveals that it actually shows that
7(q) < f%. As a matter of fact, it is proven in [32] and [55] fe(a) = fu(a).
that For fBm we obtain the degenerate case of a concave
Lemma 5: For every path ofy” partition function: 7(q) = ¢H — 1 as we will see in an
instant (98). It is consistent witlfy taking only one value
7(q) = fa(a) i=inf(ga — fo(a)). (90) sy (H) = 1. For the concatenation of fBm’s as above we
) ) ] ) find 7(¢) = ming(¢H; — 1), which is again consistent with
As an immediate consequence, the functidg) is concave Fu(Hy) = 1 [70]. Truly concave behavior of(q), on the
and thus continuous and almost everywhere differentiable. o, hand, is found with real data traffic. As a consequence,
It is instructive to see h_ow the quick and dirty argu_ment (48\ere is an entire range of values present, not just a few.
can be_strengthened to yle_ld a lower boundr-¢q). Again, our |, [80] we display estimations of (¢) for fBm obtained by
reasoning can be turned into an actual proof [32]. This imgy,merical simulations. Due to errors, the Legendre transforms
we will collect thek, with «j; - approximately equal t0 SOMe cannot perfectly match the predicted spectrum consisting of

giveq value, saye, for varyingl. Assuming that the' range Ofonly the points(H, 1) and(1 + H,0). The accuracy achieved
a(t) is bounded, we can set := [sup(«(t))/e]. Using (81) is nevertheless convincing.

and observing thag may be positive or negative, we obtain 5) Deterministic Envelopes of Spectr@ften, we would

(94)

m like to use an analytical approach in order to gain intuition
Suo=>_ > (ar ) into or an estimate of whaf. can be expected to look like on
=0 |ay —le|<e/2 a typical path ofY". To this end, we consider notvas well as
m Y to be random simultaneously as we apply the LDP. Fubini
< Z Z g~nlea=le=/2)) leads to the “deterministic partition function” [cf. (47)]
=0 laﬁ(y;gn <(I14+1)e 1 .
m T(q) := —1+ lim — log, B, ,[27""] (95)
< 37 2ntfaormg—niea=la=/2) e
1=0 = nh_l)r;o — log, E[Sn(q)]- (96)
= gn(rtles/2D) = g=nlalie)=fa(le)) It is not hard to show that

=0

< (m+ 1)2n(,7+|q5/2|)2_n info (gor— (@) (91) Lemma 7 ([32]): For any random process we have, with

probability one,
This shows that(q¢) > f%(q) —n — |ge/2|, and sincep > 0 .
ande > 0 can gae) mage( 2’:1rbitrari||y énLaII the argument is 7(¢:w) 2 T(a), for all ¢ with T'(g) < oc. ©7)
completet This is actually enough to determinég) for fBm. Indeed,
The partition functionr(g) is clearly easier to estimate tharsincer is a concave function with(0) = —1 = 7°(0), Lemma
Ja, and it depends in a more regular manner on the data sircémplies that with probability one
it involves averages. Consequently, we introduceltbgendre
multifractal spectrum fBm: 7(q)=¢H -1, forallg>—-1 (98)
fr(@) == 7" (a) = inf (go — 7(q)). (92) Proof: Let us consider first any with finite T'(¢). Given
7€l e > 0 chooseN such thatlE,[S,(¢q)] < 2-T(@=2) for all
Recall (87) for the computation of*. Unfortunately,f;, may 7 > N. Then, sincdimsupa, <}, .y a, for positivea,
contain less information tharfi; since the Legendre back-
transform yields only E, [limsup 2"(T(‘1)_25)Sn(q)}

fela) < 27(0) = fr(a) (93) o

n(T(q)—2¢)
where fZ" is the concave hull offs. Strictly speaking, we <E, Z 2 Sn(a)

have to establish that the limft; actually exists before making nzN

such a statement. A simple application of the LDP Theorem of =Y 2O, S, ()]
Gartner—Ellis [59] makes this rigorous under somewhat more n>N

restrictive assumptions (see the following theorem which is <1/(1-279) (99)

proven in [32] and [55]). Alternatively, we could replace the o _
lim,, .. in the definitions ofr and f& by the mathematically by the deflnlt.|0n of . This allows us to conclude that
more technicalimsup,,___ as it is done in [32] and [55].  almost surelylimsup,, ., 2”025, (¢,w) < oo, hence

15 . . , . 7(q) 2 T(q) — 2¢. This is trivial if T(q) = —oc. It is clear
The argument is not rigorous, singeandz are entangled, i.es, appears . . . L .
in ja” — Iz| < £/2 twice, once as the approximate locationcofind once that this estimate holds with probability one simultaneously

as the error made in this approximation. for all e = 1/m (m € IN) and some countable, dense set;of
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values withT'(¢) < oo. The fact that(g) is always continuous enough regularity we find, using Lemma 7, that an MWM

completes the argument. O
Corollary 8: With probability one, for alla

fu(a) < fala) < fr(a) < T(a). (100)

signal C(t) with identically distributed multipliers is in
Bs(L*) for all s < (T'(w) — u + 1) /v almost surely.

C. Interpretation of Multifractal Spectra

Equality holds for cascades at certain valuesaoés the
following version of Theorem 11 states:

Theorem 9 (Multifractal
Consider the MWM as given in (25) or (38), with multipliersprocess.
Ajy identically distributed within scale and independent () > 1
along lines of descendants [cf. (40)]. Assume furthermore
that the A¢;) (or equivalently theMi(J), 1 = 0,1) converge
in distribution asj — oo. Then, with probability one we
have that

fH(a):fG(a):fL(a):T*(a) a(t) <1

for any countable set af’s with 7*(«) > 0. Moreover, since
fr. andT™ are continuous, they must be equal on the entire B
interval {o : T*(x) > 0}. Ju(a)=1
Remark: It can be shown that all spectra remain unchanged
if of is replaced byH; ([32].
6) Multifractals and Besov Space®esov spaces are also
useful for analyzing the regularity of functions, especially Ja(a) =1
since an elegant description of these regularity spaces in terms
of wavelet coefficients has become available. In [81] it is
shown that the norm of the Besov spaBg(L“) of a process fe(a) < fa(b)
with wavelet coefficientdV; ; is equivalent to

(101)

1/v

(102)

b/u
Uool+ | D <Z 2“’“’2_’I2JWL,€|“>
J k
’ N-shape offs

Roughly speaking, this norm measures the smoothness of order
s in L*, wherew is an additional parameter for making finer
distinctions in smoothness.

Multifractal analysis (using wavelet coefficients) can be
viewed as determining in which Besov spaces the analyzed
process lies. Using a convenient wavelet, defifie) as in
7(q) but with S,,(¢) (see (55)) replacing,.(¢). Then, we find
easily that theB: (L") norm of a path of the process is finite
if su < 7(u)+ 1 and infinite if su > 7(u) + 1.

For (102) to holds must be smaller than the regularityof

We collect here as a summary a few basic properties
of multifractal spectra that follow directly from the above
Formalism for the MWM): definitions and theorems. Her¥, is an arbitrary increasing

Y differentiable att with derivative zero.
In the case of a cascade, the plot Fig. 5
is a graph of the approximative derivative
of D, e, C[K]/2" = 2-n(ei=1) ~
2-n(e=1) _, (, at resolutior2~" neart.
These are points wherg is singular and
has “instant growth”: The plot Fig. 5 will
show heightC™ [k]/2—" = 2—n(e—1)

oo at resolution2—" neart.

This means that at almost all points
a(t) = &. Recall thatx > 1 for increasing
processes such as the binomial distribution
function D.

This says that for a significant number of
k=0,---,2% — 1 we see increments of
the sizeA[Y] = 27" ~ 27na,

The chance to encounter an interval
(K277, (k + 1)27"] with af ~ a is
significantly smaller than findingy ~

b. These chances arg"(/¢(@)=1) and
on(fe(®)-1)  respectively. Both are very
small regardless, unlegs= a.

If this is the case, then the multifractal for-
malism holds, i.e.,f¢ = 7*. This is true
for the MWM and binomial measures. It
may fail, however, e.g., for superpositions
of MWM'’s with different spectra [55].

APPENDIX B

PROOF OF THEMULTIFRACTAL FORMALISM FOR MWM
Here, we outline the proof of theultifractal formalism

the wavelet, i.e., we need vanishing moments as well as (Theorem 9) for the MWM model. We will consider a slightly
continuous derivatives. Given this, Besov norms do not depemre general setting, i.e., we assume only that there are
on the choice of the wavelet basis. Since the multifracttdndom variableﬂ/[é") and Ml("> such thatMé")Jr Ml(") -1

analysis using wavelets determines the Besov spaces thalost surely, and thal/? is identically distributed th’Ejl)

contain the signal, we conclude th&f«) will not depend
on the choice of the wavelet, provided the above regulari
conditions are met.

.{or all n andk,,. This corresponds to choosinly,,) identic7é_llly
distributed asM{™ — M{™. With this, we leave the original

For an MWM signal C(¢) with identically distributed SEtting WhereAc, must be symmetric. We do so in order

multipliers, we can say more.
the wavelet coefficient§V,, ,, of p for any |
mother wavelet are distributed aén7kn2"/2M,§;7 ~~~M,11
with A’Zln,kn independent ofM,iz_ and distributed as¥y .
So, it follows that (56) holds also in this setting with

It can be shown [32] thé?, first study the deterministic qase_and acquaint oqrselves
0, 1]-supported with the methods. In the deterministic case, the requirement
of symmetry would force all4,,y to be zero.

A closer look at (64) yields immediately:

Lemma 10: Consider an MWM as given in (25) or (38)

given by (65) (see [51] for a similar result on deterministiavith multipliers A, ; identically distributed within scale and
cascades). Choosing a compactly supported wavelet witldependent along lines of descendants (cf. (40) and (63)), but
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not necessarily symmetric. Then Z;:Ol k[2=1=¢ from (22).] In other words, for any the ji,-
probability to observe the dyadic didit = j is m;. Applying

1 & , , .
T(q) = — nliigo y Zlogg E, [(Méz))’l I (Ml(z))q] (103) now the LLN to yu, yields
=0

1
‘ ag = - log, u(Iﬁl)

provided the limit exists. We sét(g) = —oc if IE, [(Méz))“r 1
(MP)1] = o for large i. =— log (s, g, -1y

We aim to establish the following. - E, [_10g2 (mk)]

q Q

Theorem 11:Let the assumptions of Lemma 10 be in force. L )
In addition, assume that the multiplierd ™ converge in a == mjilogym; =T'(q). (106)
very weak sense: we require the limit (103) to exist foreall i=0
Then, for anya with T*(«) > 0 In other words, for the points picked randomly with distri-

bution 4,4, the «;  converge (almost surely) ta, := 77(q),

dim(Ko) = fala) =7"(2) = T7(a) (104)  thus these points all lie in

almost surely. For any other, the setK, is empty and
fa(a) = —oo almost surely.

With (100), we only need to show thdl'(a) < dim(K.) To determine the dimension df,. let us note that for the

We will start by giving the basic argument for a deterministic . .
. . . . . Sﬁme points in K, we have
binomial cascade and show first how to generalize this resu

K, = {t ta(t) i=limag, = aq}. (107)

to a cascade with multipliers whose distributions vary with 1 log - 1 log.. (17 _ _

scale, but converge ag — oo. Then, we will outline the — ~, 952 na(Ik,) = 0 oga (Mg, - g, -+ )
method of Falconer [24] that generalizes the basic argument — qag —T(q)

to the random case and explain how to adapt it to the case = T*(ay) (108)

of variable multipliers. As will be apparent, we only need

convergence of the multipliers in a mean sense, as in (1083ingm, := m?27. This result is helpful in two ways. First,
However, our generalization applies to arbitrary “statistically gives an intuitive proof of the theorem, or at least one for
self-similar” measures as introduced in [24], provided we have, () = 7*(«). Indeed, the following very rough estimation

convergence in distribution. (which can be made precise along the lines of [29, p. 137])
yields the number of intervals that hawél}! ) ~ a,. These

A. Deterministic Cascade intervals are the ones contributing the bulk probability.to

In this section, we will assume that the binomial measutéSiNg (108)

1 (recall Section V-A) was constructed via a deterministic 1 ~ Z ( I("))

cascade, i.e., there are two positive numbegsand; with - Ha\ %

mo+my =1andM§ =1, M =my _ for all n almost o(1;")~aq

surely. ~ #{k:a(IV) ~a }27 T (@), (109)

Consider a more careful look into the large deviation result
for this case. The LLN, as we have seen in (74), tells us thpius the number of such intervals is approximat&ly («):
aft) = @ := —(1/2)logy(momy) for Lebesgue, almost all  in other wordsfq(a) = T*(a).

In other words,K is a set of positive length. Therefore Second, (108) allows us the estimaten(K,) > 7™ («)
. using [35, prop. 4.9]. Intuitively, we can think of, as
dim(K5) = 1. (105)  generalizingd-dimensional volume, since it scales in the right

R ) ) way: if a subsetE’ of K, is shrunk by a factor then its
Thls implies WIEh (100) thaF the pef_;lks of the hlstqgrams (S%I)(I—measure multiplies by". If T* was an integer this
will be close toa. To obtain information about othélim(Ka)  \ould be exactly the definition af-dimensional volume. Now
and other parts of the histograms, we n“eed to h,j"“’e a wayOhlanar object in space has infinite 1-D volume (length),
choosing intervals (or point§ where the “unusual” happens,zero 3-D volume, but finite positive 2-D volume (area); its
i.e., whereay; is “far” from « [cf. (4?) and (74)]. _dimension is two after all. Generalizing, we say tiat has

Th|§ we will achle_zve through a “change of probgbnlty at least dimensiofi™ () since i, (K.) = 1 is positive, i.e.,
meaning that the pointsare chosen randomly according to &im(K,) > T*(a). A complete argument is given in [23]
law 11, that insures the convergenceddf toward some value 54 [55].

aq. This distributiony, is defined in the same way asbut
with probabilitiesmg := mi2” andm, := m?2%. Note that
mo +m1 = 1 due to (103), i.e.7(g) = —log,(md +m?). _ . .
The key observation is that, (I} ) = g e Let us now generalize: slightly by allowing the almost
is the 11,-probability that ay,-random pointt lies in the sure multipliersm; to depend on scaled\” = m{™ for
interval I} = [k,27", (k. + 1)27"). [Recall thatk,2=" = all n almost surely, wheren™ + m{™ = 1. Let us assume,

B. Deterministic Cascade with Variable Multipliers
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however, that then'™ converge, say ten;. Then, using (103) over 2m+1=ng, ... 2m+1=n(k 4 1) — 1, we obtain

. 1 n ; ; ]Eu, urn-l—l I urn
() = fim 2> loea( ()" + () vl

i=1 — - ]Eu: m—+1 Irfl-l—l m
= —logQ((mo)q —+ (ml)q) (110) Z Z [N’I ( km+1) |I“L’I ]

i=n k/=0,1
and we obtain the same formula as in the previous section. - rmAl rm ol | ,m
Applying now the Strong LLN to the same auxiliary mea- ;kgl ALY M o L g']
surespu, as before we find .
" gyt " o - . [31 A - 01
2 i1 logy még)_l — B, > i, log, mge;)_l ; k;,l " 1
-0 (111) .
n m—
] — E, M(m—l—l) M(m—l—l)
for u, almost all points. But ; kgl [Mo M ]
n @ ViV
IE,, > log, méil x Afkm My,
" 4 4 =Yy
_ E?:l (mo log, méz) + mq log, m_?)) i=n k/=0,1 " '
n =p (I ). 115
— Mg logy mo + My logy, my (112) Ha ( k) (115)

This shows that* (1} ), m € IN forms a martingale and thus
converges. The limit is denoted by, (/;} ) and defines a true
measure as we let and k,, vary.

In our situation, allvy,(¢) are equal toT(q) since the
C. Random Cascades distributions of the multipliers do not depend on scale. How-

Let us turn finally to the case of random multipliers. For §ver, as presented here, it becomes clear that the martingale
start, we assume the same distribution on all scales, i.e., @nstruction holds also for variable multipliers. Furthermore, it
M (n € IN) are distributed as som¥/;, whereMo+M; = is indeed easy to see that under the assumption of Theorem 11,

T

1 almost surely. the~, converge tdl". This knowledge is enough to generalize
Such cascades have been termed “conservative” by M&R€ proof of [24] to our case.
delbrot [53] due to the conservation of mass in every step.Falconer's proof applies to general random measures that
Subsequent mathematical studies on cascades considerecffiestatistically self-similar [24], i.e., where the multipliers
case of independenit/; with IE[M, + M;] = 1 [22]. These of “mass” as well as “geometry” are random. It is notable
results have been generalized to conservative cascades [Baf the generalization indicated above works also in this case,
and [52], and to more general invariant measures [24]—[26].€-; when the_ distributions are allowed to depen_d on scale.
Here, we present the argument of Falconer [24]. Essentiallypwever, a slightly stronger assumption has to be imposed: we
there are two difficulties to deal with. First, the auxiliary€quire that these multipliers converge in distribution. In the
measures:, are now random, and we have to ensure thef@se of a binomial cascade, the geometry is deterministic by
existence. Second, as the multipliers for each realization wiigfinition. This is why the weaker condition (103) is enough
have different values from scale to scale (though drawi®re. o _
randomly with equal distribution), not even the strong LLN Finally, for simplicity we have not bothered with the fact

where we obtainay  — a, p,-almost surely, exactly as
before. In summary, we have agdlif(«) < dim(kK,).

helps here and we have to proug(K,,) = 1 directly. that [24] assumes that the multipliers are boundgd away from
To guarantee the convergence of the construction,pfve Z€ro. In order to make the proof complete for arbitrary MWM
use a martingale argument. Let processes, where the multipliers may be arbitrarily small, the
more involved approach of [56] needs to be taken. This is,
Mg = (Mﬁl)qz"/n, (113) however, certainly beyond the scope of this paper.
Since thel;! are distributed asM,ETL) we haveJ\Z/,g’;m < ACKNOWLEDGMENT
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-1

is chosen such thak,, [M"” + M) = 1. We definey; as
g (I%,) o= MM - My, (114)

Now keepingk, fixed, we write ;' as a union of smaller
dyadic intervalsZ;"**, wherem > n and wherek
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