
Coevolving the \Ideal" Trainer: Application to theDiscovery of Cellular Automata RulesHugues Juill�eComputer Science DepartmentBrandeis UniversityWaltham, Massachusetts 02254-9110, USAhugues@cs.brandeis.edu Jordan B. PollackComputer Science DepartmentBrandeis UniversityWaltham, Massachusetts 02254-9110, USApollack@cs.brandeis.eduABSTRACTCoevolution provides a frame-work to implement search heuris-tics that are more elaborate thanthose driving the exploration ofthe state space in canonical evolu-tionary systems. However, somedrawbacks have also to be over-come in order to ensure contin-uous progress on the long term.This paper presents the conceptof coevolutionary learning and in-troduces a search procedure whichsuccessfully addresses the underly-ing impediments in coevolutionarysearch. The application of this al-gorithm to the discovery of cellu-lar automata rules for a classi�ca-tion task is described. This workresulted in a signi�cant improve-ment over previously known bestrules for this task.1 IntroductionSome problems are di�cult because solutions have to beevaluated against a very large number of test cases in or-der to determine their score accurately. The discovery ofgame strategies and learning control procedures for au-tonomous agents are a few examples of such problems.To make learning tractable, solutions can be evaluatedonly with respect to a training environment composedof a subset of all the test cases. For such problems, acommon approach in machine learning consists in de-signing a �xed training environment. Usually, a signi�-cant amount of knowledge about the problem is explic-itly introduced by the designer in that stage. Then, thelearning algorithm follows the gradient implemented inthe training environment. However, the performance ofsolutions relies heavily on this training environment and

on the search procedure to explore the state space. Iflittle knowledge is available or if it is is di�cult to in-troduce in the training environment, the performance ofthe system is very limited.Coevolution is an alternative to get around that prob-lem in the sense that the training environment for learn-ers doesn't have to be designed explicitly. In coevolution,the performance of individuals is evaluated with respectto other members of the population, resulting in a dy-namic �tness landscape. The counter part is to ensurethat the changing environment does provide useful in-formation to drive the search towards good solutions. Inthis paper, we de�ne coevolutionary learning as a frame-work in which a population of learners coevolve with apopulation of problems such that continuous progress re-sults from this interaction. By continuous progress, wemean that learners are able to solve an increasing rangeof problems (and eventually the entire set of problemsthat compose the task). However, multiple reasons canprevent such a system from continuously improving it-self. In the literature, at least two such reasons havebeen recognized. The �rst one, named the Red Queene�ect, comes from the fact that individuals are evaluatedin a changing environment. As a result, they tend to spe-cialize with respect to the current training environmentand they tend to forget some of the traits they learntsome generations earlier because the relevant test casesfor those traits are no longer present in the current train-ing environment. Later, if those test cases reappear, theagents have to learn again the appropriate traits. Thesecond reason is that the coevolving agents can enter amediocre stable or meta-stable state in which a numberof average performance species coexist in the populationin a stable manner. In this situation, there is no drivingforce for agents to evolve. Any slight alteration of anindividual in one species results in no improvement or asmaller performance.In the research literature, Hillis' work marked an im-portant step by showing that coevolution can be used toimprove search performance (Hillis 1992). In his work, apopulation of sorters (the hosts) coevolve with input vec-



tors (the parasites). The goal of sorters is to construct se-quences of comparator-swaps that sort the input vectorsthat are proposed by the parasites while parasites searchfor input vectors that are di�cult to sort. In a sense,this can be seen as an implementation of a coverage-based heuristic: a construction is sought that sorts cor-rectly every possible input vector, thus resulting in asorting network. This heuristic adaptively focuses thesearch for solving problem instances (i.e., input vectors)that are the most di�cult for the population of networks.This work has been followed by others using both com-petitive and cooperative models of coevolution. For in-stance, Husbands implemented a model similar to Hillis'to address a generalized version of the job-shop schedul-ing problem (Husbands 1994). Paredis (Paredis 1996)used competition between a population of solutions anda population of problems as a search strategy for applica-tions in inductive learning (Paredis 1994b) and constraintsatisfaction problems (Paredis 1994a). Pursuer/evadergames have also been used as a test problem for re-search in coevolution. In particular, Cli� and Miller(Cli� and Miller 1995, Cli� and Miller 1996) developedseveral tools to track progress and detect loss of traits re-sulting from the Red Queen e�ect. Sims' block-creatures(Sims 1994) and Reynolds' experiments with the gameof tag (Reynolds 1994) are also two successful applica-tions of competitive evolution. Rosin's work on coevo-lutionary learning (Rosin 1997) addresses the di�erentissues related to competitive evolution in the context ofadversarial problems (e.g., game strategies). The goalof this work is to de�ne a framework for coevolutionarysearch that results in continuous progress on the longterm. In a theoretical analysis (Rosin and Belew 1996),Rosin and Belew described a coevolutionary environmentand proved it allows the discovery of perfect game strate-gies.Cooperative models of coevolution have also been im-plemented. Such models have been used for function op-timization (Potter and De Jong 1994) and for the designof control systems (Potter et al. 1995). Another applica-tion is the search of a space of problem decompositionsto construct modular solutions (Potter 1997, Moriarty1997). Following a di�erent track, Paredis (Paredis 1995)designed a model exploiting a symbiotic relationship tocoevolve solutions and their representation.In this paper, we introduce a framework which ad-dresses the impediments related to coevolution just dis-cussed and which does result in continuous improvement.Coevolutionary learning is based on the controlled evo-lution of the training environment in response to theimprovement of the learners. The goal is to discoverthe \best" training environment, given the populationof learners, hence the name of our approach: \coevolv-ing the \ideal" trainer". The application of this sys-tem to a di�cult problem, namely the discovery of cel-

lular automata rules to implement the majority classi�-cation task, is described. Signi�cantly better results areachieved by the coevolutionary approach compared topreviously known solutions to that problem.This paper is organized as follows. First, our new co-evolutionary search procedure is described and the un-derlying heuristics exploited by this algorithm are iden-ti�ed. Then, section 3 presents cellular automata andthe problem of evolving rules to implement a particularclassi�cation task. Section 4 describes the applicationof our coevolutionary approach to this problem, followedby experimental results in section 5.2 Coevolving the \Ideal" TrainerAs it was discussed before, the main issues we want toaddress are how to escape from mediocre stable or meta-stable states and how to avoid the Red Queen e�ect.2.1 DescriptionSince the space of problems to which learners can beexposed is huge, learners can be evaluated only against asubset of the problems. Therefore, the goal is to discoverlearners that are able to generalize to unseen probleminstances after they have been exposed to this sample.The central idea of the coevolutionary learning ap-proach presented in this paper consists in exposing learn-ers to problems that are just beyond those they knowhow to solve. By maintaining this constant pressuretowards slightly more di�cult problems, a arms raceamong learners is induced such that learners that adaptbetter have an evolutionary advantage. The underlyingheuristic implemented by this arms race is that adapt-ability is the driving force for improvement. In order toachieve this result, our search algorithm tries to satisfythe following two goals:� to provide an \optimum" gradient for search. Thismeans that the training environment de�ned by thepopulation of problems can determine reliably whichlearners are the most promising at each stage of thesearch process. This means that problems must beinformative. If problems are too di�cult, nobodycan solve them. On the contrary, if they are tooeasy, everybody can solve them. In both of thosecases, learners get little feedback and there is nogradient to determine in which direction the searchshould focus.� to allow continuous progress. The goal is to avoidthe Red Queen e�ect by providing a training en-vironment which continues to test learners aboutproblems they solved in the past. In a sense, thetraining environment must also play the role ofmemory.The di�culty resides in the accurate implementation ofthose concepts in a search algorithm. So far, our method-



ology to implement such a system consists in the con-struction of an explicit topology over the space of prob-lems by de�ning a partial order between problems. Thispartial order is de�ned with respect to the relative di�-culty of problems among each other. In our current work,the concept of \relative di�culty" has been de�ned byexploiting some a priori knowledge about the global taskand is task-speci�c. The de�nition of this topology overthe space of problems makes possible the implementationof the two goals to achieve coevolutionary learning:� since learners can be evaluated against a knownrange of di�culty for problems, it is possible to mea-sure their progress and to expose them to problemsthat are just a little more di�cult. However, thislast operation also requires the de�nition of a dis-tance measure in order to formalize the concept of\a little more di�cult". Indeed, the topology overthe space of problems is independent of the topol-ogy over the space of learners. The distance betweentwo problems with respect to their relative di�cultyis not necessarily a direct mapping with the proba-bility for a learner that solves only one of them toadapt in order to solve both problems. In practice,several de�nitions might be tested and some tuningis required to get the appropriate result.� the progress of learners can be monitored indirectlyby tracing the evolution of problems towards in-creased di�culty. Conversely, the evolution in prob-lems di�culty is controlled by the evolution of theperformance of learners. Thus, the evolution of thetraining environment can be controlled such that theRed Queen e�ect is prevented (or at least such thatits e�ect is limited).In the future, our goal is to eliminate some of thoseexplicit components by introducing some heuristics thatautomatically identify problems that are appropriate forthe current set of learners while preventing the RedQueen e�ect. The work of Rosin (Rosin 1997) alreadydescribes some methods to address this issue.2.2 DiscussionAs stated previously, the coevolutionary learning frame-work introduces a pressure towards adaptability. Thecentral assumption is that individuals that adapt fasterthan others in order to solve the new challenges theyare exposed to are also more likely to solve even moredi�cult problems. The main di�culty is to setup a co-evolutionary framework that implements this heuristicaccurately and e�ciently.The idea of introducing a pressure towards adapt-ability as the central heuristic for search is not new.Schmidhuber (Schmidhuber 1995) proposed the Incre-mental Self-Improvement system in which adaptability isthe measure that is optimized. In this system, the search

is performed in a stochastic depth-�rst way and a Re-inforcement Acceleration Criterion (RAC) is computedregularly in order to determine if there has been contin-uous acceleration of the amount of reinforcement infor-mation received from the environment since the birth ofthe individual. If RAC is not satis�ed, a backtrackingoperation is performed. That is, the individual undoesits last modi�cations until RAC is satis�ed again andnew modi�cations are tried.3 Discovery of CA Rules for aClassi�cation Task3.1 One-Dimensional Cellular AutomataA one-dimensional cellular automaton (CA) is a linearwrap-around array composed of N cells in which eachcell can take one out of k possible states. A rule is de-�ned for each cell in order to update its state. This ruledetermines the next state of a cell given its current stateand the state of cells in a prede�ned neighborhood. Forthe model discussed in this paper, this neighborhood iscomposed of cells whose distance is at most r from thecentral cell. This operation is performed synchronouslyfor all the cells in the CA. From now on, we will con-sider that the state of cells is binary (k = 2), N = 149and r = 3. This means that the size of the rule space is222�r+1 = 2128.Cellular automata have been studied widely as theyrepresent one of the simplest systems in which complexemergent behaviors can be observed. This model is veryattractive as a means to study complex systems in na-ture. Indeed, the evolution of such systems is ruled bysimple, locally-interacting components which result inthe emergence of global, coordinated activity.3.2 The Majority FunctionThe task consists in discovering a rule for the one-dimensional CA which implements the majority functionas accurately as possible. This is a density classi�cationtask, for which one wants the state of the cells of theCA to relax to all 0's or 1's depending on the density ofthe initial con�guration (IC) of the CA, within a maxi-mum of M time steps. Following (Mitchell et al. 1994),�c denotes the threshold for the classi�cation task (here,�c = 1=2), � denotes the density of 1's in a con�gurationand �o denotes the density of 1's in the initial con�gura-tion. Figure 1 presents two examples of the space-timeevolution of a CA for N = 149 with �0 < �c on the leftand �0 > �c on the right. The initial con�guration is atthe top of the diagram and the evolution in time of thedi�erent con�gurations is represented downward.The task �c = 1=2 is known to be di�cult. In par-ticular, it has been proven that no rule exists that willresult in the CA relaxing to the correct state for all pos-sible ICs (Land and Belew 1995). Indeed, the density is
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200Figure 1 Two space-time diagrams describing the evolution of CA states for the new rule Coevolution(2) which scores 86:0% for N = 149. White squares represent cells in state 0 while black squarescorrespond to cells in state 1. The initial state of the CA is at the top and the evolution for the �rst200 time steps is represented by moving downward.a global property of the initial con�guration while indi-vidual cells of the CA have access to local informationonly. Discovering a rule that will display the appropriatecomputation by the CA with the highest accuracy is achallenge, and the upper limit for this accuracy is still un-known. Table 1 describes the performance for that taskfor di�erent published rules and di�erent values of N .The Gacs-Kurdyumov-Levin (GKL) rule was designed in1978 for a di�erent goal than the �c = 1=2 task (Mitchellet al. 1994). However, for a while it provided the bestknown performance. (Mitchell et al. 1994) and (Das etal. 1994) used Genetic Algorithms (GAs) to explore thespace of rules. This work resulted in an analysis of someof the complex behaviors exhibited by CAs using \parti-cles". The GKL and Das rules are human-written whilethe Andre-Bennett-Koza (ABK) rule has been discov-ered using the Genetic Programming paradigm (Andreet al. 1996). For the �c = 1=2 task, it is believed that therules that perform reasonably well have a density closeto 0:5 and, indeed, the GKL rule has density 0:5 ex-actly. An intuitive argument to support this hypothesisis presented in (Mitchell et al. 1993). It is also believedthat the most di�cult ICs are those with density closeto 0:5 (since only a little modi�cation can make themswitch from �0 < 1=2 to �0 > 1=2, and vice versa). Thisinformation is useful for the understanding of the exper-imental analysis presented in the following sections.In the research literature, initial work performed by(Das et al. 1994, Mitchell et al. 1994) has been followedby (Andre et al. 1996) whose rule improved the caseN = 149 but doesn't generalize as well as the GKLor the Das rule. (Sipper 1994) evolved rules for non-homogeneous CA for which each cell has its own inde-pendent version of a rule. (Paredis 1997) describes a
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Figure 2 Distribution of performance for theGKL rule for �0 2 [0:0; 1:0].coevolutionary approach to search the space of rules andshows the di�culty of coevolving consistently two popu-lations towards continuous improvement. (Capcarrere etal. 1996) also reports that by changing the speci�cationof the convergence pattern of the CA from all 00s or all10s to a pattern in which a block of at least two consec-utive 10s exists if and only if �0 > 1=2 and a block of atleast two consecutive 00s exists if and only if �0 < 1=2,then a two-state, r = 1 cellular automaton exists thatcan perfectly solve the density problem.4 Implementation of the ConceptThe coevolutionary approach described in section 2 isapplied to the �c = 1=2 task. It is believed, that ICs be-come more and more di�cult to classify correctly as theirdensity gets closer to the �c threshold. This hypothesis is



Table 1 Performance of di�erent published CA rules and two new rules discovered using the coevo-lutionary learning paradigm for the �c = 1=2 task.N 149 599 999Coevolution (1) 0.851 +/- 0.001 0.810 +/- 0.001 0.795 +/- 0.001Coevolution (2) 0.860 +/- 0.001 0.802 +/- 0.001 0.785 +/- 0.001Das rule 0.823 +/- 0.001 0.778 +/- 0.001 0.764 +/- 0.001ABK rule 0.824 +/- 0.001 0.764 +/- 0.001 0.730 +/- 0.001GKL rule 0.815 +/- 0.001 0.773 +/- 0.001 0.759 +/- 0.001supported by the distribution of the performance for theGKL rule for �0 2 [0:0; 1:0] presented in �gure 2. There-fore, our idea is to construct a framework that adaptsthe distribution of the density for the population of ICsas CA-rules are getting better to solve the task. Thefollowing de�nition for the �tness of rules and ICs hasbeen used to achieve this goal.f(Ri) = nICXj=1W ICj � covered(Ri; ICj)where: W ICj = 1PnRk=1 covered(Rk; ICj)andf(ICj) = nRXi=1W R0i �E(Ri; �(ICj))� covered(Ri; ICj)where:W R0i = 1PnICk=1 E(Ri; �(ICk))� covered(Ri; ICk)where covered(Ri; ICj) returns 1 if a CA using rule Riand starting from initial con�guration ICj relaxes to thecorrect state. Otherwise, it returns 0. covered(Ri; ICj)returns the complement of covered(Ri; ICj).This de�nition implements a competitive relationshipbetween rules and ICs. Rules get a higher payo� by cov-ering more ICs accurately while ICs get a higher payo�by defeating more rules. This de�nition also implementsa form of niching called resource sharing. Resource shar-ing implements a coverage-based heuristic by giving ahigher payo� to problems that few individuals can solve.In our case, it is introduced in the de�nition of the �t-ness of rules and ICs by weighting the outcome of eachinteraction rule{IC. The weight of an IC corresponds tothe payo� it returns if a rule covers it. The underlyingmechanism is that if few rules cover an IC, this weightwill be much larger than if a lot of rules cover that sameIC. The de�nition for the weight of rules is similar. Thebene�t of resource sharing in the context of search hasalready been discussed in (Juill�e and Pollack 1996).

The de�nition of the ICs' �tness has been extended witha new component, namely E(Ri; �(ICj)). The purposeof this new component is to penalize ICs with density�(ICj) if little information is collected with respect tothe rule Ri. Indeed, we consider that if a rule Ri has a50% classi�cation accuracy over ICs with density �(ICj)then this is equivalent to random guessing and no payo�should be returned to ICj . On the contrary, if the per-formance of Ri is signi�cantly better or worse than the50% threshold for a given density of ICs this means thatRi captured some relevant properties to deal with thoseICs. Once again, the idea is that the training environ-ment for rules should be composed of ICs that provideuseful information to identify good rules from poor ones.ICs for which the performance of rules is close to 50% areuseless to satisfy this goal and they shouldn't be exploredfurther. The training environment should also allow con-tinuous progress by preventing the Red Queen e�ect. Inour implementation, there is no explicit mechanism tosatisfy this purpose. Instead, an intrinsic property of the�c = 1=2 task is exploited in order to satisfy this goal in-directly. Indeed, it seems that CA-rules that cover ICswith density �0 < 1=2 (respectively �0 > 1=2) with highperformance will also be very successful over ICs withdensity �00 < �0 (respectively �00 > �0). Therefore, asICs become more di�cult, their density is approaching�0 = 1=2 but rules don't have to be tested against easierICs.Following this idea, we de�ned E() as the complement ofthe entropy of the outcome between a rule and ICs witha given density:E(Ri; �(ICj)) = log(2) + p log(p) + q log(q)where: p is the probability that an IC with density�(ICj) defeats the rule Ri and q = 1 � p. Because ofthis credit assignment strategy, a balance is maintainedbetween the search for more di�cult ICs (competitivemode of interaction) and ICs that can be solved by rules(cooperation between rules and ICs). In practice, en-tropy is evaluated by performing some statistics over thepopulation of ICs.



5 Experimental ResultsThe best two CA-rules discovered so far are presented intable 1. Those two new rules exhibit a very signi�cantimprovement over the previously known best rules withrespect to the case N = 149 as well as the generalizationability (tested with N = 599 and N = 999). The de-scription of those CA rules is presented in table 2. alongwith the description for the Das, ABK and GKL rules.The lookup tables described in table 2 are using the triv-ial coding: the leftmost bit corresponds to the output ofthe rule with input 0000000, the second bit correspondsto input 0000001, : : : and the rightmost bit correspondsto input 1111111.In a �rst set of experiments composed of about 20runs, the population size for rules and ICs was 400. Theimplementation to search the space of rules is similar tothe one described in (Mitchell et al. 1994). Each rule iscoded on a binary string of length 22�r+1 = 128. One-point crossover is used with a 2% bit mutation probabil-ity. The population of rules is initialized according to auniform distribution over [0:0; 1:0] for the density. Eachindividual in the population of ICs represents a density�0 2 [0:0; 1:0]. This population is also initialized accord-ing to a uniform distribution over �0 2 [0:0; 1:0]. Ateach generation, each member generates a new instancefor an initial con�guration with respect to the densityit represents. All rules are evaluated against this newset of ICs. The generation gap is 5% for the popula-tion of ICs (i.e., the top 95% ICs reproduce to the nextgeneration). There is no crossover nor mutation. Thenew 5% ICs are the result of a random sampling over�0 2 [0:0; 1:0] according to a uniform probability distri-bution. The generation gap is 80% for the populationof rules. New rules are created by crossover and muta-tion. Parents are randomly selected from the top 20%.This choice for the value of the generation gap is a com-promise between speed of search and performance. As aresult, some of the runs return a poor result because ofunfavorable sampling (in those runs, evolved rules don'tscore more than 76%). The rule \Coevolution (1)" pre-sented in table 1 resulted from one of the runs in thisexperiments.In a second of experiments composed of 8 runs, usinga population size of 400 for rules and ICs and a genera-tion gap of 10% for the population of rules, some ruleswere evolved that consistently scored above 80%. In thatcase, good rules are less likely to disappear from the pop-ulation but progress is very slow. It might however bepossible to improve the time performance by avoidingredundant computation for the evaluation of rules thathave been in the population for several generations.In another set of experiments composed of 6 runs, us-ing a population size of 1000 for both rules and ICs andthe same value for the generation gaps as for the �rst setof experiments, all runs consistently evolved some rules

that score above 82%. The rule \Coevolution (2)" pre-sented in table 1 resulted from one of those runs. Thegoal of those experiments was to test how the perfor-mance of evolved rules would scale when increasing thepopulation size. It might be possible to evolve even bet-ter rules with a larger population size. However, withour current implementation, a run takes about one weekon a workstation for 5000 generations and a populationsize of 1000.As a comparison, (Andre et al. 1996) used a populationof size 51; 200. In their work, the training environmentwas composed of a �xed training set constructed froma uniform sampling from the space of all ICs (thus, thedistribution for the density of ICs in the training set isbinomial, centered on 1=2). In experiments describedin (Das et al. 1994, Mitchell et al. 1994), the learningenvironment is composed of a set of ICs sampled ateach generation according to a uniform distribution over�0 2 [0:0; 1:0]. Those authors acknowledged that thisdistribution for the sampling of the space of ICs, whilehelpful to bootstrap the search, might no longer provideuseful information once some average performance ruleshave been discovered.Figures 3 and 4 describe the evolution of the densityof rules and ICs for two runs. As rules improve, theirdensity gets closer to 1=2 and the density of ICs is dis-tributed on two peaks on each side of � = 1=2. In the caseof �gure 4, it is only after 1; 300 generations that a signif-icant improvement is observed for rules. It is only at thattime that the population of ICs adapts dramatically inorder to propose more challenging initial con�gurations.This shows that our strategy to coevolve the trainingenvironment and the learners has been successfully im-plemented in the de�nition of the �tness functions. How-ever, it should be noted that the two-peak distributionis a side-e�ect of the method implemented to measureentropy. Indeed, because of the small population sizewith respect to the range of values for the density (i.e.,N values), ICs were grouped in bins of size two. Thatis, there are N=2 bins instead of N to cover the range ofdensities. The two-peak distribution means that, in ourexperiments, evolved rules have an accuracy very close to50% with respect to the set of ICs in the bin composed ofICs with density 1=dN2 e and 1=bN2 c. In experiments thatuse N bins, the �nal distribution is composed of a singlepeak centered on �0 = 1=2. However, empirical evidenceseems to show that this two-peak distribution results inbetter performance for the �nal CA-rules. This is sup-ported by �gure 5 which compares the distribution ofthe performance of the new rules to the GKL rule. Thisdistribution is represented only in the neighborhood of�0 = 1=2. Outside the range represented in those �g-ures, the ratio of correct classi�cation is (or is very closeto) 100% for the three rules. As discussed before, those�gures con�rm that for rules with good classi�cation per-



Table 2 Description of the current best rules and previously published rules for the �c = 1=2 task.Coevolution (1) 00000001 00010100 00110000 11010111 00010001 00001111 00111001 0101011100000101 10110100 11111111 00010111 11110001 00111101 11111001 01010111Coevolution (2) 00010100 01010001 00110000 01011100 00000000 01010000 11001110 0101111100010111 00010001 11111111 01011111 00001111 01010011 11001111 01011111Das rule 00000111 00000000 00000111 11111111 00001111 00000000 00001111 1111111100001111 00000000 00000111 11111111 00001111 00110001 00001111 11111111ABK rule 00000101 00000000 01010101 00000101 00000101 00000000 01010101 0000010101010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111GKL rule 00000000 01011111 00000000 01011111 00000000 01011111 00000000 0101111100000000 01011111 11111111 01011111 00000000 01011111 11111111 01011111
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Figure 3 Evolution in time of the distribution of CA rules density (left) and ICs density (right)describing the coevolution of rules and ICs.
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Figure 4 Evolution in time of the distribution of CA rules density (left) and ICs density (right). Inthat case, the sharp transition around generation 1,300 corresponds to an improvement of rules andresults in an adaptation of the distribution of ICs to present more challenging problems.
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