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Abstract

As probabilistic computations play an increasing role ilvisg various problems, researchers have designed
probabilistic languagego facilitate their modeling. Most of the existing probadtic languages, however,
focus only on discrete distributions, and there has beta diffort to develop probabilistic languages whose
expressive power is beyond discrete distributions. Thisatitation presents a probabilistic language, called
PTP(ProbabilisTic Programming), which supports all kinds of probability diktrtions.

The key idea behind PTP is to usampling functions.e., mappings from the unit intervdb.0, 1.0] to
probability domains, to specify probability distribute@nBy using sampling functions as its mathematical
basis, PTP provides a unified representation scheme foapildlp distributions, without drawing a syntactic
or semantic distinction between different kinds of protigbdistributions.

Independently of PTP, we develop a linguistic frameworljeda)\o, to account for computational
effects in general\o extends a monadic language by applying the possible wordgretation of modal
logic. A characteristic feature ofo is the distinction between stateful computational effecédledworld
effects and contextual computational effects, caltamhtrol effects PTP arises as an instance)of with a
language construct for probabilistic choices.

We use a sound and complete translator of PTP to embed it iactlg CAML. The use of PTP is
demonstrated with three applications in robotics: roboalization, people tracking, and robotic mapping.
Thus PTP serves as another example of high-level languadiedpo a problem domain where imperative
languages have been traditionally dominant.
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Chapter 1

Introduction

This dissertation describes the design, implementatiod,agplications of a probabilistic language called
PTP (ProbabilisTic Programming). PTP usesampling functionsi.e.,, mappings from the unit interval
(0.0, 1.0] to probability domains, to specify probability distriboiis. By using sampling functions in spec-
ifying probability distributions, PTP supports all kind$ grobability distributions in a uniform manner.
The use of PTP is demonstrated with three applications iaticdr robot localization, people tracking, and
robotic mapping.

The contribution of this dissertation is three-fold:

e Sampling functions for specifying probability distritaris As most of the existing probabilistic lan-
guages focus only on discrete distributions, probahilistmputations involving non-discrete distri-
butions have usually been implemented in conventionaldaggs. Sampling functions open a new
way to specify all kinds of probability distributions, arfilis serve as a mathematical basis for prob-
abilistic languages whose expressive power is beyondetesdistributions.

e Linguistic framework for computational effecté/e develop a new linguistic framework, called,
to account for computational effects in generak extends the monadic language of Pfenning and
Davies [60] by applying the possible world interpretatiodnmoodal logic. It distinguishes between
stateful computational effects (callegrld effecty and contextual computational effects (caltzxuh-
trol effect3, and provides a different view on how to combine computeatieffects at the language
design level. PTP arises as an instancg®fvith a language construct for probabilistic choices.

e Applications of PTP in roboticsIn order to execute PTP programs, we use a sound and complete
translator of PTP to embed it in Objective CAML. The use of R¥Fhen demonstrated with three
applications in robotics: robot localization, people kiag, and robotic mapping. Thus PTP serves
as another example of high-level language applied to a emllomain where imperative languages
have been traditionally dominant.

1.1 Motivation

A probabilistic computation is a computation which makeshbabilistic choices or whose result is repre-
sented with probability distributions. As an alternativergdigm to deterministic computation, it has been
used successfully in diverse fields of computer science ascpeech recognition [63, 29], natural language
processing [11], and robotics [72]. Its success lies in ot that probabilistic approaches often overcome
the practical limitation of deterministic approaches. Aial example is the problem of testing whether
a multivariate polynomial given by a program without brarsthtements is identically zero or not. It is

1



difficult to find a practical deterministic solution, but teeis a simple probabilistic solution: evaluate the
polynomial on a randomly chosen input and check if the rdsuero.

As probabilistic computations play an increasing role ifvieg various problems, researchers have
also designedgrobabilistic languagedo facilitate their implementation [33, 24, 74, 59, 64, 43).5A
probabilistic language treats probability distributicassbuilt-in datatypes and thus abstracts from represen-
tation schemed,e., data structures for representing probability distribo§. For example, a conventional
language may be extended with an abstract datatype for Ipiitpalistributions, which is specified by a
certain choice of representation scheme and a set of opesatin probability distributions. As a result,
it allows programmers to concentrate on how to formulateébphilistic computations at the level of prob-
ability distributions rather than representation scheméten translated in a probabilistic language (by
programmers), such a formulation usually produces coraniskelegant code.

A typical probabilistic language supports at least disedistributions, for which there exists a represen-
tation scheme sufficient for all practical purposes: a segtaifs consisting of a value from the probability
domain and its probability. We can use such a probabilistiigiage for those problems involving only
discrete distributions. If non-discrete distribution® amvolved, however, we usually use a conventional
language for the sake of efficiency, assuming a specific kingrabability distributions €.g, Gaussian
distributions) or choosing a specific representation sehéng, a set of samples from the probability dis-
tribution). For this reason, there has been little effordéwelop probabilistic languages whose expressive
power is beyond discrete distributions.

The unavailability of such probabilistic languages medwad tvhen implementing a probabilistic com-
putation involving non-discrete distributions, we havedsort to a conventional language. Thus we wish to
develop a probabilistic language supporting all kinds afbyability distributions —discrete distributions,
continuous distributions, and even those belonging tdheeiggroup. Furthermore we wish to draw no dis-
tinction between different kinds of probability distriloris, both syntactically and semantically, so that we
can achieve a uniform framework for probabilistic compigiat Such a probabilistic language can have a
significant practical impact, since once formulated at éwel of probability distributions, any probabilistic
computation can be directly translated into code.

Below we present an example that illustrates the disadgarfconventional languages in implement-
ing probabilistic computations and also motivates the bgpraent of PTP.

Notation

If a variablez ranges over the domain of a probability distributiéf then P(z) means, depending on the
context, either the probability distribution itself (as“probability distribution P(z)”) or the probability of
a particular valuer (as in “probability P(z)”). We write P(x) for probability distributionP when we want
to emphasize the use of variabte If we do not need a specific name for a probability distribatiwe use
Prob (as in “probability distributionProb(x)”).

Similarly P(z|y) means either the conditional probabilifyitself or the probability ofc conditioned on
y. We write P, or P(-|y) for the probability distribution conditioned an

U (0.0, 1.0] denotes a uniform distribution over the unit interyalo, 1.0].

A motivating example for PTP

A Bayes filtef28] is a popular solution to a wide range of state estimatimmblems. It estimates the state
s of a system from a sequence aftionsand measurementsvhere an actiom induces a change to the
state and a measurementgives information on the state. At its core, a Bayes filter patas a probability



distribution Bel(s) of the state according to the following update equations:

(1.2) Bel(s) « [A(s|a,s")Bel(s")ds'
(1.2) Bel(s) « mnP(m|s)Bel(s)

A(s|a, ') is the probability that the system transitions to sta@fter taking actior: in another state’,
P(m|s) the probability of measurement in states, andn a normalizing constant ensuringBel(s)ds =
1.0. The update equations are formulated at the level of prdibabistributions in the sense that they do
not assume a particular representation scheme.

Unfortunately the update equations are difficult to implemf®r arbitrary probability distributions.
When it comes to implementation, therefore, we usually fifgnfhe update equations by making additional
assumptions on the system or choosing a specific represensgheme. For example, with the assumption
that Bel is a Gaussian distribution, we obtain a variant of the Bayes fialled akalman filter[79]. If Bel
is approximated with a set of samples, we obtain anotheantdalled garticle filter [15].

Even these variants of the Bayes filter are, however, naatrig implement in conventional languages.
For example, a Kalman filter requires various matrix operatiincluding matrix inversion. A particle
filter manipulates weights associated with individual skE®pwhich often results in complicated code.
Since conventional languages can only simulate probghiittributions, it is also difficult to figure out the
intended meaning of the code, namely the update equatiotise®ayes filter.

An alternative approach is to use an existing probabiligtitguage after discretizing all probability
distributions. This idea is appealing in theory, but impiced for two reasons. First, given a probability
distribution, it may not be easy to choose an appropriatsedulif§ its support upon which discretization is
performed. For example, in order to discretize a Gaussiinlolition (whose support {s-o0, o)), we need
to choose a threshold for probabilities so that discratizaits confined to an interval of finite length; for an
arbitrary probability distribution, such a threshold candomputed only by examining its entire probability
domain. Even when the subset of its support is fixed in advaheeprocess of discretization may incur
a considerable amount of programming. For example, &al. [20] develop two non-trivial techniques
(specific to their applications) for the sole purpose of edfidy manipulating discretized probability distri-
butions. Second some probability distributions cannotiberdtized in any meaningful way. An example
is probability distributions over probability distribotis or functions, which do occur in real applications
(Chapter 5 presents such an example).

If there were a probabilistic language supporting all kinfigrobability distributions, we could imple-
ment the update equations with much less effort. PTP is agpiliétic language designed with these goals
in mind.

1.2 Previous work

There are a number of probabilistic languages that focussmeate distributions. Such a language usually
provides a probabilistic construct that is equivalent toirmaty choice construct. Saheb-Djahromi [69]
presents a probabilistic language with a binary choice ttocis(p; — e1, p2 — e2) wherep; + py = 1.0.1
Koller, McAllester, and Pfeffer [33] present a first orden@ional language with a coin toss constriligt(p)
wherep is a probability in(0.0, 1.0). Pfeffer [59] generalizes the coin toss construct to a mplatchoice
constructdist [p; : e1,--- ,py : e,] Where) ", p; = 1.0. Gupta, Jagadeesan, and Panangaden [24] present
a stochastic concurrent constraint language with a préibabichoice constructhoose x from Dom in e
whereDom is a finite set of real numbers. Ramsey and Pfeffer [64] ptesstochastic lambda calculus with

1In this sectionp (with or without indices) stands for probabilitiesprogram fragments, andvalues.



a binary choice construehoose p e; eo. All these constructs, although in different forms, areieajent to
a binary choice construct and have the same expressive power

An easy way to process a binary choice construct (or an elgmtjaduring a computation is to generate
a sample from the probability distribution it denotes, athim above probabilistic languages. Another way
is to return an accurate representation of the probabilgyribution itself, by enumerating all elements in
its support along with their probabilities. Pless and Lu@df present an extended lambda calculus which
uses a probabilistic construct of the fo, e; : p; where) . p; = 1.0. A program denoting a probability
distribution computes to a normal forin, v; : p;, which is an accurate representation of the probability
distribution. Jones [30] presents a metalanguage with arpichoice construct; or, e. Its operational
semantics uses a judgment= > p;v;. Mogensen [43] presents a language for specifying die-rdlis
denotational semantics (called probability semanticéprimulated in a similar style, directly in terms of
probability measures.

Jones and Mogensen also provide an equivalent of a recursimiruct which enables programmers to
specify discrete distributions with infinite suppogtg, geometric distribution). Such a probability distribu-
tion is, however, difficult to represent accurately becafsm infinite number of elements in its support. For
this reason, Jones assunmey; < 1.0 in the judgment = ) p,v; and Mogensen uses partial probability
distributions in which the sum of probabilities may be Idsart1.0. The intuition is that a finite recursion
depth is used so that some elements in the support are orinittleel enumeration.

There are a few probabilistic languages supporting conotisudistributions. Kozen [34] investigates the
semantics of probabilistiavhile programs. A random assignment= random assigns a random number
to variablez. Since it does not assume a specific probability distrilouf@ the random number generator,
the language serves only as a framework for probabilistiguages. Thrun [73, 74] extends C++ with
probabilistic data types which are created from a templaie < type>. Although the language, call€&eES
supports common continuous distributions, its semansiasot formally defined. Our work is originally
motivated by the desire to develop a probabilistic langutdige is as expressive as CES and also has a
formal semantics.

1.3 Sampling functions as the mathematical basis

The expressive power of a probabilistic language is detsethio a large extent by its mathematical basis.
That is, the set of probability distributions expressibiieaiprobabilistic language is determined principally
by mathematical objects used in specifying probabilitytriistions. Since we intend to support all kinds
of probability distributions without drawing a syntactic emantic distinction, we cannot choose what is
applicable only to a specific kind of probability distribotis. Examples are probability mass functions
which are specific to discrete distributions, probabiligndity functions which are specific to continuous
distributions, and cumulative distribution functions wefiiassume an ordering on each probability domain.

Probability measures [65] are a possibility because theysgnonymous with probability distributions.
A probability measure: over a domairD is a mapping satisfying the following conditions:

e 1u(0)=0.

e u(D)=1.

e For a countable disjoint union; D; of subsets); of D,
p(UiDs) = 32;1(Ds)

whereU; D; is required to be a subset DX.



Conceptually it maps the set of subsetdfor, the set of events oR) to probabilities in[0.0, 1.0]. Prob-
ability measures are, however, not a practical choice amttbematical basis because they are difficult to
represent if the domain in infinite. As an example, consideor@inuous probability distributio® of the
position of a robot in a two-dimensional environment. (8ifitis continuous, the domain is infinite even
if the environment is physically finite.) The probability amuren corresponding taP should be able to
calculate a probability for any given part of the environings opposed to a particular spot in the environ-
ment) — whether it is a contiguous region or a collection @jalint regions, or whether it rectangular or
oval-shaped. Thus finding a suitable representation: fiovolves the problem of representing an arbitrary
part of the environment, and is thus far from a routine task.

The main idea of our work is that we can specify a probabilistribution by answeringHow can we
generate samples from it?0r equivalently, by providing sampling functiorfior it. A sampling function is
defined as a mapping from the unit interyal0, 1.0] to a probability domairD. Given a random number
drawn fromU (0.0, 1.0], it returns a sample if», and thus specifies a unique probability distribution. ls th
way, random numbers serve as the source of probabilisticeso

In specifying how to generate samples, we wish to exploiteng techniques developed in simulation
theory [10], most of which consume multiple (independeat)dom numbers to produce a single sample.
To this end, we use a generalized notion of sampling funatibith maps(0.0, 1.0]°>° to D x (0.0, 1.0]*°
where (0.0, 1.0]>° denotes an infinite product @f.0,1.0]. Operationally a sampling function now takes
as input an infinite sequence of random numbers drawn indiepgly fromU (0.0, 1.0], consumes zero or
more random numbers, and returns a sample with the remadeiqpgence. This generalization of the notion
of sampling function is acceptable arithmetically (but n@asure-theoretically). For example, we can use
the technique of expanding a single real numbeflifd, 1.0] into an infinite sequence of real numbers in
(0.0,1.0] by taking even and odd bits of a binary representation of argieal number to produce two real
numbers and repeating the procedure.

As the mathematical basis of PTP, we choose sampling fursstiwhich overcome the problem with
probability measures: they are applicable to all kinds abability distributions, and are also easy to rep-
resent because a global random number generator (whicajes@s many random numbers as necessary
from U (0.0, 1.0]) supplants the use of infinite sequences of random numbers: ddmparison with prob-
ability measures, consider the probability distributiGhof the position of a robot discussed above. In
devising a sampling function faP, we only have to construct an algorithm that probabilijcgenerates
possible positions of the robot; hence we do not need to denslie problem of representing an arbitrary
part of the environment (which is essential in the case obaldity measures). Intuitively it is easier to
both formalize and answéWhere is the robot likely to be?'than“How likely is the robot to be in a given
region?”.

The use of sampling functions as the mathematical basis tedtiree desirable properties of PTP. First
it provides a unified representation scheme for probabidlisgributions: we no longer distinguish between
discrete distributions, continuous distributions, andrethose belonging to neither group. Such a unified
representation scheme is difficult to achieve with othedadates for the mathematical basis. Second it en-
joys rich expressiveness: we can specify probability itistrons over infinite discrete domains, continuous
domains, and even unusual domains such as infinite datdwstsac.g, trees) and cyclic domain®.Q,
angular values). Third it enjoys high versatility: therendze more than one way to specify a probability
distribution, and the more we know about it, the better we @acode it. Section 3.2 demonstrates these
properties with various examples written in PTP.



Data abstraction for probability distributions

In PTP, a sampling function is represented by a probalilistimputation that consumes zero or more
random numbers (rather than a single random number) drasm §(0.0,1.0]. In the context of data
abstraction, it means that a probability distributioodmstructedrom such a probabilistic computation. The
expressive power of PTP allows programmers to construatrfoode) all kinds of probability distributions
in a uniform way. Equally important is, however, the questid how toobserve(or reason about) a given
probability distribution,i.e., how to get information out of it, through various querie&c® a probabilistic
computation in PTP only describes a procedure for gengraamples, the only way to observe a probability
distribution is by generating samples from it. As a resulf,PRs limited in its support for queries on
probability distributions. For example, it does not perejfirecise implementation of such queries as means,
variances, and probabilities of specific events.

PTP alleviates this limitation by exploiting the Monte @amhethod [40], which approximately answers
a guery on a probability distribution by generating a largenber of samples and then analyzing them. As
an example, consider a (continuous) probability distidutP of the posei(e., position and orientation)
of a robot in a two-dimensional environment. Here are a fearigs onP all of which can be answered
approximately:

e Draw a sample of robot pose at random.

What is the expected (average) pose of the robot?

What is the probability that the robot is facing within fivegdees of due east?

What is the probability that the robot is in Peter’s office?

Under the assumption that the robot is in Peter’s office, vibhHlie probability that the robot is within
two feet of the door?”

These queries can be answered approximately by repeatediyriping the probabilistic computation as-
sociated withP and then analyzing resultant samples. For example, theglesty can be answered as
follows:

1. Generate samples from.
2. Filter out those samples indicating that the robot is ndéter’s office.

3. Count the number of samples indicating that the robot ikiwiwo feet of the door, and divide it by
the total number of remaining samples.

Certain queries on probability distributions are, howewdfficult to answer even approximately by the
Monte Carlo method. For example, the following queries dfficdlt to answer approximately by a simple
analysis of samples:

e What is the most likely position of the robot?
¢ In what room is the robot most likely to be when the number @f®is unknown?

Due to the nature of the Monte Carlo method, the cost of anegex query is proportional to the
number of samples used in the analysis. The cost of gengr@simgle sample is determined by the specific
procedure chosen by programmers, rather than by the pildpadistribution itself from which to draw
samples. For example, a geometric distribution can be exttwdth a recursive procedure which simulates



coin tosses until a certain outcome is observed, or by a sitnghsformation (called thaverse transform
method which requires only a single random number. These two miktiod encoding the same probability
distribution differ in the cost of generating a single saengahd hence in the cost of answering the same query
by the Monte Carlo method. For a similar reason, the accuohdiie result of the Monte Carlo method,
which improves with the number of samples, is also affeciethb procedure chosen by programmers.

Measure-theoretic view of sampling functions

The accepted mathematical basis of probability theory iasuee theory [65], which associates every prob-
ability distribution with a unique probability measure. We a summary of measure theory before dis-
cussing the connection between sampling functions andure#seory. In the discussion below, sampling
functions refer to those takin@.0, 1.0] as input, rather than generalized ones taking, 1.0]> as input.

e Measurable setsf a spaceD are subsets db.
e A measurable spackl(D) is a collection of measurable sets®fsuch that:

- D e M(D).
— If S € M(D), thenD — S € M(D). That is,M(D) is closed under complement.

— For a countable collection of measurable sgte M(D), it holdsU;S; € M(D). Thatis,M(D)
is closed under countable union.

e A measurable functiorf from D to £ is a mapping fronM (D) to M(&) such that ifS € M(E), then
f~H(S) e M(D).

e A measureu overM(D) is a mapping fronM (D) to [0.0, oo] such that:

— (@) =0.
— For a countable disjoint unian; S; of measurable set$; € M(D), it holdsu(U;S;) = 2;1(S;).

e A probability measurg: over M(D) satisfiesu(D) = 1.

e A Lebesgue measureover the unit interva(0.0, 1.0] is a probability measure such thatS) is equal
to the total length of intervals if.

Measure theory allows certain (but not all) sampling funritsi to specify probability distributions. Con-
sider a sampling functioyfi from (0.0, 1.0] to D. While itis introduced primarily as a mathematical funatio
f may be interpreted as a measurable function as well, in wd@sk it defines a unique probability measure
woverM(D) such that

u(S) =v(f71(S))

wherev is a Lebesgue measure over the unit interval. The intuitiothat.S, as an event, is assigned a
probability equal to the size of it inverse image under

This dissertation does not investigate measure-theopetiperties of sampling functions definable in
PTP. If a probabilistic computation expressed in PTP corsuat most one random number (drawn from
U(0.0,1.0]), itis easy to identify a corresponding sampling functiirmore than one sample is consumed,
however, it is not always obvious how to construct such a samfunction. In fact, the presence of fixed
point constructs in PTP (for recursive computations whiah consume an arbitrary number of random
numbers) makes it difficult even to define measurable spacehith sampling functions map the unit in-
terval, since fixed point constructs use domain-theoréticires, rather than measure-theoretic structures,
in order to solve resultant recursive equations.



Every probabilistic computation expressed in PTP is edsilyslated into a generalized sampling func-
tion (which takeg0.0, 1.0]> as input). Itis, however, unknown if generalized samplimgctions definable
in PTP are all measurable. Also unknown is if generalizedpisugy functions are measure-theoretically
equivalent to ordinary sampling functionse(, if a measurable function frorf0.0, 1.0]>° to D x (0.0, 1.0]*°
determines a unique measurable function fr@nt), 1.0] to D). Nevertheless generalized sampling func-
tions definable in PTP are shown to be closely connected witipfing techniques from simulation theory,
which, like measure theory, are widely agreed to be a fornratbabilistic computation and PTP is designed
to support. A further discussion is found in Section 3.3.

1.4 Linguistic framework for PTP

We develop PTP as a functional language extending\tbelculus, rather than an imperative language or a
library embedded in an existing conventional language. ¥éde to use a monadic syntax for probabilis-
tic computations. The decision is based upon two obsenati&irst sampling functions are operationally
equivalent to probabilistic computations in that they diescprocedures for generating samples from in-
finite sequences of random numbers. Second sampling fuisctaom astate monad44, 45, 64] whose
set of states i$0.0, 1.0]°°. These two observations imply that if we use a monadic syfaagrobabilistic
computations, it becomes straightforward to interprebatulistic computations in terms of sampling func-
tions. The monadic syntax treats probability distributi@s first-class values and offers a clean separation
between regular values and probabilistic computations.

Instead of designing a monadic syntax specialized for sagnflinctions, we begin by developing a
linguistic framework\o which accounts for computational effects in genekal.does not borrow its syntax
from Moggi's monadic metalanguage,; [44, 45]. Instead it extends the monadic language of Pfgnnin
and Davies [60], which is a reformulation &f,,; from a modal logic perspective\o may be thought of as
their monadic language combined with the possible worldrpretation [35] of modal logic.

A characteristic feature ofo is that it classifies computational effects into two kindsirld effects and
control effects. World effects are stateful computaticeféects such as mutable references and input/output;
control effects are contextual computational effects sashexceptions and continuations. Probabilistic
choices are a particular case of world effect, and PTP aases instance ofo with a language construct
for consuming (or drawing) random numbers fréng0.0, 1.0].

1.5 Applications to robotics

Instead of implementing PTP as a complete programming Eagyof its own, we embed it in an existing
functional language by building a translator. Specifically extend the syntax of Objective CAML [2] to
incorporate the syntax of PTP, and then translate languaggrticts of PTP back into the original syntax.
The translator is sound and complete in the sense that bpéhagd reducibility of any program in PTP,
whether well-typed/reducible or ill-typed/irreduciblare preserved when translated in Objective CAML.

An important part of our work is to demonstrate the use of PYRjbplying it to real problems. As
the main testbed, we choosgbotics[72]. It offers a variety of real problems that necessitatgbpbilistic
computations over continuous distributions. We use PTRhi@e applications in robotics: robot localiza-
tion [72], people tracking [50], and robotic mapping [75h dach case, the state of a robot is represented
with a probability distribution, whose update equationasnfiulated at the level of probability distributions
and translated directly in PTP. All experiments in our woavé been carried out with real robots.

A comparison between our robot localizer and another writteC gives evidence that the benefit of
implementing probabilistic computations in PTP, such aslability and conciseness of code, can outweigh



its disadvantage in speed (see Section 5.5 for details)s PAUWP serves as another example of high-level
language whose power is well exploited in a problem domaiere/imperative languages have been tradi-
tionally dominant.

1.6 Outline

The rest of this dissertation is organized as follows. Céaptpresents the linguistic framewob to

be used for PTP. Chapter 3 presents the syntax, type systehoparational semantics of PTP. Chapter 4
describes the translator of PTP in Objective CAML. Chapterésents three applications of PTP in robotics.
Chapter 6 concludes.
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Chapter 2

Linguistic Framework

This chapter presents our linguistic framewadik to be used for PTP\o is an extension of th&-calculus
(with a modalityO) which accounts for computational effects in general. Wettgping Ao, we are interested
in modeling such computational effects as input/outputiaiole references, and continuations. We view
probabilistic choices as a particular case of computatiefiect, and PTP arises as an instance gfwith a
language construct for probabilistic choices.

Key concepts used in the developmenfefare as follows:

e Segregation of world effects and control effecls, classifies computational effects into two kinds:
stateful world effects and contextual control effects. @istinction makes it easy to combine com-
putational effects at the language design level.

e Possible world interpretation of modal logido uses modal logic [12] to characterize world effects,
and relates modal logic to world effects by the possible evamterpretation [35]. As a result, the
notion of world in “world effects” coincides with the notiasf world in the “possible world interpre-
tation.” In formulating the logic for\c, we use the judgmental style of Pfenning and Davies [60].

At its core, Ao applies the possible world interpretation to the monadigyleage of Pfenning and
Davies [60], which usetax logic [19, 7] in the judgmental style to reformulate Moggi’s moitatheta-
language\,,; [44, 45]. The monadic language of Pfenning and Davies amalgpmputational effects only
at an abstract level from a proof-theoretic perspectivel, does not readily extend to a programming lan-
guage with computational effecta.o is an attempt to extend their monadic language with an dpeit
semantics so as to support concrete notions of computatdieat. The key idea is to combine the possi-
ble world interpretation and the judgmental style in suchay What the accessibility relation (which is an
integral part of the possible world interpretation) is need in inference rules (unlike the system of modal
logic of Simpson [71], for example).

Although Ao is not specific to probabilistic computations and the dgwelent of \o is thus optional
for the purpose of designing PTP, we investigatseto better explain the logical foundation of PTP. As the
definition of PTP in Chapter 3 is self-contained, this chaept: be skipped without loss of continuity by
those readers who want to understand only PTP.

2.1 Computational effects in\o

This section gives a definition of computational effects.e Tharification of the notion of computational
effect may appear to be of little significance (because vwesadly know what is called computational effects

11
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and how they work), but it has a profound impact on the ovatedlign of\c. This section also gives an
overview of \o at an abstract level.é., without its syntax and semantics).

Definition of computational effects

In the context of functional languages, computation effeae usually defined as what destroys the “pu-
rity” of functional languages. Informally the purity of arational language means that every function in
it denotes a mathematical functioing., a black box converting a valid argument into a unique outom
For example, a functiofn x => x + ly in ML does not denote a mathematical function because its
outcome depends on the content of refergnes well as argument; hence we conclude that mutable refer-
ences are computational effects. Other examples of coniguuh effects include input/output, exceptions,
continuations, non-determinism, concurrency, and pribiséib choices.

The notion of purity, however, is subtle and there is no ursialty accepted definition of purity. Sabry [67]
shows that common criteria for purity, such as soundnedsegf-equational axiom, confluence (the Church-
Rosser property or independence of order of evaluationy, maservation of observational equivalences,
are incomplete in that either they fail to hold in some punecfional languages or they continue to hold
in some impure functional languages (referential trarespay is not considered because it does not have a
universally accepted definition). He proposes a definitibpusity based upon independence of reduction
strategies, but this definition has a drawback that a giventional language must have implementations of
three reduction strategies, namely, call-by-value, bgheed, and call-by-name.

As aresult, the definition of computational effects as wiestibys the purity of functional languages is
ambiguous, and some concepts are called computationats#fgthout any justification. For example, non-
termination is called a computational effect only by corii@n (as a special kind of computational effect
which is not observable). Atthe same time, one may arguentiratermination is not a computational effect
because the use of pointed typées.(types augmented with a bottom elemeéntienoting non-termination)
preserves the property of mathematical functions.

A definition of computational effects is not necessary inigleag a functional language, such as ML
and Scheme, that allows any program fragment to produce etatignal effects. It is, however, crucial
to the design of a functional language, such as Haskéll[88] (and \c), that subsumes a sublanguage
for computational effects, since a criterion for computaél effects determines features supported by the
sublanguage. The case of Haskell illustrates the impoetana proper definition of computational effects,
and also inspires our definition of computational effects.

Computational effects in Haskell

Since their introduction to the programming language comitgumonads [44, 45] have been considered
as an elegant means of structuring functional programs mecatporating computational effects into func-
tional languages [76, 77]. A good example of a functionaplaage that makes extensive use of monads
in its design is Haskell. At the programming level, it proesda type clasMonad to facilitate modular
programming; at the language design level, it provides &-buiO monad for producing computational
effects without compromising its properties as a pure fionetl language.

Haskell does not assume a particular definition of comparatieffects. Instead it implicitly identifies
computational effects with monads and confines all kindofutational effects to th€® monad [56, 58]
(or a similar one such as th®T monad). Thus Haskell conceptually consists of two sublaggs: a
functional sublanguage which never produces computdtigifeects, and a monadic sublanguage which is
formed by thdO monad.

1Abbreviated as Haskell henceforth.
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The identification between computational effects and memady appear to be innocuous, perhaps
because of the success of monads as a means of modelingmiffemmputational effects in a uniform
manner. When all kinds of computational effects are presmgdther, however, the identification becomes
problematic because monads do not combine well with eadr {32, 31, 39]. Haskell uses th® monad
for all kinds of computational effects without explicitlgdressing this difficulty.

The identification also enforces unconventional treatsiehtome computational effects. For example,
it disallows exceptions for the functional sublanguagejctwtwould be useful for handling division by
zero or pattern-match failures. It also disallows conttiares for the functional sublanguage, which would
be useful for implementing advanced control constructdaag non-local exits and co-routines. Hence
the identification significantly limits the practical utjliof exceptions and continuations. For this reason, an
extension of Haskell proposed by Peyton Jogtes. [57] allows exceptions not for the monadic sublanguage
but for the functional sublanguage, thereby deviating fthmidentification between computational effects
and monads.

Our view is that computational effects are not identifiedhwitonads and that the identification between
computational effects and monads in Haskell is a conseguafiack of a proper definition of computational
effects. The capability of monads to model all kinds of cotafianal effects may be the rationale for the
identification, but it does not really warrant the identifioa; rather it only implies that monads are a
particular tool for studying the denotational semanticsahputational effects.

As an example, consider the set monad for modeling non{détam [76]2 The set monad is suitable
for specifying the denotational semantics of a non-detaistic language (which has a non-deterministic
choice construct), since a program can be translated in&d ensimerating all possible outcomes. The set
monad does not, however, lend itself to the operationalgtesi a non-deterministic language, in which a
program returns a single outcome, instead of the set of allipte outcomes, after producing computational
effects. Therefore the set monad is useful for developimgdénotational semantics (and also possibly
the syntax) of a non-deterministic language, but not forlamnting it operationally. In fact, if the set
monad was enough for implementing a non-deterministiclagg operationally, we could argue that the
built-in IO monad is unnecessary in Haskell because we can instartimtiyfge clasdMonad to mimic
all computational effects supported by tl@ monad. Thus the main lesson learned from Haskell is that
modeling a computational effect is a separate issue fronteimgnting it operationally.

Another lesson learned from Haskell is that as its implemgorn is based upon a state monad, the
IO monad is suitable fostatefulcomputational effects such as mutable references and/ayput, but
not compatible withcontextualcomputational effects such as exceptions and continugatidhat is, while
stateful computational effects may well be identified whik kO monad, contextual computational effects
do not need to be restricted to the monadic sublanguage. &initcbn of computational effects captures
the distinction between these two kinds of computationtdot$, calling the formeworld effectsand the
latter control effects

World effects and control effects

We directly define computational effects without relying another notion such as purity of functional
languages. A central assumption is that the run-time systamists of a program and a world. A program
is subject to a set of reduction rules. For example, a prograthe A-calculus runs by applying thg-
reduction rule. A world is an object whose behavior is speditdy the programming environment rather
than by reduction rules. For example, a keyboard buffer @apdt of a world such that a keystroke or a
read operation changes its contents. In contrast, a heap fgrt of a world because it is just a convenience
for implementing reduction rules. That is, we can implemahteduction rules without using heaps at all.

2If the reader holds the view that computational effects andads are identified, this example may well be hard to follow!
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When an external agent or a program interacts with a worldcandes a transition to another world, we
say that a world effect occurs. For example, if a keyboardepus part of a world, a keystroke by a user or
a read operation by a program changes its contents and thassa world effect. As another example, if a
store for mutable references is part of a world, an operatiailocate, dereference, or deallocate references
interacts with the world and thus causes a world effect.

When a program undergoes a change that no sequence of medugliés can induce, we say that a
control effect occurs. For example, if titereduction rule is the only reduction rule, raising an exaap
causes a control effect because in general, it induces ajehhat is independent of thigreduction rule.
For a similar reason, capturing and throwing continuatioagse control effects. Note that the concept of
control effect is relative to the set of “basic” reductioresiassumed by the run-time system. One could
imagine a run-time system with built-in reduction rules éxceptions, in which case raising an exception
would not be regarded as a control effect.

Thus world effects and control effects have fundamentalffigi@nt characteristics and are realized in
different ways. World effects are realized by specifying @l structure — empty world structure if there
are no world effects, keyboard buffer and display windowifimut/output, store for mutable references, and
so on. Control effects are realized by introducing progreengformation rules (that cannot be defined in
terms of existing reduction rules). Since world structuaes program transformation rules are concerned
with different parts of the run-time system, world effectelaontrol effects are treated in orthogonal ways.

The distinction between world effects and control effectskes it easy to combine computational ef-
fects at the language design level. Different world effests combined by merging corresponding world
structures. For example, a world structure with a keyboaufifieb and display window and a store realizes
both input/output and mutable references. There is no reeggdlicitly combine control effects with other
computational effects, since control effects become @argaonce corresponding program transformation
rules are introduced.

World effects are further divided intmternal world effects and andxternalworld effects. An internal
world effect is always caused by a program and is ephemertdieirsense that the change it makes to a
world can be undone by the run-time system. An example isltaake new references, which can be later
reclaimed by the run-time system. An external world effsataused either by an external agent, affecting
a program, or by a program, affecting an external agent.gerpetual in the sense that the change it makes
to a world cannot be undone by the run-time system. An exampéeuse keyboard input or to send output
to a printer — once you type a password to a malicious prograprint it on a public printer, there is no
going back from the catastrophic consequence!

While internal world effects occur within the run-time sgst, external world effects involve interactions
with external agents. In this regard, all external worlceeté are examples of concurrency in the presence
of external agentsAo is not intended to model external agents, and we restricebugs to internal world
effects in developing\o.

From Haskell to Mo

As mentioned earlier, Haskell conceptually consists ofswolanguages: 1) a functional sublanguage which
is essentially the\-calculus and never produces computational effects; 2) maatio sublanguage which is

formed by thelO monad and produces both world effects and control effecéytdd Jones [58] clarifies

the distinction between the two sublanguages with a twellsgmantics: an inner denotational semantics
for the functional sublanguage and an outer transitionr@maal) semantics for the monadic sublanguage.

As control effects do not need to be restricted to the monadidanguage, we consider a variant of

Haskell that allows both its functional and monadic subleggs to produce control effects. In comparison
with Haskell, this variant has a disadvantage that a funatiay not denote a mathematical function, but it
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overcomes the limitation of Haskell in dealing with contedlects.

Ao can be thought of as a reformulation of the variant of Haskelin a logical perspective. It has
two syntactic categoriesermsandexpressionsTerms form a sublanguage which subsumesiticalculus
and is allowed to produce only control effects; expressionsis another sublanguage which is allowed to
produce both world effects and control effects. The logibibé the definition of expressions is the same
as the logic underlying monads, namely lax logic [7]. Thilke the monadic sublanguage of Haskell,
expressions ino enforce the monadic syntax (with the modatiby.

2.2 Logical preliminaries

Ao has a firm logical foundation, providing a logical analydisamputational effects. This section explains
those concepts from logic that play key roles in the develemnof Ao.

2.2.1 Curry-Howard isomorphism and judgmental formulation

The Curry-Howard isomorphism [27] is a principle connegtlogic and programming languages. It states
that propositions in logic correspond to types in programgrianguagespfopositions-as-typesorrespon-
dence) and that proofs in logic correspond to programs ignamming languagespfoofs-as-programs
correspondence). Given a formulation of logic, it systdoadly derives the type system and reduction
rules of a corresponding programming language. The dexsdap of \o follows the same pattern: we first
formulate the logic for\o, and then apply the Curry-Howard isomorphism to obtain jipe tsystem and
reduction rules.

The logic for Ao is formulated in the judgmental style of Pfenning and Day&. A judgmental
formulation of logic adopts Martin-L6f's methodology ofstinguishing betweeipropositionsand judg-
mentg42]. It differs from a traditional formulation which rekesolely on propositions. Below we review
results from Pfenning and Davies [60].

Propositions and judgments

In a judgmental formulation of logic, a proposition is an etij of verification whose truth is checked by
inference ruleswhereas a judgment is an object of knowledge which becomedsra by aproof. Examples

of propositions are ‘1 + 1 is equal to 0’ and ‘1 + 1 is equal tolth under inference rules based upon
arithmetic. Examples of judgments are “1 + 1 is equal to Grig”, for which there is no proof, and “1 +
1is equal to 2’ is true”, for which there is a proof.

To clarify the difference between propositions and judgteeconsider a statement ‘the moon is made
of cheese.’ The statement is not yet an object of verificatio proposition, since there is no way to check
its truth. It becomes a proposition when an inference rutgvsn, for example, (written in a pedantic way)
“the moon is made of cheese’ is true if ‘the moon is greenigfitevand has holes in it’ is true.” Now we
can attempt to verify the proposition, for example, by takanpicture of the moon. That is, we still do
not know whether the proposition is true or not, but by virafghe inference rule, we know at least what
counts as a verification of it. If the picture indeed showg tha moon is greenish white and has holes in
it, the inference rule makes evident the judgment “the m@made of cheese’ is true.” Now we know
“the moon is made of cheese’ is true” by the proof consistifighe picture and the inference rule. Thus
a proposition is an object of verification which may or may bettrue, whereas a judgment is an object of
knowledge which we either know or do not know.

As a more concrete example, consider the conjunction cdémeet. In order forA A B to be a propo-
sition, we need a way to check its truth. Sinée\ B is intended to be true whenever botrand B are true,
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we use the following inference rule to explaihA B as a proposition; we assume that bettand B are
propositions, and abbreviate a truth judgmeatis true” asA true:

A true B true
A A B true

Al

The ruleAl says that ifA is true andB is true, thenA A B is true. It follows the usual interpretation of an

inference rule: if the premises hold, then the conclusidid$dWe use the rulal to construct a prooD of

Dy

A A B true from a proofD 4 of A true and a proofDg of B true; we write A true 0 Mmean thaD, is a

proof of A true:

Da Dg
D = Atrue B true Al
A A B true

ThusA A B is a proposition because we can check its truth accordingetouleAl, whereasA A B true is
a judgment because we either know it or do not know it, dependn the existence of a proof.

The ruleAl above is called aimtroduction rulefor the conjunction connective, since its conclusion
deduces a truth judgment witk, or introducesA. A dual concept is aelimination rule whose premises
exploit a truth judgment with\ to prove another judgment in the conclusion, or eliminatein the case of
A, there are two elimination ruleg,E, andAEg:

A N B true AEL A N B true

A true B true NEr

These elimination rules make sense becadise B true implies bothA true and B true. We will later
discuss their properties in a more formal way.

It is important that in a judgmental formulation of logicgethotion of judgment takes priority over the
notion of proposition. Specifically the notion of judgmertied not depend on propositions, and a new
kind of judgment is defined only in terms of existing judgnee¢ut without using existing connectives or
modalities). On the other hand, propositions are alwaytaegd with existing judgments (including at least
truth judgments), and a new connective or modality is defswds to compactly represent the knowledge
expressed by existing judgments. For example, we could @efifialsehood judgmemt false as “A true
does not hold,” and then use a new modatitwith the following introduction rule:

A false
—A true

We say that the ruleil internalizesA false as a propositionA.

If the definition of a connective or modality involves anathennective or modality, we say that orthog-
onality is destroyed in the sense that the two connectivesaatalities cannot be developed independently,
or orthogonally. In this dissertation, we use no conneativenodality destroying orthogonality.

Categorical judgments and hypothetical judgments

A judgment such asA is true” is called acategorical judgmenbecause it involves no hypotheses and is
thus unconditional. Another judgment that we need liypothetical judgmentvhich involves hypotheses.
A general form of hypothetical judgment reads “if judgmedis- - - , J,, hold, then a judgmenf holds,”
written as.Jy, - -- , J, - J. We refertoJ;, 1 < i < n, as anantecedenand.J as thesuccedent

A hypothetical judgment/y,--- ,J, - J becomes evident by a proof of in which Jy,--- ,J, are
assumed to be evident without proofs. Such a prPafk called ahypothetical proofand is written as
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follows:
J T,
D = } inference rules
J

Inference rules here use judgmehtwithout requiring a proof, that is, as a hypothesis. We sayj th
hypothesisJ; is dischargedwhen inference rules use it to deduge Note that a hypothetical proof of- J
(with no antecedent) is essentially a proof of judgméiind vice versa, since both proofs show thdtolds
categorically?

The notion of hypothetical proof is illustrated by the ingaltion connectived. In order forA O B to
be a proposition, we need a way to check its truth. SiAce B is intended to be true whenevdrtrue
implies B true, the introduction rule uses a hypothetical proof in its pisen

[A true]

B true

A D B true ol

The elimination rule for> exploits A O B true in its premises to prové true in its conclusion:

A D Btrue A true
B true

DE

The rule DE makes sense becaude> B true licenses us to dedudB true if A true holds, which is the
case by the second premise.

Our definition of hypothetical judgments makes two implas#sumptions: 1) the order of antecedents
is immaterial; 2) an antecedent may be used zero or more tmeehypothetical proof. These assumptions
are formally stated in the three structural rules of hyptitad judgments:

(Exchange) |fJ1, e diy vty In =J,

thenJl,--- ,Ji+1,JZ‘ s B
(Weakening) IfJjy,--- , J, F J,

thenJy, -+, Jp, Jpy1 = J for any judgment/,, ;.
(Contraction) IfJy,--- ,J;, Ji, -+, Jo B J,

thenJy, -, Ji, -+ I J.

A hypothetical proof can be combined with another hypotatproof. For example, a hypothetical
proofD of Jy,--- , J, F J is combined with a hypothetical proéf of J,,--- , J, - J; to produce another
hypothetical proof, written a, /J;|D, of Jo, - -+ | J, F J:

Jo e I

&1/ NH]D = Ji Jyo - I
. . | D

3This equivalence does not mean that a hypothetical judgntent is equivalent to judgment. While the former states that
J holds categorically, the latter is unaware of whether tla@echypotheses or not, and could be even a hypothesis in ahefipal
proof. For example, from the assumption thfaimplies .J’, we can show thati J implies- - J’. The converse is not the case,
however.



18

Note that hypothese$, - - - , J,, may be used twice: when proving in £ and when proving/ in D. This
property of hypothetical judgments that a hypotheticaloprman be substituted into another hypothetical
proof is called thesubstitution principle

e (Substitution principle) If" + J andT", J = J’, thenT - .J'.

A convenient way to prove hypothetical judgments is to user@mce rules for hypothetical judgments
without relying on hypothetical proofs. For example, we eaplain the implication connective with the
following inference rules for hypothetical judgments; Wabeeviate a collection of antecedentslas

I', A true & B true 5 I'FADBtrue Tk Atrue
' A D B true '+ B true

DE

Here the introduction ruledl uses hypothetical judgments to express that a proposiian B is true
wheneverA true implies B true; the elimination ruleDE uses hypothetical judgments to express that
A D B true licenses us to deducB true if A true holds. A proof of" - J with these inference rules
guarantees the existence of a corresponding hypotheticaf pfI" - J.

A special form of hypothetical judgment;,--- , J;,--- , J, F J; (where the succedent matches an an-
tecedent) is evident by a vacuous proof. The following iefee rule, called theypothesis ruleexpresses
this property of hypothetical judgments; it simply saysttiay hypothesis can be used:

T g P

From now on, we assume that antecedents and succedentsoithétypal judgments are all basic judg-
ments. For example, we do not consider such hypotheticghjaats agl’; - J;) - Jy andl'y F (o F J).

The Curry-Howard isomorphism

The Curry-Howard isomorphism connects logic and prograngnianguages by representing a proof of a
judgment with a program of a corresponding type. In otherdspa well-typed program is a compact rep-
resentation of a valid proof under the Curry-Howard isonmsm. Typically we apply the Curry-Howard
isomorphism by translating inference rules of logic intpityg rules of a programming language. By con-
vention, a typing rule is given the same name as the inferariledrom which it is derived.

As an example, we consider the logic of truth with the conjiamcconnectiver and the implication
connectiveD. Under the Curry-Howard isomorphism, the logic corresmotalthe type system of the
calculus with product types. A prod? of A true is represented with proof termM of type A. Note that
A is interpreted both as a proposition and as a type. We usegangik M/ : A to mean that proof termy/
represents a proof of true, or that proof term\/ has typed. Thus we have the following correspondence:

D
A true & M:A

Now consider the use of the inference rulein constructing a prodD of A A B true from a proofD 4
of A true and a proofDp of B true. When proof terms\/4 and Mg representD4 andDp, respectively,
we use gproduct term(M 4, Mp) of product typeA A B to representD. Thus the inference rulel is
translated into the following typing rule:

Ms:A Mp:B
(Mg, Mp): ANB

Al
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I, A true - A true Hyp F,x:AI—m:AHyp

I'Atrue T'F B true Al I'EM: A FI—N:B/\I
' AN B true 'F(M,N): ANB
' AA B true I'EM:AANB
'+ A true NEL IPHfstM: A NEL
I' A A B true I'M:AANB
TFBiue 'SR Trsnddl:B R
', A true - B true | z:AFM:B |
TFASBtrue © TFM:AM:A>B -~
I'A>D Btrue T'F A true SE I'-M:AD>DB FI—N:ADE
'+ B true I'HM N : B

Figure 2.1: Translation of inference rules for hypothetical judgmaents typing rules.

We useprojection termdst M andsnd M in translating the rules.E_ andAEg:

M:ANB M:ANB

A B sddr B

AER

When a hypothetical proof use$ true as a hypothesis, it assumes the existence of a proof. Since
such a proof is actually unknown, it cannot be representdld avconcrete proof term. Hence it is repre-
sented with avariable z, a special proof term which can be replaced by another peyafi.t Then a proof
D of Ay true,--- , A, true b A true is represented with a proof ter/ satisfying a hypothetical judg-
mentxy : Ay, -+ ,x, : Ay B M A, which means that proof terd/ has typeA under the assumption that
variablex;, 1 < i < n, has typeA;:

D
Aq true,--- , A, true - A true & wp Ay wy AnE M A

We refer to a collection of judgments, : Ay, --- ,x, : A, as atyping context As with collections of
antecedents, we abbreviate typing contexts;aal variables in a typing context are assumed to be distinct
With the correspondence of hypothetical judgments abaferénce rules for hypothetical judgments
in logic are translated into typing rules for hypotheticadlgments” - M : A. For example, the inference
rules Dl and DE are translated into the following typing rules, which uskmbda abstractiom\x: A. M
and alambda applicationV/ N as proof terms:
Iz:A-M:B 'FM:ADB THEN:A

TFr e AM-A5B - T-MN:B ok

Figure 2.1 shows inference rules for hypothetical judgmmentlogic (shown in the left column) and
their translation into typing rules (shown in the right aoln). The left column shows inference rules for
hypothetical judgments, and right column shows correspontyping rules. The hypothesis ruléyp is
translated into a typing rule, also called the hypothedis, that typechecks a variable. The typing rules in
the right column constitute the type system of Miealculus with product types.

As a hypothetical proof can be substituted into another thgital proof, a proof term can also be
substituted into another proof term. Suppdse M : Aandl',z: AF N : B. M andN represent hypo-
thetical proofsD and€ of I' - A true andl', A true - B true, respectively, where we use the same symbol
T" for the collection of antecedents corresponding to theygiontext". If we replace all occurrences of
in N by M, we obtain a proof term, written a8/ /z] N, which contains no occurrence of The substitution
principle for proof terms states thgt/ /x| N represents the hypothetical prd@t/ A true]€ of ' - B true:
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e (Substitution principle)
IfI'-M:Aandl',z: AF- N : B, thenl' - [M/z]N : B.

A true andT' + A true are calledsynthetic judgmentsecause no prior information on their proofs is
given and we search for, siynthesizetheir proofs from inference rules. In contradt, : AandI'+ M : A
are calledanalytic judgmentdecause their proofs are already representeti/iand can be reconstructed
by analyzingM. To proveM : AorT'+ M : A with typing rules, we only have to analyZd because it
determines which typing rule should be applied to dedlte A orI' - M : A. For example, ifM is a
product termice., M = (M, Ms)), adeduction of' - M : A always ends with an application of the typing
rule Al. For this reason, a deduction &f : AorI" - M : A is often called alerivationrather than a proof.

When we construct a (unique) derivationf : AorT'+ M : A, we check ifM indeed represents a
proof of A true, rather than searching for a yet unknown proof. Such a diwivaffectively typecheckd/
by testing if M indeed has typel, and we callM/ : A andl’ = M : A typing judgments

Reduction and expansion rules

All the inference rules presented so far make sense indlytibut their correctness is yet to be established
in a formal way. To this end, we show that the inference ruégsty two propertiesiocal soundnesand
local completenesdJnder the Curry-Howard isomorphism, the two propertiesespond to reduction and
expansion rules for proof terms, thus culminating in a fatih for operational semantics of programming
languages.

An introduction rule compresses the knowledge expresséd premises into a truth judgment in the
conclusion, whereas an elimination rule retrieves the kadge compressed within a truth judgment in a
premise to deduce another judgment in the conclusion. Tda fmundness property states that the knowl-
edge retrieved from a judgment by an elimination rule is gudyt of the knowledge compressed within that
judgment. Therefore, if the local soundness property félile elimination rule is too strong in the sense
that it is capable of contriving some knowledge that canmojuistified by that judgment. The local com-
pleteness property states that the knowledge retrieved &gudgment by an elimination rule includes at
least the knowledge compressed within that judgment. Toexeif the local completeness property fails,
the elimination rule is too weak in the sense that it is intdgaf retrieving all the knowledge compressed
within that judgment. If an elimination rule satisfies botberties, it retrieves exactly the same knowledge
compressed within a judgment in a premise.

We verify the local soundness property by showing how to cedaproof in which an introduction rule
is immediately followed by a corresponding eliminationetuAs an example, consider the following proof
for the conjunction connective:

D &
A true B true

A A B true
A true

Al

The elimination ruleAnE, is not too strong because what it deduces in the conclusanely A true, is one
of the two judgments used to deduden B true. Hence the whole proof reduces to a simpler prbof

D E
A true B true Al D
AN B true R A true
A true

If the elimination rule was too strong (g, deducingA D> B true somehow), the proof would not be re-
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ducible. As another example, consider the proof for the icagibn connective:

D
T, A true = B true | £
I'A D B true - ' A true

'+ B true ok
By the substitution principle, the whole proof reduces tanaer proof[£/A true|D:
D
I', A true - B true 5 < [£/A true]D
'~ A D B true I+ A true “E =R '+ B true
I'+ B true

We refer to these reductions=-y aslocal reductions

We verify the local completeness property by showing howxmaed a proof of a judgment into another
proof in which one or more elimination rules are followed byiatroduction rule for the same judgment.
As an example, consider a probfof A A B true. The elimination rules\E_ and AEr are not too weak
because what they deduce in their conclusions, namMelyue and B true, are sufficient to reconstruct
another proof ofA A B true:

D D
D AN B true AN B true
A N B true —E A true NEL B true NEr

A N B true Al

If the elimination rules were too weak.g, being unable to deducé true somehow), the proof would not
be expandable. As another example, consider a (#oof I' - A O B true. By the weakening property,
D is also a proof ofl’, A true = A D B true. Then we can reconstruct another proofAD B true by
expandingD:

D Hyp

D I'Atrue- AD B true T, A trueb A true e

I'-A>Btrue ~F I', A true - B true -
I'AD B true

We refer to these expansionss  aslocal expansions
Since proof terms are essentially proofs, local reductamsexpansions induce reduction and expansion
rules for proof terms:

fst (M, N) =R M
snd (M, N) =R N
(Ax:A.M) N =R [N/x|M

M:ANB =5 (fst M,snd M)
M:ADB —F A A Mz

Note that these reduction and expansion rules preservgphet a given proof term. Thatis, ¥/ —r N
orM =g N,thenl' M : AimpliesI' N : A. The reduction rules are called tl#ereduction rules,
and the expansion rules are called thexpansion rules.

In a programming language based upon Mealculus, a program is defined as a well-typed closed
proof term, that is, a proof term/ such that - M : A for a certain typeA. Usually we run a program
by applying reduction rules under a speciféduction strategy For example, theall-by-namereduction
strategy reduces a prografiz: A. M) N to [N/xz|M (by the 5-reduction rule) regardless of the form of
term N. In contrast, thecall-by-valuereduction strategy reducésx: A. M) N to [N/x|M only if no
reduction rule is applicable t&/ (i.e., N is a value). Thus the operational semantics of a programming
language based upon thecalculus is specified by the reduction strategy for apgyieduction rules.
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2.2.2 Semantics of modal logic

Modal logic is a form of logic in which truth may be qualified Inyodalities. Examples of modalities
common in the literature are thcessitymodality (0 and thepossibility modality ¢. Informally “CJA is
true” means A is necessarily true,” and(A is true” means A is possibly true.” Thus modal logic is
more expressive than ordinary logic without modalities] arhen applied to the design of a programming
language, it enables the type system to specify richer ptiepehat would otherwise be difficult to specify.

One popular way to explain the semantics of modal logic ipthesible world interpretation [35, 71]. It
assumes a set of worlds and relativizes truth to worlds. Ehatstead of ordinary truthA is true,” it uses
relative truth“ A is true at worldw” as the primitive notion. Hence the same proposition mayrbe &t one
world but not at another world.

The possible world interpretation also assumeaaessibility relatiorn< between worlds to explain the
meaning of each modality. For example, the necessity ansiljlity modalities are defined as follows:

e A is true at worldw if for every worldw’ accessible fromw (i.e., w < '), A is true at’.
e OAistrue at worldw if A is true at some world’ accessible from (i.e., w < &/).

Ordinary connectives (such asandA) are explained locally at individual worlds, irrespective<. For
example,A D B is true at worldw if “ A is true atw” implies “B is true atw.”

With the above definition of the modaliti€és and ¢, some proposition becomes true at every world,
regardless of the accessibility relatish For example[J(A D B) D (JA D OB) is true at every world,
since[J(A D B) andJA are sufficient to show thaB is true at any accessible world. Moreover various
systems of modal logic are obtained by requiriido satisfy certain properties. The following table shows
some properties of and corresponding propositions that become true at evergwo

property of< proposition
reflexivity Vw. w < w OAD A
symmetry Vo V' w < W impliesw’ <w A>OOA

transitivity  Vw.Vo'.Vo". w < W andw’ <o’ implyw <w” | OA D OOA
Euclideanness Vw.Vw' Vw”. w < ' andw < " imply o’ < w” | 0A D OOA

For example, iK is reflexive and transitive, we obtain a system of modal logsually referred to as S4, in
which bothJA O A andJA D OO A are true at every world.

The semantics of modal logic can also be explained withopli@tty using the notion of world [62, 8,
60]. In their judgmental formulation of modal logic, Pfengiand Davies [60] define aalidity judgment
A valid as- + A true, and internalized valid as a modal proposition] A:

A valid

OA true L

ThusUA true is interpreted asi being true at a world about which we know nothing, or equintiye at
every world. (Note that a judgment is defined first and thenraesponding modality is introduced.) A
possibility judgmentd poss is based upon the interpretation 4fposs as A being true at a certain world,
but still its definition does not use worlds explicitly:

1. If T+ A true, thenl' - A poss.

2. f ' A poss and A true b B poss, thenl' - B poss.



23

A possibility judgmentA poss is internalized as a modal propositigm:

A poss
OA true

Ol

The possible world interpretation is richer than the judgtakformulation in that some proposition
is true in the possible world interpretation but not in thdgmental formulation. An example of such a
proposition is(0A D OB) D (A D B). ltis true in the possible world interpretation as followse write
A @ w for A being true at worldy:

Hyp
Ol
SE

0ADOBQuw,AQwW FAQW
0ADOBQw,AQW FOADIOBQwW 0ADOBQuw,AQuWFQ0AQw
0ADOBQuw, AQwW B QW
w<o OASOBQuwrA>Baw -
0ADOBQuwkFOADB)Quw Hi
‘H(OADOB)DOADB)Quw

Hyp

Dl

Its truth is, however, not provable in the judgmental foratidn:

777
-FA D B true -
OA D OB true - O(A D B) true
"+ (OA > OB) > O(A > B) true ~

In a certain sense, the possible world interpretation igni@htly more expressive than the judgmental
formulation because it explicitly specifies the world at @ha proposition is true. On the other hand, it may
not be a good basis for the type system of a programming layggsince the use of the accessibility relation
in proofs implies that the type system also needs to reasout ditre relation between worlds, which can be
difficult depending on the concrete notion of world choseritg/type system. The judgmental formulation
lends itself well to this purpose because it does not useds@xplicitly in the inference rules.

The logic for A\o combines the possible world interpretation and the juddgadestyle by assuming an
accessibility relation between worlds and relativizinbjadigments to worlds. For example, it uses a truth
judgment of the formA true @ w to mean thatd is true at worldw. Its inference rules, however, do not
use judgments showing accessibility between two worldss #se case in the judgmental formulation of
modal logic (see Simpson [71] for a system of modal logic Whises such judgments in inference rules).
Instead it requires the accessibility relation to satisfyegain condition (monotonicity), which eliminates
the need for such judgments in inference rules. Since thsillesworld interpretation in\o is to use the
same worlds that are part of the run-time system, lack of gumdpments in inference rules implies that the
type system of\o does not explicitly model changes in the run-time systenis #se case in a typical type
system.

2.3 Language\o

Pfenning and Davies [60] present a monadic language whfohmelates Moggi's monadic metalanguage
Ami [44, 45]. It applies the Curry-Howard isomorphism to laxilofprmulated in the judgmental style (with
a lax truth judgmentd lax):

1. '+ A true, thenl' + A laz.
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2. fT'F A laz andI', A true - B lax, thenI' - B laz.

Ao is essentially the monadic language of Pfenning and Daweakesced with the possible world in-
terpretation. The difference is that ko, the definition of each judgment relies only on truth and the
accessibility relation, instead of clauses describingitgerties (such as the above two clauses). In other
words, the definition of each judgment directly conveysritsitive meaning.

2.3.1 Logic for \o

The development ol begins by formulating the logic foko. Since the logic for\o uses the possible
world interpretation, we first define an accessibility riglat< between worlds. Now a world refers to the
same notion that describes part of the run-time system.

Definition 2.1. A world ’ is accessible from another world, written asw < «’/, if there exists a world
effect that causes a transition framto «’.

As it describes transitions between worlds when world ¢$fece produced, the accessibility relatien
is atemporalrelation between worlds. b < ', we say that.’ is a future world ofw and thatw is a past
world of w’. Note that< is reflexive and transitive, since a vacuous world effecisesla transition to the
same world and the combination of two world effects can bandgd as a single world effect.

The logic forAo uses two kinds of basic judgments, both of which are releidito worlds:

e A truth judgmentd true @ w means thatl is true at worldw.

e A computability judgmentd comp @ w means thatA is true at some future world ab, that is,
A true @Q ' holds wherev < o',

A truth judgmentA true @ w represents a known fact about wodd Since a future world can be reached
only by producing some world effect, a computability judgrngd comp @ w may be interpreted as meaning
that A becomes true after producing some world effect at world

The following properties of hypothetical judgments chéeaze truth judgments, wheré is either a
truth judgment or a computability judgment:

Characterization of truth judgments

1. T, A true Quwt A true Q w.

2. fT'F A true @Qw andI', A true Q w - J, thenI' - J.
The first clause expresses thatrue @ w may be used as a hypothesis. The second clause expresses the
substitution principle for truth judgments.

The definition of computability judgments gives the follogicharacterization, which is an adaptation
of the characterization of lax truth for the possible woriterpretation:

Characterization of computability judgments

1. fI'+ A true Q w, thenl' = A comp Q w.

2. fTF A comp @wandl', A true Q w' - B comp @ ' for any worldw’ such that < o/,
then' - B comp Q w.
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The first clause expresses thatdifis true atw, then A becomes true without producing any world effect at
w. It follows from the reflexivity of<: if A true @ w holds, thenA is true atw, which is accessible frony
itself, and hencel comp @ w holds. The second clause expresses thdisftrue at.’ after producing some
world effect atw, we may used true @ '’ as a hypothesis in deducing a judgmentatif the judgment at
w' is a computability judgmenB comp @ o/, the transitivity of< allows us to deduc® comp @ w:

Proof of the second clauséssume thatd comp @ w implies A true @ w; wherew < w;. We proveB comp Q w
from hypothese§' as follows:

A comp @Q w holds becausE - A comp Q w.

A true @Q wy holds by the assumption afi comp @ w.

B comp @ wy holds becausg, A true @ wy = B comp Q@ w;.

B true @ w9 holds for some worldv, such thatv; < wy (by the definition ofB comp @ wy).

B comp @ w holds because < w, by the transitivity of< (i.e., w < w; < wa). O

We use the second clause as the substitution principle fopatability judgments.

Monotonicity of the accessibility relation <

We intend to use world effects for accumulating more knogtedut not for discarding existing knowledge.
Informally a world effect causes a transition to a world wéerore facts are known and more world effects
can be produced. The monotonicity of the accessibilityti@a< formalizes our intention to use world
effects only for accumulating more knowledge:

Definition 2.2. The accessibility relatior< is monotonicif for two worldsw andw’ such thatv < o/,
1) A true @ w implies A true @ ';
2) Ay true Q w, -+ , A, true @ wt A comp @ wimpliesA; true Q ', --- | A, true Q W' = A comp Q o'

The first conditionmonotonicity of truthstates that a future world inherits all facts known abaipdst
worlds. It proves two new properties of hypothetical judgrse

1. fTF A true Qw andw < o/, thenT' - A true Q ',
2. IfT', A true Q W'+ J andw < o', thenl', A true Q w F J.

The second conditiomersistence of computatipstates that a world effect that can be produced at world
w under some facts (about) can be reproduced at any future woud under equivalent facts (about).
Unlike monotonicity of truth, it uses hypothetical judgnteim which all antecedents are truth judgments at
the same world as the succedent. The reason is that a woeltt effay require some facts about the world
at which it is producedd.g, allocating a new reference requires an argument for liztiy a new heap
cell), and its corresponding computability judgments #fiedént worlds can be compared for persistence
only under equivalent facts about individual worlds.

Note that monotonicity of truth does not imply persistenteamputation. For example, & comp Q w
holds becausel true @ ' wherew < w’, monotonicity of truth allows us to concludé comp @ w" for
every worldw” accessible from’, but not for every world accessible from

Simplified form of hypothetical judgment

In principle, a hypothetical judgmefit- J imposes no restriction on antecedehtand succedenf. That
is, if J is a judgment at worldv, thenI' may include both truth judgments and computability judgtaen
at world w itself, past worlds ofv, future worlds ofw, or even those worlds unrelatedo Thus such a
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general form of hypothetical judgment allows us to expressoning about not only the present but also the
past and future.
Examples of reasoning about the past and future are:

¢ If there has been a transaction failure in a database systémepast we create a log fileow.
e If the program has produced no output yet, we stop takingtinpu

¢ If the heap cell is deallocated in tHieture and becomes no longer available, we make a copy of it
Now.

¢ If the program is to open the file eventually, we do not close it

Since we intend to usgo only to reason about the present, the logic fer imposes restrictions on an-
tecedents in hypothetical judgments and uses a simplifiwd &6 hypothetical judgment as described below.

First the simplified form uses as antecedents only truthruelgs. If a computability judgment is to
be exploited, we use as an antecedent a truth judgment thaséirts, as shown in the second clause of
the characterization of computability judgments. Secdral dimplified form uses only judgments at the
same world. In other words, a hypothetical proof reasonsiaboe present world and does not consider
its relation to past and future worlds (or unrelated world§he rationale for the second simplification is
two-fold:

1. Facts about past worlds automatically become facts aheypresent world by the monotonicity of
<. Therefore there is no reason to consider facts about the pas

2. In general, facts about future worlds are unknown to tlesemt world because of the temporal nature
of <. If we were to support reasoning about future worlds, thesasity and possibility modalities
would be necessary.

Thus the logic for\o uses the following two forms of hypothetical judgments:

o A true Quw, -, A, true Qw F A true Q w,
which is abbreviated ad; true,--- , A, true Fs A true Q w.

o Ay true Qu,--- A, true Quw E A comp Q w,
which is abbreviated ad; true,--- , A, true Fs A comp Q w.

As the logic forAo requires only the simplified form of hypothetical judgment simplify the charac-
terization of truth and computability judgments according he new characterization of truth judgments is
just a special case of the previous characterization:

Characterization of truth judgments with T" 4 J

1. I', A true b5 A true @ w.
2. fT'k A true Q w andT’, A true k¢ J, thenl' - J, whereJ is a judgment at world.

The new characterization of computability judgments dassconsider transitions between worlds:

Characterization of computability judgments with " - J

1. fT'k A true @ w, thenI' 5 A comp Q w.
2. fT'ks A comp @Quw andTl’, A true Fs B comp Q w, thenl" -5 B comp Q w.
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Proof of the second claus&iven I = A true,--- , A, true, we writeI’ @ w for Ay true Q w,-- -,
Ay, true Q w. Assumel’ @ w - A comp Q w andT’ @ w, A true Q w = B comp @ w. For any worldw’
such thaty < «/,

I'@w', A true QW'+ B comp @ ' holds by persistence of computation;

' Qw, A true QW'+ B comp @Q w' holds by monotonicity of truth.
ThenT' Quw + B comp Q w, orT' 4 B comp Q w, holds by the substitution principle for computability
judgments. O

Note that in the second clausd, comp @ w leads to (as a new hypothesis) a truth judgment at the
same world instead of a future world. That is, everdifcomp @ w holds becaused true @ ' where
w < W', we use as a new hypothesistrue @ w instead ofA true @ w’. Thus we reason as if the world
effect corresponding tol comp @ w did not cause a transition to the future wodd. By virtue of the
monotonicity of<, this reasoning provides a simple way to tEstomp @ w"” for everyfuture worldw” of
w, as in the previous characterization of computability judgts. The second clause allows the type system
of \o to typecheck a program producing a sequence of world effgittout actually producing them, as
will be seen in the next subsection.

2.3.2 Language constructs oho

To represent proofs of judgments, we use two syntactic oaeg) terms M, N for truth judgments and
expressionds, F' for computability judgments. Thus the Curry-Howard isoptusm gives the following
correspondence, where typing judgments are annotatedaeitlds where terms or expressions reside:

& F-AQuw

D E
Atrue@w < M:AQu A comp Q w

That is, we represent a pro@f of A true Q w as a termM of type A at world w, written asM : A Q w,
and a proof of A comp @ w as an expressioR of type A at worldw, written ask - A @ w. Analogously
hypothetical judgments (of the forin .J) correspond to typing judgments with typing contexts:

T'EM:AQuw 'k EF+-AQuw
A typing contextl’ is a set of bindings: : A:
typing context ' == -|T,z: A

z : A in T" means that variable assumes a term that has tygeat a given world i(e., world w in
'kM:AQworl'k F+ AQw) but may not typecheck at other worlds. Then a term typingyjud
mentl' M : A @ w means thai\/ has typeA at worldw if T' is satisfied at the same world; similarly an
expression typing judgmeiit; £+~ A @ w means thal’ has typed at worldw if T" is satisfied at the same
world. Alternatively we may thinkof' M : AQuworl' E + A @ w as typing judgments indexed by
worlds.

Terms and expressions form separate sublanguaggs.offheir difference is manifest in the opera-
tional semantics oo, which draws a distinction betweavaluationsof terms, involving no worlds, and
computation®f expressions, involving transitions between worlds:

M-V FQw—-Vad

A term evaluationM — V does not interact with the world where tertd resides; hence the resultant
valueV resides at the same world. In contrast, an expression catiguf’ @ w — V @ «’ may interact
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type AB == ADA|OA

term M,N x| Ax:AM|MM|cmp E
expression FE,F M |letcmpaz<Min E
value 1% n= Ax:A.M|cmp E

Figure 2.2: Abstract syntax foho.

H Ne: Ak M:BQuw |
Tz Akz:AQw P TRMAM:A>BQw -

IT'kEM:ADBQw TKkM:AQuw E I'EE+-AQuw ol
I'k My My:BQuw - I'kcmpE:0AQuw

I‘}—S,M:A@w_l_ I'kEM:0AQuw T,z2: AR E+-BQuw E

TRMtAGQw &M Thietempz<MinE-Baw

Figure 2.3: Typing rules ofAc.

with world w where expressiorZ resides, causing a transition to another warlg hence the resultant
valueV may not reside at the same world. Thus term evaluations wayaleffect-free whereas expression
computations are potentially effectful (with respect torldeffects).

Note that worlds are required by both the type system and pleeational semantics ofc. That is,
worlds are both compile-time objects and run-time objectthe definition ofAc. As worlds are involved
in expression computations and hence definitely serve asmanobjects, one could argue that abstractions
of worlds rather than worlds themselvesd, store typing contexts rather than stores) are more apigitepr
for the type system. Our view is that worlds are acceptablestwin the type system for the same reason
that terms and expressions appear in both the type systertharaperational semantics: the type system
determines static properties of terms and expressionghamperational semantics describes how to reduce
terms and expressions; likewise the type system deterratads properties of worlds (with respect to terms
and expressions), and the operational semantics destrdms#tions between worlds.

Incidentally the type system ofo is designed in such a way that only an initial world at whick th
run-time system start®(g, an empty store) is required for typechecking any programnde no practical
problem arises in implementing the type system as we canlgigigregard worlds.

Below we introduce all term and expression constructsofFigure 2.2 summarizes the abstract syntax
for Ao. Figure 2.3 summarizes the typing rules)ef. We user, y, z for variables.

Term constructs

As terms represent proofs of truth judgments, the charaetisn of truth judgments gives properties of
terms when interpreted via the Curry-Howard isomorphistne Tirst clause gives the following rule where
variablez is used as a term:

lNe:Akz:AQuw Hyp
The second clause gives the substitution principle for $erm
Substitution principle for terms

fTkM:AQwandl,z: Ak N: BQuw,thenl'k [M/z]N : B Q w.
fITkM:AQwandl'z: Ak F+ B Qu,thenl' 5 [M/z]E +~ B Qu.
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[M/x]N and[M/xz]E denote capture-avoidinggrm substitutionsvhich substitute)M for all occurrences
of x in N and E. We will give the definition of term substitution after inthocing all term and expression
constructs.

We apply the Curry-Howard isomorphism to truth judgmentdrigoducing an implication connective
D suchthafl' s A D B true @ w expresses§', A true ks B true @Q w. It gives the following introduction
and elimination rules, where we use a lambda abstractiond. M and a lambda application/; M- as
terms:

I'ax: AR M:BQuw 'kM:ADBQw T'kMy:AQuw

Thoww AM-ASBGw TL M M, BQw ok

We use a reduction relatios>girm in both the term reduction rule fop and its corresponding proof
reduction:
(/\Z’A N) M :>6term [M/x]N (ﬁ))

MNz: AR N:BQuw
TE AN A5BQw - ThM:AQuw
k(AN M:BQw B e
'k [M/z]N:BQuw

Expression constructs

Similarly to truth judgments, we begin by interpreting tHeatacterization of computability judgments in
terms of typing judgments. The first clause means that a témype A is also an expression of the same
type:

TEM:AQuw

ThM:AGw oM

The second clause gives the substitution principle foresgions:

Substitution principle for expressions
fITkE+AQwandlz: Ak F+BQuw,thenl'k; (E/z)F +~ B Qw.

Unlike a term substitutionM /x] F' which analyzes the structure &f, anexpression substitutiot/x) F’
analyzes the structure df instead ofF'. This is becauséE/x)F is intended to ensure that bof and
F are computed exactly once and in that order: first we compute obtain a value; then we proceed to
computeF’ with z bound to the value. Therefore we should not replidateithin F' (at those places where
2 occurs), which would result in computing multiple times. Instead we should conceptually replicate
F within E (at those places where the computationkofinishes) so that the whole computation ends up
computing bothE and F' only once. In this sense, an expression substitutiopz) F' substitutes not
into F, but F' into E. We will give the definition of expression substitution afitetroducing all expression
constructs.

We apply the Curry-Howard isomorphism to computability gatents by internalizingd comp @ w
with a modalityO so thatl” s OA true @ w expresse§ s A comp @ w. The introduction and elimination
rules use @omputation termemp £ and abind expressiofetcmp x < M in E:

'k EFE+-AQuw ol 'kM:QAQuw TI'z:ARE+-BQuw
I'kcmpE:0OAQuw I'kletcmpr<MinE+BQuw

OE

We use a reduction relatios 3., in both the expression reduction rule forand its corresponding proof
reduction:
letcmp x <cmp Ein F' =geqp (E/x)F (Bo)
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ITEE+-AQuw
'kemp E: OAQuw Nz: AR F+-BQuw
I‘I—sletcmpxqcmpEmF.B@w OFE = Bexp
k(E/x)F ~+BQuw

cmp E denotes the computation &f, but does not actually compute; hence we say thainp E encapsu-
latesthe computation oF. letcmp = < M in E enables us to sequence two computationg/iévaluates to
a computation term).

Note that the typing rul©E does not accurately reflect the operational behavidetafp = < M in E.
Specifically, while the ruleE typechecksr at the same world that it typechecks\/, the computation of
E may take place at a different world (wherew < ') because of an expression computation preceding
the computation of2. Nevertheless it is a sound typing rule because the moruitpmf the accessibility
relation < allows the type system to reason as if a world effect did nasea transition to another world,
as clarified in the characterization of computability judgrts.

Computation terms and bind expressions may be thought ofoasdic constructs, since the modality
O forms a monad. In Haskell syntax, the monad could be writtefoldows:

Ol

instance Monad O where

return M = cmp M

M >=N = cmp letcmpax <M in
letcmp y < N x in
Y

The above definition satisfies the monadic laws [77], moduéoexpression reduction rulg~ and a term
expansion ruley for the modalityO:

M =pexp cmpletcmp z <M inx (7o)

However, once we introduce a fixed point construct for tertie,ruley~ becomes invalid. For example,
if M is a fixed point construct whose reduction never terminditegxpansion intemp letcmp z < M in

is not justified because the reduction of the expanded temrmeidiately terminates. Hence the modality
ceases to form a monad, and we do not aalla monadic language.

2.3.3 Substitutions
Now that all term and expression constructs have been intext] we define term and expression substitu-
tions. We first consider term substitutions, which are essntextual substitutions.

Term substitution

Term substitutiongM /x]N and [M /x| E are straightforward to define as they correspond to sukistitu
a proof of A true @ w for a hypothesis in a hypothetical proof. To formally defieemt substitutions, we
need a mappind’V (-) for obtaining the set ofree variablesin a given term or expression; a free variable
is one that is not bound in lambda abstractions and bind sgjmes:

M) — FV(M) {z}

Il
=
5

FV(x

FV(A

(M )

FV(cmp E)
FV(letempz<MinE) = FV
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A true Q w [A true @ W]

A comp Q@ w B comp Q@ w

M
A true Q w

B comp Q w

E

B comp Q w

Figure 2.4: A schematic view of E/x) F.

In the definition of[M /x| N and[M /z]E, we implicitly rename bound variables N and E' as necessary
to avoid the capture of free variables if:*

[M/zly = M T=y
=y otherwise
[M/zx]A\y:A.N = Xy:A.[M/z|N x#yyg FV(M)
M/2(Ny No) = [M/2]Ny [M/2]N,
[M/x]emp E = cmp [M/z|E

[M/x]letcmp y <N in E letcmp y < [M/x|N in [M/z]E z #y,y & FV(M)
The above definition of term substitution conforms to thessitiltion principle for terms:

Proposition 2.3 (Substitution principle for terms).
fITkM:AQwandl',z: Ak N: BQuw,thenl'k [M/z]N : B Q w.
frkM:AQuwandl',z: Ak F+ B Quw,thenl' s [M/z]E + B Q w.

Proof. By simultaneous induction on the structure/dfand . O

Proposition 2.3 implies that term reductions y;..m are indeed type-preserving:

Corollary 2.4 (Type preservation of = gterm).
fI'k (M:A.N)M : BQuw,thenl' 5 [M/z]N : B Q w.

“Hence a term substitution does not need to be defined in &scas
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Expression substitution

GvenTk F+-AQwandT',z: Ak F+ B @Qw, an expression substitution combines the two typing
judgments by finding an expressioh/x) F such thal t; (E/z)F + B @ w. It corresponds to substituting
a hypothetical proof usingl ¢true @ w as a hypothesis into a proof df comp @Q w.

Figure 2.4 shows a schematic view of an expression subistitUf'/x) F'. ExpressionF contains a term
M of type A which ultimately determines its type. For example,= letcmp x < N in M has the same
type asM, and if M is replaced by another expressiéh of type A’, the resultant expression also has type
A’. Operationally the computation @ finishes by evaluating/. Expression/ contains variable: which
corresponds to a hypothesistrue @ w in a hypothetical proof o3 comp @ w. (E/x)F first substitutes
M for x in F, which results in a new expressioh/ /z|F of type B; then it replaces\/ in E by [M/x]F.
In this way, (E'/x) F' substitutes into E, rather than® into F'. Note that although £ /) F' transforms the
structure ofF, it has the same type ds because its type is ultimately determined by whatever esgiva
replacesM.

Thus (E/z)F analyzes the structure @, instead ofF’, to find a term that ultimately determines the
type of E:

(M/z)F = [M/x]|F
(letempy< M in E'/2)F = letempy< M in (E'/z)F

The above definition of expression substitution conformih&osubstitution principle for expressions:

Proposition 2.5 (Substitution principle for expressions)
fITkE+AQuwandl,z: Ak F+~BQu,thenl' s (E/x)F +~ B Q w.

Proof. By induction on the structure af (not F'). O
Proposition 2.5 implies that expression reductions=hy.,,, are indeed type-preserving:

Corollary 2.6 (Type preservation of = geyp).
If 'k letcmpx <cmp E'in F+~ B Qu, thenl' k (E/z)F +~ B Q w.

2.3.4 World terms and instructions

The operational semantics & provides rules for term evaluatiodd — V' and expression computations
EQw— V @u'. Forterm evaluations, we introduce a term reductidn—; N such that\/ —; V is
identified withA/ — V', where— is the reflexive and transitive closure:ef;; for expression computations,
we introduce an expression reductiéh@ w —. F' @Q w’ such thatl @ w —* V @ ' is identified with
EQw — V @', where— is the reflexive and transitive closure f:

M~V 4ff M—=V FQw—iVadJ iff FQw—-Vad

At this point, there is no language construct for producimggldreffects and no typing rules and reduction
rules actually require worlds. That s, all language cargt introduced so far are purely logical in that their
definition is explained either by properties of judgmermtg( variables, inclusion of terms into expressions)
or by introduction and elimination rulee.Q, lambda abstractions, lambda applications). In fact, ibnaese
@ w from typing judgmentsAo reverts to the monadic language of Pfenning and Davies [68us we
introduce language constructs for interacting with wobld$ore presenting the operational semantics.

We useinstructions as expressions for producing world effects. As an interfaceorlds, they are
provided by the programming environment. For example, atructionnew M for allocating new refer-
ences produces a world effect by causing a change to the atmdeeturns a reference. An instruction may
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have arguments, and term substitution on instructions angluments is defined in a structural way; hence
Proposition 2.3 continues to hold.

We refer to those objects originating from worlds, such dsremces, asvorld termsi/. Since they
cannot be decomposed into ordinary terms, world terms asenaad to be atomic values (containing no
subterms) and are given speciarld term typesV. For example, reference typef A is a world term type
for references. Note that while world terms may not contatfirary terms, world term types may contain
ordinary typesé€.g, ref A).

The new abstract syntax for is as follows:

type A o= W
world term type W

term M = - |W
world term W

expression E = - |I
instruction 1

value vV o= - |W

The type of a world term may depend on the world where it resiéf@r example, a reference is a pointer
to a heap cell and its type depends on the store for which #lid.vTherefore typing rules for world terms
may have to analyze worlds. Since world terms are atomicegaltyping judgments for world terms do
not require typing contexts. In contrast, typing judgmeftsinstructions require typing contexts because
instructions may include terms as arguments:

W:Waw I'klI+-AQuw

Note that an instruction does not necessarily have a wonhd tgpe. For example, an instruction for deref-
erencing references can have any type because heap cetlertain values of any type.

If an instruction/ whose arguments are all values typechecks at a worlichder an empty typing
context, we regard it as reducibleatmoreover we require that an instruction reductio® w +—. V @ o’
be type-preserving so th&t has the same type ds

Type-preservation/progress requirement on instructions

If -1+ A@w and arguments td are all values, then there exists a world satisfying
IQuw— . VQAQuwand-KV:4AQuw.

We alloww = «’, which means that a world effect does not always causes @ehara world €.g, reading
the contents of a store is still a world effect).

As Qw —, V @ «' means that instructio computes to valu® causing a transition of world from
wtow’, itimpliesw < w’. Now the accessibility relatior is fully specified by instruction reductions under
the assumption that it is reflexive and transitive. Note thi#ttout additional requirements on instructions,
there is no guarantee that the monotonicity<os maintained. For example, an instruction for dealloaatin
an existing referencéviolates monotonicity of truth if no longer typechecks after it is deallocated, and
violates persistence of computation if its correspondiegghcell is discarded. In order to maintain the
monotonicity of<, we further require that all instruction reductions be dasd in such a way that types of
world terms and instructions are unaffected<y

Monotonicity requirement on instructions
DIfw <o/, thenW : W @ wimpliesW : W @ /.

2) Ifw <, thenT'k I+ AQwimpliesT' i I + A @ o', where for each argumenit/ to I,
we assume thdt x M : B @Q w impliesI' s M : B @Q /.
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M*—)tM/ Ml—)tN

T T
MN—MN % DA M) N NaM ? MOwo, Nay JTem
MHtN En;
letcmpz <M in F Qw . letcmpz <N in F @ = 2ind

EAT .

letcmp z <cmp Ein FF Q w +—¢ (E/x)F Quw Bindfs

TQwr—. Vad
Eginar

letcmp z<cmp I in F' Q w ¢ letcmpz<cmp Vin F Q o/

Figure 2.5: Operational semantics of> which uses expression substitutions for expression coatiput.

The first clause corresponds to monotonicity of truth, arel shcond clause to persistence of computa-
tion. Under the monotonicity requirement, instructionuetions never affect types of existing terms and
expressions:

Proposition 2.7 (Monotonicity of <).

If w < ', then
'k M:AQuwimpliesT'ks M : A @ ', and
'k E+AQuwimpliesT'k E+ A Q W',

Proof. By simultaneous induction on the structureiddfand £. O

Unlike other expression constructs, instructions are mptagned logically and no expression substi-
tution can be defined on them. Intuitively /z) E' cannot be reduced into another expression because
itself does not reveal a term that is evaluated at the endsafoinputation. Such a term (which is indeed
a value) becomes known only after an instruction reducfiéhw —. V @ «’. We should therefore never
attempt to directly reducitcmp z <cmp I in E into (I/z)E. For the sake of convenience and uniform
notation, however, we abuse the notatidriz) E with the following definition, which effectively prevents
letcmp = <cmp I in E from being reduced by gexp:

(I/x)E = letcmpxz<cmplinE

This definition of(I /z) E allows =3, to be applied to any part of a given expression; Propositiéraso
continues to hold.

2.3.5 Operational semantics

A term reduction by=3rm and an expression reduction byg.,, are both proof reductions and may be
applied to any part of a given term or expression withoutdiffg its type. An operational semantics of
Ao defines the term reduction relatien; and the expression reduction relatien. by specifying a strategy
for arranging reductions by gierm and =g..p,. Below we consider two different styles of operational
semantics (both of which use the same syntax for reductiatioas). For each instructioh, we assume an
instruction reductiod @ w +—, V @ w’, which causes a transition of world framto «’; if I has arguments,
we first reduce them into values by applying repeatedly.

Figure 2.5 shows an operational semantica\@fwhich uses expression substitutioffs /=) F' for ex-
pression computations; for term evaluations, we can chaogeeduction strategy (Figure 2.5 uses a call-
by-name discipline). The rulé} is a shorthand for applying>gterm t0 (Az: A. M) N. The rulesEzen,
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MHt M/ NHt N,
T, Tap
M N~y M N (Ax:A. M) N ¢ (\x:A. M) N’
T MHtN E
Oz A MV = V/zlM %Y MQuweNaQw ™
M*—)tN
letcmpz <M in F Quw e letcmpxz <N in FFQ w
EFEQuw— E' QW
letcmp z<cmp Ein F Q w ¢ letcmp z <cmp E' in F @Q o/

EBing

EBindr

Fn:
letcmp z <cmp V in F @ w ¢ [V/2z]F @w =~ 2"V

Figure 2.6: Operational semantics ok in the direct style.

and Ep;nq Use a term reductiod/ —. N to reduce a term into a value. The rul;;,qs is a shorthand
for applying = gexp 10 letcmp z <cmp E in F; in the case of? = M, it reducedetcmp x <cmp M in F
into (M/z)F = [M/z]F without further reducing/. The rule Ep;,4; perform an instruction reduction
TQww—. Vadud.

Figure 2.6 shows an alternative style of operational seicgntalled the direct style, which requires
only term substitution$V/z] E' for expression computations; for term evaluations, we daose any re-
duction strategy (Figure 2.6 uses a call-by-value diso@li The rulesE 1., and E;,,4 are the same as in
Figure 2.5. Giveretcmp z <cmp E in F', we apply the ruleF'g;,sr repeatedly untilE is reduced into a
valueV; then the ruleEp;, 4y reducedetcmp z <cmp V in F'into (V/x)F = [V/z]F. Thus a variable is
always replaced by a value (during both term evaluationseapdession computations).

The direct style is more extensible than the first style beeaudoes not use expression substitutions.
That is, the introduction of a new expression construct ireguwnly new reduction rules. In comparison,
the first style hinges on expression substitutions, andimesjunot only new reduction rules but also an
augmented definition of expression substitution for eaghempression construct. If expression substitution
cannot be defined on a new expression construct, we may h&aweter specialize existing reduction rules.
For example, the ruleB8';,43 and Ep;,,qr can be thought of as derived from a common reduction rule when
instructions are introduced.

The type safety of\o consists of two properties: type preservation and progré$e proof of type
preservation uses Corollaries 2.4 and 2.6, the type-prasen/progress requirement on instructions, and
Proposition 2.7. The proof of progress requires a canoffiizatls lemma. In either style of the operational
semantics, all proofs proceed in the same way.

Theorem 2.8 (Type preservation).
fM—Nand-k M : AQuw,then-k N : A Q w.
fEQw—.FQuwand- Kk FE+AQuw,then- s F+AQu.

Proof. By induction on the structure af/ andE. O

Lemma 2.9 (Canonical forms).
If V is avalue of typed O B, thenV is a lambda abstractionz: A. M.
If V' is a value of typeD A, thenV is a computation termmp E.

Proof. By inspection of the typing rules. O
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Theorem 2.10 (Progress).
If - M : AQ w, then eitherM is a value or there existd such thatM —; N.
If - £+ A Q@ w, then eitherE is a value or there exisf’ andw’ such thattl @ w +—, F @ o',

Proof. By induction on the structure aff andE. O

Since expressions may produce world effects, they cannobbeerted into terms. In contrast, terms
can always be lifted to expressions by the typing rliéem. Therefore we define a program as a closed
expression® that typechecks at a certain initial woild,,;i;q1, 1.€. - | £+ A Q wipnitia. We choosev;,ivial
according to the world structure being employed. To run @gm £, we compute it at;,izal-

2.4 Examples of world effects

In order to implement a specific notion of world effect i, we specify a world structure and provide
instructions to interact with worlds. In this section, wedaliss three specific notions of world effect.

2.4.1 Probabilistic computations

In order to facilitate the coding of sampling techniquesealeped in simulation theory, we model a proba-
bilistic computation as a computation that returns a vaftex aonsuming real numbers drawn independently
from U (0.0, 1.0], rather than a single such real number. A real numbisra world term of typeeal. A
world, the source of probabilistic choices, is represerdaedan infinite sequence of real humbers drawn
independently fron/(0.0,1.0]. We use an instructioss for consuming the first real number of a given
world.

world term type W ::= real
world term W = r
instruction I =S
world w  u= rrg---ri--- where r; € (0.0,1.0]
r:real @ w Real I'kS+real@w Sampling
Sampling

SQrirgry .- e Qrorg .-

It is easy to show that instructiofi satisfies the type-preservation/progress requirementeS world
does not affect types of world terms and instructions, thaeatanicity of < also holds trivially. We can use
any world as an initial world. As we will see in Chapter.3; with the above constructs for probabilistic
computations serves as the core of PTP.

2.4.2 Sequential input/output

We model sequential input/output with a computation thatscones an infinite input character stream
and outputs to a finite output character streasmwhere a character is a world term of typiear. We use
two instructions:read_c for reading a character from the input stream amite_c M for writing a character
to the output stream.

world term type W == char
world term W = ¢
instruction I == read_c|writec M
world w u= (is,0s)
1S = c1CcaC3- -

os == nil|c:os
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Char Read_c

I'kread_c+charQuw

'k M:char@Quw
I' ks write_.c M + char Q@ w

c:char Qw

Write_c

read_c @ (c1cocy -+ ,08) —e ¢1 @ (cacg -+, 08) Read_c

M ¢ N
write_c M Q@ w ¢ write.c N Q w

Write_c

- /
write_c ¢ @ (is, 0s) e ¢ @ (is, ¢ :: 05) Write-c
It is easy to show that both instructions satisfy the typesprvation/progress requirement. As in prob-
abilistic computations, a world does not affect types ofldéerms and instructions, and the monotonicity
of < holds trivially. We use an empty output character stresdinn an initial world.

2.4.3 Mutable references

Probabilistic computations and sequential input/outpeteasy to model because worlds do not affect types
of world terms and instructions. Mutable references, haxkeequire world terms whose type depends on
worlds, namely references. Consequently worlds shouldebgded in such a way that they provide enough
information on a given reference to correctly determineyipse.

We useref A as world term types for references. A world is representec asllection of pairs
[l — V : A] of a referencd and a closed valu® annotated with its typel. It may be thought of as a
well-typed store: ifl — V : A] € w, thenV has typed at worldw (i.e,, - x V : A @ w) and references in it
are all distinct. We use three instructiongw M : A for initializing a fresh referenceead M for reading
the contents of a world, andrite M M for updating a world. Reading the contents of a world is a dorl
effect, even though it does not cause a change to the world.

world term type W == ref A

world term W ou= 1

instruction I == newM: A|read M | write M M
world w o o= |w [l VA

Figure 2.7 shows new typing rules and reduction rules:

To prove the type-preservation/progress requirement siiiiations, we first show that well-typed in-
structions never generate corrupt worlds (Corollarie 2add 2.14). In Lemma 2.11, we do not postulate
thatw, [l — V : A] is aworld {.e, it possesses the structure of a store, but may not be weid)y

LemmaZ2.11l.lfwisaworldand £k V : A @ w, then
'kM:BQuwimpliesTk M : BQuw,[l— V : A],and
'k EF+~BQuwimpliesT'k E + B Qu,|[l — V : A], wherel is a fresh reference.

Proof. By simultaneous induction on the structureMfand E. An interesting case is whell = [’ # [.
If M =1,thenT ik M : BQw implies B = ref B’ and[l’ — V' : B'] € w by the ruleRef. Since
'—V' :Blewl[l—V:A,wehavel k M : BQuw,[l+— V: A O

Corollary 2.12. If -V : A Q w wherew is a world, thenw, [l — V : A] is also a world for any fresh
reference.

Proof. For eachll’ — V' : A’'] € w, we have V' : A’ @ w becausev is a world. By Lemma 2.11, we
have Lk V' : A Quw,[l—V :Al.From-kV:AQwandLemma21l,kV:AQuw,[l— V: A]also
follows. O
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[ZHV:A]Gwa rkM:AQuw N
l:ref AQuw € I'knewM:A+-ref AQw ew

'kEM:ref AQuw Read 'kEM:refAQw TKN:AQuw
I'kread M - AQuw ca 'kwrite M N -AQuw

M'—>tN N
newM: AQuwi—enew N : AQw €
fresh | such that [l — V' : A" ¢ w

newV:AQuw— [ Quw,[l—V:A]
M —¢ N l—V:Alew
readM@wHereadN@wRead readl Quw —, V Qw

MHtM/
write M N @ w +—, write M’/ N Q w

N'—>tN/
write Il N Q w —. write] N’ Q w

=V :Alew
write [V Quwi—e VQw—[l— V' Al =V : A

Write

w

New'

Read’

Write

Write

Write"

Figure 2.7: Typing rules and reduction rules for mutable references.

In Lemma 2.13, we do not postulate that- [l — V' : A],[l — V : A] is a world.

Lemma 2.13.

If -kV:AQwand[l— V': A] € wwherew is a world, then
'kM:BQuwimpliesTk M :BQw—[l—V': A],[l—V:A]and
I'kE+-BQuwimpliesTk E+~BQw—[l—V': A],[l—V: A

Proof. By simultaneous induction on the structureddfand £. An interesting case is wheld = [. O

Corollary 2.14.
If - kV:AQuwand[l— V': A] € wwherew is a world, then
w—[l—V'":A]l[l— V:A]is also aworld.

Proof. Similarly to the proof of Corollary 2.12. O

Proposition 2.15 (Type-preservation/progress requiremst on instructions). If -k 7+ A @ w and ar-
guments td are all values, then there exists a wodd satisfyingl @ w —. V @Quw' and- £V : A Q o'

Proof. By case analysis of. We use Corollaries 2.12 and 2.14. O

For the monotonicity requirement on instructions, we digeprove Proposition 2.7 exploiting Lem-
mas 2.11 and 2.13.

Proof of Proposition 2.7 Since the accessibility relation is specified by instruction reductions, < w’
implies that
w=w < <w < Swp =,

wherew; 11 is equal to eithew;, [l — V : A]orw; — [l — V' : A],[l— V : A]for 1 < i < n. We proceed
by induction onn. O
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In order to maintain the monotonicity &f, all references in a world must be persistent, since once a
reference is deallocated, its type can no longer be detedniffhis means that an explicit instruction for
deallocating referenceg.g, delete M) is not allowed in\o. In the present framework ofo, even garbage
collections are not allowed because they destroy the maiwity of <: a garbage collection transition
from w to w’ must ensure thdt: ref A @ w impliesi : ref A @ ' for every possible referendeincluding
those references not found in a given program, which arageigovhat it deallocates. (In practice, garbage
collections do not interfere with evaluations and comporket, and are safe to implement.) We use an empty
store as an initial world.

2.4.4 Supporting multiple notions of world effect

Since a world structure realizes a specific notion of worlgafand instructions provide an interface to
worlds, we can support multiple notions of world effect byrdaining individual world structures and letting
each instruction interact with its relevant part of worl&r example, we can use all the above instructions
if a world consists of three sub-worlds: an infinite sequeotteeal numbers, input/output streams, and a
well-typed store. This is howo combines world effects at the language design level.

We may think of\o as providing a built-in implementation of a state monad wehstates are worlds.
Then the ease of combining world effects)ip reflects the fact that state monads combine well with each
other (by combining individual states).

2.5 Fixed point constructs

In this section, we investigate an extensiomefwith fixed point constructs. We first consider those based
upon the unfolding semantics, in which a fixed point constreduces by unrolling itself. Next we consider
those based upon the backpatching semantics, as used im&¢BE For expressions, we assume the
operational semantics in the direct style in Figure 2.6.

For a uniform treatment of types, we choose to allow fixed poimstructs for all types. An alternative
approach would be to confine fixed point constructs only tdidanabstractions (as in ML), but it would be
inadequate for our purpose because recursive computatgpgre fixed point constructs for computation
terms (of typeO A) anyway.

2.5.1 Unfolding semantics

We usefix z: A. M as aterm fixed point construdbr recursive evaluations. Its typing rule and reduction
rule are as usual:
teem M o= - [fixx: A M

Ne:AkM:AQuw £ T
Fhkfxa: A M:AQuw ' ™ fixw: A M —y [fixx: A. M /2] M P

In the presence of term fixed point constructs, any truthijueigt A true holds vacuously, sindéx z: A.
typechecks for every typd and represents a proof of true. Now a termM of type A does not always
represent a constructive proof df true; rather it may contain nonsensical proofs suctias: B.z. The
definition of a computability judgmem comp, however, remains the same because it is defined relative to
a truth judgment4 true.

In conjunction with computation termsnp F, term fixed point constructs enable us to encode recursive
computations: we first build a term fixed point constriiftof type O A and then convert it into an expression
letcmp x < M in z, which denotes a recursive computation. Generalizingdleia, we define syntactic sugar
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for recursive computations. We introduce expression variabl& and anexpression fixed point construct
efix x+ A. E; a new form of bindingk = A for expression variables is used in typing contexts:

- | x| efixx+AE
e Tyx+ A

expression E =
typing context I' =

New typing rules and reduction rule are as follows:

I'x+AkKE+-AQuw
I'kefixx+A FE+-AQuw

Efix

F,X+AI—SX+A@wEvar Efix

efix x+A. E Qw —, [efixx+A. E/x|E Qw

In the rule Efiz, [efix x+ A. E /x| E denotes a capture-avoiding substitutiorefik x+ A. E for expression
variablex. Thusefix x + A. E behaves like term fixed point constructs except that it usiritelf by
substituting an expression for an expression variabléedusof a term for an ordinary variable.
To simulate expression fixed point constructs, we define etiam(-)* which translategefix x+ A. E)*
into:
letcmp y, < fix 2,: OA. cmp [letemp y, <z in Yy, /X|E* in y,
That is, we introduce a variablg, to encapsulatefix x:+-A. I/ and expane to a bind expressioktcmp y, <z, in y,.

The translation of other terms and expressions is structimathe sake of simplicity, we do not consider
world terms and instructions:

*

¥ = x
Az:A.M)* = Xx:A M*
(My Ma)* = M* My*

(cmp E)* = cmp E*
(fixz: A. M) = fixz: A M*
(letcmpx <M in E)* = letcmp x < M* in E*
x* = x

Proposition 2.17 shows that when translated via the fundtiy', the typing rulesEvar and Efix are
sound with respect to the original type system (without thlegEvar andEfix).

Lemma 2.16.

fTkF+AQwandl,x+ Ak M : BQu,thenl'k [F/x]M : B Q w.
fTk F+AQwandl,x+ Ak E+ B Quw,thenl'k [F/x]E + B @ w.

Proof. By simultaneous induction on the structureiddfand £. O

Proposition 2.17.
FI'kM:AQuw,thenT'k M*: AQ w.
fFI'kEF+-AQuw,then'k E* - A Q w.

Proof. By simultaneous induction on the structure ofthe derivatbl’' ; M : AQuwandl'k EF + A Q w.

An interesting case is whell = efix x+ A. F.

Case E = efixx+A. F"

I'x+ AR F+-AQuw
Nx+ AR F*+-AQuw

by Efix
by induction hypothesis
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Iz, OAx+AKF*+AQu by weakening
Iz, : OAk letemp y, <zpiny, + AQw (typing derivation)
Iz, : OAk [letemp y, <zp in yp /X|F* + AQ w by Lemma 2.16

I' ks letemp y, < fix z,: OA. cmp [letemp y, < xp in Yy /X]F* iny, + AQw
(typing derivation)
Ik (efixx+A. F)*+AQuw by the definition of(-)*
]

SinceM™* and E* do not contain expression fixed point constructs, thektibeis notused ii' k M*: A Q w
andT'k E* - A @w. Neither is the ruleEvar used unless\/ or E contains free expression variables.
Therefore, given a term or expression with no free expressariable, the functior(-)* returns another
term or expression of the same type which does not need thebudr andEfix.

Propositions 2.22 and 2.23 show that the reduction Efie is sound and complete with respect to the
operational semantics (in the direct style) in Section32.8/e use the fact that the computation/f does
not require the ruldfiz.

Proposition 2.18.
For any termN, we have([N/z]M)* = [N*/x]|M* and ([N/z]|E)* = [N*/z]E*.
For any expressioi’, we have([F/x|M)* = [F*/x]M* and ([F/x|E)* = [F* /x| E*.
Proof. By simultaneous induction on the structureiddfand E. O

Lemma 2.19.If M —; N, thenM* —; N*.

Proof. By induction on the structure of the derivation iof — V. O

Lemma 2.20.
If M* —, N’, then there exist&’ such thatN' = N* and M —; N.

Proof. By induction on the structure of the derivation bf* —; N'. O

We introduce an equivalence relatiaga, on expressions to state that two expressions compute to the
same value.

Definition 2.21.
E =, FifandonlyifEF Qw —}V Q' impliesF Qw —} V @/, and vice versa.

The following equivalences are used in proofs below:
letcmpx<cmp Finz =, FE
letcmpz<cmp Ein ' =, letcmpx<cmp E' in ' where E =, E'
(efixx+A. E)* =, [(efixx+A. E)*/x|E*
The third equivalence follows from an expression reduction

(efix x+A. E)* Q w ¢ letcmp y, <cmp [(efix x+ A. E)*/x]E* iny, Q w.

Proposition 2.22.
If £ Qw . F @ with the ruleEfiz, thenE* Q w —, F' Q@ o' andF’ =, F*.



42

Proof. By induction on the structure of the derivation BfQ w —. F' @ «’. We consider the casé =
letcmp x < M in Eg whereM # cmp E'.

If letcmp x <M in By @Q w +—¢ letcmp 2 < N in £y @Q w by the ruleEg;,q, thenM —; N.
By Lemma 2.19M* —; N*.

Since(letcmp 2 < M in Ey)* = letcmp 2 < M* in Ey* and(letcmp 2 < N in Eg)* = letcmp 2 < N* in Ep*,
we have(letemp z < M in Ey)* @Q w +—, (letcmp z < N in Ep)* Q w.

Then we letF’ = (letcmp x < N in Ey)*. O

Proposition 2.23.

If E* Qw . F' @ ', then there exist§’ such thatF’ =, F* andE Q w —, F Q ',

Proof. By induction on the structure of the derivation Bf @ w +—. F’ @ ’. An interesting case is when
the rule E;,,q is applied last in a given derivation.
If £ =letcmp z< M in Ey, thenE* = letcmp x < M* in Ey*.

By Lemma 2.20, there exisf§ such thatV —; N andM* —; N*.

Hence we havé& @ w +— letcmp z < N in Ey @ o’ andE* Q w + letcmp < N* in Ep* @ ' (where
w=uw).

Then we letF' = letcmp x < N in Fy.
If E = efixx+A. Ey, thenF’ =, ([efix x+A. Ey/x]|Ep)* (andw = w')

becausdefix x+A. Ey)* =, [(efix x+A. Ey)* /x| Eo* = ([efix x+A. Ey/x]Ep)*.

Then we letF’ = [efix x+A. Ey/x] Ep. O

As seen in the definition of expression fixed point construeisn fixed point constructs can leak into
expressions to give rise to recursive computations. Naenbn-terminating computations v are not
necessarily due to (term or expression) fixed point contyugince mutable references can also be ex-
ploited to encode recursive computations. For examplgallmving expression initiates a non-terminating
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computation in which referencestores a computation term which dereferences itself:

letcmp & <cmp new cmp 0 in
letcmp y < cmp write z cmp ( letcmp y <cmp read z in
letcmp z <y in
z) Q-
in
letcmp z <y in
z

letcmp y <cmp write [ cmp ( letcmp y <cmp read [ in
letcmp z <y in
[ - z) Q[l—cmp0:Oint
letcmp z <y in
z

letcmp z <cmp ( letcmp y <cmp read [ in
letcmp z <y in

— z) @ [l — cmp ( letcmp y <cmp read [ in
in letcmp z <y in
z z) : O int]
letcmp z < 1
cmp ( letcmp z <cmp ( letcmp y <cmp read [ in
letcmp z <y in
— - z) @ [l — cmp ( letcmp y <cmp read [ in
) letcmp z <y in
" z) : Oint]
Z -

2.5.2 Backpatching semantics

Unlike the unfolding semantics, the backpatching semami@luates or computes a fixed point construct
by first finishing the reduction of its body and théging a recursive knot’, or “backpatching” the result.
For term evaluations, the two semantics are equivalentpitbat when the unfolding semantics gives rise
to an infinite loop, the backpatching semantics generatesran

We investigate a fixed point construdix z: A. ¥ for expressions that is based upon the backpatching
semantics. Unlikefix x+ A. F which computes a fixed point over both values and world effecd thus
x is interpreted as an expression, it computes a fixed point ovér values and in it is a term® For
this reason, the computation is usually referred toase recursior[18]. Similar constructs are found in
Erkok and Launchbury [18] (fixed point construafix in Haskell) and Launchbury and Peyton Jones [37]
(recursive state transformé@xST in Haskell).

®In this regard, the two fixed point constructs for expressicannot be compare directly.
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Syntax and type system

We introduce aecursion variablez (with an underscore) as a term andedue recursion construeffix z: A. &/
as an expression:

term M = -z

expression F = .- |vfixz: A E

A substitution forz is defined in a standard way. To simplify the presentationhef tiype preservation
theorem (Theorem 2.25), we separate recursion variabdes @rdinary variables in the type system by
introducing avalue recursion context for recursion variables:

value recursion context ¥ u= -|X;z:A4
A typing judgment now includes a value recursion contexetmrd the type of each recursion variable:

term typing judgment 'YXk M:AQuw
expression typing judgment 'YK EF+AQuw

Typing rules for judgmentE £k M : A @Qwandl' iy F + A @ winduce those forjudgmeniy >k M : A Q w
andl'; X k F + A @Q w in a straightforward way (by adding to every judgment). We also need additional
rules for recursion variables and value recursion construc

Y, 2:ARE+-AQu
F;E,g:AI—ngA@wvvar Ykviixz:AE+-AQuw

Vfix

The monotonicity of the accessibility relation (in Proposition 2.7) is now stated with new typing
judgments.

Proposition 2.24.

If w <, then
'YK M:AQwimpliesT; X M : AQ W, and
'YK E+-AQuwimpliesT; Xk F+ AQW.

Operational semantics

Conceptually we computefix z: A. E as follows: first we binck to a black holeso that any premature
attempt to read it results inalue recursion error next we computer to obtain a valud/; finally we
“backpatch” every occurrence efin V' with V' itself and return the backpatched value as the result.

One approach to backpatchingwith V is by replacingz by a fixed point construdiix z: A. V' (as in
[47]). A problem with this approach is thatmay appear at the resultant world after computihgrhat is, if
E at a worldw computes td/ at another world.’, z may be used by’. Then we would need substitutions
on worlds as well€.g, [fix z: A. V /z]w’), which should be defined for each kind of world effect andsthu
we want to avoid; besides the type preservation propertgrnes difficult to prove.

To eliminate the need for substitutions on worlds, we maingrecursion stores. It associates each
recursion variable with a valug:

recursion store o = -|o,z=V
Now we reformulate the operational semantics with two rédagudgments:

e Aterm reductionM , ¢ —+ N means thafi/ with recursion storer reduces taV.
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e An expression reductiolt @ w, o —, F' Q o', 0/ means thaf at world w with recursion storer
reduces td at worldw’ with recursion store’.

Aterm reduction requires (but does not update) a recursmne $ecause it may read recursion variables. An
expression reduction may update both a world (by reduciatyuntions) and a recursion store (by reducing
value recursion constructs). Reduction rules for judgmaiit—, N andE Q w —. F' @ w’ induce those
for judgmentsiM , o — N andE Q w0 —, F @', ¢’ in a straightforward way (by adding to every
judgment).

Instead of directly modeling black holes with certain speealues, we indirectly model black holes by
reducingvfix z: A. F to an intermediate value recursion construfix, z : A. E. That is, the presence of
vfixe 2: A. E means that is assumed to be bound to a black hole and & currently being reduced,; if
a term inE attempts to read, it results in a value recursion error and the whole reducgiets stuck. The
typing rule forvfix, z: A. E is the same as farfix z: A. E:

expression FE = .- |Vfixe z:A. FE

Y 2: AR E+-AQuw
Yk vfixg 2: A FE+-AQuw

Vfixe

The rules for reducing recursion variables and value réonrsonstructs are as follows:

=Veo
Y ooV Vvar

zZ
2,0 ¢

vfix 2: A. E QW , 0 e Vfixe 2: A.E Quw o Viiinit
EFEQuw., o FQW o
Viixe 21 A.E Qw0 e Vfixe 2:A. F QW' o

z=V'é&o
Vfixe 2: AV Qu 0= VQuw,o,z2=V Vfizspaten

i V.ﬁxred

These rules ensure that any premature attempt to read ai@cymriable bound to a black hole results in a
value recursion error and the whole reduction gets stuck.rlile Vvar implies thatz is not a value in itself.
The rule Vfiz;,;; initiates the computation offix z: A. F by reducing it tovfix, z : A. E; the rule Vfiz,.q
reduces the body' of vfix, 2: A. E; the rule Vfizy,q.;, backpatcheg with V. Note thata-conversion is
freely applicable even tofix, z: A. E.

The reduction ruleVfizy,,.., assumeslynamic renamingf recursion variables so that all recursion
variables in a recursion store remain distinct. As an exanqansider the following expression:

letcmp z1 <cmp vfix z2: A. Eq in letcmp 2o <cmp vfix z: A. E5 in F

Although we do not need to rename either instance diiring typechecking, we have to rename the second
instance after computingfix z: A. E5 because the recursion store already contains a recursi@bhaof
the same name.

Since the result of an evaluation or a computation may comgaiursion variables, we need to incorpo-
rate recursion stores or their abstractions in stating {the preservation property. We use value recursion
contexts for this purpose as they are essentially the re$uitping recursion stores. Formally we write
E o : ¥ @ w if there exists a one-to-one correspondence betweenV € o andz : A € X such that
<YKV :AQwholds. Now type preservation property is stated as follows:
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Theorem 2.25 (Type preservation).Suppose= o : ¥ Q w.

fM, o~ Nand; Xk M: AQuw,then; Xk N: AQw.

f FEQuw,or— FQuW o and; X Kk E+ A Qw, then there existy’ such that; X' F - A Q@ o'
andE= o' : Y Q.

Proof. By induction on the structure of the derivation &f , o0 +— N andE Qw0 . F Qw' o’. In-
teresting cases are when one of the rulesir, Vfizini, Vfitreq, and Vfizy,q.p, iS applied last in a given
derivation. We consider two representative cases below.

z=Veo

— Vwar :
z2. 0=V

Y kz: AQuwimpliesz: A € ¥ by the ruleVvar.
FromEo: X Quw,z=V €o,andz: A€ X,
we have; XKV : AQw.
z=V'do

Viixe 2: AV Qw, o0~ VQuw, o,z=
Sincel=0: ¥ Qw,

foranyz = V' € o,wehave; X V' + A’ Qwandz’ : A’ € ¥ for some typed’.
We letY = X,z : A.
Then, foranyz’ = V' € o, we have; X' K V' -+ A’ @Qw andz’ : A’ € ¥/ for some typed’.
The ruleVfix, implies-; ¥ I vfixe z: A.V -+ AQuwand; X,z : ARV -+ AQw.
Then; YKV +-AQuwandz: AeY.
Therefore= 0,2 =V : ¥/ Q w. O

Case

Case % Viizypatch

Since the type system does not detect value recursion gtthersomputation of a well-typed expression
may end up with a value recursion error. To catch value rémuirgrrors statically, we can adopt advanced
type systems for value recursion in [9, 16].

Simulating value recursion constructs

Section 2.5.1 has shown thefix x + A. E can be simulated withix x: A. M. Can we also simulate
viix z: A. E with fix z: A. M? In Haskell, a value recursion construafix for a specific monad can be
defined in terms of the ordinary fixed point constrtigt For example, Moggi and Sabry [47] show that for
a state monal A = S — (A x S) whereM is a type constructor anfl is the type of statesnfix can be
defined as follows:

mfix z: A. M = As:S.fixp: A x S. (Az:A. M) (fstp) s

Here we use a product typé x S and a projection ternfist p; both M and mfix x : A. M have type
MA=S5— (AxS). Since the type constructay in Ao essentially forms a state monad, it may appear
that we can definefix z: A. E in terms offix x: A. M. Unlike the state monail A, however, we cannot
access states€., worlds) as terms. Therefore we cannot exploit the above tdsimulatesfix z: A. E with
fixz:A. M.

Another idea to simulatefix z: A. F is to use instructions for mutable references: to comptikez: A. E,
we initialize a fresh reference far, to backpatch:, we update the store. In this cagecan no longer be a
term because its evaluation requires an access to the $toother wordsz should now be defined as an
expression.
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term M == ... |cont k| callccy z. M | throwy M M
value V. o= ... |cont k
evaluation context « = [||k M | (Az:A. M) k | throw; K M | throw; (cont; k) k

Figure 2.8: Syntax for continuations for terms.

2.6 Continuations

So far, we have restricted ourselves to world effects, transitions between worlds\o confines world
effects to expressions so that terms are free of world effe@¥¥hen we extendo with control effects,
however, it is not immediately clear which syntactic carggghould be permitted to produce control effects.
On one hand, we could choose to confine control effects tessns so that terms remain free of any kind
of effect. Then the distinction between effect-free evatues and effectful computations is drawn in a
conventional sense. On the other hand, in order to devitpmto a practical programming language, it
is desirable to allow control effects in terms. For exampbe;eptions for terms would be an easy way to
handle division by zero or pattern-match failures occugrrituring evaluations. At the same time, however,
exceptions for expressions are also useful for those ictitins whose execution does not always succeed.

We hold the view that expressions are in principle a syntagditegory specialized for world effects,
and allow control effects iboth terms and expressianshe decision does not prevent us from developing
control effects orthogonally to world effects, since cohtffects are realized with reduction rules whereas
world effects are realized with world structures. In fabere is no reason to confine control effects only to
one syntactic category, since the concept of control eifaellative to what constitutes the “basic” reduction
rules anyway.

As an example of control effect, we consider continuatioki$e consider two kinds: one for terms
and another for expressions. A continuation for terms denan evaluation parameterized over terms; a
continuation for expressions denotes a computation paeained over terms. The two are independent
notions, and we discuss them separately. Since we are [isirmaerested in how continuations change the
state of the run-time system, we focus on the operationabegos only; for the type system, we refer the
reader to the literaturee(g, [25]).

In the syntax, we assume value recursion constructs whithaict with continuations for expres-
sions in an interesting way. Hence we continue to use the &daation judgments\/, o —¢ N and
EQuw,o—e F QW' o' inSection 2.5.2 (but in a different style).

2.6.1 Continuations for terms

Figure 2.8 shows the syntax for continuations for terms. e&aluation contexk is a term with a hold]
which can be filled with a termd/ to produce another term[M]; it assumes a call-by-value discipline.
cont; k lifts an evaluation context to a value and is called &®rm continuation callcc; andthrow; are
constructs for capturing and throwing term continuatiaespectively.

The operational semantics in Figure 2.9 uses a reductiagnjedt in the form of<[M] o +— k'[N]
whereo is a recursion store. Note that it is the same term reduatidgrjient as in Section 2.5.2 because both
k[M] andx’[N] are terms. The rul€Tred uses a term reductioh/ = germ N. The ruleCTcallcc binds
variablex to a term continuation containing the current evaluationtext ; the rule CTthrow nullifies the
current evaluation context to activate a new evaluation context

The formulation of continuations for terms is standard. Whinteresting is that from a logical perspec-
tive, continuations for terms change the meaningiaf-ue from intuitionistic truth to classical truth [23].
The change in the meaning df true, however, does not mean that we have to change the definition o
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2 Zoem Ny —2=VET o
K/[M] . 0 ¢ K/[N] re K/[g] i 0 =y K/[V] vvar
k[callccy . M o+ K[[cont, x/z]M] CTecallce

CTthrow

k[throw; (conty k') V] o ¢ K'[V]

Figure 2.9: Reduction rules for continuations for terms.

term M == .- |conte¢
value V. o= ... |conte ¢
expression E = ... |callecce z. E | throwe M E

le | [Jt | letcmp z <[]y in E | letcmp z <cmp ¢ in E |
vfixe 2: A. ¢ | throwe [J¢ F | throwe (conte ¢) ¢

computation context ¢

Figure 2.10: Syntax for continuations for expressions.

expressions accordingly, since our definitiondtomyp is not subject to a particular definition &f true.
In other words, even if we change the meaningiafrue, the same definition ol comp remains valid with
respect to the new definition of true; hence the previous definition of expressions also remaihd.v

2.6.2 Continuations for expressions

Figure 2.10 shows the syntax for continuations for expoessi Acomputation contexp is an expression
with a hole[J; or [Je. [J+ can be filled only with a term, anfe only with an expressioncont. ¢ lifts a
computation contexp to a value and is called axpression continuatiortallcc, andthrow, are constructs
for capturing and throwing expression continuations, eesipely.

The operational semantics in Figure 2.11 uses a reductiodgnjent in the form of
¢F] Quw,o—. ¢[F] Qu', o'. Note that it is the same expression reduction judgment §eation 2.5.2
because botlp[E] and ¢'[F] are expressions. The rul@Ecallcc binds variablex to a expression con-
tinuation containing the current computation contéxthe rule CEthrow nullifies the current computation
contexto to activate a new computation context By the ruleCEvfizo, a computation contexffix, z: A. ¢
marks thatz is bound to a black hole.

It is important that the rule’Evfizc does not require = V' ¢ o in the premise; i: = V' is already
in o, it is removed inc,z = V (so that all recursion variables remain distinct). The osas that an
expression continuation that has been captin&fdrethe completion of the computation ofix, z: A. E
may be throwrafter its completion. In this case, recursion variables alreadybound to the value that the
previous computation offix, z: A. F has returned. We can exploit this property to show that, fangple,
vfix z: A. letcmp x < M in F andletcmp x < M in vfix z: A. E behave differently even whenis not free in
M.®

Consider an expression

vfix z: A. letcmp x <cmp callcce y. E in F'

wherez is not free inE. The expression continuation captureddajicce y. E may escape the scope of the
whole value recursion construct. When it is thrown lateis already bound to a value and every attempt to

®Erkodk and Launchbury [18] call the equivalence betweerttteexpressions thieft-shrinkingproperty of value recursion.
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M,oc— N
M) Quw, o e ¢[N]Quw

CEtred
o

dlletcmp x<cmp Vin E] Qw0 . ¢[[V/2]E] Quw , o CEbind

CEcallce
e

¢lcallcce . E] Q w, 0 —, ¢[[conte ¢/z]FE] Q w
. CEthrow

¢[throwe (conte ¢') V] Qw0 +—e ¢'[V] Quw

OVfix2: A.E] Qw , 0 ¢ P[Vfixe 2: A.E] Quw o CEvfizo

v CFEvfixc

O|Vfixe 2: A V] Qw, o —e ¢[V]Quw, o,z =

Figure 2.11: Reduction rules for continuations for expressions.

readz in F' succeeds without raising a value recursion error. Thistshrocase for the following expression:
letcmp z <cmp callcce y. E in vfix z: A. F

During the computation of’, z is bound to a black hole by the rut8Evfizo. Consequently any attempt to
readz in F' results in a value recursion error.

In general, value recursion is unsafe in the presence ofeegmn continuations because a value recur-
sion construct may compute to a value containingesolved recursion variablethat is, recursion variables
bound to black holes (the counter-example in [47] can beit@mrin Ac). An error resulting from reading
an unresolved recursion variable is similar to a value rgouarerror in that both result from an attempt to
read a recursion variable bound to a black hole. The diffezda that while a value recursion error results
from a premature attempt to read a recursion variable thabe/eventually bound to a value, an unresolved
recursion variable remains bound to a black hole forever.

2.7 Summary

Moggi’'s monadic metalanguage,,; [44, 45] has served as tlte factostandard for subsequent monadic
languages [36, 37, 6, 70, 46, 78, 47]. Benton, Biermann, adaiva [7] show that from a type-theoretic
perspective \,,,; is connected to lax logic via the Curry-Howard isomorphisifenning and Davies [60]
reformulate\,,,; by applying Martin-Lof's methodology of distinguishingetiveen propositions and judg-
ments [42] to lax logic. The new formulation af,,; draws a syntactic distinction between values and com-
putations, and uses the modalityfor computations. It is used in the design of a security-tiypgonadic
language [13]; its underlying modal type theory inspirgeetgystems in [4, 5] and effect systems in [51, 52].

The idea of the syntactic distinction but without an explicodality for computations is used by Petersen
et al.[54]. The same idea is also used by Mandelbaum, Walker, angEript1]. Their language is similar to
Ao in that the operational semantics (but not the type syste@g an accessibility relation between worlds.
The meaning of a world is, however, slightly different: a Wdan their language is a collection of facts on a
world in \o.

Ao extends the new formulation of,,; by Pfenning and Davies with an operational semantics to@tipp
concrete notions of computational effect. Compared witts¢hmonadic languages based upgp, it
does not strictly increase the expressive power — it isgitforward to devise a translation from to
a typical monadic language based upgp; and vice versa. In this regard, the syntactic distinction in
Ao may be thought of as a cosmetic change to the syntax of moteticiages. It, however, inspires a
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new approach to incorporating computational effects intlmadic languages by allowing control effects
both in terms and in expressions while confining world effeitt expressions. In a monadic language
based upon,,,,;, this (unorthodox) approach would mean that its pure fmeti sublanguage is allowed to
produce control effects. The syntactic distinction alsdieto the interpretation of terms and expressions
as complete languages of their own, which makesa candidate for a unified framework under which to
study two languages that have traditionally been studipdrsgéely: Haskell (corresponding to terms) and
ML (corresponding to expressions). Ultimately we beligvattthe idea of the syntactic distinction conveys
a design principle not found in other monadic languages.



Chapter 3

The Probabillistic Language PTP

This chapter presents the syntax, type system, and opeahsemantics of PTP. We give examples to
demonstrate properties of PTP, and show how to verify thabgrpm correctly encodes a target probability
distribution. We propose the Monte Carlo method [40] as amea# overcoming a limitation of PTP,
namely lack of support for precise reasoning about proliglaiistributions.

For the reader who has read the previous chapter, PTP mayehedias a simplified account af
with language constructs for probabilistic computatiam&ection 2.4.1. A source of simplification is that
a world, which is an infinite sequence of random numbers, doesffect types of terms and expressions;
hence typing judgments in PTP do not require worlds. Thevdhg table show judgments k- and their
corresponding judgments in PTP:

Judgments il Judgments in PTP

'EM:AQuw ' M:A
I'kE+-AQuw 'L E+A
M — N (same)
M-V (same)
EQuwi— FQW (same)
FQuw—Vauw (same)

The syntax of PTP uses type constructors familiar from @ogning languages (rather than logic) and more
specific keywords specialized to probability distribuson

Syntax ofAo Syntax of PTP
ADB A—B
ANB Ax B
cmp E prob

letcmpx <M in E sample x from M in £

The definition of PTP in this chapter is self-contained, butudd be supplemented by the previous
chapter for its logical foundation.

3.1 Definition of PTP

3.1.1 Syntax and type system

PTP augments the lambda calculus, consistingeohs with a separate syntactic category, consisting of
expressionsn a monadic syntax. Terms denote regular values and expnsssgenote probabilistic compu-
tations. We say that a terevaluatedo a value and an expressioomputego a sample.

51
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type AB 1= A—A|Ax A|OA]real

term M,N = x| x:AM|MM|(M,M)|fst M |
snd M |fixx:A. M | prob E | r

expression E,F == M |samplexfromMinE|S

value/sample 14 n= A:A.M | (V,V)|prob E | r

real number r

sampling sequence w n= rire---r;---  wherer; € (0.0,1.0]

typing context r w= | Tz: A

Figure 3.1: Abstract syntax for PTP.

H Fx:AR M: B
Frz:Apz: A YpP ' Az:AM:A—B Lam

'k M, :A—B F"pMziAA ' My Ay F}—pM2:A2P y
Th M, M, : B PP T h (M, M) : Ay x Ay ' ©
F}_pM:AleQ P}_pM:AleQ
; Fst - Snd
F}—pfStM.Al F}—psndM.Ag
Fe: AR M:A 'L E+A
N fixe:AM: A Fix 'k prob E: OA Prob 'k r:real Real
e M:A ', M:0A Tyx: AR E+B

'L M+A Term I' b sample « from M in E <+ B Bind

I'p S =+ real Sampling

Figure 3.2: Typing rules of PTP.

Figure 3.1 shows the abstract syntax for PTP. Wexulse variables. Az : A. M is a lambda abstraction,
andM M is an application term(M, M) is a product term, anfét M/ andsnd M are projection terms; we
include these terms to support joint distributiofis.: A. M is a fixed point construct for recursive evalu-
ations. Aprobability termprob F encapsulates expressi@n it is a first-class value denoting a probability
distribution. r is a real number.

There are three kinds of expressions: tévmbind expressiomample x from M in E, andsampling ex-
pressionS. As an expressiony/ returns (with probability 1) the result of evaluatifig. sample = from M in E
sequences two probabilistic computationsi{ifevaluates to a probability term¥. consumes a random num-
ber in asampling sequencan infinite sequence of random numbers drawn independgattyU (0.0, 1.0].

The type system employs two kinds of typing judgments:

e Term typing judgment i, M : A, meaning that)/ evaluates to a value of typé under typing
contextI".

e Expression typing judgmerif i, £ + A, meaning that computes to a sample of typé under
typing contextl".

A typing contextI” is a set of bindings: : A. Figure 3.2 shows the typing rules of PTP. The rRleb
is the introduction rule for the type constructor, it means that type€ A denotes probability distributions
over typeA. The ruleBind is the elimination rule for the type constructar. The ruleTerm means that
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M|—>tM, N|—>tN/

T T
MN— MN " Oz AM)N — Oz:AM)N "
T M o M T
Oz A M)V ¢ [V/z]M " (M, N) — (M, N) ™"
NHt N, M g N
Tp, —— "t Ty
VN) oy (VN 7% Tt Mooy ft N L5 Tt (VU)o v Lot
M0—>t N T T ,
snd M —¢snd N 5™ snd (V, V') = V7 75
fixx: A. M ¢ [fixz: A M/z]M "™ MQuw—e N Qw o™
MHt N En:
sample z from M in F @ w +—¢ sample z from N in F @ o = 2nd
EFEQuw— E' QW
Epindr

sample x from prob E in ' @ w ¢ sample x from prob E’ in F @ o’

E N,
sample z from prob Vin FF Q w +—¢ [V/z]F Q w BindV
Sampling

SQrwrerQuw

Figure 3.3: Operational semantics of PTP.

every term converts into a probabilistic computation tlmablves no probabilistic choice. The ruReal
shows thateal is the type of real numbers. A sampling expressioinas also typeeal, as shown in the rule
Sampling, because it computes to a real number.

3.1.2 Operational semantics

Since PTP draws a syntactic distinction between regularegabnd probabilistic computations, its opera-
tional semantics needs two kinds of judgments:

e Term evaluation judgment/ — V, meaning that terni/ evaluates to valug'.

e Expression computation judgmeBt@ w — V' @ w’, meaning that expressiali with sampling se-
guencev computes to samplé with remaining sampling sequengé Conceptually? @ w — V @ o/
consumes random numbersuin- w’. Properties of the consumed sequeace w’ (e.g, its length)
are not directly observable.

For term evaluations, we introduce a term reductigh—; NV in a call-by-value discipline (we could
equally choose call-by-name or call-by-need). We identify—; V with M — V', where—; is the re-
flexive and transitive closure ofs;. For expression computations, we introduce an expressiduaction
EQuw+—. FQuw suchthatr @w —} V @' is identified withE @ w — V @ o', where—? is the re-
flexive and transitive closure ef.. Both reductions use capture-avoiding term substitutiddgx] N and

[M /x| E defined in a standard way, as in Section 2.3.3.

Figure 3.3 shows the reduction rules in the operational séinzaof PTP. Expression reductions may

invoke term reductionse(g, to reduceM in sample = from M in E). The rulesEg;,qr and Fg;,q1y mean
that given a bind expressigample x from prob E in F', we finish computing® before substituting a value
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for z in . Note that like a term evaluation, an expression computatself is deterministic; it is only when
we vary sampling sequences that an expression exhibitabilattic behavior.

An expression computatiol @ w —* V @ w’ means thaf’ takes a sampling sequenceconsumes a
finite prefix ofw in order, and returns a sampléewith the remaining sampling sequencé

Proposition 3.1. If F Q w —} V @/, thenw = ryry - - rpw’ (n > 0) where
EQuwwl =l EQry - rw =l =l E,Qd »iVad
for a sequence of expressioRs, - - - , Fy,.

Thus an expression computation coincides with the operaltidescription of a sampling function when
applied to a sampling sequence, which implies that an esjoresepresents a sampling function. (Here we
use a generalized notion of sampling function mapging, 1.0]°>° to A x (0.0, 1.0]> for a certain typeA.)

The type safety of PTP consists of two properties: type pvasien and progress. Their proofs are
omitted as they are special cases of Theorems 2.8 and 2déhtdrrS which satisfies the type-preservation
and monotonicity requirements on instructions.

Theorem 3.2 (Type preservation).
If M —¢ Nand-t, M : A, then- N : A.
fEQuw— FQuw and - E + A, then -, F =+ A.

Theorem 3.3 (Progress).

If - M : A, then eitherM is a value (.e., M = V'), or there existsV such that\/ —¢ .

If - E + A, then eitherE is a samplei(e., E = V), or for any sampling sequencs there existF
andw’ such thattll Q w +—, F @Q /.

3.1.3 Fixed point construct for expressions

In PTP, expressions describe non-recursive probabilistiaputations. Since some probability distributions
are defined in a recursive wag.{J, geometric distributions), it is desirable to be able tocdiée recursive
probabilistic computations as well. To this end, we introgl@nexpression variablex and anexpression
fixed point constructfix x+ A. E; a new form of bindingx - A for expression variables is used in typing
contexts:

expression E = .. |x|efixx+AE

typing context I' == - |T',x+ A

New typing rules and reduction rule are as follows:

x+ARE+A
Nx+Apx+A Evar Mpefixx+A E+ A

Efix

E
efixx+A. E Qw —, [efixx+A. E/x|E Qw fix
In the rule Efiz, [efix x+ A. E /x| E denotes a capture-avoiding substitutiorefik x+ A. E for expression
variablex.
Expression fixed point constructs are syntactic sugar gscidue be simulated with fixed point constructs
for terms. See Section 2.5.1 for details.
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3.1.4 Distinguishing terms and expressions

The syntacticdistinction between terms and expressions in PTP is oftiarthe sense that the grammar
does not need to distinguish expressions as a separatemoimdél. On the other hand, tlemanticdis-
tinction, both statically (in the form of term and expresstgping judgments) and dynamically (in the form
of evaluation and computation judgments) appears to beigisor a clean formulation of PTP.

PTP is a conservative extension of a conventional languagause terms constitute a conventional
language of their own. In essence, term evaluations areyaldeterministic and we need only terms when
writing deterministic programs. As a separate syntactiegary, expressions provide a framework for
probabilistic computation that abstracts from the defimitof terms. For example, the addition of a new
term construct does not change the definition of expressidisen programming in PTP, therefore, the
syntactic distinction between terms and expressions a&ds deciding which of deterministic evaluations
and probabilistic computations we should focus on. In the section, we show how to encode various
probability distributions and further investigate projes of PTP.

3.2 Examples

When encoding a probability distribution in PTP, we natiyrabncentrate on a method of generating sam-
ples, rather than calculating the probability assignedaithesvent. If the probability distribution itself is
defined in terms of a process of generating samples, we sitrgoiglate the definition. If, however, the
probability distribution is defined in terms of a probalyiliheasure or an equivalent, we may not always de-
rive a sampling function in a mechanical manner. Instead ave o exploit its unique properties to devise
a sampling function.

Below we show examples of encoding various probabilityritigtions in PTP. These examples demon-
strate three properties of PTP: a unified representatioarsetior probability distributions, rich expressive-
ness, and high versatility in encoding probability disitibns. The sampling methods used in the examples
are all found in simulation theory [10]. Thus PTP is a progmaing language in which sampling methods
developed in simulation theory can be formally expressed fashion that is concise and readable while
remaining as efficient as the originals.

We assume primitive typest andbool (with boolean valueSrue andFalse), arithmetic and comparison
operators, and a conditional term constrifict/ then Ny else N5. We also assume standded-binding, re-
cursivelet rec-binding, and pattern matching when it is convenient forekamples. We use the following
syntactic sugar for expressions:

unprob M
eif M then E else s

= sample xz from M in x

= unprob (if M then prob E; else prob E3)

unprob M chooses a sample from the probability distribution denbiedi/ (we choose the keyworehprob
to suggest that it does the opposite of wpath does.)eif M then F; else E5 branches to eitheE; or Es
depending on the result of evaluatifg.

LIf type inference and polymorphism are ignorét;binding and recursivéet rec-binding may be interpreted as follows, where
_is a wildcard pattern for types:

let x = M in N

letrecx = M in N

Az:o. N) M
letx =fixz:..Min N
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Unified representation scheme

PTP provides a unified representation scheme for probalilitributions. While its type system distin-
guishes between different probability domains, its openal semantics does not distinguish between dif-
ferent kinds of probability distributions, such as diseretontinuous, or neither. We show an example for
each case.

We encode a Bernoulli distribution over typeol with parametep as follows:

let bernoulli = Ap:real. prob sample x from prob S in
r<p

bernoulli can be thought of as a binary choice construct. It is expressnough to specify any discrete
distribution with finite support. In facthernoulli 0.5 suffices to specify all such probability distributions,
since it is capable of simulating a binary choice constr@df [if the probability assigned to each element
in the domain is computable).

As an example of continuous distribution, we encode a umifdistribution over a real intervdk, b] by
exploiting the definition of the sampling expression:

let uniform = Aa:real. Ab:real. prob sample x from prob S in
a+xx(b—a)

We also encode a combination of a point-mass distributi@hsaumiform distribution over the same domain,
which is neither a discrete distribution nor a continuougriiution:

let point_uniform = prob sample x from prob & in
if © < 0.5then 0.0 else

Rich expressiveness

We now demonstrate the expressive power of PTP with a nunfleetamples.
We encode a binomial distribution with parametg@ndng by exploiting probability terms:

let binomial = Ap:real. Ang:int.
let bernoulli, = bernoulli p in
let rec binomial, = An:int.
if n. =0 then prob 0
else prob sample z from binomial,, (n — 1) in
sample b from bernoulli, in
if bthen 14 z else z
in
binomial, no

Herebinomial,, takes an integet as input and returns a binomial distribution with paramepeandn.

If a probability distribution is defined in terms of a recwesprocess of generating samples, we can trans-
late the definition into a recursive term. For example, weoeieca geometric distribution with parameger
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which is a discrete distribution with infinite support, afidws:

let geometric_rec = Ap:real.
let bernoulli, = bernoulli p in
let rec geometric = prob sample b from bernoulli, in
eif b then 0
else sample x from geometric in
1+=z
in
geometric
Here we use a recursive tergaometric of type Oint. Equivalently we can use an expression fixed point
construct:

let geometric_efiz = Ap:real. let bernoulli, = bernoulli p in
prob efix geometric—+int.
sample b from bernoulliy, in
eif b then 0
else sample x from prob geometric in
142

We encode an exponential distribution by using the invefsts @umulative distribution function as a
sampling function, which is known as tiveverse transform method

let exponential, ; = prob sample z from S in
—log x

Therejection methogwhich generates a sample from a probability distributipmdpeatedly generating
samples from other probability distributions until theyisty a certain termination condition, can be imple-
mented with a recursive term. For example, we encode a Gaudstribution with meam: and variance
o2 by the rejection method with respect to exponential distiins:

let bernoullio.s = bernoulli 0.5
let gaussian_rejection = Am :real. Ao :real.
let rec gaussian = prob sample y; from ezponential; ¢ in
sample ya from exponential{  in
eif yo > (y1 — 1.0)2/2.0 then
sample b from bernoullig 5 in
if bthenm + o xyp elsem — o * 1q
else unprob gaussian
in
gaussian
Since the probability of yo > (y; — 1.0)2/2.0 (the termination condition) is positive, the rejection hn
above terminates with probability+ (1 —p)p+ (1 —p)?p+--- = ﬁ = 1. In this way, programmers
can ensure that a particular sampling strategy by the fejeatethod terminates with probability
We encode the joint distribution between two independeoibgioility distributions using a product term.
If Mp denotesP(z) and Mg denotes)(y), the following term denotes the joint distributidfrob(x, y) o
P(2)Q(y):
prob sample z from Mp in
sample y from Mg in

(z,9)
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For the joint distribution between two interdependent pitality distributions, we use a conditional
probability, which we represent as a lambda abstractiomggalt regular value and returning a probability
distribution. If Mp denotesP(x) and M denotes a conditional probabilitf(y|x), the following term
denotes the joint distributio®rob(z,y) o P(z)Q(y|x):

prob sample z from Mp in
sample y from Mg x in
(2,9)

By returningy instead of(z, y), we compute the integratioRrob(y) = [ P(z)Q(y|x)dx:

prob sample z from Mp in
sample y from Mg x in
Yy

Due to lack of semantic constraints on sampling functiorescan specify probability distributions over
unusual domains such as infinite data structueeg, (trees), function spaces, cyclic spacegy( angular
values), and even probability distributions themselvesr éxample, we add two probability distributions
over angular values in a straightforward way:

let add_angle = Aaq:Oreal. Aag: Oreal. prob sample s from aq in
sample s9 from as in

(81 + 82) mod (2.0 * 7T)

With the modulo operatiomod, we take into account the fact that an anglie identified withg + 2.
As a simple application, we implement a belief network [66]:

John calls.

We assume thal,q,, | purglary d€NOtes the probability distribution that the alarm godsvbfen a burglary
happens; other variables of the foif). are interpreted in a similar way.

let alarm = A(burglary, earthquake) :bool x bool.
if burglary then P otarm|burglary
else if earthquake then Palarm|ﬁburgla7‘y/\earthquake
else Palarm\ﬁburglaryl\ﬁearthquake

let john_calls = Aalarm :bool.
if alarm then PJohn_calls\alarm
else PJohn_calls|—\ala7"m

let mary_calls = Aalarm :bool.
if alarm then PMary_calls|alarm

else PMary_calls\ﬁalarm
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The conditional probabilitiesilarm, john_calls, and mary_calls do not answer any query on the
belief network and only describe its structure. In order tsvaer a specific query, we have to imple-
ment a corresponding probability distribution. For exaepph order to answer “What is the probability
P Mary_calls| John_catis that Mary calls when John calls?”, we UB\4y_caiis| John_calis PEIOW, Which essen-
tially implements logic sampling [26]:

let rec QMary_callonhn_calls = prOb Sample b from Pburglary in
sample e from Pegrinquake in

sample a from alarm (b, e) in
sample j from john_calls a in
sample m from mary_calls a in
elf] then m else unprob QMary_calls\John_calls
in
QMary_callonhn_calls

Pyurgiary denotes the probability distribution that a burglary happeandP,,,quqke the probability distri-
bution that an earthquake happens. Then the Me&MAf.y_cails| John_calls giveSpMary_callS‘ John.calls- W€
will see how to calculat® y/qry_caiis| John._cais IN Section 3.4.

We can also implement most of the common operations on pilitipatistributions. An exception is
the Bayes operatioft (which is used in the second update equation of the Bayesg filléf ) results in
a probability distributionR such thatR(z) = nP(x)Q(z) wheren is a normalization constant ensuring
[ R(z)dz = 1.0; if P(z)Q(x) is zero for everyz, thenP # @ is undefined. Since it is difficult to achieve
a general implementation d? # @, we usually make an additional assumption Brand @ to achieve
a specialized implementation. For example, if we have atfong and a constant such thatp(z) =
kP(z) < cfor a certain constant, we can implemenP § @ by the rejection method:

let bayes_rejection = A\p: A—real. Ac:real. A\Q: OA.
let rec bayes = prob sample x from Q) in
sample u from prob S in
eif u < (p x)/c then z else unprob bayes
in
bayes

We will see another implementation in Section 3.4.

High versatility

PTP allows high versatility in encoding probability disitions: given a probability distribution, we can
exploit its unique properties and encode it in many differeays. For examplegzponential, , uses a
logarithm function to encode an exponential distributibat there is also an ingenious method (due to von
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Neumann) that requires only addition and subtraction djuars:

let exponential_von_Neumann, o =
let rec search = Ak :real. Au:real. Auq :real.
prob sample «’ from prob S in
eif u < v then k + uq
else
sample u from prob S in
eif u < u' then unprob (search k u uq)
else
sample u from prob S in
unprob (search (k+ 1.0) u u)
in
prob sample u from prob S in
unprob (search 0.0 u )

The recursive term igaussian_rejection consumes at least three random numbers. We can encode a
Gaussian distribution with only two random numbers:

let gaussian_Box_Muller = Am:real. Ao :real.
prob sample u from prob S in
sample v from prob S in

m + o * /—2.0 * log u * cos (2.0 x 7 % v)

We can also approximate a Gaussian distribution by expbpifie central limit theorem:

let gaussian_central = Am:real. Ao :real.
prob sample x1 from prob S in
sample o from prob S in

sample x12 from prob S in
m+ox*(x1+ 22+ -+ x12 —6.0)

The three examples above serve as evidence of high veysafilPTP: the more we know about a
probability distribution, the better we can encode it

All the examples in this section just rely on our intuitionsampling functions and do not actually prove
the correctness of encodings. For example, we still do nowkifi bernoulli indeed encodes a Bernoulli
distribution, or equivalently, if the expression in it geaesTrue with probability p. In the next section, we
investigate how to formally prove the correctness of enogsli

3.3 Proving the correctness of encodings

When programming in PTP, we often d8khat probability distribution characterizes outcomescoimput-
ing a given expression?The operational semantics of PTP does not directly ansviegtlrestion because
an expression computation returns only a single sample &a®rtain, yet unknown, probability distribu-
tion. Therefore we need a different methodology for intetiplg expressions directly in terms of probability
distributions.

We take a simple approach that appeals to our intuition omribaning of expressions. We write ~
Prob if outcomes of computing® are distributed according t&@rob. To determineProb from FE, we
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supply an infinite sequence of independeamidom variablesrom U (0.0, 1.0] and analyze the result of
computingF in terms of these random variables.Hf~ Prob, thenE denotes a probabilistic computation
for generating samples frofirob and we regard’rob as the denotation gfrob E.

We illustrate the above approach with a few examples. In exelmple,R; means the-th random
variable andR?° means the infinite sequence of random variables beginnorg i; (i.e., RiR;r1---). A
random variable is regarded as a value because it represahtsumbers irf0.0, 1.0].

As a trivial example, considgrob S. The computation of proceeds as follows:
S Q R —e R @ RY

Since the outcome is a random variable froif0.0, 1.0], we haveS ~ U(0.0, 1.0].
As an example of discrete distribution, considernoulli p. The expression in it computes as follows:

samplez fromprobSinz <p Q R{®

e samplez fromprob Ry inz <p @ R

—e R1<p @ RSO
e True Q@RS® if Ry <p;
False @ RS° otherwise.

—

—

SinceR; is a random variable frory (0.0, 1.0], the probability ofR; < p is p. Thus the outcome i$rue
with probability p andFalse with probability 1.0 — p, andbernoulli p denotes a Bernoulli distribution with
parametep.

As an example of continuous distribution, consideriform a b. The expression in it computes as
follows:

sample z from probSina+z* (b—a) Q@ R
s a+ Ryx(b—a) Q@ Rs°

Since we have
ap — a bo—a]
b—a' b—a”’

a+ Ry x(b—a) € (ap,bo] iff Ry € (
the probability that the outcome lies {ng, by is

bo—a_ao—a_bo—aoocb —a
b—a b—a b—a 0 0

where we assumeu, by] C (a, b]. Thusuniform a b denotes a uniform distribution ovét, b].

The following proposition shows thatnomial p n denotes a binomial distribution with parameters
andn, which we write asBinomialy, ,,:

Proposition 3.4. If binomial, n —{ prob E, ,,, thenE, , ~ Binomialy, .
Proof. By induction onn.

Base case = 0. We haveE, ,, = 0. SinceBinomial, , is a point-mass distribution centered @nve
haveE, , ~ Binomial, p.
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Inductive case: > 0. The computation ofz, ,, proceeds as follows:

sample z from binomial, (n — 1) in

sample b from bernoulli, in

if bthen 1 + x else z Q@ RY°
¢ sample x from prob z;, ,_1 in

sample b from bernoulliy in

if bthen1 4z else Q@ Rg°
& sample b from prob b, in

if bthen 1+ xp 1 else zp, 1 @ R$Y,
e L4+mpn1 QR if by = True;

Tpn—1 @ R??,  otherwise.

By induction hypothesishinomial,, (n — 1) generates a sampls, ,,_; from Binomial,, ,— after consum-
ing Ry --- R;—; for some: (which is actuallyr). SinceR; is an independent random variablernoulli,
generates a sampbg that is independent af,, ,_;. Then we obtain an outcomewith the probability of
b, = Trueandz,,,—1 =k —1o0r
b, = False andz, ,—1 =k,
which is equal t@ * Binomialy ,—1(k — 1) + (1.0 — p) * Binomial, ,—1(k) = Binomial, ,,(k). Thus we
haveFE, ,, ~ Binomialp . O

As a final example, we show thatometric_rec p denotes a geometric distribution with parameier
Supposegieometric —{ prob E andE ~ Prob. The computation off proceeds as follows:

E Q@ R¥®
¢ sample b from prob b, in
eif b then 0
else sample x from geometric in Q@ Rs°
1+
—s 0 @ R3® if by = True;

sample x from prob Ein1+2 @ R3® otherwise.

The first case happens with probabilityand we getProb(0) = p. In the second case, we compute the
same expressiofy with R5°. Since all random variables are independétif; can be thought of as a fresh
sequence of random variables. Therefore the computatidil with R3° returns samples from the same
probability distributionProb and we getProb(1 + k) = (1.0 — p) * Prob(k). Solving the two equations,
we getProb(k) = p* (1.0 — p)*~1, which is the probability mass function for a geometric idisttion with
parametep.

The above approach can be thought of as an adaption of theodwddigy established in simulation
theory [10]. The proof of the correctness of a sampling metimosimulation theory is easily transcribed
into a proof similar to those shown in this section by intetprg random numbers in simulation theory
as random variables in PTP. Thus PTP serves as a programariggdge in which sampling methods
developed in simulation theory can be not only formally egsed but also formally reasoned about. All
this is possible in part because an expression computati®TP is provided with an infinite sequence of
random numbers to consume, or equivalently, because ofsgh®fugeneralized sampling functions as the
mathematical basis.

An alternative approach would be to develop a denotatiom@lamtics based upon measure theory [65]

by translating expressions into a measure-theoretictstreicSuch a denotational semantics would be useful
in answering such questions as:
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e Does every expression in PTP result in a measurable samfpiivagion? Or is it possible to write a
pathological expression that corresponds to no measusabigling function?

e Does every expression in PTP define a probability distrdm®iOr is it possible to write a pathological
expression that defines no probability distribution?

If we ignore fixed point constructs of PTR is straightforward to translate expressions even diyec
into probability measures, since probability measuresifamonad [22, 64] and expressions already follow
a monadic syntax; a sampling expressi®ns translated into a Lebesgue measure over the unit interval
(0.0, 1.0]. Let us write[M Jterm for the denotation of termi/. Then we can translate each expresdibimto
a probability measurf¥]., as follows:

o [prob E]term = [E]exp-

o [Mexp(S) = 1if [M]term isin S.
[Mexp(S) = 0if [M]term is nOtinS.

e [sample z from M in Elex, = [ fd[M]ierm Where a functionf is defined asf(z) = [Elep and
| fd[M]ierm is an integral off over measuréM Jierm.

e [Slexp is @ Lebesgue measure over the unit intefgad, 1.0].

Note that the translation does not immediately reveal tlodbaiility measure corresponding to a given
expression because it returnfoamulafor the probability measure rather than the probability swga itself.
Hence, in order to obtain the probability measure, we hawgotthrough essentially the same analysis as
in the above approach. Ultimately we have to invert a sargglimction represented by a given expression
(because an event is assigned a probability proportiontilet@ize of its inverse image under the sampling
function), which may not be easy to do in a mechanical wayénpitesence of various operators.

Once we add fixed point constructs to PTP, expressions shmutdanslated into a domain-theoretic
structure because of recursive equations. Specificallynafie x: OA. M gives rise to a recursion equation
on typeOA, and if a measure-theoretic structure is used for the ddoontaf terms of typeOA, it is
difficult to solve the recursive equation; only with a dom#ieoretic structure, the recursive equation can
be given a theoretical treatment. The work by Jones [30] ssiggthat such a domain-theoretic structure
could be constructed from a domain-theoretic model of reatlbers [17], and we leave the development of
a denotational semantics of PTP based upon domain theowyuas fvork.

3.4 Approximate Computation in PTP

We have explored both how to encode probability distritwgian PTP and how to interpret PTP in terms
of probability distributions. In this section, we discus®ther important aspect of probabilistic languages:
reasoning about probability distributions.

The expressive power of a probabilistic language is an itapbfactor affecting its practicality. Another
important factor is its support for reasoning about prolighilistributions to determine their properties. In
other words, it is important not only to be able to encodeowsiprobability distributions but also to be
able to determine their properties such as means, variaaoesprobabilities of specific events. Unfortu-
nately PTP does not support precise reasoning about plitpatistributions. That is, it does not permit
a precise implementation of queries on probability disftitmns. Intuitively we must be able to calculate
probabilities of specific events, but this is tantamounnt@iting sampling functions. Hence, for example,
we cannot calculat® y/q,y _caiis| john_caiis IN the belief network example in Section 3.2 unless we amalyz
Q Mary_calls| John_calls 10 COMpUte its mean in a similar way to the previous section.
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Given that we cannot hope for precise reasoning in PTP, wesehtw support approximate reasoning by
the Monte Carlo method [40]. It approximately answers a goera probability distribution by generating
a large number of samples and then analyzing them. For examplcan approXimat@y/ary_caiis|John._cails
which is equal to the proportion dfrue’s among an infinite number of samples fr@,.y_caiis| John_catis:
by generating a large number of samples and counting the eupofblrue’'s. Although the Monte Carlo
method gives only an approximate answer, its accuracy ingsravith the number of samples. Moreover it
is applicable to all kinds of probability distributions aisherefore particularly suitable for PTP.

In this section, we use the Monte Carlo method to implemeatetkpectation query. We also show
how to exploit the Monte Carlo method in implementing the 8apperation. Both implementations are
provided as primitive constructs of PTP.

3.4.1 Expectation query

Among common queries on probability distributions, the togportant is the expectation query. The
expectation of a functiorf with respect to a probability distributiof? is the mean off over P, which we
write as [ fdP. Other queries may be derived as special cases of the efipaat@ery. For example, the
mean of a probability distribution over real numbers is theztation of an identity function; the probability
of an eventEvent under a probability distributior? is | Igyen:dP Wherelgyen, () is 1 if x is in Event
and O if not.

The Monte Carlo method states that we can approxinfigté P with a set of sample®;, - - - , V;, from
P:
n—oo n

We introduce a term construekpectation which exploits the above equation:

term M = --- |expectation My Mp

't Myp:A—real T'H Mp:OA
I' b expectation My Mp : real

Exp

Mf I—>>tk f Mp *—>:< prob Ep
fori=1,---,n new sampling sequence w; Ep Qu; —:V,Quw, fV;—fuv
FExp
2oivi
n

expectation My Mp

The rule Exp says that ifM, evaluates to a lambda abstraction denotfngnd M/ p evaluates to a prob-
ability term denotingP, then expectation My Mp reduces to an approximation d¢f fdP. A run-time
variablen (to be chosen by programmers) specifies the number of sarplgnerate fronP. To eval-
uateexpectation My Mp, the run-time system initializes sampling sequeng¢o generate samplg; for
i=1,---,n(as indicated byiew sampling sequence w;).

In the rule Ezp, the accuracy o?% is controlled not by PTP but solely by programmers. That &P
is not responsible for choosing a valuerofe.g, by analyzingE'p) to guarantee a certain level of accuracy
in estimating/ fdP. Rather it is programmers that decide a suitable value wf achieve a desired level
of accuracy (as well as an expressiilp for encodingP). Programmers are also allowed to pick up a
particular value of, for each expectation query, rather than using the same aluefor all expectation
gueries. We do not consider this as a weakness of PTP, Bipdtself, chosen by programmers, affects the
accuracy of% after all.

Although PTP provides no concrete guidance in choosing @evafn in the rule Ezp, programmers
can empirically determine a suitable valuergfnamely the largest value of that finishes an expectation
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query within a given time constraint. (A large value wofis better because it results in a more faithful
approximation ofP by sampled/; and a smaller difference betwe;qﬁ'ﬁ and the true expectatiofi fdP.)
Ideally the time to evaluatexpectation M; Mp should be directly proportional te, but in practice, the
computation of the same expressifip may take a different time, especially #p expresses a recursive
computation. Therefore programmers can try different @alafn and find the largest one that finishes the
expectation query within a given time constraint.

A problem with the above definition is that althougkpectation is a term construct, its reduction is
probabilistic because of sampling sequengen the rule Exzp. This violates the principle that a term
evaluation is always deterministic, and now the same term ewvaluate to different values if it contains
expectation. In order not to violate the principle, we assume that samgpliequence; in the rule Ezp is
uniquely determined by expressi@fp.

Now we can calculat® yzqry_caiis| John_calls @S-

expectation (Az:bool.if x then 1.0 else 0.0) Q arary_calis| John_calls

3.4.2 Bayes operation

The previous implementation of the Bayes operatibih (Q assumes a functiomand a constant such that
p(z) = kP(x) < cfor a certain constant. It is, however, often difficult to find the optimal value ofi.e.,
the maximum value op(z)) and we have to take a conservative estimate. ofhe Monte Carlo method,
in conjunction with importance sampling [40], allows us fspnse withe by approximating) with a set
of samples and® # ) with a set of weighted samples. We introduce a term constaets for the Bayes
operation and an expression constriagportance for importance sampling:

term M = ... |bayes M, Mg
expression FE = --- |importance {(V;,w;)|1 <i<n}

In the spirit of data abstractiorimportance represents only an internal data structure and is not djrect
available to programmers.

'k M,:A—real T'H, Mg:0A
I' b, bayes M, Mg : OA

'L Vi:A Thw :real 1<i<n |

I' b importance {(V;,w;)|1 <i<n}+ A mP

Bayes

M, —{p Mg —f prob Eg
fori=1,---,n new sampling sequence w; Eg Qu; —;V; Quw! pV;—] w;

- - Bayes
bayes M,, M¢ +—+ prob importance {(V;, w;)|1 <i < n}

k=1, k )
722-:51 Yo < Lizsl 2L where S =1 w;
importance {(V;,w;)|1 <i<n} Qrw e Vi Qu

Imp

The rule Bayes uses sampling sequences, - - - ,w,, initialized by the run-time system and approximates
Q with n sampled/y, - - -, V,,, wheren is a run-time variable as in the rulézp. Then it appliep to each
sampleV; to calculates its weighty; and creates a sé{V;, w;)|1 < i < n} of weighted samples as an
argument tomportance. The ruleImp implements importance sampling: we use a random number
probabilistically select a samplg, by taking into account the weights associated with all thedas. As
with expectation, we decide to definBayes as a term construct with the assumption that sampling seguen
wj in the rule Bayes is uniquely determined by expressidiy.
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3.4.3 expectation and bayes as expression constructs

Since their reduction involves sampling sequenegpectation andbayes could be defined as expression
constructs so that the assumption on sampling sequen@e the rulesExp and Bayes) would be unneces-
sary. Still we choose to defirepectation andbayes as term constructs for pragmatic reasons. Consider a
probability distributionP(s) defined in terms of probability distribution@(s) and R(u):

P(s) =nQ(s) [ f (s, u)R(u)du

(A similar example is found in Section 5.3%(s) is obtained by the Bayes operation betwég(s) and
Prob(s) = [ f(s,u)R(u)du, and is encoded in PTP as

bayes (\s: _. expectation (Au:_. Mf(s,u)) Mq) Mp

where Mp and Mg are probability terms denoting’ and @, respectively, and//; is a lambda abstrac-
tion denotingf. If expectation was an expression construct, however, it would be difficukricodeP(s)
because expressi@xpectation (Au:_. M (s,u)) Mg cannot be converted into a term. In essence, math-
ematically the expectation of a function with respect to @pbility distribution and the result of a Bayes
operation are always unique (if they exist), which in turmpli@s that ifexpectation andbayes are defined

as expression constructs, we cannot write code involvirgeetations and Bayes operations in the same
manner that we reason mathematically.

The actual implementation of PTP (to be presented in thectegiter) does not enforce the assumption
on sampling sequenae; in the rulesFExzp and Bayes, which is unrealistic in practice and required only
for the semantic clarity of PTP. Strictly speaking, therefaierm evaluations are not necessarily deter-
ministic and there is no clear separation between terms goigtgsions in this regard. Since terms are not
protected from computational effects (such as input/augmd mutable references) and term evaluations
do not always result in unique values anyway, non-detestinterm evaluations should not be regarded
as a new problem. Thus expressions are best interpretedyeeatsc category dedicated to probabilistic
computations only in the mathematical sense — strict adicerat the implementation level to the semantic
distinction between terms and expressioag { definingexpectation andbayes as expression constructs)
would cost code readability without any apparent benefit.

3.4.4 Cost of generating random numbers

The essence of the Monte Carlo method is to trade accuramofiir— it only gives approximate answers,
but relieves programmers of the cost of exact computatidmdlivcan be even impossible in certain prob-
lems). Since PTP relies on the Monte Carlo method to reasout gipobability distributions, it is important
for programmers to be able to determine the cost of the Moatrto@nethod.

We decide to define the cost of the Monte Carlo method as ptiopal to the number of random num-
bers consumed. The decision is based upon the assumpttoartl@m number generation can account for
a significant portion of the total computation time. (If tresstof random number generation was negligible,
the number of random numbers consumed would be of little mapoe.) Under our implementation of PTP,
random number generation for the following examples frorti®a 3.2 accounts for an average of 74.85%
of the total computation time. The following table shows@x@n times (in seconds) and percentages of
random number generation when generating 100,000 sanpies RPentium Il 500Mhz with 384 MBytes
memory):
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test case execution time| random number generation (%)
uniform 0.0 1.0 0.25 78.57
binomial 0.25 16 4.65 64.84
geometric_efix 0.25 1.21 63.16
gaussian_rejection 2.5 5.0 1.13 77.78
exponential_von_Neumann 1.09 80.76
gaussian_Box_Muller 2.0 4.0 0.57 77.27
gaussian_central 0.0 1.0 2.79 83.87
QMary_callonhn_calls 21.35 72.57

In PTP, it is the programmers’ responsibility to reason dliba cost of generating random numbers,
since for an expression computation judgmén w — V @ ’, the length of the consumed sequence
w — ' is not observable. A analysis similar to those in SectioncaB be used to estimate the cost of
obtaining a sample in terms of the number of random numberswued. In the case gkometric_rec p,
for example, the expected numbepf random numbers consumed is calculated by solving thetiequa

n=14+(1—-p)xn

where 1 accounts for the random number generated from the Berndisiiiibution and(1 — p) is the
probability that another attempt is made to generate a safnpin the same probability distribution. The
same technique applies equally to the rejection methayl Gaussian_rejection).

3.5 Summary

Although conceptually simple, the idea of using samplingctions in specifying probability distributions
is new in the history of probabilistic languages. PTP is aamaple of probabilistic language that indirectly
expresses sampling functions in a monadic syntax. We cdsitdchoose a different syntax for expressing
sampling functions. For example, the author [53] extendddmbda calculus with sampling construct.e
to directly encodes sampling functiong ié a formal argument aneldenotes the body of a sampling func-
tion). The computation of,e proceeds by generating a random number fié(0.0, 1.0] and substituting it
for v in e. Compared with PTP, the resultant calculus facilitateseth@ding of some probability distribu-
tion (e.g, .y for U (0.0, 1.0]), but it also reduces code readability because every pmofr@gment denotes
a probability distribution and there is no separation bemveegular values and probabilistic computations.

The idea of using a monadic syntax for PTP was inspired bytthehastic lambda calculus of Ramsey
and Pfeffer [64], whose denotational semantics is based tip® monad of probability measures, or the
probability monad [22]. In implementing a query for genargtsamples from probability distributions,
they note that the probability monad can also be interpretddrms of sampling functions, both denota-
tionally and operationally. In designing PTP, we take thpagite approach: first we use a monadic syntax
for probabilistic computations and relate it directly targaing functions; then we interpret it in terms of
probability distributions.

The operational semantics of PTP can be presented in diffetgles. For example, expression compu-

tations could use a judgment of the foith™" "% "™ V', meaning that expressidi computes to sample by
consuming a finite sequence of random numberss,, - - -, r,. Although the new judgment better reflects

the actual implementation of expression computation, woi& $b the formulation given in this chapter to
emphasize the logical foundation of PTP.
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Chapter 4

Implementation

This chapter describes the implementation of PTP. Instéimidementing PTP as a complete programming
language of its own, we choose to embed it in an existing fonat language for two pragmatic reasons.
First the conceptual basis of probabilistic computationBTP is simple enough that it is easy to simulate all
language constructs of PTP without any modification to timetime system. Second we intend to use PTP
for real applications in robotics, for which we wish to exipladvanced features such as a module system,
an interface to foreign languages, and a graphics libragnded building a complete compiler for PTP is not
justified when extending an existing functional languagsui§icient for examining the practicality of PTP.

We emphasize that embedding PTP in an existing functionguage is different from adding a library
to the host language. For example, the syntax of the hostuéaeyis extended with the syntax of PTP,
which is not the case when a library is added. Since the tygiesyof PTP is also faithfully reflected in the
host language, programmers can benefit from the type syst&m® even when programming in the host
language environment. (A library can also partially reflibet type system of PTP through type abstraction,
but not completely because of different syntax in the lijadar

In our implementation, we use Objective CAML [2] as the hastguage. First we formulate a sound
and complete translation of PTP in a simple call-by-valuegisage which can be thought of a sublanguage
of Objective CAML. Then we extend the syntax of Objective CAMsing CAMLP4, a preprocessor for
Objective CAML, to incorporate the syntax of PTP. The extmhdyntax is translated back in the original
syntax.

4.1 Representation of sampling functions

Since a probability term denotes a probability distribatigpecified by a sampling function, the imple-
mentation of PTP translates probability terms into repmest@ns of sampling functions. We translate a
probability term of typeD A into a value of typeA prob, where the type construct@t-ob is conceptually
defined as follows:

type A prob = real®™ —> A * real™

real is the type of real numbers, and we us&1°° for the type of infinite sequences of random numbers.
We simplify the definition ofprob in two steps. First we implement real numbers of typal as

floating point numbers of typgloat (as in Objective CAML). Second we dispense with infinite saues

of random numbers by using a global random number generdtengver fresh random numbers are needed

to compute sampling expressions. Thus we use the followdfigition of prob:

type A prob = unit —> A

69
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type A,B = A—A|OA]real

term M,N == x| x:AM|MM|prob E|r

expression E,F := M |samplexfromMinE|S|x|
efixx+A. FE

value/sample Vv n= Ax:A.M |prob E | r

floating point number r

sampling sequence w n= rire---r;---  wherer; € (0.0,1.0]

typing context r = | xz:A|T,x+ A

Figure 4.1: A fragment of PTP as the source language.

Hereunit is the unit type which is inhabited only by a unit valle

The use of typeéloat instead of typereal means that we use finite precision in representing sampling
functions. Although the overhead of exact real arithmetigat justified in those applications., robotics)
where we work with samples and approximations, programmmeg demand higher precision than is sup-
ported by typefloat. As a contrived example, consider a binary distributiorigmssg probability0.25 to
True and probability0.75 to False:

prob sample x from prob S in
20x2<0.5

If type float uses only one bit in mantissa part (afidomputes to eithed.5 or 1.0), the above probability
term denotes a wrong probability distribution (namely anpanass distribution centered dialse); only
with two or more bits in the mantissa part, it denotes thenidésl probability distribution. Therefore, while
the finite precision supported by the implementation of P84 l{its floating point numbers in Objective
CAML) is adequate for typical applications, it should als® fioted that there can be sampling functions
demanding higher precision and that errors induced by figgtbint numbers can be problematic in some
applications.

We use the type constructptob as an abstract datatype. That s, the definitioprafb is not exposed to
PTP and values of typé prob are accessed only via member functions. We provide two mefabetions:
prb andapp. prb builds a value of typed prob from a function of typeunit —> A; it is actually defined
as an identity functionapp generates a sample from a value of typerob; it applies its argument to a
unit value. The interface and implementation of the absulatatypeprob are given as follows:

type A prob type A prob = unit —> A
val prb : (unit —> A) —> A prob let prb = fun f:unit —> A. f
val app : Aprob—> A let app = fun f: A prob. f ()

We useprb in translating probability terms anpp in translating bind expressions. In conjunction with
the use of the type constructprob as an abstract data type, they provide a sound and com@etgdtion
of PTP, as shown in the next section.

4.2 Translation of PTP in a call-by-value language

We translate a fragment of PTP shown in Figure 4.1 in a calddye language shown in Figure 4.2. The
source language excludes product types, which are stfarglard to translate if the target language is
extended with product types. We directly translate expoesfixed point constructs without simulating
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type AB = A-—>A|Aprob|float |unit
expression e, w= z|funx:A.e|ee|prbe|appe|r]|
()| random | fix x: A. u

value v n= funz:A.e|prbuv|r]()

function U n= funzx:A.e

floating point number r

sampling sequence w = ryrg---ri---  where r; € (0.0,1.0]
typing context r n= Tz A

Figure 4.2: A call-by-value language as the target language.

i Nz: AR e: B L
I'e: Ak x: A P ' funz:A.e: A—> B an
I'He:A—>B Fl—veQ:AA I'k e:unit —> A

'k ejeg: B PP '~ prbe: Aprob Prb
P}_v€3—AP1"0b app =—————— Float == ——— Unit
'~ appe: A I'k 7r:float '~ () :unit

Random I'e:Aku: A

I' , random : float Ik fixz:A u: A Fix

Figure 4.3: Typing rules of the target language.

them with fixed point constructs for terms. As the target lsage supports only floating point numbers,
in the source language is restricted to floating point nusber

The target language is a call-by-value language extendettié abstract datatygerob. It has a single
syntactic category consisting of expressions (becausees diot distinguish between effect-free evalua-
tions and effectful computations). As in PTP, every expogsdenotes a probabilistic computation and we
say that an expression computes to a value. Note that fixed ponstructsfix x: A. u allow recursive
expressions only over function types.

The type system of the target language is shown in FiguredeBaploys a typing judgmert I e : A,
meaning that expressionhas typeA under typing context”. The rulesPrb andPapp conform to the
interface of the abstract datatypeob.

The operational semantics of the target language is shoviigiare 4.4. It employs an expression
reduction judgment @ w —, ¢ @ w’, meaning that the computation efwith sampling sequence
reduces to the computation ef with sampling sequence’. A capture-avoiding substitutiofe/z]f is
defined in a standard way. The rulig,.p.1, is defined according to the implementation of the abstract
datatypeprob. The ruleEgangon Shows thatandom, like sampling expressions in PTP, consumes a random
number in a given sampling sequence. We witg for the reflexive and transitive closure ef, .

Figure 4.5 shows the translation of the source languageeitatiget language We overload the function
[-]v for types, typing contexts, terms, and expressions. Bathdend expressions of typéin the source
language are translated into expressions of fyfje in the target languagelprob E], suspends the com-
putation of[E], by building a functionfun _:unit. [E]y, just asprob E suspends the computation Bt
Since the target language allows recursive expressiorysomel function types, an expression variaklef
type A (i.e, x + A) is translated intax () wherezy is a special variable of typenit —> [A], annotated

!_is awildcard pattern for variables and types.
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eQuwi-, e @ E fQuwr, ff@uw E

efQuye f@uw o (funz:A.e) fQuw i, (funz:A.e) ff QW P
eQuwi—, e Quw

Eprp

E
(funz:A.e)v Qw —y [v/x]e Qw o prbe @Qw i, prbe @ W'

eQuwi, e @

EApp EAppPrb

appe @w iy appe’ Quw' appprbv Quw =y v () Qw

E Er:
random @ rw —y 7 Qw " fix gz A uQw oy [fix A u/zluQw

Figure 4.4: Operational semantics of the target language.

[A—=Bl, = [Ay —> [Blv
[OA]V = [A]v prob
[really, = float
Hv -
Cz:Aly, = [[y,z:[A
[,x+Aly = [[y,2x :unit —> [4]y
[z]y, = =
[Az:A.M], = funz:[A]y. [M]y
[M N]v = [M]v [N]v
[prob ﬂv = prb (fun _:unit. [Ely)
[sample 2 from M in E]: = (funz:. [Ely) (app [M]y)
[S]y = random
Xy = 2x ()
[efixx+A.E]y, = (fixax:unit —> [A]y. fun _:unit. [Ely) ()

Figure 4.5: Translation of the source language.

with x; if the target language allowed recursive expressions awgrtype,x andefix x+ A. E could be
translated intac, andfix x:[A],. [E],, respectively

Propositions 4.1 and 4.2 show that the translation is falittaf the type system of the source language.
Proposition 4.1 proves the soundness of the translatiorellatyped term or expression in the source lan-
guage is translated into a well-typed expression in theetdanguage. Proposition 4.2 proves the com-
pleteness of the translation: only a well-typed term or egpion in the source language is translated into a
well-type expression in the target language.

Proposition 4.1.
IfT' M : A, then[']y k= [M]y : [Aly.
IfI' £+ A, then[[')y  [E]y : [Aly.

Proof. By simultaneous induction on the structureiddfand £. O

Proposition 4.2.

%In the Objective CAML syntaxfefix x+ A. E], can be rewritten alet rec  z, () = [E], in zx () .
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If Ty kv [M]y : A, then there exist® such thatd = [B], andI' i, M : B.
If Ty K [Ely : A, then there exist® such thatd = [B], andT'k, £ + B.

Proof. By simultaneous induction on the structure f and E. The conclusion in the first clause also
impliesT" i, M =+ B. An interesting case is wheli = x.

Case E = x:
T [x]v: A by assumption
Tvhax () A becauséx], = zx ()
Zx tunit —> A € [y by App andUnit

Sincezy is a special variable annotated with expression variable
zx + B € I'and A = [B], for someB.
A=[B]yandl', E + B. O

The translation is also faithful to the operational sentdf the source language. We first show that the
translation is sound: a term reduction in the source langusgranslated into a corresponding expression
reduction which consumes no random number (Propositioly 4% expression reduction in the source
language is translated into a corresponding sequence oéssipn reductions which consumes the same
sequence of random numbers (Proposition 4.7). Note thatapdgition 4.7 [E], does not directly reduce
to [Fy; instead it reduces to an expressioto which [F, eventually reduces without consuming random
numbers.

Lemma 4.3. [[M/z]N], = [[M],/x][N], and[[M /z]E], = [[M]y/x][E]y.
Proof. By simultaneous induction on the structure/éfand £. O
Lemma 4.4.

[[efix x+A. E/x|M]y = [(fix zx:unit —> [A]y. fun _:unit. [E]y)/z«][M]s.
[[efix x+A. E/x|F]y = [(fix zx:unit —> [A]y. fun _:unit. [E]y)/z«]|[F]v.

Proof. By simultaneous induction on the structureidfand £'. O

Corollary 4.5.
[[efix x+A. E/x]|E]y = [(fix zx:unit —> [A],. fun _:unit. [E]y)/2x][E]y.

Proposition 4.6.
If M — N, then[M], Q@ w — [N], @Q w for any sampling sequence

Proof. By induction on the structure of the derivation &f — V.
M —t M/
NN M N o
t

My Qw —y [M'], @w by induction hypothesis
[M N]v = [M]v [N]v
[
[

Case

My [N]y @ sy [M']y [N]y @w by Eg,
M']y [N]y = [M" N, ,

(Ax:A.M)N r—»i (Ax:A. M) N’ Lo

N]y Qw - [N']y Qu by induction hypothesis
[(Az:A. M) N)y = (fun z:[A]y. [M]y) [N]y

(fun z:[4]y. [M]y) [N]y Q w +—y (fun z:[A]y. [M]y) [N']y Qw by Eg,
(fun z:[A]y. [M]y) [N']y = [(Ax: A. M) N,

T3, .
Case (\g:A. M)V o [V/z]M PV ¢
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[(Az: A. M) ‘f] = (fun z:[A]y. [M],) [V]y

(funz:[Aly. [M]y) [V]y @w =y [[V]y/2][M], @w by Ej,
[V]e/z][M]y = [[V/x]M], byLemmag3

Proposition 4.7.
If EQuw—, F Qu', there existg such thafE], @ w —% e @Qw' and[F], Q w' 3} e @ ',

Proof. By induction on the structure of the derivation Bf@ w +—. F @ w’. We consider two interesting
cases.

EFEQuw— E'Qw
sample z from prob E in F' @Q w ¢ sample x from prob E' in FF Q w
[E]ly @w —*e@uw where[E'], Quw' —ie@du by induction hypothesis
[sample z from prob E in F, = (funz:_. [F]y) (app (prb (fun _:unit. [E]y)))
(fun z:_. [F)y) (app (prb (fun _:unit. [E]y))) Q w

Case 7 EBindr

—y (funz: . [Fly) ((fun :unit. [Ely) () Qw bY Epperb
e (fun 2. [F),) [E), @ by Ey
=¥ (funa: . [F ])e@w by [Ely Qw —ke @/
[sample = from prob E’ in F], = (fun z:_. [F]y) (app (prb (fun _:unit. [E']y)))
(fun x:_. [F]y) (app (prb (fun _:unit. [F']y))) @ '
= (fun z:_. [Fly) [E']y Q' by Expppro @aNdEg,
=¥ (funz:_. [Fly) e QW' by [F']y @w' ke @ W'
Case efixx+A. E Qw —, [efixx+A. E/x|E Quw Efiw
[efix x+A. E]y = (fix 2x:unit —> [A],. fun _:unit. [E]y) ()
(fix xx:unit —> [A]y. fun _:unit. [E]y) () Qw
—y (fun _tunit. [fix 2x:unit —> [A]y. fun _:unit. [E]y/2x][E]y) () Qw by Erix
=2 [fix ox:unit —> [A]y. fun _tunit. [Ely/z][E]ly Qw by Eg,
[[efix x+A. E/X|E]y = [fix x:unit —> [A],. fun _:unit. [E]y/zx|[Ely by Corollary 4.5
U

The completeness of the translation states that only a teid or expression reduction in the source
language is translated into a corresponding sequence oéssipn reductions in the target language. In
other words, a term or expression that cannot be furthercesdlin the source language is translated into
an expression whose reduction eventually gets stuck. Tplgymthe presentation, we introduce three
judgments, all of which express that a term or expressiors doéfurther reduces.

e )M —; e means that there exists no term to whithreduces.
e F @ w +—, e means that there exists no expression to wikickeduces.

e ¢ @ w+—, e means that there exists no expression to whickduces (in the target language).

Corollary 4.9 proves the completeness of the translatiorteions; Proposition 4.10 proves the com-
pleteness of the translation for expressions.

Proposition 4.8. If [M], @ w —y e @ &', thene = [N}y, w = ', and M +— N.

Proof. By induction on the structure af/. We only need to consider the cadé = M; M,. There are
three cases of the structure[df; Ms], @ w —, e @ W’ (corresponding to the rulé;, , Eg,, andEg,). The
case for the rul&s, uses Lemma 4.3. O
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Corollary 4.9. If M . e, then[M], @ w — e for any sampling sequence
Proposition 4.10. If E @ w —. e, then there exists such thaf £}, Q w —} ¢ Q w — o.

Proof. By induction on the structure df. We consider two casds = M andFE = sample x from M in F
the remaining cases are all trivial.
Case E = M, [E]y = [M]y:

M —y e by Ererm
M)y Qw —y by Corollary 4.9
We lete = [M].
Case E = sample x from M in F, [E], = (fun z:_. [Fy) app [M]y:
If M = prob -,
Mo by EBina
M)y Qw -y @ by Corollary 4.9
The rulek,,, does not apply to£],.
The ruleEppper, does not apply toF], . [M], # prb -
We lete = [E],.
If M =prob E', E' #V,
F Quwee by Epindr
There existg’ such thalE’'], @ w ¥ ¢/ @ w —, e by induction hypothesis.
[E]ly Qw
=¥ (funz:_. [Fy) [F]y Qw [M]y = prb fun _:unit. [E']y
=¥ (funz:_. [Fly) € Quw [Fly Quwr—ie Quw
=y ® € Quwis, e
We lete = (fun z:_. [F]y) €.
If M = probV,thenE @ w —. e does not hold because of the rillg;,.4v . O

The target language can be thought of as a sublanguage oft®ej€AML in which the abstract
datatypeprob is built-in andrandom is implemented aRandom.float 1.0 .2 Since Objective CAML
also serves as the host language for PTP, we need to extesyritax of Objective CAML to incorporate
the syntax of PTP. The extended syntax is then translatddibdbe original syntax of Objective CAML
using the function-|,. The next section gives the definition of the extended syntax

4.3 Extended syntax

We use CAMLP4 to conservatively extend the syntax of Objed@AML, which is assumed to be specified
by a non-terminal¢term) (corresponding to terms in PTP), with a new non-termifapr) (corresponding
to expressions in PTP)patt) is a non-terminal for patterns ard!) for identifiers:

(term) = ... |PROB{ (expr) } probability term

(expry = [ (term)] | term as an expr.
sample (patt) from (term) in (expr) | bind expr.
UNIFORM sampling expr.
efix  (id) -> (expr) | expr. fixed.p.c.
#(id) | expr. variable
unprob  (term) | unprob
eif (term) then (expr) else (expr) eif

3To be strictrandom would be implemented as0 -. Random.float 1.0
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[ (term)] explicitly marks a term as an instance of expressibfid) refers to an expression variahl&l).
All other expression constructs resemble their countésgarChapter 3.
As an example, we encode a Bernoulli distribution over tigpel as follows:

let bernoulli = fun p ->
PROB { sample x from PROB { UNIFORM } in
[if x <= p then true else false] }

A geometric distribution is encoded with an expression figeiht construct as follows:

let geometric = fun p ->
let bernoulli_p = bernoulli p in
PROB {
efix geo ->
sample b from bernoulli_p in
eif b then [0]
else
sample x from PROB { #geo } in
1+ x]
}

All other examples in Section 3.2 can be encoded in a simi&yf. w

4.4 Approximate computation

In PTP, reasoning about a probability distribution is acpbsimed by generating multiple samples and
analyzing them. The implementation of PTP provides two fions for generating independent samples
from a given probability distribution:

type ’'a set

type 'a wset

val prob_to set : 'a prob -> 'a set

val prob to wset : 'a prob -> ('a -> float) -> 'a wset

e 'a set is adatatype for sets of samples of type.

e 'a wset isadatatype for sets of weighted samples of tygpe Each sample is assigned a weight of
typefloat and'a wset may bethoughtofaga * float) set . All weights are normalized
(i.e., their sum isl.0).

e prob_to_set p  generates samples fromby evaluatingapp p repeatedly.

e prob_to wset p f  generates samples frgmand assigns to each samplea weight off V.

Programmers can specify the number of samples generatedpirob_to set  andprob_to_wset ,
thereby controlling the accuracy in approximating probgbdistributions.
The implementation of PTP provides two functions for appdythe Monte Carlo method:

val set_ monte carlo : 'a set -> (‘a -> float) -> float
val wset_monte_carlo : 'a wset -> (‘a -> float) -> float
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WS wset _to _prob _truncate ws
weight weighy,

sample Sample

Figure 4.6: wset _to _prob _truncate

£V
e set_monte carlo s f returns=ves* V.

ls|

e wset_monte_carlo ws f  retunsy_ . (£V) - w.

The following two functions convert sets and weighted seisklio probability distributions:

val set to_prob_resample : 'a set -> 'a prob
val wset to _prob_resample : 'a wset -> 'a prob

e set to_prob_resample s returns a uniform distribution oves.

e wset_to_prob_resample ws returnsprob importance ws which performs importance sampling
onws to select samples.

Now the expectation query (in Section 3.4.1) and the Bayesatijon (in Section 3.4.2) are implemented by
composing these functions:

expectation f p = set_monte_carlo (prob_to_set p) f

bayes f p =wset_to_prob_resample (prob_to_wset p f)

The implementation of PTP also provides a function for aginating the support of a given probability
distribution. Since the support of an arbitrary probapiliistribution cannot be calculated accurately, we
represent it as a uniform distribution:

val wset_to_prob_truncate : 'a wset -> ’a prob

wset_to_prob_truncate ws returns a uniform distribution over samples of highest weights ws,
wheren is the parameter specifying the number of samples gendmgiieibb_to _set  andprob_to wset
Figure 4.6 illustrates howwset to_prob_truncate works. ws has five samples in it, and
wset_to_prob_truncate is invoked when the parameteris set to three. The two samples with
lowest weights perish, and all the surviving samples arigjasd the same weight.

wset_to_prob_truncate is useful particularly when we want to extract a small numifesam-
ples of high weights from a probability distribution. Fon(approximation of) the uniform distribution over
the support ofp, we usewset_to_prob_truncate (prob_to wset p (fun _ -> 1.0)) ,
where(fun _ -> 1.0) is a constant Objective CAML function returnidgO .
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Figure 4.7: Horizontal and vertical computations.

4.5 Simultaneous computation of multiple samples

The implementation of PTP uses a simple strategy to generatéple samples from a given probabil-
ity distribution: compute the same expression repeatedly. alternative strategy is to perform a single
parallel computation that simulates multiple independmrhputations. To distinguish the two kinds of
computations, we refer to the former strategyagical computationsind the latter strategy asharizontal
computationas shown in Figure 4.7.

A horizontal computation can be potentially faster than qumivealent number of vertical computations.
For example, a horizontal computationsafnple x from M in E avoids the overhead of evaluating the same
term M more than once; thus the advantage of a horizontal compaotagcomes pronouncedi takes a
long time to evaluate. The cost associated with each largoagstruct also remains constant in a horizontal
computation. For example, a horizontal computatiosadfiple = from M in E performs a substitution for
x only once, but vertical computations perform as many stuigins forz.

To examine the potential benefit of horizontal computatiovesimplement a translator of PTP for hori-
zontal computations. Conceptually an expression now coesdo an ordered set of samples in such a way
that each sample corresponds to the result of an indeperddital computation of the same expression.
We may think of the translator as implementing an operatisamantics based upon the judgment

EQwy, - wy] — {V4, -+, V,} @ [w&,--- ,w’]

n

which mean& Q w; — V; @ w} for1 <i <n.

The translator is implemented in a similar way to the operati semantics for vertical computations:
the syntax of Objective CAML is extended using CAMLP4, andnie and expressions of the extended
syntax are translated back in Objective CAML. The definitadrthe type constructoprob , however, is
more complex because of conditional construdfs then - else - andeif - then - else -). To motivate our
definition ofprob , consider the following expression:

sample x from prob § in
sample y from prob E in
eif x < 0.5 then Ej else s

A vertical computation reduces the whole expression teeifj or £ and needs to keep only one reduced
expression. A horizontal computation, however, may hakeép both; and E, because multiple samples
are generated frort (0.0, 1.0] for variablex. For example, if an ordered sfi.1,0.6,0.3,0.9} is generated
for variablex, the horizontal computation reduces to two smaller hotiabcomputations: one aF; with

x bound to{0.1,—,0.3,—} and another off;, with x bound to{—,0.6, —,0.9}. Note that we may not
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compress{0.1, —, 0.3, —} to {0.1,0.3} and{—, 0.6, —, 0.9} to {0.6,0.9} because the ordered set to which
variabley is bound may be correlated to variahle
Thus we are led to define the type construgmrb using bit vectors and ordered sets:

type bflag
type 'a oset
type 'a prob = bflag -> 'a oset

e bflag is the type of bit vectors of fixed size.

e 'a oset s a datatype for ordered sets of element tigoe An ordered set of element type may
contain not only ordinary values of typa but alsonull values(‘ —’ in the above example). Ordinary
values correspond to values of 1 and null values to valuesrob@ vectors.

e 'a prob s a datatype for both probability distributions over type and expressions of typa .
It is defined as the type of a function that takes a bit vecterfgpms a horizontal computation for
values of 1 in the given bit vector, and returns the resultadéred set.

Since variables from bind expressions are always bound dered sets, we distinguish between terms
manipulating ordinary values and terms manipulating edesets. The new syntax, further augmenting the
extended syntax in Section 4.3, introduces a non-termipiah-m) for those terms manipulating ordered
sets; the definition of the non-termingdzpr) uses(pterm) in place of(term):

(term) = ... | (pterm)
(pterm) = lam (patt) -> (pterm) | lambda abstraction
app (pterm) to (pterm) | application term
pif  (pterm) then (pterm)
else (pterm) | cond. term construct
@id) | variable
const  (term) | constants
ptrue |pfalse |@HCMP <=.|--- built-in constants

In the new syntax, a Bernoulli distribution and a geometrstridbution are encoded as follows:

let bernoulli = fun p ->
PROB { sample x from PROB { UNIFORM } in
[pif @x CMP <=. const p then ptrue else pfalse] }

let geometric = fun p ->
let bernoulli_p = bernoulli_prob p in
PROB {
efix geo ->
sample b from bernoulli_p in
eif @b then [const O]
else
sample x from PROB { #geo } in
[const 1 @+ @X]
}

Compared with the examples in Section 4.3, the code is the sxcept that all terms within expressions
manipulate ordered sets rather than ordinary values.
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test case vertical | horizontal | overhead (%)

bernoulli 0.25 0.922 1.188 28.85
uniform 0.0 1.0 0.906 1.078 18.98
binomial 0.25 16 16.563 23.187 39.99
geometric_efix 0.25 3.937 7.157 81.78
gaussian _rejection 2.5 5.0 4.688 7.593 61.96
exponential_von_Neumann g 4.031 6.922 71.71
gaussian_Box_Muller 2.0 4.0 4.796 5.031 4.89
gaussian_central 0.0 1.0 10.594 12.157 14.75
QMary_calls\John_calls 90.063 138.922 54.24

Figure 4.8: Execution times (in seconds) for generating a total of 3,000 samples.

Experimental results

We compare execution times for generating the same numbsaroples in vertical and horizontal com-
putations. The typdflag uses 31-bit integers (of typa@t in Objective CAML), which means that a
single horizontal computation performs up to 31 indepenhsertical computations; the datatyjge oset
uses arrays of 31 elements of tyjge. We use an AMD Athlon XP 1.67GHz with 512MB memory for all
experiments.

Figure 4.8 shows execution times for various test cases {hiapter 3. In all test cases, horizontal
computations are slower than vertical computations, asated by their overhead relative to vertical com-
putations. The overhead of horizontal computations is@afhg high in those test cases involving condi-
tional constructs (namelyinomial, geometric_efix, gaussian_rejection, exponential_von_Neumann, g,
and Qpsary_calis| John_calls)- 1he high overhead can be attributed to the fact that a twté computation
allocates an array of size 31 for every expression, regssdbé the number of ordinary values from it. For
example, even when a horizontal computation is simulatirsg & single vertical computation (after en-
countering several conditional constructs), the compradf an expression still requires an array of size
31.

The experimental results show that the overhead for maimnigiordered sets and handling conditional
constructs exceeds the gain from simulating multiple galttomputations with a single horizontal compu-
tation. Our implementation is just a translator which doesrely on support from the compiler. In order
to fully realize the potential of horizontal computatiornisseems necessary to integrate the implementa-
tion within the compiler and the run-time system. As a spaiboh, horizontal computations can be up to
twice faster than vertical computations: random numbelegaion, which costs the same in both vertical
and horizontal computations, accounts for about half tked ttbmputation time; hence, with no overhead
other than random number generation, horizontal commrtativould be about twice faster than vertical
computations.

4.6 Summary

Although PTP is implemented indirectly via a translatiorOhjective CAML, both its type system and its
operational semantics are faithfully mirrored through tise of an abstract datatype. Besides all existing
features of Objective CAML are available when programmim@irP, and we may think of the implemen-
tation of PTP as a conservative extension of Objective CANlhe translation is easily generalized to any
monadic language, thus complementing the well-estallist®ult that a call-by-value language is translated
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in a monadic language(g, see [68]).

The translator of PTP does not protect terms from computatieffects already available in Objective
CAML such as input/output, mutable references, and evesctinses ofRandom.float . Thus, for
example, termV/ in a bind expressiorample x from M in E is supposed to produce no world effect, but
the translator has no way to verify that the evaluation\bfs effect-free. Therefore the translator of PTP
relies on programmers to ensure that every term denotesutareglue.

Since the linguistic framework for PTP is a reformulationMéggi’s monadic metalanguage,,; (see
Chapter 2), Haskell is also a good choice as a host languagenfeedding PTP. To embed PTP in Haskell,
one would define a Haskell monad, sByob , for probabilistic choices and translate an expression of
type A into a program fragment of typBrob A, while ignoring the keywordprob in probability terms.
Alternatively one could exploit the global random numbengmtor maintained by thBED monad and
translateO A of PTP intolO A of Haskell. (Our choice of Objective CAML is due to personedfprence.)

We could directly implement PTP by extending the compiled #me run-time system of Objective
CAML. An immediate benefit is that type error messages areenmfiormative because type errors are
detected at the level of PTP. (Our implementation deteqs grrors in the translated code rather than in
the source code; hence programmers should analyze typeneggsages to locate type errors in the source
code.) As for execution speed, we conjecture that the gaiegdigible, since the only overhead incurred
by the abstract datatyg@mob is to invoke two tiny functions when its member functions emeoked: an
identity function (forprb ) and a function applying its argument to a unit value @pp).
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Chapter 5

Applications

This chapter presents three applications of PTP in rohotatsot localization, people tracking, and robotic
mapping, all of which are popular topics in robotics. Altigbudifferent in goal, all these applications share
a common characteristic: the state of a robot is estimated fensor readings, where the definition of state
differs in each case. A key element of these applicationadgiainty in sensor readings, due to limitations
of sensors and noise from the environment. It makes the gmolaf estimating the state of a robot both
interesting and challenging: if all sensor readings weeate, the state of a robot could be accurately
traced by a simple (non-probabilistic) analysis of sengadings. In order to cope with uncertainty in
sensor readings, we estimate the state of a robot with pildatistributions.

As a computational framework, we use Bayes filters. In eask,cae formulate the update equations
at the level of probability distributions and translaterthim PTP. All implementations are tested using data
collected with real robots.

5.1 Sensor readings: action and measurement

To update the state of a robot, we use two kinds of sensormgsidictionandmeasurementAs in a Bayes
filter, an action induces a state change whereas a measurgivesinformation on the state:

e An actiona is represented as an odometer reading which returns the(peseosition (z,y) and
orientationd) of the robot relative to its initial pose. It is given as alRipAz, Ay, Af).

e A measurementn consists of range readings which return distances to abjgsible at certain an-
gles. ltis given as an arrdy ;- - - ;d,| where eachl;, 1 < i < n, denotes the distance between the
robot and the closest object visible at a certain angle.

Figure 5.1 shows a typical example of measurement. It displange readings produced by a laser range
finder covering 180 degrees. The robot is shown in the ceatetuded regions are colored in grey.

Odometers and range finders are prone to errors becauseiofitbehanical nature. An odometer
usually tends to drift in one direction over time. Its acclated error becomes manifest especially when
the robot closes a loop after taking a circular route. Rangkefis occasionally fail to recognize obstacles and
report the maximum distance measurable. In order to cotheste errors, we use a probabilistic approach
by representing the state of the robot with a probabilityritiation.

In the probabilistic approach, an action increases thefggissible states of the robot because it induces
a state change probabilistically. In contrast, a measuneniecreases the set of possible states of the robot
because it gives negative information on unlikely statesl {@ositive information on likely states). We now
demonstrate how to probabilistically update the state @ftibot in three different applications.
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li‘ Rohot Graph

Figure 5.1: Range readings produced by a laser range finder. The robet &aperson on its right, visible as the
shadows of two legs.

5.2 Robot localization

Robot localization [72] is the problem of estimating the @af a robot when a map of the environment is
available. If the initial pose is given, the problem becomese trackingwhich keeps track of the robot
pose by compensating errors in sensor readings. If thalipitise is not given, the problem becongésbal
localizationwhich begins with multiple hypotheses on the robot pose (atiderefore more involved than
pose tracking).

We consider robot localization under the assumption (date Markov assumptionthat the past and
the future are independent if the current pose is known, oivatently that the environment is static. This
assumption allows us to use a Bayes filter in estimating thetrpose. Specifically the state in the Bayes
filter is the robot pose = (z,y,0), and we estimate with a probability distributionBel(s) over three-
dimensional real space. We compuge!(s) according to the following update equations (which are the
same as shown in Section 1.1):

(5.1) Bel(s) « [A(s|a,s")Bel(s")ds’
(5.2) Bel(s) <« nP(m|s)Bel(s)

n a normalizing constant ensurirfgBel(s)ds = 1.0. We use the following interpretation of(s|a, s") and
P(m|s):

e A(s|a,s’) is the probability that the robot moves to posafter taking actior: at another pose’. A
is called araction model

e P(mls) is the probability that measurementis taken at pose. P is called aperception model

Given an actiomm and a pose’, a new poses can be generated from the action modgl|a, s’) by
adding a noise ta and applying it tos’. In our implementationA(-|a, s’) assumes constant translational
and rotational velocities while actianis taken from pose’. It also assumes that errors in translational and
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Figure 5.2: Samples from the action model.

rotational velocities obey Gaussian distributions. Feghr2 shows samples of the new pose after taking a
curved trajectory.

Given a measurement and a pose, we can also computeP (m/|s) wherex is an unknown constant:
the map determines a unigue (accurate) measuremertfbr poses, and the squared Euclidean distance
betweenm andm is assumed to be proportional ®R(m|s). Figures 5.3 and 5.4 illustrate how to compute
kP(mls). Figure 5.3 shows points in the map that correspond to measntm whens is set to the true
pose of the robot, in which case the unique measuremgntor poses coincides withm (recall that a
measurement consists of not points in the map but rangengs)di Hence each point is projected on the
contour of the map and is assigned a high likelihood as inelichy the dark color. Figure 5.4 shows points
in the map that correspond to the same measuremehtit whens is set to a hypothetical pose of the robot;
the uniqgue measurement, for poses is represented by points with crosses. Since the measutésmaot
taken at the hypothetical pose, no point is correctly alibalwng the contour of the map. Thus each point
is assigned a relatively low likelihood as indicated by tineygcolor (the degree of darkness indicates its
likelihood). We computesP(m|s) as the product of all individual likelihoods.

Our implementation simplifies the computation«d?(m|s) by approximatingn, with those points on
the contour of the map that are closest to the points correlpg to measurement; Figure 5.5 shows how
to approximaten; with those points with crosses. This simplification allogdaprecompute the likelihood
of every point in the map, since its closest point on the aamdd the map is fixed. Our implementation uses
a grid map at 10 centimeter resolution and generatédsebhood mapwhich stores the likelihood of each
cell in the map; see Figures 5.6 for a grid map and its likelthaap.

Now, if M4 denotes conditional probabilityl and Mp m returns a functionf(s) = kP(m|s), we
implement update equations (5.1) and (5.2) as follows:

let Bel,e,, = prob sample s’ from Bel in
sample s from M4 (a,s’) in (5.1)
s

let Belpe, = bayes (Mp m) Bel 1 (5.2)

Both pose tracking and global localization are achieved glcgying an appropriate initial probability
distribution of robot pose. For pose tracking, we use a pwoiass distribution or a Gaussian distribution;

*our implementation filters out outlier range readingsrirbefore computing:P (m|s).
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Figure 5.3: Points in the map that correspond to measurements wigset to the true pose of the robot.

o © ©

g

Figure 5.4: Points in the map that correspond to measurements wigesget to a hypothetical pose of the robot.

for global localization, we use a uniform distribution o¥ke open space in the map.

Experimental results

To test the robot localizer, we use a Nomad XR4000 mobiletrob@/ean Hall at Carnegie Mellon Univer-
sity. The robot is equipped with 180 laser range finders (onmeefich degree so as to cover 180 degrees).
The robot localizer uses every fifth range reading, and thmeasurement consists of a batch% = 36
range readings. We use CARMEN [49] for controlling the roaond collecting sensor readings. The robot
localizer runs on a Pentium 111 500Mhz with 384 MBytes memory

We test the robot localizer for global localization. Thetiedi probability distribution of robot pose is
a uniform distribution over the open space in the map, whichgproximated with 100,000 samples. The
first batch of range readings is processed according to epegation (5.2). The resultant probability
distribution, which is still approximated with 100,000 sales, is then replaced by its support approximated
with 500 samples. The number of samples, 100,000 or 500psechempirically — both too many and too
few samples prevent the probability distribution from cerging to a correct pose.

Figure 5.7 shows a probability distribution of robot poseegprocessing the first batch of range readings
in Figure 5.1; pluses represent samples generated fromrétalpility distribution. The robot starts right
below characteA, but there are relatively few samples around the true mositif the robot. Figure 5.8
shows the progress of a real-time robot localization run toatinues with the probability distribution in
Figure 5.7. The first two pictures show that the robot lo@li® still performing global localization. The
last picture shows that the robot localizer has started frasking as the probability distribution of robot
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Figure 5.5: Approximatingm, from measurement, and poses.

pose has converged to a single hypothesis.

We test the robot localizer with 8 runs, each of which takesffardnt path. In a test experiment, it
succeeds to localize the robot on 5 runs and fails on 3 rurfe (@sult should not be considered statistically
significant.) As a comparison, the CARMEN robot localizehieth uses particle filters and is written in C,
succeeds on 3 runs and fails on 5 runs under the same con@ii®rD00 samples during initialization, 500
samples during localization, and 36 range readings in eadsarement). Note that the same sequence of
sensor readings does not guarantee the same result be¢aiusg@mbabilistic nature of the robot localizer.
In the worst scenario, for example, the initial probabiligtribution of robot pose may have no samples
around the true pose, in which case the robot localizer ikeiglto recover from errors. Hence it is difficult
to precisely quantify the performance of the robot localitlee goal is to convince that our implementation
in PTP is reasonably acceptable, not totally fake.

5.3 People tracking

People tracking [50] is an extension of robot localizatiarthat it estimates not only the robot pose but
also positions of people (or unmapped objects). As in rabedlization, the robot takes an action to change
its pose. Unlike in robot localization, however, the robategorizes sensor readings in a measurement
by deciding whether they correspond with objects in the ntapith people. Those sensor readings that
correspond with objects in the map are used to update the poise; the rest of sensor readings are used to
update positions of people.

A simple approach is to maintain a probability distributi®/(s, @) of robot poses and positionsi
of people. Although it works well for pose tracking, this apach is not a general solution for global
localization. The reason is that sensor readings from geap correctly interpreted only with a correct
hypothesis on the robot pose, but during global localiratihere may be incorrect hypotheses that lead
to incorrect interpretation of sensor readings. For examntiie two objects in the upper right region in
Figure 5.1 are interpreted as a person only with a correcbthgsis on the robot pose. This means that
during global localization, there exists a dependence &etvihe robot pose and positions of people, which
is not captured byBel(s, ).

Hence we maintain a probability distributidsel (s, Ps()) of robot poses andprobability distribution
P, (i) of positionsi of people conditioned on robot pose P, (i) captures the dependence between the

20ur implementation assumes that people move independehthach other, and represens (i) as a set of independent
probability distributions each of which keeps track of tlesition of an individual person.
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Figure 5.6: A grid map and its likelihood map.

robot pose and positions of people3el(s, Ps(#)) can be thought of as a probability distribution over
probability distributions.

As in robot localization, we updatBel(s, Ps(u)) with a Bayes filter. The difference from robot local-
ization is that the state is a pair #fand Ps(@) and that the action model takes as input both an actiand
a measurement.. We use update equations (5.3) and (5.4) in Figure 5.9 (wénietobtained by replacing
s by s, Ps(i) anda by a, m in update equations (1.1) and (1.2)).

The action modeH (s, P,(ii)|a, m, s, Py (u')) generates, P, (@) from s, Py (u') utilizing actiona and
measurementn. We first generate and thenP;(«) according to equation (5.5) in Figure 5.9. We write
the first Prob in equation (5.5) asiopot(s|a, m, s’, Py (u')). The secondProb in equation (5.5) indicates
that we generaté, (@) from P, (u/) utilizing actiona and measurement, which is exactly a situation
where we can use another Bayes filter. For this inner Bayes, filte use update equations (5.6) and (5.7)
in Figure 5.9. We writeProb in equation (5.6) asl,eopie (@]a, w s, s"); we simplify Prob in equation (5.7)
into Prob(m|, s) becausen does not depend ofl if s is given, and write it a®peopie (M|, 5).

Figure 5.10 shows the implementation of people tracking®PM 4, and M 4, denote condi-
tional probabilitiesA,obor aNd.Apeople, respectivelyMp . m s returns afunctionf (@) = £Ppeople (M|, s)
for a constank. Since bothn ands are fixed when computing(«), we consider only those range readings
in m that correspond with people. In implementing update eqodt.4), we use the fact th®(m/|s, Py (1))
is the expectation of a functiof(i) = Ppeople (1|1, ) With respect taPs(i):

(58) P(m‘s, Ps(ﬁ)) = fppeople(m‘ﬁa S)Ps(ﬁ)dﬁ

Our implementation further simplifies the models used inupdate equations. We us&qpot(s|a, s’)
instead ofA,opot(s|a, m, s’, Py (v')) as in robot localization. That is, we ignore the interactimtween
the robot and people when generating new poses of the rolwtilaBy we useA,epie(%|u’) instead of



89

|§| Caml graphics

T ki

Figure 5.7: Probability distribution of robot pose after processing finst batch of range readings in Figure 5.1.

Apeop|e(ﬁ|a,u7, s, s') on the assumption that positions of people are not affecyethd robot poseji is
obtained by adding a random noisedb We also simplifyP(m|s, Ps(i)) in update equation (5.4) into
P(m|s), which is computed in the same way as in robot localizatimmde equation (5.8) is not actually
exploited in our implementation.

Experimental results

We test the people tracker on the same robot and machinerthasad in robot localization. The people
tracker uses the implementation in Figure 5.10 during dltdmalization, but once it succeeds to localize
the robot and starts pose tracking, it maintains a prolighiistribution Bel(s, @) as there is no longer a
dependence between the robot pose and positions of peoijkethe robot localizer, we do not intend to
guantitatively measure the success rate of people trackatiger the focus is on ensuring that our imple-
mentation in PTP is not completely useless.

Figure 5.11 shows the progress of a real-time people trgckin which uses the same sequence of
sensor readings as Figure 5.8. The first picture is takem pfteessing the first batch of range readings
in Figure 5.1; pluses) represent robot poses and crosse} epresent positions of people. The second
picture shows that the people tracker is still performingbgll localization. The last picture shows that the
people tracker has started pose tracking; the position cfi @arson in sight is indicated by a grey dot.
Figure 5.12 shows range readings when the third picture gurei 5.11 is taken; the right picture shows
a magnified view of the area around the robot. Note that a persay be occluded by another person or
objects in the map, so grey dots do not always reflect the memeof people instantly. A refined action
model for people€.g, Apeople (U]a, o, s, s’) or one estimating not only the position but also the veloaity
each person) would alleviate the problem.

5.4 Robotic mapping

Robotic mapping [75] is the problem of building a map (or atsppanodel) of the environment from sensor
readings. Since measurements are a sequence of inacarateshapshots of the environment, a robot
simultaneously localizes itself as it explores the envinent so that it corrects and aligns local snapshots to
construct a global map. For this reason, robotic mappings@@ferred to asimultaneous localization and
mapping(or SLAM).
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Taking a probabilistic approach, we formulate the robotepping problem with a Bayes filter which
maintains a probability distributiofsel(s, g) of robot poses and mapy. Given an actiorn and a measure-
mentm, we updateBel(s, g) as follows:

(5.9) Bel(s,g) « [y ,A(s.gla,s',g")Bel(s',g')d(s',q)
(5.10) Bel(s,g) < nP(mls,g)Bel(s,g)

We assume that an action is independent of the map and dogsamgte the environment; thatid(s, g|a, s, ¢')
= A(s|a,s) if g = ¢, andA(s,gla,s',¢") = 0if g # ¢’. Then we can simplify update equation (5.9) as
follows:

(5.11) Bel(s,g) «— [,A(s|a,s")Bel(s', g)ds'

Therefore the action model becomes the same as in roboizatiah. We implement the new update
equation (5.11) as follows:

let Bely,e, = prob sample (s, g) from Belyq in sample s from M 4 (a,s’) in (s, g)

The update equation (5.10) is implemented with a Bayes tiperas before.

Unfortunately the space of maps has a huge dimension, whaglesrit impossible to maintaiBel(s, g)
without simplifying their representation. Therefore weualy make additional assumptions on maps to
derive a specific representation. For example, assumingatheap consists of a set of landmarks whose
locations are estimated with Gaussian distributions, weuse a Kalman filter instead of a general Bayes
filter. If measurements, or local snapshots of the envirartprere assumed to be accurate relative to robot
poses, we can represent a map by the sequence of robot poseshglhmeasurements are taken, as in [38].
We can also exploit expectation maximization [14], in whied perform hill climbing in the space of maps
to find the most likely map. This approach does not maintairobability distribution over maps because it
keeps only one (most likely) map at each iteration.

Here we assume that the environment consists of an unknombeof stationary landmarks. Then
the goal is to estimate positions of landmarks as well as dbetrpose. The key observation is that we
may think of landmarks as people who never move in an emptiya@mment. It means that the problem is
a special case of people tracking and we can use all the egedti Figure 5.9. Below we use subscript
landmark INStead of,qp1e fOr the sake of clarity.

As in people tracking, we maintain a probability distritmntiBel(s, Ps()) of robot poses and prob-
ability distribution P,(%) of positions of landmarks conditioned on robot pose Since landmarks are
stationary andA|andmark(ﬁ]a,J’, s,s’) is non-zero if and only ifi = ul, we skip update equation (5.6) in
implementing update equation (5.3%,050t iN equation (5.5) use”s'ﬁandmark(mh?, s) to test the likelihood
of each new robot posewith respect to old positioné” of landmarks, as in FastSLAM 2.0 [48]:

(5.12) Arobot(8|a>m> S/>PS’ (,L?/))
= [Prob(s|a,m, s, u') Py (u)du
/Prob(s\a,QZ’)Prob(m, s'|s, a,)

Prob(m, s'|a, )

Py (u')du'

Prob(s|a, ')

Prob(m, s'|a,u)

= [ Prob(m,s'|s,a,u') Py (u/)du! where 7" =

= [n"Prob(s|s, a,u,m)Prob(m|s, a,u’) Py (u')du'
[n Prob(s'|s, a) Prob(m|s, W) Py (v du!
= "7//~Arobot(3|aa 3/)fplandmark (m|Jl> S)Ps’ (’L;/)d’LZ/
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Givena ands’, we implement equation (5.12) with a Bayes operationdasyo: (-|a, s').

Figure 5.13 shows the implementation of robotic mappingT® PCompared with the implementation
of people tracking in Figure 5.10, it omits update equat®®) and incorporates equation (5.12).4,,
and Mp, . . denote conditional probabilitiesl,opor @and Plandmark, respectively, as in people tracking.
Since landmarks are stationary, we no longer néég . . If we approximateBel(s, Ps(u)) with a
single samplei(e., with one most likely robot pose and an associated map),taptpuation (5.4) becomes
unnecessary.

Experimental results

To test the mapper, we use a data set collected with an outdbdicle in Victoria Park, Sydney [1]. The
mapper runs on the same machine that is used in robot lottatizend people tracking (Pentium Il 500Mhz
with 384 MBytes memory). The data set is collected while thiigle moves approximately 323.42 meters
(according to the odometry readings) in 128.8 seconds.eSh&evehicle is driving over uneven terrain, raw
odometry readings are noisy and do not reflect the true patheofehicle, in particular when the vehicle
follows a loop.

Figure 5.14 shows raw odometry readings in the data set. rlieepositions of the vehicle measured
by a GPS sensor are represented by crosses, which are &vaildip for part of the entire traverse and
are not exploited by the mapper. Note that the odometry ngadéeventually diverge from the true path
of the vehicle. Figure 5.15 shows the result of the robotippirgg experiment in which we approximate
Bel(s, Ps(i)) with a single sample and use 1,000 samples for the expattatiery and the Bayes operation.
The circles represent landmark positions (mean of theibgiodity distributions). The mapper successfully
closes the loop, building a map of the landmarks around tltte pche experiment, however, takes 145.89
seconds, which is 13.26% longer than it takes to collect #ia dget (128.8 seconds).

5.5 Summary

PTP is a probabilistic language which allows programmertwentrate on how to formulate probabilistic
computations at the level of probability distributionsgaedless of the kind of probability distributions
involved. The three applications in robotics substantia¢gpracticality of PTP by illustrating how to directly
translate a probabilistic computation into code and primgigexperimental results on real robots.

Our finding is that the benefit of implementing probabilistiemputations in PTP, such as improved
readability and conciseness of code, can outweigh its disdege in speed. For example, our robot localizer
is 1307 lines long (826 lines of Objective CAML/PTP code foolpabilistic computations and 481 lines of
C code for interfacing with CARMEN) whereas the CARMEN rolatalizer, which uses patrticle filters
and is written in C, is 3397 lines long. (Our robot localizéscauses the translator of PTP which is 306 lines
long: 53 lines of CAMLP4 code and 253 lines of Objective CAMade.) The comparison is, however,
not conclusive because not every piece of code in CARMENTritnries to robot localization. Moreover
the reduction in code size is also attributed to the use oé@bEe CAML as the host language. Hence the
comparison should not be taken as indicative of reducticzoate size due to PTP alone. The speed loss is
also not significant. For example, while the CARMEN robotdiimer processes 100.0 sensor readings, our
robot localizer processes on average 54.6 sensor readingsévertheless shows comparable accuracy).

On the other hand, PTP does not allow programmers to expledrticular representation scheme for
probability distributions, which is inevitable for achiag high scalability in some applications. In the
robotic mapping problem, for example, one may choose tocqimiate the position of each landmark with a
Gaussian distribution. As the cost of representing a Ganssstribution is relatively low, the approximation
makes it possible to build a highly scalable mapper. For gtenMontemerlo [48] presents a FastSLAM
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2.0 mapper which handles maps with over 1,000,000 landmé&dssuch a problem, PTP would be useful
for quickly building a prototype implementation to test tm@rectness of a probabilistic computation.
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Figure 5.8: Progress of a real-time robot localization run. Taken at @bsads, 40 seconds, and 80 seconds after
processing the first batch of sensor readings in Figure 5.1.
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[A(s, Py(@)|a,m, s, Py (u))Bel(s', Py (u))d(s', Py (u'))

(5.3) Bel(s, Ps(d@)) «
(5.4) Bel(s, Ps(@)) <« nP(m]s, P( i))Bel(s, Ps(1))
= nBel(s, Ps(u preop|e(m]u s)Ps(@)du
(5.5) A(s, Ps(i)|a,m, s’, Py (J)) = Prob(s|la,m,s’, Py(u )) Prob(Ps(i@)|a,m, s', Py (u ’),s)
= Arobot(s|a,m, s, Py (u )) Prob( s ( )]a,m,s,Ps/(zp),s)
(5.6) Py(@) « [Prob(ila, u', 5,8 )Py (u)du
= [Apeople(tla, o ,8,8 )Py (u )du
(5.7) P,(@) « n'Prob(ml|i,s,s")Ps(i)

s (
= 77/7Dpe0ple (mld, ) Ps(1)

Figure 5.9: Equations used in people tracking. (5.3) and (5.4) for thgeBdilter computingBel(s, Ps()). (5.5) for
decomposing the action model. (5.6) and (5.7) for the inragreB filter computing?, ().

let Belyew = )
prob sample (s', Py (u/)) from Bel in

sample s from M4, (a,m,s’, Py (—‘)) in

let P,(7) = prob sample o’ from Py (u/) in
sample @ from My, . (a, s, s')in ¢ (5.6) (5.3)
@ (5.5)

in
let Py() = bayes (Mp,,,.,. m s) Ps() in }(5.7)
(s, Ps(1)) ) y
let Belyew = } (5.4)
bayes (s, Ps(%)): _. (expectation (Mp,,,.,. m s) Ps(i)) Bel '

Figure 5.10: Implementation of people tracking in PTP. Numbers on thktrltand side show corresponding equa-
tions in Figure 5.9.
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Figure 5.11: Progress of a real-time people tracking run. Taken at 0 ;020 seconds, and 70 seconds after
processing the first batch of sensor readings in Figure 5.1.
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Figure 5.12: Range readings and the area around the robot during a peaghkétg run.

let Belpew =
prob sample (s, Py (u')) from Bel in
sample s from

-

bayes \s:_. (expectation (Mp, .. ms) Py(u')) (5.12) (5.3)
(M Aoy (@, ) in (5.5)
let P;(i7) = bayes (Mp,,, ., m s) Py(u/) in } (5.7)
(s, Ps(10))
let Belpew = bayes (s, Py(1)): _. (expectation (Mp,, ., m s) Ps(@)) Bel 1 (5.4)

Figure 5.13: Implementation of robotic mapping in PTP.
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Figure 5.14: Raw odometry readings in the robotic mapping experiment.
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Figure 5.15: Result of the robotic mapping experiment.
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Chapter 6

Conclusion

We have presented a probabilistic language PTP whose maticairbasis is sampling functions. PTP sup-
ports all kinds of probability distributions — discrete tlibutions, continuous distributions, and even those
belonging to neither group — without drawing a syntacticemantic distinction. We have developed a lin-
guistic framework\o for PTP and demonstrated the use of PTP with three applicatiorobotics. To the
best of our knowledge, PTP is the only probabilistic languagth a formal semantics that has been applied
to real problems involving continuous distributions. Ténare a few other probabilistic languages that are
capable of simulating continuous distributions (by conrmran infinite number of discrete distributions),
but they require a special treatment such as the lazy evatustrategy in [33, 59] and the limiting process
in [24].

PTP does not support precise reasoning about probabilyitditions. Note, however, that this is
not an inherent limitation of PTP due to its use of samplingctfions as the mathematical basis; rather
this is a necessary feature of PTP because precise reasyong probability distributions is impossible in
general. In other words, if PTP supported precise reasoitinguld support a smaller number of probability
distributions and operations.

The utility of a probabilistic language depends on each lpratxo which it is applied. PTP is a good
choice for those problems in which all kinds of probabilitigtdbutions are used or precise reasoning is
unnecessary. Robotics is a good example, since all kindsoblpility distributions are used (even those
probability distributions similar tgoint_uniform in Section 3.2 are used in modeling laser range finders)
and also precise reasoning is unnecessary (sensor readmgsaccurate at any rate). On the other hand,
PTP may not be the best choice for those problems involvidyg discrete distributions, since its rich
expressiveness is not fully exploited and approximateor@ag may be too weak for discrete distributions.

Although we have presented only an operational semantid3Téf (which suffices for all practical
purposes), a denotational semantics can also be used ® tigfUP TP is a probabilistic language. It may
also answer important questions about PTP such as:

e What is exactly the expressive power of PTP?
e Can we encode any probability distribution in PTP?
¢ If not, what kinds of probability distributions are impadsts to encode in PTP?

The challenge is that in the presence of fixed point construceasure theory does not come to our rescue
because of recursive equations. Hence a domain-theotaiittige for probability distributions should be
constructed to properly handle recursive equations. The Wy Jones [30] suggests that such a structure
could be constructed from a domain-theoretic model of reatiers [17].
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The development of PTP is an effort to marry, in one of manysiids ways, two seemingly unrelated
disciplines: programming language theory and roboticsprbgramming language theory, it contributes a
new linguistic framework\o and another installment in the series of probabilistic leages. To robotics,
it sets a precedent that a high level formulation of a probtlras not always have to be discarded when it
comes to implementation. It remains to be seen in what otlags\the two disciplines can be married.
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