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Abstract

The efficient numerical treatment of high-dimensional problems is ham-

pered by the curse of dimensionality. We review approximation tech-

niques which overcome this problem to some extent. Here, we focus on

methods stemming from Kolmogorov’s theorem, the ANOVA decompo-

sition and the sparse grid approach and discuss their prerequisites and

properties. Moreover, we present energy-norm based sparse grids and

demonstrate that, for functions with bounded mixed derivatives on the

unit hypercube, the associated approximation rate in terms of the in-

volved degrees of freedom shows no dependence on the dimension at all,

neither in the approximation order nor in the order constant.

1.1 Introduction

The discretization of PDEs by conventional methods is limited to prob-

lems with up to three or four dimensions due to storage requirements and

computational complexity. The reason is the so-called curse of dimen-

sionality, a term coined in (Bellmann 1961). Here, the cost to compute

and represent an approximation with a prescribed accuracy ε depends

exponentially on the dimensionality d of the problem considered. We

encounter complexities of the order O(ε−d/r) with r > 0 depending on

the respective approach, the smoothness of the function under consider-

ation, the polynomial degree of the ansatz functions and the details of

the implementation. If we consider simple uniform grids with piecewise

d-polynomial functions over a bounded domain in a finite element or

finite difference approach, this complexity estimate translates to O(Nd)

grid points or degrees of freedom for which approximation accuracies
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of the order O(N−r) are achieved.† Thus, the computational cost and

storage requirements grow exponentially with the dimensionality of the

problem, which is the reason of the dimensional restrictions mentioned

above, even on the most powerful machines presently available.

The curse of dimensionality can be circumvented to some extent by

restricting the class of functions under consideration. If we make a

stronger assumption on the smoothness of the solution such that the

order of accuracy depends on d as O(N−c·d) with r = c · d, we directly

see that the cost complexity is independent of d and that it is of the

order O(ε−d/(c·d)) = O(ε−1/c), for some c independent of d. This way,

the curse of dimensionality can be broken easily.† In any case, such a

smoothness assumption is somewhat unrealistic.

Nevertheless for practical applications in high(er) dimensions often

a certain smoothness assumption on the function is implicitly present

(e.g., in the data of the problem) which, in some way, relates to its

dimensionality. Then, the curse of dimensionality is weakened or can

even be broken completely. The problem on the one hand is to detect

and classify applications where this may happen and on the other hand

to develop and implement numerical schemes which then allow to exploit

such a situation. This is the subject of this article. We intend to give an

overview on recent approaches and results in this direction from the view

of function approximation and solution of partial differential equations.

The remainder of this paper is organized as follows: In Section 1.2,

we briefly consider applications in which high-dimensional partial dif-

ferential equations appear. We then discuss the breaking of the curse

of dimensionality from the theoretical point of view. Here, we collect

known approaches of getting rid of the exponential dependence on d.

Furthermore we consider the theorem of Kolmogorov in more detail and

give a survey of approximation schemes which are related to it.

In Section 1.3 we consider dimension-wise decompositions of high-

dimensional functions. Here we resort to ANOVA-type decompositions

where a function is split into its contributions from different groups of

subdimensions, an approach which is widely used in statistics. It ba-

sically involves the splitting of a one-dimensional function space into

the constant subspace and the remainder space. A product construc-

† If the solution is not smooth but possesses singularities, the order r of accuracy
deteriorates. Adaptive refinement/nonlinear approximation is employed with suc-
cess. In the best case, the cost-benefit ratio of a smooth solution can be recovered.

† An example would be the p-version of the finite element method if we couple the
polynomial degree p to the dimension d and consider functions from the Sobolev
space Hp+1.
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tion then gives the associated splitting for the d-dimensional case. This

reveals the relative importance of different dimensions as well as their

interactions and correlations. For certain applications it can be observed

that an apparently high-dimensional function possesses a low effective

dimension or that there is a certain decay for the component functions

with their dimension. Then the curse of dimensionality may be avoided.

We formalize this with the help of reproducing kernel Hilbert spaces.

The importance of the different contributions in an ANOVA splitting

can then be expressed by certain weights.

For practical computations the associated subspaces need to be fur-

ther discretized. This leads to so-called sparse grids which are dis-

cussed in detail in Section 1.4. To this end, we refine the remainder

space of the one-dimensional splitting, i.e., we equip it with a basis.

We use the standard piecewise linear hierarchical basis in one dimen-

sion (Faber 1909, Yserentant 1986) as the simplest example of a one-

dimensional multiscale series expansion which involves interpolation by

piecewise linears. Then the tensor product construction generates a

basis for the d-dimensional case. A proper truncation – that can be

formally derived by solving an optimization problem closely related to

M -term approximation which involves the error norm and the smooth-

ness assumption – results in sparse grids. For functions with bounded

mixed second derivatives, approximation schemes are gained which ex-

hibit cost complexities of the orderO(N(logN)d−1) and give an accuracy

of O(N−2(logN)d−1) if we measure the error in the L2-norm. How-

ever if we consider the energy norm, optimality leads us to an energy-

based sparse grid with cost complexity O(N) and accuracyO(N−1) only.

Thus, the exponential dependence of the logarithmic terms on d is com-

pletely removed (but is still present in the constants). Finally we discuss

the order constants in more detail. In one special case we are able to

show that, for the best approximation v
(E)
M in the energy-norm based

sparse grid space with dimension M , the following error estimate holds:

‖u− v
(E)
M ‖E ≤ c · d2 · 0.97515d ·M−1 · |u|2,∞

where the regularity term |u|2,∞ involves mixed second derivatives of u.

The concluding remarks of Section 1.5 summarize the discussion and

give an outlook on current developments with sparse grids.
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1.2 High dimensional problems and the curse of

dimensionality

Usually in classical physics most problems are formulated as systems of

(nonlinear) partial differential equations in three space dimension and

one time dimension.† Here, the geometry of the object under consid-

eration can be quite complicated. As examples consider flow around

a car or an airplane, combustion in an engine, structural analysis of

mechanical machines and buildings in civil engineering or related mul-

tiphysics applications which involve coupled systems of partial differ-

ential equations. These problems can nowadays be well treated with

parallel adaptive finite element methods involving multilevel solvers on

large parallel computers. They are at the edge of today’s applications of

numerical simulation in science and engineering. An efficient geometry

description, subsequent parallel mesh generation, reliable a-posteriori er-

ror estimators for adaptive finite element discretizations, robust parallel

multilevel solvers and load-balancing techniques for the overall approach

are subjects of ongoing research and form the mainstream in scientific

computing.

However there are also problems which involve substantially more

than just three spatial dimensions. Then, high-dimensionality often re-

sults from mathematical modelling. Besides pure integration problems

stemming from physics and finance, typically models from the stochas-

tics and data analysis world show up. For example, high-dimensional

Laplace/diffusion problems and high-dimensional convection diffusion

problems result from diffusion approximation techniques or the Fokker-

Planck equation. Examples are the description of queueing networks

(Mitzlaff 1997, Shen, Chen, Dai and Dai 2002), random excitations

of mechanical structures (Johnson, Wojtkiewicz, Bergman and Spencer

1997, McWilliam, Knappett and Fox 2000, Wojtkiewicz and Bergman

2000), reaction mechanisms in molecular biology (Sjöberg 2002, Elf,

Lötstedt and Sjöberg 2001), the viscoelasticity in polymer fluids (Rouse

1953, Prakash and Öttinger 1999, Prakash 2000, Venktiteswaran and

Junk 2005a, Venktiteswaran and Junk 2005b, Lozinski and Chauviere

2003, Lozinski, Chauviere, Fang and Owens 2003, Chauviere and Lozinski

2004, Süli 2006), or various models for the pricing of financial derivatives

† Of course physical theories may involve more than just three spatial dimensions.
For example the equations related to superstring theories which can be regarded
as limits of the M-theory or the theory of supergravitation are formulated in 10
or 11 dimensions, respectively, see (Green, Schwarz and Witten 1998) and the
references cited therein.
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(Duffie 1996, Kwok 1998, Wilmott 1998, Reisinger 2003, Schwab 2003,

Escobar and Seco 2005). Furthermore, homogenization with multiple

scales (Allaire 1992, Cioranescu, Damlamian and Griso 2002, Matache

2002, Hoang and Schwab 2003) as well as stochastic elliptic equations

(Schwab and Todor 2003a, Schwab and Todor 2003b) result in high-

dimensional PDEs. Next, we find quite high-dimensional problems in

quantum mechanics and particle physics. Here, the dimensionality of

the Schrödinger equation (Messiah 2000) grows with the number of con-

sidered electrons and nuclei. Then, problems in statistical mechan-

ics lead to the Liouville equation or the Langevin equation and re-

lated phase space models where the dimension depends on the number

of particles (Balescu 1997). Furthermore, reinforcement learning and

stochastic optimal control in continuous time give raise to the Hamilton-

Jacobi-Bellman equation in high dimensions (Sutton and Barto 1998,

Munos 2000, Munos and Moore 2002). Finally data mining problems in-

volve differential operators as smoothing or regularization terms (priors)

whose dimension grows with the number of features of the data (Girosi,

Jones and Poggio 1995, Garcke, Griebel and Thess 2001, Schölkopf and

Smola 2002, Hegland 2003, Garcke 2004).

Now, in higher dimensions, the question of the shape of the domain

is not as important as in the two- and three-dimensional case, since

complicated domains typically do not appear in applications. Concep-

tually, besides IRd itself, we use mainly hypercubes like [−a, a]d, a ∈ IR,

and their straightforward generalizations using different values of a for

each coordinate direction as well as the corresponding structures in po-

lar coordinates. These domains are of tensor product structure. This is

an important prerequisite for numerical methods for higher-dimensional

partial differential equations as we will see later.

1.2.1 Curse of dimensionality

Classical approximation schemes exhibit the curse of dimensionality

(Bellmann 1961). We then have

||f − fM || = O(M−r/d) ,

where r and d denote the isotropic smoothness of the function f and the

problem’s dimensionality, respectively. This is one of the main obstacles

in the numerical treatment of high-dimensional problems. Therefore, the

question is whether we can find situations, i.e., either function spaces or

error norms, for which the curse of dimensionality can be broken. At first
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glance, there is an easy way out: if we make a stronger assumption on

the smoothness of the function f such that r = O(d), then, we directly

obtain ||f − fM || = O(M−c) with constant c > 0. Of course, such an

assumption is quite unrealistic.

However, about thirteen years ago, (Barron 1993) found an interesting

result: Denote by FL1 the class of functions with Fourier transforms in

L1. Then, consider the class of functions of IRd with ∇f ∈ FL1. We

expect for the best M -term approximation fM an approximation rate

||f − fM || = O(M−1/d)

since ∇f ∈ FL1 ≈ r = 1. However Barron was able to show that

||f − fM || = O(M−1/2),

independent of d. Meanwhile, other function classes have been intro-

duced with such properties. They comprise certain radial basis schemes,

stochastic sampling techniques and approaches that work with spaces of

functions with bounded mixed derivatives.

A better understanding of these results is possible with the help of

harmonic analysis (Donoho 2000). Here, we resort to the approach of

the L1-combination of L∞-atoms, see also (Triebel 1992, DeVore 1998).

Consider the class of functions F(K) with integral representation

f(x) =

∫

A(x, t)dµ(t) with

∫

d|µ|(t) ≤ K , (1.1)

where for fixed t we call A(x, t) = At(x) an L∞-atom, if |At(x)| ≤
1 holds. Then, there are results from Maurey for Banach spaces and

Stechkin in Fourier analysis which state that there exists an M -term

sum

fM (x) =

M
∑

j=1

ajAtj
(x)

where

||f − fM ||∞ ≤ C ·M−1/2

with C independent of d.

As a first example we consider superpositions of Gaussian bumps (ra-

dial basis schemes). These resemble the space F(K,Gaussians) with

t := (x0, s) and Gaussian atoms A(x, t) = exp(−‖x − x0‖2/s2). Now,

if the sum of the height of all Gaussians is bounded by K, (Niyogi and

Girosi 1998) showed that the resulting approximation rate is indepen-

dent of d for the corresponding radial basis schemes. There is no further
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condition on the widths or positions of the bumps. Note that this corre-

sponds to a ball in Besov space Bd
1,1(IR

d) which is just the bump algebra

in (Meyer 1992). Thus, we have nothing but a restriction to smoother

functions for higher dimensions such that the ratio r/d stays constant

and, consequently, M−r/d does again not grow with d.

Another class of functions with an approximation rate independent

of d is F(K,Orthant) which uses the parameter set of shifted orthants.

Now t = (x0, k), and k is the orthant indicator. Furthermore, A(x, t) is

the indicator of orthant k with apex at x0. Again, if the integral (1.1) is

at most K, the resulting approximation rate is of order O(M−1/2) inde-

pendent of d. A typical and well-known example for such a construction

is the cumulative distribution function in IRd. This just results in the

Monte Carlo method.

A more general class are the functions which are formed by any su-

perposition of 2d functions, each orthantwise monotone for a different

orthant. Now, the condition
∫

d|µ|(t) ≤ 1 is the same as

∂df

∂x1 · · · ∂xd
∈ L1 , (1.2)

i.e., we obtain the space of bounded mixed first variation. Again, this

means to consider only functions which get smoother as the dimension-

ality increases, but, in contrast to the examples mentioned above, now,

only an anisotropic smoothness assumption is involved. Note that this

is just the prerequisite for sparse grids with the piecewise constant hier-

archical basis.

Further results on high-dimensional (and even infinite-dimensional)

problems and their tractability were given by (Wasilkovski and Woźnia-

kowski 1995, Sloan and Woźniakowski 1998, Wasilkovski and Woźnia-

kowski 1999, Sloan 2001, Hickernell, Sloan and Wasilkowski 2004, Dick,

Sloan, Wang and Woźniakowski 2004, Sloan, Wang and Woźniakowski

2004). Here, especially in the context of numerical integration, the no-

tion of weighted Sobolev spaces was introduced. Following the observa-

tion that for some problems the integrand becomes less and less vari-

able in successive coordinate directions, a sequence of positive weights

{γj} with decreasing values is used, with the weight γj being associated

with coordinate direction j. Then it can be shown that the integration

problem in a particular Sobolev space setting becomes strongly tractable

(Traub and Woźniakowski 1980, Traub, Wasilkowski and Woźniakowski

1983, Traub, Wasilkowski and Woźniakowski 1988), i.e., that the worst-

case error for all functions in the unit ball of the weighted Sobolev
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space is bounded independently of d and tends polynomially to zero

if and only if the sum of the weights is asymptotically bounded from

above. This corresponds to a decay of the kernel contributions in a re-

producing kernel Hilbert space with increasing d. The original paper

(Sloan and Woźniakowski 1998) assumes that the integrand belongs to a

Sobolev space of functions with square-integrable mixed first deriva-

tives with the weights built into the definition of the associated in-

ner product. Note that this assumption is closely related to that of

(1.2) above. Since then, more general assumptions on the weights and,

thus, on the induced weighted function spaces have been found (Dick

et al. 2004, Hickernell et al. 2004, Sloan et al. 2004, Hickernell and

Woźniakowski 2000, Wasilkowski and Woźniakowski 2004).

In any case, we observe that a certain smoothness assumption on the

function under consideration changes with d and leads to approximation

rates which no longer depend exponentially on d. This raises the ques-

tion what smoothness for changing d and smoothness for d → ∞ mean

at all.

To this end, let us note an interesting aspect, namely the concen-

tration of measure phenomenon (Milman 1988, Milman and Schecht-

man 2001, Talagrand 1995, Gromov 1999, Ledoux 2001) for probabilities

in normed spaces in high dimensions (also known as the geometric law of

large numbers). This is an important development in modern analysis

and geometry, manifesting itself across a wide range of mathematical

sciences, particularly geometric functional analysis, probability theory,

graph theory, diverse fields of computer science, and statistical physics.

In the statistical setting it states the following: Let f be a Lipschitz

function with Lipschitz constant L on the d-sphere. Let P be a normal-

ized Lebesgue measure on the sphere and let X be a random variable

uniformly distributed with respect to P . Then,

P{|f(X) − Ef(X)| > t} ≤ c1 exp(−c2t2/L2)

with constants c1, c2 independent of f and d. In its simplest form, the

phenomenon of concentration of measure just says that every Lipschitz

function on a sufficiently high-dimensional domain Ω is well approxi-

mated by a constant function (Hegland and Pestov 1999, Baxter and

Iserles 2003). Thus, there is some chance to treat high-dimensional

problems despite the curse of dimensionality.

The relation of the concentration of measure phenomenon to ap-

proximation estimates was further elaborated upon in (Hegland and

Pozzi 2005). There, with the help of a concentration function which
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expresses the concentration effect of the underlying metric space, new

inequalities for the error of function approximations have been derived.

Besides estimates for the above mentioned approximation of a func-

tion by a constant (e.g., by its mean or by the evaluation at a random

point) and radial basis functions, also piecewise constant approximation

schemes and piecewise approximations of higher order by Hermite poly-

nomials have been studied. The resulting approximation rates were the

same as with conventional estimates based on finite elements. However

the constants in the estimates were substantially better. They are in-

dependent of the dimension and in addition allow realistic bounds for

multimodal distributions which is not the case for classical approaches

based on interpolation theory. These techniques may be employed to

obtain better estimates for the constants in the order estimates with re-

spect to the dimension in e.g., sparse grid approximation schemes. This

however is future work.

1.2.2 The theorem of Komogorov and related approximation

schemes

One approach to develop efficient approximations which allow one to

overcome the curse of dimensionality is to describe multivariate contin-

uous functions as a superposition (Rassias and Simsa 1995, Khavinson

1997) of a number of continuous functions with fewer variables. This

question is related to Hilbert’s 13th problem, see (Vitushkin 2004) and

the references cited therein. It was answered in (Kolmogorov 1957)

who found that every continuous function of several variables can be

represented by the superposition of continuous functions with only two

variables. Kolmogorov even showed that every continuous function of

several variables can be represented by the superposition of continu-

ous functions with only one variable,† see also (Sprecher 1965, Lorentz,

v. Golitschek and Makovoz 1996, Khavinson 1997) for improved versions.

Kolmogorov’s famous result can be expressed as follows: Let f be a

multivariate continuous function on the unit cube, i.e., f(x1, ..., xd) :

[0, 1]d → IR. Each function f ∈ C([0, 1]d) has a representation

f(x1, ..., xd) =

2d+1
∑

i=1

fi(

d
∑

j=1

φi,j(xj)) (1.3)

† Kolmogorov’s student Arnold showed even before in (Arnold 1957, Arnold 1958,
Arnold 1959) that any f ∈ C([0, 1]3) can be represented as a superposition of
continuous functions in two variables, and thus refuted Hilbert’s conjecture.
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where all {fi} and {φi,j} are one-dimensional continuous functions de-

fined on IR and all {φi,j} are independent of the choice of f . An improve-

ment was given in (Fridman 1967) where it was shown that the inner

functions {φi,j} can be chosen to be Lipschitz continuous with exponent

one.

There have been various refinements of this result. A version with just

one outer function and 2d+ 1 inner functions, see (Lorentz et al. 1996)

Chapter 17, reads: There exist 2d + 1 continuous, strictly increasing

functions φi : [0, 1] → [0, 1] and d positive constants λi with
∑d

i=1 λi ≤ 1

with the property that each function f ∈ C([0, 1]d) has a representation

f(x1, ..., xd) =

2d+1
∑

i=1

g(

d
∑

j=1

λjφi(xj)) (1.4)

for some non-smooth g ∈ C([0, 1]) depending on f . Here, the functions

φi together with their summation provide a one-to-one embedding of

the unit cube [0, 1]d into IR2d+1, i.e., we have with Xi :=
∑d

j=1 λjφi(xj)

the representation f(x1, ..., xd) =
∑2d+1

i=1 g(Xi). Note that there is a

close relation to d-dimensional topology: The theorem of Menger and

Nöbeling, see (Hurewicz and Wallman 1948), page 84, tells us that

any d-dimensional compact set can be homeomorphically embedded into

[0, 1]2d+1. Thus, Kolmogorov’s theorem (1.4) can be seen as just a spe-

cial case of it.

Another version with 2d+ 1 outer functions and one inner function is

due to (Sprecher 1965). It reads

f(x1, ..., xd) =

2d+1
∑

i=1

fi(

d
∑

j=1

λjφ(xj + i · α)) (1.5)

with suitable constants λi, α and a continuous one-dimensional function

φ. It also gives an embedding of [0, 1]d into IR2d+1 by f(x1, ..., xd) =
∑2d+1

i=1 fi(Xi) with Xi :=
∑d

j=1 λjφ(xj + i · α).

The proof of Kolmogorov’s theorem is non-constructive and does not

provide us with a way to choose the inner and outer functions in (1.3),

(1.4) or (1.5), respectively. A first attempt to remedy this problem

with merely an approximation of the inner function and an interpolation

of the outer functions was made in (de Figueiredo 1980). Recently,

however, algorithms were given to explicitly construct the functions in

(1.5). The implementation of an inner function φ which does not depend

on f was discussed in (Sprecher 1996). Here φ is pointwise defined

on an everywhere dense set of rational numbers in [0, 1] from which
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it can be uniquely extended to a continuous function on [0, 1]. The

resulting φ is non-continuous. There is also a close relation of φ to

space-filling curves, see (Sprecher and Draghici 2002, Sagan 1994). An

implementation of the outer functions fi by an iterative method was

presented in (Sprecher 1997). This established the first constructive

proof of Kolmogorov’s theorem. It furthermore allows to realize (1.5)

as a feedforward neural network with a hidden layer that computes the

variables Xi and therefore involves the embedding mapping only, and a

single output layer in which f is computed by means of the functions

fi(Xi), see also (Hecht-Nielsen 1987a, Hecht-Nielsen 1987b). In (Köppen

2002) the construction was improved to give a continuous inner function

φ.

Thus, in view of Kolmogorov’s result, it seems that there are no high-

dimensional functions and thus no high-dimensional problems at all.

However, it turns out that the representing functions are quite bad, i.e.,

they are at best only continuous and highly non-smooth. This limits

their practical use for approximation and interpolation purposes (Girosi

and Poggio 1989), like e.g., for the discretization of PDEs within the

Galerkin approach. In particular, the representing functions cannot be

chosen to be differentiable. This even holds if one wants to represent an

analytic function f only, see (Vitushkin 1964).

Nevertheless Kolmogorov’s theorem inspired many linear and nonlin-

ear approximation schemes and there have been various attempts to

generalize Kolmogorov’s formula. Moreover, in (Kurkova 1991) it was

noticed that in the proof of Kolmogorov’s superposition theorem the

fixed number of 2d + 1 basis functions can be replaced by a variable

number m and the task of function representation can be replaced by

the task of function approximation. In the following we give an (incom-

plete) list of approaches which are related to Kolmogorov’s theorem.

• Popular approximation schemes in statistics are the so-called additive

models, see (Hastie and Tibshirani 1986, Hastie and Tibshirani 1990).

They resemble the approximation

f(x1, ..., xd) ≈
d
∑

i=1

fi(xi). (1.6)

This form can be derived from (1.3) by choosing d instead of 2d + 1

and replacing the inner functions φij trivially by the identity if i = j

and zero otherwise.

• The projection pursuit algorithm (Friedman and Stützle 1981, Stone



12 Michael Griebel

1985) approximates a function f by

f(x1, ..., xd) ≈ f0 +

m
∑

i=1

fi(

d
∑

j=1

βij · xj)

with the so-called projection directions ~βi := (βi1, ..., βid) and with f0
as the average of the function f . Here the parameter vectors ~βi and

the functions fi are estimated from the data. This scheme can also

be interpreted as a special case of (1.6) using linear combinations of

the original coordinates.

• Closely related are multilayer perceptrons with a single hidden layer.

They approximate f by

f(x1, ..., xd) ≈ h(

m
∑

i=1

αig(

d
∑

j=1

βijxj))

where h and g are arbitrary nonlinear functions. Here, the network

is trained with a given set of input and output values and the ap-

proximation is then determined by the values of αi and the vectors ~βi

which are found by least squares minimization. In (Kurkova 1991) it

was demonstrated how to approximate a Hecht-Nielsen network which

implements Komogorov’s superposition approach by such traditional

neural networks.

• Also radial basis schemes belong to the class of approximation schemes

which can be derived from (1.3). Here the dimension embedding takes

place by a distance function, i.e., the sum of the inner functions gets

replaced by the Euclidean norm. They can under certain assumptions

be written as

f(x) ≈
m
∑

i=1

βifi(‖x− yi‖) + P (x)

where x = (x1, . . . , xd), the fi are a chosen set of radial basis func-

tions, yi ∈ IRd are their centers, the βi are constants and P (x) is a

polynomial. The coefficients are then fitted to the data by means of

least-squares minimization.

• Starting from the representation (1.4), (Igelnik and Parikh 2003) intro-

duced so-called Kolmogorov spline networks. There, 2d+1 is replaced

by a general m and the outer function g and the inner functions φi are

replaced by cubic splines s(·, γi) and s(·, γi,j) where the parameters

γi and γi,j of the splines are adjusted to fit given data on f properly.
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The approximation scheme is defined as

fm(x1, ..., xd) =

m
∑

i=1

s(

d
∑

j=1

λjs(xj , γi,j), γi) (1.7)

with positive numbers λ1, . . . , λd with
∑

λj ≤ 1 which can be chosen

independent of f . It was shown that, for any function f from the class

of continuously differentiable functions on [0, 1]d with bounded gradi-

ent, there exists a function fm of the form (1.7) such that ‖f − fm‖ =

O(1/m). The number of degrees of freedom involved in the network

is of the order O(m2/3). This result compares favorably with the ap-

proximation order O(1/
√
m) and the number of degrees of freedom

O(m2) usually achieved for general one-hidden layer feedforward net-

works for this class of functions, compare also (Barron 1993, Igelnik

and Parikh 2003) and the references cited therein. A similar approach

was also presented in (Coppejans 2004).

• Finally, Kronecker-product type approximations of the form

f(x) ≈
m
∑

i=1

ci

d
∏

j=1

fij(xj), ci ∈ IR,

possess a structure similar to Kolmogorov’s theorem. Here however

the inner sum is replaced by a product of one-dimensional functions.

To see the relation to (1.3) choose there fi(·) = ci ·exp(·) and φij(·) =

log(fij(·)). For numerical purposes, the one-dimensional functions

fij are further expanded in a series with a suitable multilevel ba-

sis which is then properly truncated or, more often, they are just

simply discretized on a uniform grid. For details and applications

see (Beylkin and Molenkamp 2002, Beylkin and Molenkamp 2005,

Tyrtyshnikov 2004, Hackbusch and Khoromskij 2004), the related de-

velopments on so-called H- and H2-matrices (Hackbusch, Khoromskij

and Sauter 2000, Grasedyck and Hackbusch 2003) and the references

cited therein. A similar decomposition is used in the MCTDH ap-

proach (Beck, Jäckle, Worth and Meyer 2000).

The basic theory of this decomposition can be found in (Golomb

1959): In the case d=2 mainly the classical Hilbert-Schmidt theory

appears, i.e., the functions fij are the unique solution of a system of

two coupled linear integral equations which resemble the continuous

analogue of the classical singular value decomposition. For the case

d > 2 however, a system of nonlinear integral equations results for

which the solution is no longer unique. Then heuristics must be used
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to obtain some solution. Nevertheless it is observed in applications

that good approximations can be obtained with an already relatively

small number m.

For most of these approximation schemes the parameters are obtained

by some kind of (least-squares) minimization. Here, however the objec-

tive functional may not be globally convex and can have many minima

which results in non-unique representations. Thus, the associated ap-

proximation rates for these schemes for increasing m are not always fully

understood and, moreover, it is not clear which representation to prefer

over another for a particular application. In the following we therefore

study a simpler linear decomposition of a d-dimensional function into

its contributions from different (groups of) subdimensions which can be

seen as a multivariate generalization of (1.6).

1.3 Dimension-wise space decomposition

We consider a decomposition of the d-dimensional function f as

f(x1, ..., xd) = f0 +

d
∑

j1

fj1(xj1 ) +

d
∑

j1<j2

fj1,j2(xj1 , xj2) (1.8)

+

d
∑

j1<j2<j3

fj1,j2,j3(xj1 , xj2 , xj3) + · · · + fj1,...,jd
(xj1 , ..., xjd

).

Here, f0 is a constant function, fj1 are one-dimensional functions, fj1,j2

are two-dimensional functions, and so on. This type of decomposition

goes back to (Hoeffding 1948) and is well known in statistics under the

name ANOVA (analysis of variance), see also (Efron and Stein 1981).

Note that (1.8) is a finite expansion of f into 2d different terms. Such

a decomposition can be gained by a tensor product construction of a

splitting of the one-dimensional function space into its constant subspace

and its remainder. This will be explained in more detail in the following.

1.3.1 ANOVA-like decompositions

Let V (d) denote the underlying space of d-dimensional functions f(x) =

f(x1, .., xd) : Ω̄(d) → R with Ω̄(d) = [0, 1]d. Let µ be a product measure

with unit mass which has a density, i.e.,

dµ(x) =

d
∏

j=1

dµj(xj),

∫

Ω̄(1)

dµ(xj) = 1, (1.9)
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dµ(x) = h(x) =

d
∏

j=1

hj(xj)dxj , (1.10)

where hj(xj) is the marginal density of the input variable xj . Fur-

thermore, let V (d) be a Hilbert space equipped with the inner product

(f, g) =
∫

Ω̄(d) f(x)g(x)dµ(x) and associated norm ‖ · ‖.
First we will deal with the one-dimensional case. We decompose V (1)

in a simple two-scale fashion by

V (1) = 1 ⊕W (1.11)

where 1 denotes the one-dimensional subspace span{1} which contains

the constant functions. Associated to such a splitting is a mapping

P : V (1) → 1 with

Pf(x) =

∫

Ω̄(1)

f(x)dµ(x). (1.12)

Examples are the conventional Lebesque measure dµ(x) = dx which

leads to the integral average

Pf(x) =

∫

Ω̄(1)

f(x)dx

or the Dirac measure located at a point a, i.e., dµ(x) = δ(x − a)dx,

which results in the simple evaluation at point a

Pf(x) =

∫

Ω̄(1)

δ(x− a)f(x)dx = f(a). (1.13)

This introduces the decomposition

f(x) = f0 + f1(x) (1.14)

with

f0 = Pf(x) =

∫

Ω̄(1)

f(x)dµ(x) ∈ 1 and (1.15)

f1(x) = (I − P )f(x) = f(x) −
∫

Ω̄(1)

f(x)dµ(x) ∈W. (1.16)

Then W is the subspace of V (1) of functions which satisfy the relation
∫

Ω̄(1) f(x)dµ(x) = 0. It is orthogonal to 1 and, with
∫

Ω̄(1) f1dµ(x) = 0,

it is easy to see that ‖f‖2 = ‖f0‖2 +‖f1‖2 and (f, g) = (f0, g0)+ (f1, g1)

with g split analogously to (1.14).

Note that for (1.13) with differentiable f there is a close relation to the

Taylor expansion. The decomposition (1.14) is just the Taylor formula

of first order and f1 = f(x) − f(a) =
∫ x

a f
′(t)dt is the remainder term.
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Now we consider the d-dimensional case: The one-dimensional split-

ting introduces a natural decomposition of the d-dimensional function

space V (d) by a tensor product construction

V (d) =
d
⊗

j=1

(1j ⊕Wj) (1.17)

= 11 ⊗ · · · ⊗ 1d

⊕
d
⊕

i=1

11 ⊗ · · · ⊗Wi ⊗ · · · ⊗ 1d

⊕
d
⊕

i=1

⊕

i<j

11 ⊗ · · · ⊗Wi ⊗ · · · ⊗Wj ⊗ · · · ⊗ 1d

⊕
d
⊕

i=1

⊕

i<j

⊕

i<j<k

11 ⊗ · · · ⊗Wi ⊗ · · · ⊗Wj ⊗ · · · ⊗Wk ⊗ · · · ⊗ 1d

· · ·
⊕ W1 ⊗ · · · ⊗Wd.

Here 1j = 1 and Wj = W ; we use the index j merely to indicate

the respective coordinate direction for explanatory reasons. Another

notation which involves the subsets of the index set {1, 2, . . . , d} is †

V (d) =
⊕

u⊂{1,...,d}





⊗

k∈{1,...,d}/u

1k



⊗





⊗

j∈u

Wj



 =:
⊕

u⊂{1,...,d}

Wu.

(1.18)

Then, a function f ∈ V (d) is decomposed accordingly as

f(x1, ..., xd) = f0 +

d
∑

j1

fj1(xj1) +

d
∑

j1<j2

fj1,j2(xj1 , xj2) (1.19)

+
d
∑

j1<j2<j3

fj1,j2,j3(xj1 , xj2 , xj3) + · · · + fj1,...,jd
(xj1 , ..., xjd

)

=
∑

u⊂{1,...,d}

fu(xu)

where fu ∈ Wu and xu denotes the variables xi of x with i ∈ u. Note

† Note the obvious identity
Q

j∈v
(bj + cj) =

P

u⊂v

Q

k∈v/u bk
Q

j∈u
cj ,∀bj , cj ∈

R. It can be applied for products of sums of functions and products of sums of
subspaces in an analogous way.
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that due to the power set construct this is a finite expansion which

involves 2d different terms. The decomposition is unique for a fixed

choice of the one-dimensional mapping P : V (1) → 1.

Associated is the identity

I(d) =
d
⊗

j=1

(Pj + (Ij − Pj))

=
∑

u⊂{1,...,d}





∏

k∈{1,...,d}/u

Pk



 ·





∏

j∈u

(Ij − Pj)



 =:
∑

u⊂{1,...,d}

Pu

where Pj and Ij denote the one-dimensional projection operator (1.12)

and the identity for the j-th coordinate direction, respectively. Here

the projection
∏d

j=1 Pjf is the unconditional mean of f (with respect

to the measure µ) and the partial projection
∏

k∈{1,...,d}/u Pkf is the

conditional mean
∫

..
∫

f(x)
∏

k∈{1,...,d}/u dµk(xk).

For the example of the conventional Lebesque measure dµ(x) = dx we

obtain the functions in (1.19) as

f0 =

d
∏

j=1

Pjf =

∫

Ω̄(d)

f(x)

d
∏

i=1

dxi,

fj1(xj1 ) =

∫

Ω̄(d−1)

f(x)
∏

i6=j1

dxi − f0,

fj1,j2(xj1,j2) =

∫

Ω̄(d−2)

f(x)
∏

i6∈{j1 ,j2}

dxi − fj1(xj1 ) − fj2(xj2 ) − f0,

. . . . . .

fj1,...,jk
(xj1,...,jk

) =

∫

Ω̄(d−k)

f(x)
∏

i6∈{j1,...,jk}

dxi (1.20)

−
∑

i1<···<ik−1⊂{j1,...,jk}

fi1,...,ik−1
(xi1 , . . . , xik−1

)

−
∑

i1<···<ik−2⊂{j1,...,jk}

fi1,...,ik−2
(xi1 , . . . , xik−2

)

. . .

−
∑

j1

fj1(xj1 ) − f0,

. . . . . .

This is just the well known ANOVA decomposition used in statistics, see

(Efron and Stein 1981, Wahba 1990) and the references cited therein.



18 Michael Griebel

There, if the input consists of independently distributed uniform random

variables (with respect to the Lebesque measure) then the component

functions are uncorrelated and the total variance D can be written as

D = E(f − f0)
2 =

∑

j1

Dj1 +
∑

j1<j2

Dj1,j2 +
∑

j1<j2<j3

Dj1,j2,j3 + . . . Dj1,...jd

with the partial variances†

Dj1,...,jk
=

∫

Ω̄(k)

(fj1,...,jk
)2dxj1 . . . dxjk

.

For the example of the Dirac measure located at a point aj , i.e.,

with dµ(xj) = δ(xj − aj)dxj and dµ(x) =
∏d

j=1 dµ(xj), we obtain the

functions in (1.19) as

f0 = f(x)|x=a

fj1(xj1 ) = f(x)|x=a\xj1
− f0,

fj1,j2(xj1,j2) = f(x)|x=a\{xj1 ,xj2}
− fj1(xj1) − fj2(xj2 ) − f0,

. . . . . .

fj1,...,jk
(xj1,...,jk

) = f(x)|x=a\{xj1 ,...,xjk
} (1.21)

−
∑

{i1,...,ik−1}⊂{j1,...,jk}

fi1,...,ik−1
(xi1 , . . . , xik−1

)

−
∑

{i1,...,ik−2}⊂{j1,...,jk}

fi1,...,ik−2
(xi1 , . . . , xik−2

)

. . .

−
∑

j1

fj1(xj1) − f0,

. . . . . .

where now only (partial) point evaluations in the point a = (a1, .., ad)

are involved. Here we use the notation

f(x)|x=a\xi
= f(a1, . . . , ai−1, xi, ai+1, . . . , ad)

with its obvious generalization to a \ {xj1 , . . . , xjk
}. This approach is

considered in (Rabitz and Alis 1999) under the name cut-HDMR and

is closely related to the anchor spaces of (Sloan et al. 2004, Dick et al.

2004, Hickernell and Woźniakowski 2000, Wasilkowski and Woźniakowski

2004). Note that a component function vanishes if the value of one of

† The global sensitivity indices are then defined as Sj1,...,jk
= Dj1,...,jk

/D. They
describe the contribution of the input {xj1 , . . . , xjk

} to the variance of the output.
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its input variables xi is equal to the associated coordinate of the point

a, i.e.,

fj1,...,jk
(xj1,...,jk

)|xi=ai
= 0 i ∈ {j1, ..., jk}.

Thus the decomposition (1.21) expresses f as a superposition of its values

on lines, faces, hyperplanes etc. which pass through the point a. Also

note that the component functions fulfill

fi1,...,ip
(xi1,...,ip

)fj1,...,jq
(xj1,...,jq

)|xk=ak
= 0 k ∈ {i1, ..., ip}∪{j1, ..., jp},

which is a direct consequence of the orthogonality
∫

Ω̄(d)

fi1,...,ip
(xi1,...,ip

)fj1,...,jq
(xj1,...,jq

)dµ(x) = 0

with dµ(x) =
∏d

j=1 δ(xj − aj)dxj .

Note furthermore that for differentiable f there is a close relation

to the multivariate Taylor expansion. The decomposition (1.21) is just

the multivariate Taylor formula of first order in each coordinate direc-

tion with partial remainder terms. Moreover, the multivariate Taylor

expansion of f around a (provided that f is sufficiently many times dif-

ferentiable of course) and a short calculation shows the following: The

component functions of first order, i.e., fj1 , are the sum of all terms in

the Taylor series which depend only on xj1 , the component functions

of second order, i.e., fj1,j2 , are the sum of all terms in the Taylor se-

ries which depend on xj1 and xj2 , and so on. Thus (1.21) resembles a

rearrangement of the infinite number of terms in the full Taylor series

into a finite number, i.e., 2d, of different groups where each group cor-

responds to one component function (which still contains as series an

infinite number of terms).

Note finally that there are various generalizations of (1.21). Instead

of the Dirac measure at one point a we could also take the average of

the Dirac measures at m different points and build an ANOVA-type

decomposition on it. This approach is closely related to the multi-cut-

HDMR method of (Li, Rosenthal and Rabitz 2001b, Li, Schoendorf, Ho

and Rabitz 2004). Other variants (mp-cut-HDMR and lp-RS) can be

found in (Li, Wang, Rosenthal and Rabitz 2001c) and (Li, Atramonov,

Rabitz, Wang, Georgopoulos and Demiralp 2001a), respectively.

In summary an ANOVA-type decomposition of f into component

functions reveals the relative importance of the different dimensions as

well as their interactions and correlations. In general, an arbitrary func-

tion f may result in zero components except of its highest order term
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fj1,...,jd
(xj1 , ..., xjd

) or might have all its components beeing relevant.

Then, nothing is gained with respect to the curse of dimensionality when

switching from f to its ANOVA decomposition. However in many prac-

tical applications it can be observed that the finite series (1.19) decays

rapidly. In some cases it is even of finite order q, i.e., for the components

fu of the decomposition (1.19) there holds

fu = 0 with |u| > q

with q << d. This usually expresses the fact that reasonable, meaningful

(observable) coordinates of the physical system under consideration had

been chosen. Alternatively it may happen that the different dimensions

are not of equal importance and we find a decay in the contribution

of the dimensions (after sorting according to their relevance) and their

associated higher order interactions.

Examples with such types of behavior of the expansion (1.19) are:

• In most molecular dynamics simulation codes only two-body (bonds),

three-body (angle) and four-body (dihedral) potential functions are

used to describe molecules, i.e., it holds that the finite order of the

associated ANOVA decomposition is trivially q ≤ 4. It seems that

this mostly gives a sufficient representation of the potential energy

hypersurface of a system, especially when macroscopic variables are

sought.

• Closely related is the Mayer cluster expansion in statistical mechan-

ics. Here, for pair potentials Uij(xi, xj) which express the interaction

between two particles, the term

exp(−
∑

i<j

Uij(xi, xj)) =
∏

i<j

exp(−Uij(xi, xj))

gets transformed by exp(−Uij(xi, xj)) =: 1 + φij(xi, xj) into

1 +
∑

i<j

φij +
∑

i<j

∑

k<l

φijφkl +
∑

i<j

∑

k<l

∑

m<n

φijφklφmn + · · ·

which allows one to write the partition function of the canonical en-

semble of a particle system by means of cluster integrals, for details

see (Hill 1956), page 123 ff.

• In many statistical applications a statistics of second order is sufficient,

i.e., the covariances of the input variables play an important role, but

higher-order correlations are neglected. Again this means that we

have finite order q ≤ 2 in the associated ANOVA decomposition.
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• In data mining it is found from multivariate adaptive regression splines

(MARS), see (Friedman 1991), that even for really high-dimensional

data there appear at most 5-7 dimensional interactions, i.e., q ≤ 7,

and higher-order interactions are practically not significant.

• The Brownian bridge representation of a Markov process results in a

concentration of the total variation in the first few levels of the dis-

cretization since the variance decays with the factor 2−1/2 from level to

level, see also (Caflisch, Morokoff and Owen 1997, Morokoff 1998, Ger-

stner and Griebel 2003, Gerstner and Griebel 1998) where the Brown-

ian bridge was used in high-dimensional integration problems. A fur-

ther analysis in view of reproducing kernel Hilbert spaces with weights

is given in (Leobacher, Scheicher and Larcher 2003). Note that for the

Karhunen-Loewe decomposition an even better decay may result than

for the Brownian bridge.

• Many problems in mathematical finance can be formulated as high-

dimensional integrals, where the large number of dimensions arises

from small time steps in time discretization and/or a large number of

state variables. Examples are option pricing, bond valuation or the

pricing of collateral mortgage backed securities. There, it turns out

that for the ANOVA decomposition of the integrand the importance of

each dimension is naturally weighted by certain hidden weights where

with the increase of dimension the lower-order terms continue to play

a significant role and the higher-order terms tend to be negligible,

see (Caflisch et al. 1997, Sloan and Wang 2005). This is a reason

why Quasi-Monte-Carlo performs better than expected, especially for

high-dimensional integrands.

• There is also a counterexample. In quantum chemistry, the solution of

Schrödinger’s equation for d fermions has to obey the antisymmetry

condition due to Pauli’s principle. It can be shown that for an ANOVA

decomposition of an antisymmetric f all terms fu with |u| < d − 1

are identically zero and all information of f is contained in the terms

with order d− 1 and d.†

In summary, in certain applications, i.e., for f from special function

spaces, we know a-priori how the ANOVA-components decay and may

resort to a truncation of (1.19) after the q-th order terms, where q is re-

lated to the needed accuracy. Or we may a-priori know if ANOVA-terms

of order higher than some q are present at all or not. The question is

† For bosonic systems a symmetry condition is needed instead. Then all functions
fu with the same order |u| are the same.
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how these situations and the associated function spaces can be character-

ized. A possibility are reproducing kernel Hilbert spaces. The associated

multi-dimensional kernel function can be decomposed analogously to the

ANOVA expansion into a sum of kernels. Then these partial kernels can

be equipped with different individual weights. These weights allow one

to model various behaviors of decay for the different contributions in the

ANOVA decomposition as well as truncations to finite order. This will

be dealt with in the following.

1.3.2 Reproducing kernel Hilbert spaces

The theory of reproducing kernel Hilbert spaces (RKHS) was introduced

in (Aronzaijn 1950). It allows to describe function spaces in a concise

and elegant way by means of so-called reproducing kernel functions. To

this end, we assume that f : [0, 1]d → IR belongs to a Hilbert space

H with associated inner product 〈·, ·〉H and norm ‖f‖H = 〈f, f〉1/2
H .

We assume that H is continuously embedded into L2([0, 1]d). Thus, we

consider integrable functions f with respect to the Lebesgue measure

for which ‖f‖L2 :=
(

∫

[0,1]d f
2(t)dt

)1/2

< ∞. Furthermore, there is a

non-negative number c(H) depending on the space H such that

‖f‖L2 ≤ c(H) ‖f‖H for all f ∈ H. (1.22)

Finally we assume that the evaluation of the function f is well-defined

and continuous, i.e., that the linear functional f ∈ H 7→ f(x) is continu-

ous for any x ∈ [0, 1]d. These assumptions are equivalent to the require-

ment that H is a reproducing kernel Hilbert space, see (Aronzaijn 1950).

Hence, H has an associated kernel K(d) : [0, 1]d × [0, 1]d → IR which is

uniquely defined by the following three conditions:

• K(d)(·, t) ∈ H for all t ∈ [0, 1]d,

•
(

K(d)(xi, xj)
)n

i,j=1
is a symmetric and non-negative definite matrix

for all n and points xi from [0, 1]d,

• f(t) =
〈

f,K(d)(·, t)
〉

H
for all f ∈ H and all t ∈ [0, 1]d (reproducing

kernel property).

Thus it is sufficient to give K(d) to uniquely characterize the associated

function space H . The theory of reproducing kernel Hilbert spaces can

be found in detail in (Aronzaijn 1950); further aspects are discussed in

(Wahba 1990, Ritter 2000).
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From the three properties of reproducing kernels it easily follows that

K(d)(t, x) =
〈

K(d)(·, x),K(d)(·, t)
〉

H
for all t, x ∈ [0, 1]d,

√

K(d)(t, t) = ‖K(d)(·, t)‖H for all t ∈ [0, 1]d,

|f(t)| ≤ ‖f‖H

√

K(d)(t, t) for all f ∈ H, t ∈ [0, 1]d.

IfH is separable, then for an arbitrary orthonormal basis {ηi}, we have

K(d)(·, x) =
∑dim(H)

i=1 ciηi with ci =
〈

ηi,K
(d)(·, x)

〉

H
= ηi(x). Therefore

K(d)(x, t) =

dim(H)
∑

i=1

ηi(x)ηi(t) for all x, t ∈ [0, 1]d. (1.23)

In a way, the reverse of this argument is also true, see (Wahba 1990).

To this end, let {ηi}∞i=1 be a given arbitrary sequence of linearly in-

dependent functions defined on [0, 1]d such that
∑∞

i=1 η
2
i (t) < ∞ for

all t ∈ [0, 1]d. Consider the space H = span{η1, η2, . . . } of functions

f(t) =
∑∞

i=1 fiηi(t) with real numbers fi such that
∑∞

i=1 f
2
i < ∞. Ob-

serve that f(t) is well-defined. For f ∈ H the coefficients fi are uniquely

determined since the ηi’s are linearly independent. The inner product

in H is given by requiring that the ηi’s be orthonormal, 〈ηi, ηj〉H = δi,j .

Hence, for f, g ∈ H we have 〈f, g〉H =
∑∞

i=1 figi with fi and gi being

the coefficients of f and g, respectively. Then H is a Hilbert space.

Furthermore, it can be easily shown that

K(d)(x, t) =

∞
∑

i=1

ηi(x)ηi(t)

is its reproducing kernel.

Note that the Hilbert space L2([0, 1]d) does not have a reproducing

kernel, since point evaluation t ∈ [0, 1]d 7→ f(t) is not well-defined for

L2([0, 1]d) and thus can not be continuous. It is easy to see that H is

continuously embedded in L2 if we assume that
∫

[0,1]d
K(d)(t, t) dt < ∞. (1.24)

Indeed, f2(t) ≤ ‖f‖2
H ·K(d)(t, t), and therefore (1.22) holds with

c(H) =

(

∫

[0,1]d
K(d)(t, t) dt

)1/2

. (1.25)
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In this case, H is a proper subset of L2, and K(d)(·, t) ∈ L2 for arbitrary

t ∈ [0, 1]d. Many examples of reproducing kernel Hilbert spaces can be

found in the literature, see for example (Wahba 1990, Ritter 2000).

Remember now our approach in Subsection 1.3.1: We first split V (1) =

1⊕W in (1.11) and then used the tensor product construction in (1.17)

to gain the decomposition V (d) =
⊕

u⊂{1,...,d}Wu in (1.18) for the d-

dimensional case. From (Aronzaijn 1950) we know the following facts:

• The reproducing kernel for the direct sum of two orthogonal subspaces

is the sum of the single reproducing kernels.

• The reproducing kernel for a tensor product of two RKHS is the prod-

uct of the single reproducing kernels.

This allows us, depending on the one-dimensional splitting and the as-

sociated orthogonal norm, to build a d-dimensional RKHS as a product

of the sum of one-dimensional RKHSs. If we have for the orthogo-

nal splitting (1.11) the associated sum of reproducing kernels K(x, y) =

K1(x, y)+KW (x, y) we obtain for the splitting (1.18) the corresponding

kernel

K(d)(x, y) =

d
∏

j=1

(K1
j (xj , yj) +KW

j (xj , yj))

=
∑

u⊂{1,...,d}

∏

k∈{1,...,d}\u

K1
k (xk, yk) ·

∏

j∈u

KW
j (xj , yj)

=:
∑

u⊂{1,...,d}

Ku(x, y)

with Ku(x, y) =
∏

k∈{1,...,d}\uK
1
k (xk, yk) · ∏j∈uK

W
j (xj , yj). Here we

again use the indices j and k to indicate the respective coordinate di-

rections. In the special case of K1
j (xj , yj) = 1 we directly have

K(d)(x, y) =
∑

u⊂{1,...,d}

∏

j∈u

KW
j (xj , yj).

1.3.3 Weighted spaces

Now we are in the position to introduce weights into the splittings. We

follow (Sloan et al. 2004, Dick et al. 2004, Wasilkowski and Woźniakowski

2004), see also (Kuo and Sloan 2005). First we consider the simple case

where each dimension gets its own weight γj ∈ IR+
0 , j = 1, . . . , d, i.e.,
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where d different non-negative weights are involved. We then haveK1
j =

1 and replace KW
j by γj ·KW

j .† We obtain with
∏

k∈{1,...,d}\uK
1
k = 1

K(d)(x, y) =
∑

u⊂{1,...,d}

∏

j∈u

γj ·
∏

j∈u

KW
j (xj , yj)

=:
∑

u⊂{1,...,d}

γd,u ·Kd,u(xu, yu)

with γd,u =
∏

j∈u γj and Kd,u(xu, yu) =
∏

j∈uK
W
j (xj , yj). The result-

ing weights γd,u are just products of the γj .

We can generalize this approach as follows: We set

K(d)(x, y) =
∑

u⊂{1,...,d}

γd,u ·
∏

j∈u

KW
j (xj , yj)

=:
∑

u⊂{1,...,d}

γd,u ·Kd,u(xu, yu) (1.26)

where we now allow 2d general non-negative weights γd,u ∈ IR+
0 which

need no longer be formed as products of one-dimensional weights γi but

may be chosen arbitrarily. Here we use the convention γd,{} = 1 and
∏

j∈{}K
W
j = 1.

As an example we consider the reproducing kernels

KW
j (x, y) =

1

2
B2(x − y) + (x− 1

2
)(y − 1

2
) + µj(x) + µj(y) +mj

where B2(x) := x2 −x+1/6 denotes the Bernoulli polynomial of degree

2, µj is a function with bounded derivative in [0, 1] such that
∫ 1

0

µj(x)dx = 0, mj :=

∫ 1

0

(µ′(x))2dx.

This kernel was presented for example in (Sloan et al. 2004). It allows to

capture the two types of ANOVA-decompositions introduced in (1.20)

and (1.21) as special cases and it also allows one to generalize them by

means of the weights γd,u.

The choice µj(x) = 0, j = 1, . . . , d, gives mj = 0 and thus KW
j (x, y) =

1
2B2(x− y) + (x− 1

2 )(y − 1
2 ). Note that

∫ 1

0 K
W
j (x, y)dy = 0, ∀x ∈ [0, 1].

Then, the associated kernel (1.26) is called the ANOVA Sobolev kernel

with general weights γd,u. It can be shown that the associated inner

† Without loss of generality we choose here the weight one in front of the kernel K1

which is associated to the subspace 1 of constants.
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product in V (d) is now

〈f, g〉V (d) =
∑

u⊂{1,...,d}

1

γd,u

∫

[0,1]|u|

(

∫

[0,1]d−|u|

∂|u|f(x)

∂xu

dx−u

∫

[0,1]d−|u|

∂|u|g(x)

∂xu

dx−u

)

dxu

(1.27)

where we interpret the term associated to u = {} as the product of in-

tegrals
∫

[0,1]d f(x)dx
∫

[0,1]d g(x)dx. Here, xu denotes the |u|-dimensional

vector of the components xj with j ∈ u and x−u denotes x{1,...,d}\u.

The choice

KW
j (x, y) =

{

min(|x − aj |, |y − aj |), if (x− aj)(y − aj) > 0,

0, else,

leads for (1.26) to the so-called anchored ANOVA Sobolev kernel with

point a = (a1, . . . , ad) and general weights γd,u. The associated inner

product is

〈f, g〉V (d) =
∑

u⊂{1,...,d}

1

γd,u

∫

[0,1]|u|

∂|u|f(xu, a−u)

∂xu

∂|u|g(xu, a−u)

∂xu

dxu (1.28)

where (xu, a−u) denotes the d-dimensional vector whose j-th component

is equal to xj if j ∈ u and to aj if j 6∈ u, respectively. For the case u = {}
we set

∫

[0,1]|{}| f(x{}, a−{})dx{} := f(a).

In both cases the associated weighted inner product can be written as

〈f, g〉V (d) =
∑

u⊂{1,...,d}

1

γ d,u

(fu, gu)Vu
(1.29)

where

(fu, gu)Vu
=

∫

[0,1]|u|

∂|u|fu(xu)

∂xu

∂|u|gu(xu)

∂xu

dµ(xu) (1.30)

and f =
∑

u fu and g =
∑

u gu are the ANOVA decompositions of f

and g with respect to the chosen measure dµ(x). A straightforward

calculation which uses the fact that fu and gu are the components of an

ANOVA decomposition and thus possess orthogonality properties shows

that (1.30) and the integrals in the sum (1.27) and (1.28) are indeed

equivalent.†
† Plug the ANOVA decompositions f =

P

v
fv and g =

P

v
gv into (1.27), change

the order of the sum, the integral and the derivative and use the orthogonality
of the ANOVA decomposition and the fact that the partial derivative is non-zero
only if u ⊂ v. An analogous argument holds for (1.28).
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From (1.29) we see the effect of the weights on the inner product:

The {γd,u} are non-negative numbers which measure the influence of

the associated partial derivative of the function and, consequently, also

the influence of the corresponding terms fu of the decomposition (1.14).

Note that for positive weights the associated weighted norm

‖f‖V (d) =
√

〈f, f〉V (d) =

√

∑

u

1

γd,u
(fu, fu)Vu

is equivalent (up to a constant) to the conventional norm in V (d) (with

just a weighting of the contributions to the overall norm). However, for

any u with γd,u → 0 the associated contribution to the norm is forced

to zero since

1

γ d,u

(fu, fu)Vu
≤ const. ⇒ (fu, fu)Vu

≤ const. · γd,u → 0.

Thus fu = 0, the associated subspace Wu is switched off and we obtain

a true subspace of the overall space.

The weights {γd,u} therefore allow to explicitly prescribe the impor-

tance of different dimensions and of the correlations and interactions

between (groups of) dimensions and thus allow to characterize the as-

sociated function spaces and the possibly low, hidden dimensionality of

intrinsically high-dimensional functions.

An attempt in this direction was the concept of effective dimension

introduced in (Caflisch et al. 1997). There, based on the ANOVA de-

composition of a function, the distribution of the overall variance to

the ANOVA components was considered. This lead to the definitions

of the truncation dimension dt and the superposition dimension ds of a

function. There, f has truncation dimension dt if the sum of the par-

tial variances of the ANOVA terms fu with u ⊂ {1, . . . , dt} exceeds 99

percent of the total variance σ(f). Alternatively, f has superposition

dimension ds if the sum of the partial variances of the ANOVA terms

fu with order |u| ≤ ds exceeds 99 percent of the total variance. It

was argued that the success of Quasi Monte Carlo methods for high-

dimensional problems from finance is due to the relatively low effective

dimensions of the integrands involved. In particular, the example of a

mortgage backed security with nominal 360 dimensions from (Paskov

and Traub 1995) showed an effective dimension of about only 50 in the

truncation sense and about 32 in the superposition sense, see (Caflisch

et al. 1997) for details and (Sloan and Wang 2005) for a further dis-

cussion on this subject. With the help of the general weights {γd,u},
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besides these two simple situations, more general situations can now

be modeled and analyzed. In addition to the product weights men-

tioned above, also the case of order-dependent weights, i.e., the interac-

tion between the variables in xu depends only on |u|, and the case of

finite-order weights, i.e., there exists q ∈ IN such that γd,u = 0 for all

|u| > q, has been studied, see (Sloan and Woźniakowski 1998, Dick

et al. 2004, Hickernell et al. 2004, Sloan et al. 2004, Hickernell and

Woźniakowski 2000, Wasilkowski and Woźniakowski 2004) and the ref-

erences cited therein. This was mainly done for the analysis of Quasi

Monte Carlo methods and lattice rules for the numerical integration of

high-dimensional functions.

A closely related approach with weighted kernels can be found in the

area of data analysis, where the weights are called rescaling parameters.

There, for so-called interaction spline models (Wahba 1990), page 129 ff.,

strategies are discussed to delete ANOVA-component subspaces driven

by data fitting methods. The weights γd,u are not given a-priori but

are determined in an adaptive fashion by statistical tests. Alternative

techniques are the l1-penalty method or the structured Multicategory

Support Vector Machine where an updating algorithm is used for the

tuning of the weights, see (Lee, Lin and Wahba 2004b, Lee, Kim, Lee

and Koo 2004a).

Now, with a-priori knowledge, i.e., for the case of weights with finite

order q, where γd,u = 0 for |u| > q, only a proper discretization of the

remaining component functions is needed. Then, the curse of dimension-

ality is no longer present with respect to d but only with respect to q, as

shown for quadrature and more general linear problems in (Wasilkowski

and Woźniakowski 2004). In a similar fashion, for the case of sufficiently

fast-decaying weights, the series expansion (1.19) may be truncated ac-

cordingly, which then results in an approximation to the true function.†
Then, again, for a proper discretization of the remaining component

functions, the curse of dimensionality may no longer be present with

respect to d but only with respect to a smaller intrinsic dimension of

the overall function. In this sense, the curse of dimensionality can be

broken and extrinsically high-dimensional problems can be tackled.

Note that a truncation of the ANOVA series introduces a modelling

error whereas the subsequent discretization of the remaining subspaces

relates to a discretization error. This unnatural distinction between

modelling error and subsequent discretization error can be overcome if

† Alternatively a closure by an approximation of the higher order terms by means
of products of lower order terms or similar may be sought.
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we intertwine the truncation of the ANOVA series and the discretiza-

tion. However, how these two types of errors may be balanced, how this

may be done in a purely adaptive fashion, what the smoothness assump-

tions, a-posteriori error indicators and refinement procedures, first, for

the ANOVA parts and, second, within the discretization of the ANOVA

parts have to be and how they relate to each other is presently not com-

pletely clear, especially for PDE-based problems.‡ Nevertheless, such a

type of approach needs to be developed and applied in the area of partial

differential equations in the future.

1.4 Sparse grids

So far we have seen how an ANOVA-type decomposition may be used

to detect important and unimportant correlations and interactions be-

tween (groups of) dimensions. However the components in the de-

composition (1.19) are still continuous functions and the correspond-

ing subspaces Wu are in general infinite-dimensional. Moreover, for

practical computations a choice of basis and a further discretization

is needed for each of the subspaces. To this end, we can follow the

same principle as in Subsection 1.3.1. First we equip the space W

in the one-dimensional splitting (1.11) with a proper (infinite) basis

{φk} (the constant, i.e., φ0 = 1 is excluded). Then we apply the

tensor product construction (1.17) to come to the d-dimensional case.

Here we just form the products of the respective one-dimensional ba-

sis functions. This results in an induced basis {φu,k} for each of the

ANOVA subspaces Wu with multi-index k = (kj1 , . . . , kj|u|
) ∈ IN|u|

where φu,k(xu) =
∏

j∈u φkj
(xj) ·

∏

j∈{1,...,d}\u 1. This may be seen as

an (infinite) refinement of the ANOVA decomposition by a further de-

composition of the space W (e.g., by means of the span of certain basis

functions).† Then, we can write each component function as linear com-

bination of these basis functions. This overall expansion of the sum of

‡ If we assume, for example, fu ∈ C|u|·k([0, 1]|u|),∀u, we directly see that f ∈
Ck·d([0, 1]d). However there exist more partial derivatives like, for example, the
|u|-th mixed derivative of fu and, therefore, f belongs to the space of bounded k-th
mixed derivatives, compare also (Novak and Ritter 1998). Note that the inverse
direction of this implication is in general not valid. Now, for functions whose
ANOVA decomposition is of finite order q, only a prerequisite fu ∈ Cq·k([0, 1]|u|)
is at most necessary to have f from the space of bounded k-th mixed derivatives.

† Note the close relation to the work in (Lemieux and Owen 2002, Liu and Owen
2005), to MARS (Friedman 1991), to the WARNAX model (Wei and Billings 2004)
and to tensor product space ANOVA models (Gu and Wahba 1993, Lin 2000).
For example in (Wahba 1990), page 130, the one-dimensional two-scale splitting
is extended to more terms which correspond to higher derivatives. Orthogonality
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component functions of the ANOVA decomposition must be truncated

properly in each of its components to obtain a finite dimensional approx-

imation to f and to its component functions fj1 , fj1,j2 , . . . , fj1,...jd
. This

leads to so-called sparse grids. Depending on the smoothness assumed

– here usually certain mixed derivatives have to be bounded – and de-

pending on the specific one-dimensional basis chosen, such an approach

allows to get rid of the curse of dimensionality to some extent.

This concept works for quite general systems of one-dimensional basis

functions. Candidates are the eigenbasis of an associated one-dimensional

differential operator (which may be chosen depending on the respec-

tive higher dimensional problem under consideration), classical Fourier

bases, (hierarchical) global polynomial systems (Boyd 2000, Karniadakis

and Sherwin 1999, Szabo and Babuska 1991, Bungartz 1998, Bungartz

and Griebel 2004) or function families with localization properties like

wavelets (Daubechies 1992), prewavelets (Chui and Wang 1992, Griebel

and Oswald 1995b) or interpolets (Deslauriers and Dubuc 1989, Donoho

and Yu 1999) and related wavelet-like constructs, see (Cohen 2003, Bun-

gartz and Griebel 2004) for a survey. But also multiscale finite element

systems and frames (Oswald 1994, Griebel 1994, Griebel and Oswald

1994, Griebel and Oswald 1995a, Griebel and Oswald 1995b) may be

used.

In the following, we restrict ourselves for reasons of simplicity to the

standard hat function and the associated hierarchical Faber basis. It

is closely related to piecewise linear finite elements and thus suited for

the discretization of elliptic PDEs of second order in weak form. This

choice allows in a straightforward way to derive approximation orders

and cost complexities by simple geometric series arguments and triangle

inequalities. Moreover, for this special choice of basis we are able to

also derive estimates of the constants involved and their dependence on

the dimension d. We now closely follow (Bungartz 1992, Bungartz and

Griebel 1999, Bungartz 1998, Bungartz and Griebel 2004).

1.4.1 Hierarchical multilevel subspace splitting

1.4.1.1 Subspace decomposition

Let Ω̄ := [0, 1]d denote the d-dimensional unit interval. We consider

multivariate functions u, u(x) ∈ IR, x := (x1, . . . , xd) ∈ Ω̄, with (in

is then given by a proper eigenbasis associated to this splitting. This results in
so-called interaction splines.
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some sense) bounded weak mixed derivatives

Dαu :=
∂|α|1u

∂xα1
1 · · · ∂xαd

d

(1.31)

up to some given order r ∈ IN0. Here, α ∈ INd
0 denotes a d-dimensional

multi-index with the norms |α|1 :=
∑d

j=1 αj and |α|∞ := max1≤j≤d αj .

Furthermore, we use for multi-indices component-wise arithmetic oper-

ations, for example α ·β := (α1β1, . . . , αdβd), γ ·α := (γα1, . . . , γαd), or

2α := (2α1 , . . . , 2αd), the relational operators α ≤ β :⇔ ∀1≤j≤d αj ≤ βj

and α < β :⇔ α ≤ β ∧ ∃1≤j≤d αj < βj , and, finally, special

multi-indices like 0 := (0, . . . , 0) or 1 := (1, . . . , 1), and so on.

In the following, for q ∈ {2,∞} and r ∈ IN0, we study the spaces

Xq,r(Ω̄) :=
{

u : Ω̄ → IR : Dαu ∈ Lq(Ω), |α|∞ ≤ r
}

,

Xq,r
0 (Ω̄) :=

{

u ∈ Xq,r(Ω̄) : u|∂Ω = 0
}

.
(1.32)

Thus, Xq,r(Ω̄) denotes the space of all functions of bounded (with re-

spect to the Lq-norm) mixed derivatives up to order r, and Xq,r
0 (Ω̄) will

be the subspace of Xq,r(Ω̄) consisting of those u ∈ Xq,r(Ω̄) which van-

ishes on the boundary ∂Ω. Note that we first restrict ourselves to the

case of homogeneous boundary conditions, i.e., to Xq,r
0 (Ω̄). As smooth-

ness parameter r ∈ IN0, we need r = 2 for the case of piecewise linear

approximations which will be in the following in the focus of our con-

siderations. Finally, for functions u ∈ Xq,r
0 (Ω̄) and multi-indices α with

|α|∞ ≤ r, we introduce the seminorm

|u|α,∞ := ‖Dαu‖∞ . (1.33)

Now, with the multi-index l = (l1, . . . , ld) ∈ INd which indicates the

level of refinement in a multivariate sense, we consider the family of

d-dimensional standard rectangular grids
{

Ωl, l ∈ INd
}

(1.34)

on Ω̄ with mesh size

hl := (hl1 , . . . , hld) := 2−l . (1.35)

That is, the grid Ωl is equidistant with respect to each individual coor-

dinate direction, but, in general, may have different mesh sizes in the

different coordinate directions. The grid points xl,i of grid Ωl are just

the points

xl,i := (xl1,i1 , . . . , xld,id
) := i · hl , 0 ≤ i ≤ 2l . (1.36)
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Thus, here and in the following, the multi-index l indicates the level

(of a grid, a point, or, later on, a basis function, respectively), whereas

the multi-index i denotes the location of a given grid point xl,i in the

respective grid Ωl.

Next, we define discrete approximation spaces and sets of basis func-

tions that span those discrete spaces. In a piecewise linear setting, the

simplest choice of a 1 D basis function is the standard hat function φ(x),

φ(x) :=

{

1 − |x|, if x ∈ [−1, 1] ,

0, else.
(1.37)

This function can be used to generate an arbitrary φlj ,ij
(xj) with sup-

port [xlj ,ij
− hlj , xlj ,ij

+ hlj ] = [(ij − 1)hlj , (ij + 1)hlj ] by dilation and

translation, that is

φlj ,ij
(xj) := φ

(

xj − ij · hlj

hlj

)

. (1.38)

The resulting 1 D basis functions are the input of the tensor product

construction which provides a suitable piecewise d-linear basis function

in each grid point xl,i (see Figure 1.1):

φl,i(x) :=
d
∏

j=1

φlj ,ij
(xj) . (1.39)

Since we deal with homogeneous boundary conditions (i.e., withXq,2
0 (Ω̄)),

W

2

1

X

x

y 21

W
W

Fig. 1.1. Tensor product approach for piecewise bilinear basis functions.

only those φl,i(x) that correspond to inner grid points of Ωl are taken

into account for the definition of

Vl := span
{

φl,i : 1 ≤ i ≤ 2l − 1
}

, (1.40)

the space of piecewise d-linear functions with respect to the interior of
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Ωl. Obviously, the φl,i form a basis of Vl, with one basis function φl,i of

a support of the fixed size 2 · hl for each inner grid point xl,i of Ωl, and

this basis {φl,i} is simply the standard nodal point basis of the finite

dimensional space Vl.

Additionally, we introduce the hierarchical increments Wl,

Wl := span
{

φl,i : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d
}

, (1.41)

for which the relation

Vl =
⊕

k≤l

Wk (1.42)

can be easily seen. Note that the supports of all basis functions φl,i

spanning Wl are mutually disjoint. Thus, with the index set

Il :=
{

i ∈ INd : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d
}

, (1.43)

we get another basis of Vl, the hierarchical basis

{φk,i : i ∈ Ik,k ≤ l} (1.44)

which generalizes the well-known 1D basis shown in Figure 1.2 to the

d-dimensional case by means of a tensor product approach. With these

Fig. 1.2. Piecewise linear hierarchical basis (solid) vs. nodal point basis
(dashed).

hierarchical difference spaces Wl, we can define

V (d) :=

∞
∑

l1=1

. . .

∞
∑

ld=1

W(l1,...,ld) =
⊕

l∈INd

Wl (1.45)

with its natural hierarchical basis
{

φl,i : i ∈ Il, l ∈ INd
}

. (1.46)
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Except for completion with respect to the H1-norm, V (d) is just the

underlying Sobolev space H1
0 (Ω̄), i.e., V̄ (d) = H1

0 (Ω̄).

Now it is easy to see that any function u ∈ H1
0 (Ω̄) and, consequently,

any u ∈ Xq,2
0 (Ω̄) can be uniquely split by

u(x) =
∑

l

ul(x), ul(x) =
∑

i∈Il

vl,i · φl,i(x) ∈ Wl , (1.47)

where the vl,i ∈ IR are the coefficient values of the hierarchical product

basis representation of u.

1.4.1.2 Basic properties of the subspaces

We summarize the most important properties of the hierarchical sub-

spaces Wl.

From (1.41) and (1.43), we immediately learn the dimension of Wl,

i. e. the number of degrees of freedom (grid points or basis functions,

resp.) associated with Wl:

|Wl| = |Il| = 2|l−1|1 . (1.48)

The question is now how important Wl is for the interpolation of some

given u ∈ Xq,2
0 (Ω̄). In the following we will discuss the contribution of a

subspace Wl to the overall interpolant according to (1.47). Here, besides

the Lp-norms, p ∈ {2,∞} we will concentrate on the energy norm

‖u‖E :=





∫

Ω

d
∑

j=1

(

∂u(x)

∂xj

)2

dx





1/2

, (1.49)

which is equivalent to the H1-norm in H1
0 (Ω̄). For the Laplacian, (1.49)

indeed indicates the energy norm in finite element terminology.†
First, we look at the different hierarchical basis functions φl,i(x). A

straightforward calculation gives

‖φl,i‖E =
√

2 ·
(

2

3

)(d−1)/2

· 2−|l|1/2 ·





d
∑

j=1

22lj





1/2

. (1.50)

Next, we consider the hierarchical coefficient values vl,i in more detail.

They can be computed from the function values u(xl,i) in the following

† Note that analogous results for the maximum norm ‖ · ‖∞ and the Lp-norm ‖ · ‖p

(in general p = 2) can be found in e.g., (Bungartz and Griebel 2004).



Sparse grids for higher dimensional problems 35

way:

vl,i =





d
∏

j=1

[

− 1
2 1 − 1

2

]

xlj,ij
,lj



u. (1.51)

This is due to the definition of the spaces Wl and their basis functions

(1.41), whose supports are mutually disjoint and do not contain coarse

grid points xk,j, k < l, in their interior. The right-hand side term in

(1.51), as usual in multigrid terminology (see, for example, (Hackbusch

1985)), denotes a d-dimensional stencil which gives the coefficients for a

linear combination of nodal values of its argument u.

A straightforward calculation using partial integration twice and the

product structure of (1.51), see (Bungartz and Griebel 2004) for details,

gives the integral representation

vl,i =

∫

Ω

ψl,i(x) ·D2u(x) dx (1.52)

for any coefficient value vl,i of the hierarchical representation (1.47) of

u ∈ Xq,2
0 (Ω̄). Here ψlj ,ij

(xj) := −2−(lj+1) · φlj ,ij
(xj), and furthermore

ψl,i(x) :=
∏d

j=1 ψlj ,ij
(xj).

Starting from (1.52), we are now able to give bounds for the hier-

archical coefficients with respect to the seminorm introduced in (1.33).

For the detailed proof see again e.g., (Bungartz and Griebel 2004). We

obtain

|vl,i| ≤ 2−d · 2−2·|l|1 · |u|2,∞. (1.53)

We are now ready to state the following Lemma.

Lemma 1 Let u ∈ Xq,2
0 (Ω̄) be given in its hierarchical representation

(1.47). Then, the following estimate holds for its components ul ∈Wl:

||ul||E ≤ 1

2 · 12(d−1)/2
· 2−2·|l|1 ·





d
∑

j=1

22·lj





1/2

· |u|2,∞. (1.54)

Proof Note that the supports of all φl,i contributing to ul according to

(1.47) are mutually disjoint. Then

||ul||2E =

∥

∥

∥

∥

∥

∑

i∈Il

vl,i · φl,i

∥

∥

∥

∥

∥

2

E

=
∑

i∈Il

|vl,i|2 · ||φl,i||2E
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≤
∑

i∈Il

1

4d
· 2−4·|l|1 · |u|22,∞ · 2 ·

(

2

3

)d−1

· 2−|l|1 ·





d
∑

j=1

22·lj





=
1

2 · 6d−1
· 2−5·|l|1 ·





d
∑

j=1

22·lj



 ·
∑

i∈Il

|u|22,∞

=
1

4 · 12d−1
· 2−4·|l|1 ·





d
∑

j=1

22·lj



 · |u|22,∞.

This shows (1.54).

1.4.2 Energy-norm based sparse grids

We will now construct finite-dimensional approximation spaces U for

V (d) or Xq,2
0 (Ω̄), respectively. Such a U is based on a subspace selection

I ⊂ INd,

U :=
⊕

l∈I

Wl , (1.55)

with corresponding interpolants

uU :=
∑

l∈I

ul , ul ∈Wl . (1.56)

The estimate

‖u− uU‖ =

∥

∥

∥

∥

∥

∑

l

ul −
∑

l∈I

ul

∥

∥

∥

∥

∥

≤
∑

l6∈I

‖ul‖ ≤
∑

l6∈I

b(l) · |u| (1.57)

will then allow the evaluation of the approximation space U with respect

to a norm ‖ · ‖ and a corresponding seminorm | · | on the basis of the

bounds from above indicating the benefit b(l) of Wl.

1.4.2.1 Construction of subspaces by optimization

We now address the question how to determine optimal subspace index

sets I which optimize cost versus accuracy for the interpolation error for

functions u from Xq,2
0 . To this end, we look for an optimum V (opt) by

solving a restricted optimization problem of the type

max
u∈Xq,2

0 : |u|=1
‖u− uV (opt)‖ = min

U⊂V (d): |U|=w
max

u∈Xq,2
0 : |u|=1

‖u− uU‖

(1.58)
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for some prescribed work count w. The aim is to profit from a given work

count as much as possible.† Of course, any potential solution V (opt) of

(1.58) has to be expected to depend on the norm ‖ · ‖ as well as on the

seminorm | · | used to measure the error of u’s interpolant uU ∈ U or

the smoothness of u, respectively. Note that this a-priori optimization

strategy depends only on the problem class (i.e., on the space u has to

belong to – here Xq,2
0 (Ω̄)), but not on u itself.‡

According to our hierarchical setting, we will allow discrete spaces

of the type U :=
⊕

l∈IWl for an arbitrary finite index set I ⊂ INd as

candidates for the optimization process only. Now, an approach like

(1.58) selects certain Wl due to their importance and, thus, selects the

respective grids and the underlying index sets I ⊂ INd. This is done by

using techniques known from combinatorial optimization as follows:

For the following, a grid and its representation I – formerly a finite

set of multi-indices – is nothing but a bounded subset of INd
+, and a

hierarchical subspace Wl just corresponds to a point l ∈ INd
+. First,

we have to reformulate the optimization problem (1.58). We define the

local functions c(l) and b(l), for the multi-indices l ∈ INd. According to

(1.48), the local cost c(l) is

c(l) := |Wl| = 2|l−1|1. (1.59)

Obviously, c(l) ∈ IN holds for all l ∈ INd. Concerning the local benefit

b(l), we define

b(l) := γ · β(l) , (1.60)

where β(l) is an upper bound for ‖ul‖2 according to (1.54), and γ is

a factor which depends on the problem’s dimensionality d and on the

smoothness of the data, i.e., of u, but which is constant with respect to

l, such that b(l) ∈ IN. The bound in (1.54) shows that such a choice of

γ is indeed possible. At the moment, we do not yet fix the norm to be

used here.

Now, the search for an optimal grid I ⊂ INd can be restricted to

all I ⊂ I(max) := {1, . . . , N}d for a sufficiently large N without loss of

generality. Next, global cost and benefit functions C(I) and B(I) are to

† Note that an optimization the other way round could be done as well: Prescribe
some desired accuracy ε and look for the discrete approximation scheme that
achieves this with the smallest possible work count. This is in fact the point of
view of computational complexity.

‡ This is in contrast to adaptive grid refinement which uses a-posteriori error esti-
mators to approximate one given function u.
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be defined. For C(I), we set

C(I) :=
∑

l∈I

c(l) =
∑

l∈I(max)

x(l) · c(l) , (1.61)

where

x(l) :=

{

0 : l /∈ I,

1 : l ∈ I.
(1.62)

The interpolant to u on a grid I provides the global benefit B(I):

∥

∥

∥

∥

∥

u −
∑

l∈I

ul

∥

∥

∥

∥

∥

2

≈

∥

∥

∥

∥

∥

∥

∑

l∈I(max)

ul −
∑

l∈I

ul

∥

∥

∥

∥

∥

∥

2

≤
∑

l∈I(max)\I

‖ul‖2

≤
∑

l∈I(max)

(1 − x(l)) · γ · β(l)

=
∑

l∈I(max)

γ · β(l) −
∑

l∈I(max)

x(l) · γ · β(l)

=:
∑

l∈I(max)

γ · β(l) − B(I) .

(1.63)

Of course, (1.63) gives only an upper bound for an approximation to the

(squared) interpolation error, because it does not take into account all

l /∈ I(max). However, since N and, consequently, I(max) can be chosen to

be as large as is appropriate, this is not a serious restriction. Altogether,

we get the following reformulation of (1.58):

max
I⊂I(max)

B(I) with C(I) = w, i.e.,

max
I⊂I(max)

∑

l∈I(max)

x(l) · γ · β(l) with
∑

l∈I(max)

x(l) · c(l) = w . (1.64)

If we arrange the l ∈ I(max) in some linear order (a lexicographical one,

for instance) with local cost ci and benefit bi, i = 1, . . . , Nd =: M , (1.64)

results in

max
x

bT x with cT x = w , (1.65)

where b ∈ INM , c ∈ INM , x ∈ {0, 1}M , and, without loss of generality,

w ∈ IN. In combinatorial optimization, a problem like (1.65) is called

a binary knapsack problem (Martello and Toth 1990), which is known

to be NP-hard. However, a slight change makes things much easier. If
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rational solutions, i.e., x ∈ ([0, 1] ∩ Q)
M

, are allowed, too, there exists

a very simple algorithm that provides an optimal solution vector x ∈
([0, 1] ∩ Q)

M
:

(i) rearrange the order that b1
c1

≥ b2
c2

· · · ≥ bM

cM
,

(ii) let r := max

{

j :
j
∑

i=1

ci ≤ w

}

,

(iii) x1 := · · · := xr := 1,

xr+1 :=

(

w −
r
∑

i=1

ci

)

/cr+1,

xr+2 := · · · := xM := 0.

Although there is only one potential non-binary coefficient xr+1, the

rational solution vector x, generally, has nothing to do with its binary

counterpart. But, fortunately, our knapsack is of variable size, since the

global work count w is an arbitrarily chosen natural number. There-

fore, it is possible to force the solution of the rational problem to be

a binary one which is, of course, also a solution of the corresponding

binary problem. Consequently, the global optimization problem (1.58)

or (1.65), respectively, can be reduced to the discussion of the local cost-

benefit ratios bi/ci or b(l)/c(l) of the underlying subspaces Wl. Those

subspaces with the best cost-benefit ratios are taken into account first,

and the smaller these ratios become, the more negligible the underlying

subspaces turn out to be.

Now, if our cost-benefit approach is based on the Lp-norms, with

p ∈ {1,∞} we showed in (Bungartz and Griebel 2004) that this results

in the regular sparse grid spaces

V (1)
n :=

⊕

|l|1 ≤ n+d−1

Wl (1.66)

which have been introduced in (Zenger 1991). Note that they are the

finite element analogon of the well-known hyperbolic cross or Korobov

spaces which are based on the Fourier series expansion instead of the

hierarchical Faber basis. An example of a regular sparse grid is given

for the two- and three-dimensional case in Figure 1.3. The basic concept

can be traced back to (Smolyak 1963, Babenko 1960), see also (Gordon

1969, Gordon 1971, Delvos 1982, Delvos and Schempp 1989, DeVore,

Konyagin and Temlyakov 1998).

The dimension of the space V
(1)
n fulfills

|V (1)
n | = O(h−1

n · | log2 hn|d−1) (1.67)
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Fig. 1.3. Lp-norm based sparse grids: Two-dimensional example (left) and
three-dimensional example (right), here including sparse grid points on the
boundary.

with hn = 2−n, whereas, for the interpolation error of a function u ∈
Xq,2

0 (Ω̄) in the sparse grid space V
(1)
n there holds

||u− u(1)
n ||p = O(h2

n · nd−1), (1.68)

for the Lp-norms, and

||u− u(1)
n ||E ≤ d · |u|2,∞

2 · 3(d−1)/2 · 4d−1
· 2−n = O(hn), (1.69)

for the energy-norm, see for example (Bungartz and Griebel 2004) for

detailed proofs. Note that the conventional full grid space

V (∞)
n :=

⊕

|l|∞≤n

Wl

results in an error in the Lp-norm of the order O(h2
n) and an error in

the energy-norm of the order O(hn). It however possesses a dimension

|V (∞)
n | = O(h−d

n ) and thus exhibits the curse of dimensionality with

respect to hn. In comparison to that we now see a crucial improvement

for V
(1)
n : The number of degrees of freedom is reduced significantly,

whereas the accuracy deteriorates only slightly for the Lp-norm and stays

of the same order for the energy-norm. The curse of dimensionality is

now present in the log(hn)-term only. Since this result is optimal with

respect to the Lp-norms, a further improvement can only be expected if

we change the setting. Therefore, in the following, we turn to the energy

norm.
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1.4.2.2 Energy-based sparse grids

We now base our cost-benefit approach on the energy norm. According

to (1.48) and (1.54) and following the discussion in Section 1.4.2.1, we

define

cbrE(l) :=
bE(l)

c(l)
:=

2−4·|l|1 · |u|22,∞

4 · 12d−1 · 2|l−1|1
·

d
∑

j=1

4lj

=
3

6d
· 2−5·|l|1 ·

d
∑

j=1

4lj · |u|22,∞

(1.70)

as the local cost-benefit ratio. Note that, instead of ‖ul‖E itself, only an

upper bound for the squared energy norm of ul is used. The resulting

optimal grid I(opt) will consist of all those multi-indices l or their re-

spective hierarchical subspaces Wl that fulfill cbrE(l) ≥ σE(n) for some

given constant threshold σE(n). Here, σE(n) is defined via the cost-

benefit ratio of Wl̄ with l̄ := (n, 1, . . . , 1):

σE(n) := cbrE (̄l) =
3

6d
·2−5·(n+d−1) ·

(

4n +4 · (d−1)
)

· |u|22,∞ . (1.71)

Thus, applying the criterion cbrE(l) ≥ σE(n), we come to a sparse grid

approximation space V
(E)
n which is based on the energy norm:

V (E)
n :=

⊕

|l|1−
1
5
·log2(

P

d
j=1 4lj ) ≤ (n+d−1)− 1

5
·log2(4

n+4d−4)

Wl . (1.72)

For a comparison of the underlying subspace schemes of V
(1)
n and V

(E)
n

in two dimensions, see Figure 1.4.

l l

l l2 2

11

Fig. 1.4. Scheme of subspaces for V
(1)
30 (left) and V

(E)
30 (right), d = 2.
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First, we look at the number of grid points of the underlying sparse

grids.

Lemma 2 The energy-based sparse grid space V
(E)
n is a subspace of

V
(1)
n , and its dimension fulfills

|V (E)
n | ≤ 2n · d

2
·
(

1 − 2−
2
3

)−d ≤ 2n · d
2
· ed = O(h−1

n ) . (1.73)

Proof For subspaces Wl with |l|1 = n+ d− 1 + i, i ∈ IN, we have

|l|1 −
1

5
· log2





d
∑

j=1

4lj



≥ n+ d− 1 + i− 1

5
· log2

(

4n+i + 4d− 4
)

≥ n+ d− 1 + i− 1

5
· log2

(

4i (4n + 4d− 4)
)

> n+ d− 1 − 1

5
· log2 (4n + 4d− 4) .

Therefore, no Wl with |l|1 > n+d−1 can belong to V
(E)
n . Consequently,

V
(E)
n is a subspace of V

(1)
n and |V (E)

n | ≤ |V (1)
n | for all n ∈ IN. Starting

from that, (1.48) provides

|V (E)
n | =

n−1
∑

i=0

∑

|l|1=n+d−1−i,
Pd

j=1
4

lj ≥ 4n+4d−4

32i

|Wl|

= 2n · 1

2
·

n−1
∑

i=0

2−i ·
∑

|l|1=n+d−1−i,
Pd

j=1
4

lj ≥ 4n+4d−4

32i

1

≤ 2n · 1

2
· lim

n→∞

n−1
∑

i=0

2−i ·
∑

|l|1=n+d−1−i,
Pd

j=1
4

lj ≥
4n+4d−4

32i

1

= 2n · 1

2
· lim

n→∞

n−1
∑

i=0

2−i · d ·
(

d− 1 − ⌊1.5i⌋
d− 1

)

,

since it can be shown that, for n → ∞, our energy-based sparse grid

and the grid resulting from the second condition |l|∞ ≥ n − ⌊2.5i⌋ for

the inner sum instead of

d
∑

j=1

4lj ≥ 4n + 4d− 4

32i
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are the same, and since there exist
(

d− 1 + ⌊1.5i⌋
d− 1

)

such subspaces Wl with |l|∞ = l1. Consequently, we obtain

|V (E)
n | ≤ 2n · d

2
·

∞
∑

i=0

2−
2
3 i ·
(

d− 1 + i

d− 1

)

= 2n · d
2
·
(

1 − 2−
2
3

)−d

≤ 2n · d
2
· ed ,

since
∑∞

i=0 x
i ·
(

k+i
k

)

= (1 − x)−k−1 for k ∈ IN0 and 0 < x < 1.

Next, we have to deal with the interpolation accuracy of the energy-

based sparse grid spaces V
(E)
n and to study the sparse grid interpolant

u
(E)
n ∈ V

(E)
n .

Theorem 1 The energy norm of the interpolation error of some u ∈
Xq,2

0 (Ω̄) in the energy-based sparse grid space V
(E)
n is bounded by

‖u− u(E)
n ‖E ≤ d · |u|2,∞

3(d−1)/2 · 4d−1
·
(

1

2
+
(5

2

)d−1
)

· 2−n = O(hn). (1.74)

Proof First, since

||u− u(E)
n ||E ≤ ||u− u(1)

n ||E + ||u(1)
n − u(E)

n ||E ,

and since we know that ||u−u(1)
n ||E is of the order O(hn), we can restrict

ourselves to ||u(1)
n − u

(E)
n ||E . For that, it can be shown that, for i ∈ IN0,

each Wl with |l|1 = n + d − 1 − i and |l|∞ ≥ n − 2.5i is a subspace of

V
(E)
n . Therefore, we obtain with (1.54)

||u(1)
n − u(E)

n ||E ≤
∑

Wl⊆V
(1)

n ⊖V
(E)

n

||ul||E ≤
i∗
∑

i=0

∑

|l|1=n+d−1−i,

|l|∞<n−2.5i

||ul||E

≤ |u|2,∞

2 · 12(d−1)/2
·

i∗
∑

i=0

∑

|l|1=n+d−1−i,

|l|∞<n−2.5i

4−|l|1 ·
(

d
∑

j=1

4lj
)1/2

≤ |u|2,∞

2 · 12(d−1)/2
· 4−n−d+1 ·

i∗
∑

i=0

4i ·
∑

|l|1=n+d−1−i,

|l|∞<n−2.5i

(

d
∑

j=1

2lj
)
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≤ |u|2,∞

2 · 12(d−1)/2
· 4−n−d+1 ·

i∗
∑

i=0

4i ·
n−1−⌊2.5i⌋
∑

j=1

d ·
(

n+ d− 2 − i− j

d− 2

)

· 2j

=
|u|2,∞

2 · 12(d−1)/2
4−n−d+1

i∗
∑

i=0

4i

n−1−⌊2.5i⌋
∑

k=1

d

(

d− 2 + ⌊1.5i⌋+ k

d− 2

)

2n−⌊2.5i⌋−k

=
d · |u|2,∞

2 · 12(d−1)/2
4−(d−1)2−n

i∗
∑

i=0

2−⌊ i
2 ⌋

n−1−⌊2.5i⌋
∑

k=1

(

d− 2 + ⌊1.5i⌋+ k

d− 2

)

2−k

≤ d · |u|2,∞

2 · 12(d−1)/2
· 4−(d−1) · 2−n · 2 · 5d−1

=
d · |u|2,∞

3(d−1)/2 · 4d−1
·
(5

2

)d−1

· 2−n,

where 0 ≤ i∗ ≤ n − 1 is the maximum value of i for which the set of

indices l with |l|1 = n + d − 1 − i and |l|∞ < n − 2.5i is not empty.

Together with (1.69) we get the result.

The crucial result of this section is that, with the energy-based sparse

grid spaces V
(E)
n , the curse of dimensionality can be overcome. In both

(1.73) and (1.74), the n-dependent terms are free of any d-dependencies:

There is an order of O(2n) for the dimension and O(2−n) for the inter-

polation error. In particular, there is no longer any polynomial term in

n like nd−1 as for the case of the space V
(1)
1 . That is, apart from the

factors that are constant with respect to n, there is no d-dependence in

either |V (E)
n | or ||u−u(E)

n ||E and, thus, no deterioration in complexity for

higher dimensional problems. The curse of dimensionality has thus been

completely overcome, at least with respect to n. However the constants

in the order estimates are still dependent on the dimension d. This will

be studied in more detail in the following section.

1.4.3 The constants and their dependence on d

So far, we derived the estimate

|V (E)
n | ≤ c1(d) · 2n (1.75)

for the degrees of freedom of the sparse grid spaces V
(E)
n with the con-

stant

c1(d) =
d

2
(1 − 2−2/3)−d

and the estimate

‖u− u(E)
n ‖E ≤ c2(d) · 2−n · |u|2,∞ = O(hn) , (1.76)
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for the accuracy of the achieved interpolation error with the constant

c2(d) =
d

3(d−1)/2 · 4d−1
·
(

1

2
+
(5

2

)d−1
)

.

Note that the upper bound (1.69) for the interpolant u
(E)
n of u in V

(E)
n

also gives by virtue of Cea’s lemma an upper bound for the best approx-

imation in V
(E)
n . We thus have

inf
vn∈V

(E)
n

‖u− vn‖E ≤ ‖u− u(E)
n ‖E .

We are interested in casting these results in a form which is more

common in approximation theory, i.e., we want to express the bound for

the approximation error in terms of the amount of degrees of freedom

involved. To this end we define the number of degrees of freedom for

the best approximation of u in V
(E)
n as

M := |V (E)
n |. (1.77)

We then express the estimate of the approximation error in terms of M .

Theorem 2 For the best approximation of a function u ∈ Xq,2
0 (Ω̄) in

the space V
(E)
n with respect to the energy norm, there holds

inf
vn∈V

(E)
n

‖u−vn‖E ≤ ‖u−u(E)
n ‖E ≤ c ·d2 ·0.97515d ·M−1 · |u|2,∞. (1.78)

Proof First, with the definition (1.77) we solve (1.75) for 2n. Taking

the inverse we obtain 2−n ≤ c1(d) ·M−1. Then

‖u− u(E)
n ‖E ≤ c2(d) · 2−n · |u|2,∞ ≤ c1(d) · c2(d) ·M−1 · |u|2,∞.

With

c1(d) · c2(d) =
d

2
(1 − 2−2/3)−d · d

3(d−1)/2 · 4d−1
·
(

1

2
+
(5

2

)d−1
)

=
√

3 · d2

(

1

(1 − 2−2/3) ·
√

3 · 4

)d

+
4 ·

√
3

5
· d2

(

5

(1 − 2−2/3) ·
√

3 · 8

)d

≤
√

3 · d2 · 0.39901d +
4
√

3

5
· d2 · 0.97515d (1.79)

the estimate (1.78) results.
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Thus we see that we obtain for the constant a decay for d→ ∞ to zero.†
The term |u|2,∞ however is also dependent on d and may grow exponen-

tially with it. Already for the simple example u(x) =
∏d

j=1 sin(2πkxj)

we see that |u|2,∞ = (4π2k2)d grows faster than 0.97515d decays. Ob-

viously it is sufficient to restrict ourselves to the approximation of func-

tions u ∈ Xq,2
0 with |u|2,∞ = o(1/(d2 · 0.97515d)) to insure that ‖u −

u
(E)
n ‖E is bounded for all d. But it is not clear how interesting this

function class for large d is in practice. Nevertheless, the facts we know

from the concentration of measure phenomenon (i.e., that the best ap-

proximation in very high dimensions is nearly constant) gives hope in

this direction.

Note that if we use the seminorm

|u|2,2 :=
∥

∥D2u
∥

∥

2
=

(∫

Ω̄

∣

∣D2u
∣

∣

2
dx

)1/2

.

instead and rewrite all the above lemmata, theorems and their proofs

in terms of the associated regularity assumption |u|2,2 we are no longer

able to derive a favorable estimate as in (1.79). We obtain slightly worse

estimates where, for the c1 and c2 involved, we only get c1(d) · c2(d) ≤
c ·
√

3 ·d2 ·0.45041d+
√

3 4
5 ·d2 ·1.12601d. Thus we see a blow-up to infinity

for d → ∞ for these estimates. Since the corresponding c1 and c2 are

only upper bounds of the true d-dependent constants it is not clear if

this also holds for them or not. Note furthermore that a rescaling of the

size of the domain Ω of course also influences the constants c1 and c2
which has to be taken into account in the above discussion.

Let us finally consider the case of non-homogeneous boundary condi-

tions, i.e., u from the space Xq,2. Now, to capture also functions living

on the boundary of Ω̄, we generalize the two-scale splitting (1.11) to a

three-scale decomposition V (1) = 1⊕ lin⊕ W̃ where 1 denotes the sub-

space of constants, lin denotes the subspace of linear functions (without

the constants) and W̃ denotes the remainder, respectively. Note that

1⊕ lin is just the kernel of the second derivative. This augmented split-

ting is now used as the input of a tensor product construction to gain a

splitting of the function space for the d-dimensional case. Analogously

to (1.17) and (1.18) a decomposition of the d-dimensional space into now

3d subspaces is introduced by Xq,2 .
= V (d) =

⊗d
j=1(1j ⊕ linj ⊕ W̃j) and

we can repeat the discussion of Section 1.3.1 in a similar way for the

refined decomposition. Informally speaking, the space Xq,2 can then

† Note that this holds for the asymptotics with respect to M , i.e., the estimates for
c1 and c2 were done for asymptotically large n.
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be decomposed into Xq,2 \ Xq,2
0 and Xq,2

0 consistent with this refined

decomposition, and we can split a function u ∈ Xq,2 accordingly into

u = ũ+ v where ũ ∈ Xq,2 \Xq,2
0 and v ∈ Xq,2

0 .

The regularity condition |u|2,∞ ≤ c < ∞ translates to ‖D2u‖∞ ≤ c <

∞, with some d-dependent constant c. For the term D2u we obtain

D2u =
∂2du

∂x2
1 · · ·∂x2

d

=
∂2d(ũ+ v)

∂x2
1 · · · ∂x2

d

=
∂2dv

∂x2
1 · · · ∂x2

d

since ∂2dũ
∂x2

1···∂x2
d

vanishes due to the involved constant and linear sub-

spaces. We are thus just in the situation of homogeneous boundary

conditions as treated previously and the lemmata and theorems above

apply. Note that the more general assumption Dαu ∈ L∞, |α|∞ ≤
2, from (1.32) relates to the (second) variation of Hardy and Krause

(Owen 2004) and involves in a dimension-recursive way different partial

(mixed) derivatives up to second order of the contributions of u from

the various boundary manifolds of Ω̄.

In an analogous way, we enlarge our basis function set to also capture

functions living on the boundary of Ω̄. To this end we introduce two

more functions into the one-dimensional hierarchical basis from Figure

1.2 which are associated to the left and right boundary point of [0, 1]

and number their associated level l by −1 for the left point and 0 for

the right point, respectively. As basis functions we use the constant

function φ−1,1(x) := 1 for the left boundary point and the linear func-

tion φ0,1(x) = x for the right boundary point. Then, {φ−1,1, φ0,1} just

spans the subspace of constant and linear functions.† This augmented

system of basis functions is now used as the input of the tensor product

construction (1.39) to gain a function system for the d-dimensional case.

Moreover, analogously to (1.45) and (1.47), a function u ∈ Xq,2 can now

be represented as u(x) =
∑

l∈(IN∪{−1,0})d ul(x) and the space Xq,2 gets

decomposed as
⊗

l∈(IN∪{−1,0})d Wl.‡
Our approach so far was focused on the space of bounded second mixed

derivatives, the energy-norm as measure for the approximation error and

(piecewise) linear hierarchical basis functions. It can be carried over to

a more general setting where we measure the approximation error in the

Hs-norm, s ∈ (−∞,∞), assume a smoothness of the type |u|Hl,t

mix

, where

† We could also have used the linear function 1 − x at the left boundary point
instead. Here, we use the constant one to be completely in sync with our splitting
V = 1 ⊕ W from (1.11).

‡ Xq,2 \ Xq,2
0 is then (up to completion) just

P

l∈(IN∪{−1,0})d\INd Wl.
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l denotes isotropic and t mixed smoothness, see (Griebel and Knapek

2000), and use wavelet-type multilevel systems with sufficient primal and

dual regularity. Then, depending on these additional parameters, we can

again derive optimal discrete approximation spaces, we may study their

cost complexities and approximation properties for different regimes of

s, l, t and we can identify situations where the curse of dimensionality can

be broken. The approach is based on norm-equivalences and associated

wavelet-type multilevel systems. This is explained in more detail in

(Griebel and Knapek 2000, Knapek 2000a), see also (Knapek 2000b)

for a variant using Fourier bases. Since the constants in these norm-

equivalences depend on d, the constants in the resulting error estimates

also depend on d and cannot, in contrast to our approach in Section

1.4.3, be estimated explicitly.

Another generalization of the sparse grid concept uses optimization

not with respect to a whole class of functions involving error norm and

smoothness prerequisite (a-priori knowledge) but, in the interpolation

context, with respect to one single given function or, alternatively, in

the context of PDEs, with respect to a given right-hand side or other

data in the partial differential equation. This leads with proper a-

posteriori error estimators to an adaptively refined sparse grid which

adapts itself (hopefully in an optimal way) to the specific situation.

The adaption and refinement process can be performed on the level

of the subspaces Wl from (1.41). This leads to a so-called dimension-

adaptive method for sparse grids, see (Gerstner and Griebel 2003). This

approach is well suited for high-dimensional functions and detects im-

portant and unimportant dimensions and groups of dimensions of an

ANOVA-decomposition in an automatic way (provided that the error

indicators are sound and no premature termination of the adaption

process occurs). The method was developed and used so far for in-

tegration problems, its application to partial differential equations is

future work. Alternatively, the adaption and refinement process can

be performed on the level of the single basis functions φl,i. We then

obtain a method where, besides the detection of important and unim-

portant dimensions and groups of dimensions, singularities and similar

local variations in a function are additionally found and resolved. Here,

the development of sound local error estimators (via the dual problem),

efficient refinement strategies and the associated complexities with re-

spect to d are an area of active research (Griebel 1998, Bungartz and

Griebel 2004, Bungartz 1998, Schneider 2000). Figure 1.5 gives examples

of two- and three-dimensional adaptive sparse grids.
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Fig. 1.5. Adaptively refined sparse grids: Two-dimensional example (left) and
three-dimensional example (right).

1.5 Concluding remarks

We reviewed approximation techniques which have the potential to over-

come the curse of dimensionality which is a main obstacle in the nu-

merical treatment of most high-dimensional problems. After a survey

on methods stemming from Kolmogorov’s theorem, we focused on the

ANOVA decomposition and the sparse grid approach and discussed their

properties and prerequisites. Moreover, we presented energy-norm based

sparse grids and demonstrated that, for functions with bounded mixed

second derivatives on the unit hypercube, the associated approximation

rate in terms of the involved degrees of freedom shows no dependence

on the dimension at all, neither in the approximation order nor in the

order constant. Important ingredients were the product structure of the

underlying domain in high dimensions, a one-dimensional splitting of the

space into the constant and the remainder subspaces and, as a refinement

of the remainder subspace, a one-dimensional multilevel basis. Then a

tensor-product approach leads to both, the ANOVA decomposition and

a multilevel series expansion of the underlying function. Proper trunca-

tion may result in an ANOVA decomposition with finite order weights or,

if the more elaborate one-dimensional multiscale splitting is employed, in

sparse grids. In this sense sparse grids are closely related to the ANOVA

approach and can be seen as a discretization and refined version of it.

In the case of functions with low effective dimension or alternatively,

bounded mixed second derivatives, the curse of dimensionality indeed

can be broken.
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These techniques can, together with a Galerkin approach or with a

finite difference method, be applied successfully to higher-dimensional

partial differential equations. Areas of actual research are here, besides

elliptic partial differential equations, also parabolic problems, like e.g.,

the Fokker-Planck equation with many practical applications in the nat-

ural sciences and financial engineering, ranging from the modelling of

mechanical systems with random oscillations to the pricing of financial

derivatives. Also the Schrödinger equation is of utmost interest. Here, in

(Griebel and Hamaekers 2006) we developed antisymmetric sparse grid

spaces to cope with the antisymmetry condition stemming from Pauli’s

principle, see also (Yserentant 2004). Further actual work is the use of

sparse grids in space-time (Griebel, Oeltz and Vassilevski 2005). There

a product structure between space and time exists naturally and can be

exploited.

To reach higher space dimensions the constants in the complexities

must be kept as low as possible. Besides the theoretical results on the

constants which we presented in the preceding section for approxima-

tions in the energy-norm, also the effect of the detailed implementation

(data structures, fast solution of the discretized linear systems by e.g.,

multigrid) on the complexity constants has to be taken into account.

Presently we are able to treat elliptic differential equations with up to

about 120 dimensions on a modern workstation (provided that there are

homogeneous boundary conditions and a product-type right hand side),

see (Feuersänger 2005).

Further work has surely to be done to better relate ANOVA-type

approaches from high-dimensional integration, data mining and statis-

tics to the solution of partial differential equations by sparse grid tech-

niques, especially with respect to adaptivity. Then certain classes of

high-dimensional PDE problems with e.g., lower effective dimension or

a decay in the interaction weights of the solution may be detected au-

tomatically and treated effectively. Finally there is hope to numerically

deal with high-dimensional problems due to the concentration of mea-

sure phenomenon.
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weights’, Journal of Complexity 20(5), 593–623.
D. Donoho (2000), ‘High-dimensional data analysis: The curses and blessings

of dimensionality’. Aide-Memoire.
D. Donoho and P. Yu (1999), Deslauriers-Dubuc: Ten years after, in CRM

Proceedings and Lecture Notes Vol. 18 (G. Deslauriers and S. Dubuc, eds).
D. Duffie (1996), Dynamic Asset Pricing Theory, Princeton University Press.
B. Efron and C. Stein (1981), ‘The jackknife estimator of variance’, Annals of

Statist. 9, 586–596.
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