
Representing ControlA Study of the CPS transformation �Olivier DanvyKansas State University y(danvy@cis.ksu.edu) Andrzej FilinskiCarnegie Mellon University z(Andrzej.Filinski@cs.cmu.edu)February 1991; Revised June 1992AbstractThis paper investigates the transformation of �v -terms into continuation-passing style(CPS). We show that by appropriate �-expansion of Fischer and Plotkin's two-passequational speci�cation of the CPS transform, we can obtain a static and context-freeseparation of the result terms into \essential" and \administrative" constructs. In-terpreting the former as syntax builders and the latter as directly executable code,we obtain a simple and e�cient one-pass transformation algorithm, easily extended toconditional expressions, recursive de�nitions, and similar constructs. This new trans-formation algorithm leads to a simpler proof of Plotkin's simulation and indi�erenceresults.Further we show how CPS-based control operators similar to but more general thanScheme's call/cc can be naturally accommodated by the new transformation algo-rithm. To demonstrate the expressive power of these operators, we use them to presentan equivalent but even more concise formulation of the e�cient CPS transformationalgorithm.Finally, we relate the fundamental ideas underlying this derivation to similar conceptsfrom other work on program manipulation; we derive a one-pass CPS transformationof �n -terms; and we outline some promising areas for future research.�To appear in the journal Mathematical Structures in Computer Science. Technical Report CIS-91-2 (revisedversion), Department of Computing and Information Sciences, Kansas State University.yDepartment of Computing and Information Sciences, Kansas State University, Manhattan, Kansas 66506, USA.This work was partly supported by NSF under grant CCR-9102625.zSchool of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.1



Contents1 Introduction and Motivation 42 Classical CPS transformation 52.1 First step : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.2 Second step : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.3 Third step : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82.4 Completing the transformation: the other syntactic constructions : : : : : : : : : : : 82.5 The complete transformation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.6 Tail-calls and �-redexes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113 Reduction properties 124 Enriching the CPS transformation 174.1 CPS translation of extended and applied �v -terms : : : : : : : : : : : : : : : : : : : 174.2 On duplicating contexts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 184.3 Currying vs. tupling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 194.4 Multi-argument functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 205 Abstracting Control 215.1 Reynolds's escape operator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 215.2 Shift and reset : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 225.3 Control and prompt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 225.4 CPS translation of terms that use shift and reset : : : : : : : : : : : : : : : : : : : : 235.5 Translating control operations in one pass : : : : : : : : : : : : : : : : : : : : : : : : 245.6 The problem of name clashes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 255.7 Direct Transformation into CPS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 256 Related Work 266.1 CPS transformation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 266.2 Primitive operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 276.3 Control operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 276.4 Partial evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 287 Conclusion and Issues 28A Call by Name 33A.1 Continuations �rst : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 352



List of Figures1 Fischer & Plotkin's CPS transformation of �v -terms : : : : : : : : : : : : : : : : : : 52 One-pass CPS transformation of �v -terms : : : : : : : : : : : : : : : : : : : : : : : : 93 One-pass, \properly tail-recursive" CPS transformation of �v -terms : : : : : : : : : : 114 One-pass CPS transformation of extended and applied �v -terms : : : : : : : : : : : : 185 Direct-style, one-pass CPS transformation of �v -terms : : : : : : : : : : : : : : : : : 266 Plotkin's CPS transformation of �n-terms : : : : : : : : : : : : : : : : : : : : : : : : 337 One-pass CPS transformation of �n -terms : : : : : : : : : : : : : : : : : : : : : : : : 338 One-pass, \properly tail-recursive" CPS transformation of �n -terms : : : : : : : : : 349 One-pass, \properly tail-recursive" CPS transformation of �n-terms with continua-tions �rst : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

3



1 Introduction and MotivationThe usual presentation of the continuation-passing style (CPS) transformation [35] is concise andsimple, but tends to yield unreasonably large residual terms containing a lot of \administrativeredexes." While these redexes turn out to be relatively harmless from a theoretical perspective,they do require a special twist (the so-called \colon-translation") for proving certain importantproperties of the transformation [35, 39, 31].In practice, eliminating the administrative redexes is absolutely essential to obtain transformedterms of a manageable size. However, such a \post-reduction" pass is often integrated with other,independent simpli�cations and optimization steps, and leads to relatively complex CPS transform-ers [43].In the following, we will consider a systematization of the two-pass CPS transformation byfocusing the attention on redexes that are introduced by the transformation itself, and by explicitlynot reducing what would correspond to redexes in the source �-term. Exploiting this distinction,we show that it is possible to perform all the administrative reductions \on the 
y" in a single pass,without ever constructing the unreduced terms explicitly.The CPS transformation permits a simple de�nition of generalized escape constructs likeScheme's call/cc. Such operators are often perceived to eliminate the need for explicit CPS pro-grams. However, sometimes the greater generality of \genuine" CPS is actually needed to expressan algorithm (e.g., to implement backtracking [28].) Our investigation of the CPS transform leadsnaturally to the introduction of two new control operators, shift and reset, which allow the ad-ditional power of general CPS to be exploited in direct style programs. As an example, we willshow how these operators permit us to express the e�cient CPS transformation algorithm derivedin this paper even more concisely.PrerequisitesIn the following, we will assume a basic familiarity with CPS and the �v -calculus, i.e., the ap-plicative order �-calculus that forms the core of languages such as Scheme [5] and Standard ML[29].For convenience in referring to individual applications, we will generally express them with anexplicit operator @, writing @MN instead of the traditional simple juxtaposition MN . This is apurely syntactical variation: no change or re�nement of semantics is implied by the @-notation.As in Standard ML, but in contrast to Scheme, we will also assume a strict left-to-right eval-uation order, i.e., that in an application @MN , M is evaluated before N . Where this distinctionmatters (i.e., when both M and N are potentially nonterminating or \escaping" terms), the evalu-ation order of Scheme programs will be considered �xed through a let or a similar construct. Note,however, that we adopt this convention only to simplify the presentation, not to advocate a generalstyle of programming which depends implicitly on argument evaluation order.Occasionally, we will use Reynolds's notion of \serious" and \trivial" �v -terms [38]. Evaluatinga serious term might loop so this term must be transformed into CPS, whereas evaluating a trivialone cannot loop so this term does not need to be transformed.4



[[x]] = ��:@�x[[�x:M ]] = ��:@�(�x:[[M ]])[[@MN ]] = ��:@[[M ]] (�m:@[[N ]] (�n:@(@mn)�))Figure 1: Fischer & Plotkin's CPS transformation of �v -termsFinally, let us recall the main property of a CPS �-term: the independence of its reduction order.Reducing a CPS term with the call-by-name (CBN) or with the call-by-value (CBV) strategies yieldsthe same evaluation steps [38, 35].OverviewThe rest of this paper is organized as follows. Section 2 describes the stepwise derivation of aone-pass CPS transformer from Plotkin's two-pass equational speci�cation. Theorem 1 states thatthe one-pass transformer computes a result ��-equivalent to the original Fischer/Plotkin transfor-mation. Section 3 investigates the reduction properties of the one-pass transformer. Theorem 2captures Plotkin's \Indi�erence" and \Simulation" theorems for the original CPS translation. Sec-tion 4 extends the one-pass transformer to handle conditional expressions, recursive de�nitions, etc.Section 5 introduces control operators and their CPS transformation. Using these control operators,it presents a one-pass CPS transformer in direct style. Section 6 reviews related work on continu-ations and partial evaluation, and Section 7 concludes. Section A reproduces the development ofSection 2 on Plotkin's CPS transformer for �n -terms.2 Classical CPS transformationLet us consider Fischer and Plotkin's equational speci�cation for transforming a �v -term into CPS[20, 35], as displayed in Figure 1. Source terms are represented between double brackets and � isa fresh variable.Taken literally, this translation yields many arti�cial \administrative" redexes that must be post-reduced in a second pass; only then do we obtain a result in what is commonly recognized as\continuation-passing style" [43]. For example, translating�f:�x:�y:@(@f y)xresults in�k:@k (�f:�k:@k (�x:�k:@k (�y:�k:@ (�k:@(�k:@kf)(�m:@(�k:@ky)(�n:@(@mn)k)))(�m:@(�k:@kx)(�n:@(@mn)k)))))whose post-reduction yields�k:@k (�f:�k:@k (�x:�k:@k (�y:�k:@(@f y)(�m:@(@mx)k))))Conversely, an overly enthusiastic post-reducer is likely to perform too many reductions, i.e.,ones that would correspond to actual reductions in the source term. While this may be useful in5



its own right, it should not automatically be considered a part of the CPS transformation proper.In particular, excessive post-reduction can lead to uncontrolled \code duplication" in the result or,in the untyped case, even nontermination of the simpli�cation.In the following, we will therefore concentrate on integrating the �rst and the second passessubject to the two constraints: (1) a one-pass translation should not introduce any administrativeredex; and (2) a one-pass translation should not perform any reduction that would correspond toreducing a source term.Our derivation is simple. We analyze the original equational speci�cation, identifying whereredexes get built, independently of any actual source �-term. When these redexes are \context-independent" we reduce them at translation time. When they are \context-dependent" we alter thetranslation with meaning-preserving transformations to make the construction of redexes context-independent. The goal of the game is to stage the CPS transformation into a \translation-time"part and a \run-time" part.For precision and conciseness in the text, let us label the six lambdas and the six applicationsof this speci�cation: [[x]] = �1�:@1�x[[�x:M ]] = �2�:@2�(�3x:[[M ]])[[@MN ]] = �4�:@3[[M ]] (�5m:@4[[N ]] (�6n:@5(@6mn)�))Our development is structured in three steps.2.1 First stepAs can be observed, the result of each elementary transformation (of a variable; of an abstraction;of an application) is an abstraction.Question 1 Where can the abstractions �1, �2, and �4 occur in the residual CPS term beforepost-reduction?Answer { by cases: (a) as the body of �3; (b) as the �rst argument of @3; (c) as the �rst argumentof @4. In cases (b) and (c) the translation is building a redex that can be simpli�ed by �-reduction.In case (a) no simpli�cation can take place immediately.As a consequence, whether the abstractions �1, �2, and �4 are post-reducible is context-dependent.Question 2 Can we get rid of this dependence?Answer { yes, by introducing one �-redex in the de�nitional translation of abstractions. This newredex will exhibit the continuation of the body:[[�x:M ]] = �2�:@2�(�3x:�7k:@7[[M ]]k)The new redex is safe (in the sense of preserving operational behavior under both CBN and CBV)because [[M ]] is itself a �-abstraction. (Expanding \@f a" to \�x:@(@f a)x" is not in general6



meaning-preserving, even if \@f a" has a functional type. Expanding \f" to \�x:@f x" or \�y:E"to \�x:@(�y:E)x" is safe.)Remark: Such an �-expansion may be felt as a step backwards in optimizing thetranslation, since �-reduction is usually perceived as an actual optimization step. In fact,and as illustrated by this development, the premature optimization in the translationof �-abstractions contributes to muddying the water in the translated terms.Now let us repeat Question 1:Question 3 Where can the abstractions resulting from each elementary transformation occur inthe residual term?Answer { by cases: (a) as the �rst argument of @7; (b) as the �rst argument of @3; (c) as the �rstargument of @4.Therefore, the translation is building a �-redex. This redex can be simpli�ed unconditionally.2.2 Second stepSince the three �-abstractions �1, �2, and �4 will be reduced at translation time, let us enumeratetheir possible arguments.Question 4 Which syntactic constructs can be denoted by � in �1, �2, and �4?Answer { by cases: (a) the second argument of @7 is an identi�er k; (b) the second argument of@3 is �5; (c) the second argument of @4 is �6.Again, the situation is irregular: if the argument of these applications (i.e., the value denotedby �) later gets applied, this application will be reducible in cases (b) and (c) only, i.e., in acontext-dependent fashion.Question 5 Can we get rid of this dependence?Answer { yes, by introducing another �-redex in the translation of abstractions. This redex willexhibit the application of the continuation.[[�x:M ]] = �2�:@2�(�3x:�7k:@7[[M ]] (�8m:@8km))Now let us repeat Question 4:Question 6 Which syntactic constructs can be denoted by �?Answer { by cases (a) the second argument of @7 is �8; (b) the second argument of @3 is �5; (c)the second argument of @4 is �6.Now the di�erent occurrences of � are ensured to denote �-abstractions only.7



2.3 Third stepQuestion 7 Where do these � occur?Answer { by cases: (a) as the �rst argument of @1; (b) as the �rst argument of @2; (c) as thesecond argument of @5. In cases (a) and (b), the translation is building a redex that can besimpli�ed by �-reduction. In case (c) no simpli�cation can take place immediately.As a consequence, whether the application of a � is post-reducible is context-dependent sincein case (c) � does not occur in function position in an application.Question 8 Can we get rid of this dependence?Answer { yes, by introducing a last �-redex in the de�nitional translation of applications. Theredex will exhibit sending the result of an application to the continuation.[[@MN ]] = �4�:@3[[M ]] (�5m:@4[[N ]] (�6n:@5(@6mn)(�9a:@9�a)))Now let us repeat Question 7:Question 9 Where do the � occur?Answer { by cases: (a) as the �rst argument of @1; (b) as the �rst argument of @2; (c) as the �rstargument of @9.As a consequence, because by construction the translation is building a �-abstraction which isensured to occur in function position in an application, we can classify these �-abstractions andapplications to be simpli�able unconditionally.To summarize, let us overline the �-abstractions and the applications that will be reducedunconditionally as a part of the translation. Since they exist only at translation time we refer tothem as \static." [[x]] = �1�:@1�x[[�x:M ]] = �2�:@2�(�3x:�7k:@7[[M ]] (�8m:@8km))[[@MN ]] = �4�:@3[[M ]] (�5m:@4[[N ]] (�6n:@5(@6mn)(�9a:@9�a)))2.4 Completing the transformation: the other syntactic constructionsWe can also list the possible arguments of the �: they are the second arguments of @1, @2, and@9, i.e., (a) an identi�er x; (b) �3; (c) an identi�er a. These may be bound to m in �5, n in �6,and m in �8.� In �5, m occurs as the �rst argument of @6.{ If m is bound to x or a no simpli�cation is possible.{ If m is bound to �3 then a �-reduction is possible but it would correspond to a reductionin the original term; therefore we do not want to perform it. Thus @6 must be classi�edas irreducible and so is �3 and thus �7.8



[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@�x[[�x:M ]] = ��:@�(�x:�k:@[[M ]] (�m:@km))[[@MN ]] = ��:@[[M ]] (�m:@[[N ]] (�n:@(@mn)(�a:@�a)))Figure 2: One-pass CPS transformation of �v -terms� In �6, n occurs as the second argument of @6 which is irreducible.� In �8,m occurs as the second argument of @8 that cannot be reduced since the �rst argumentis the identi�er k.As a consequence, the �rst argument of @5 is irreducible and thus @5 is irreducible. As anotherconsequence, the second argument of @5 must be irreducible.To summarize, let us underline the abstractions and the applications that will be built uncon-ditionally as a part of the translation. Since they are part of the transformed term, we refer tothem as \dynamic."[[x]] = �1�:@1�x[[�x:M ]] = �2�:@2�(�3x:�7k:@7[[M ]] (�8m:@8km))[[@MN ]] = �4�:@3[[M ]] (�5m:@4[[N ]] (�6n:@5(@6mn)(�9a:@9�a)))As a simple inspection of this two-level speci�cation shows, the only application that couldpossibly be a dynamic �-redex (i.e., a redex in the resulting CPS term) is @6. This happens ifand only if m is bound to a dynamic �, which again happens if and only if M is a �-abstraction,so the source term contains a �-redex at this point. We do not want to reduce a dynamic �-redexbecause it would correspond to reducing a �-redex in the source term, which is not the job of theCPS transformation.2.5 The complete transformationTo conclude, Figure 2 shows the �nal version of the transformer, without labels since they were onlyused for expository purposes. With its static/dynamic annotations, it can be read as a two-levelspeci�cation �a la Nielson and Nielson [34]. Operationally, the overlined �'s and @'s correspondto functional abstractions and applications in the translation program, while only the underlinedoccurrences represent abstract-syntax constructors.Transforming a �-term into CPS amounts to representing contexts (i.e., �-terms with a hole) as�-abstractions. An empty context (e.g., top-level) is represented with the identity function. Anarbitrary (\dynamic") context is represented with some continuation k.The result of transforming a term M into CPS in an empty context is given by@[[M ]] (�m:m)9



whereas the result of transforming a term M into CPS in a dynamic context is given by�k:@[[M ]] (�m:@km)As can be noticed, both initial contexts are represented with translation-time �-abstractions, asdictated by the answer to Question 6. In the rest of this section, we refer to such translation-time�-abstractions as static continuations.This instrumented new translation yields terms without extraneous redexes, in one pass. Thestatic/dynamic distinction aimed at de�ning all the administrative �-redexes. These administrative�-redexes are bound at translation time and therefore they do not occur in residual terms.The above development is summarized in the following theorem.Theorem 1 This equational speci�cation, i.e., �k:@[[M ]] (�m:@km), computes a result ��-equiva-lent to the original Fischer/Plotkin transformation.Proof: We started from Fischer & Plotkin's speci�cation and altered it in a meaning-preservingway, by introducing three �-redexes. We obtained a staged speci�cation where static and dynamicconstructs are not only distinct but context-independent. (Using Nielson and Nielson's terminology[34, 33], our two-level speci�cation is \well-typed.") We can now reduce away all the static �-redexes.Moreover, since the speci�cation is compositional, a simple typing argument su�ces to showthat it is well-de�ned for all source terms, i.e., that the static reductions do in fact terminate.Only the static lambdas and applications matter; for the purpose of termination, the dynamiclambdas/applications are just uninterpreted constructors. And the static part of the transformationis simply typed, with a single base type \syntax"; the �'s all have type \syntax ! syntax" andthe other static variables just have type \syntax". In particular, given an initial continuation �,@[[M ]]� is a strongly normalizable term of type \syntax". Thus, when interpreted as a functionalprogram, the transformation always terminates (and in essentially linear time, since none of thestatic data is ever duplicated).Finally, no redexes of the original term are reduced: the \�x" of an abstraction in the sourceterm is always translated into a dynamic \�x", (i.e., a syntax constructor) in the correspondingCPS term, and hence is never reduced away. 2Observation 1 A �v -term and its CPS counterpart are related as follows:� A variable is translated into itself.� A �-abstraction is translated into two �-abstractions and one application.� An application is translated into two applications and one �-abstraction.This observation provides a simple correspondence between the size of a term and its CPScounterpart. Moreover, since for all of the new �-abstractions introduced by the translation, theabstracted variable occurs exactly once in the body, this relationship extends directly to the numberof reduction steps performed during evaluation of the two terms (more about this in Section 3).10



[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@�x[[�x:M ]] = ��:@�(�x:�k:@[[M ]]0k)[[@MN ]] = ��:@[[M ]] (�m:@[[N ]] (�n:@(@mn)(�a:@�a)))[[:::]]0 : syntax! syntax[[x]]0 = �k:@kx[[�x:M ]]0 = �k:@k (�x:�k:@[[M ]]0k)[[@MN ]]0 = �k:@[[M ]] (�m:@[[N ]] (�n:@(@mn)k))Figure 3: One-pass, \properly tail-recursive" CPS transformation of �v -terms2.6 Tail-calls and �-redexesWhile introducing �-redexes is crucial to avoid building �-redexes in residual terms, in one simplecase it yields extra �-redexes in the transformed program. Not surprisingly this arises for tail-calls,as illustrated here: @[[�f:@f x]] (�m:m) = �f:�k:@(@f x)(�a:@ka)instead of �f:�k:@(@f x)kFour straightforward possibilities come to the mind. We can leave these �-redexes where they are(which might be actually useful if the term is subjected to further transformation or if Observation1 is used since tail-call optimizations change the number of reduction steps.) We can detect whena newly constructed �-abstraction is actually an �-redex and simplify it at this time. We caninstrument the translation with an inherited attribute identifying tail-call contexts, eliminating thedynamic tests on term structure entirely. Or equivalently we can duplicate the rules to account fortail-call contexts, as in Figure 3, and in a way reminiscent of Clinger's double induction proof inhis Scheme compiler [4].Rationale: The auxiliary translation [[:::]]0 is used when the static continuation wouldhave the form �m:@km; this avoids building an �-redex in the transformation of appli-cations (hence the term \properly tail-recursive" [43]).The result of transforming a term M into CPS in an empty context is still given by@[[M ]] (�m:m)whereas the result of transforming a term M into CPS in a dynamic context is now simply�k:@[[M ]]0k11



By construction, this instrumented new translation yields terms without extraneous �-redexes,and of course with no �-redexes, in one completely syntax-directed pass. And since the onlydi�erence with the transformation in Figure 2 is the elimination of trivial �-redexes, the newtranslation preserves the statement of Theorem 1.3 Reduction propertiesWe can now formulate results about the new CPS translation analogous to the ones for the originalspeci�cation. Moreover, since we have eliminated all administrative redexes \once and for all", theproofs become considerably simpler than for the unoptimized translation.It may be worth quickly going over why administrative redexes raise problems in the originaltranslation [35, 39]. Ideally, the following implication would hold:M !v N ) @[[M ]] (�x:x)!�v @[[N ]] (�x:x)Unfortunately, the administrative redexes get in the way of such a result. What really happensis the following: �rst, by a sequence of administrative reductions, @[[M ]] (�x:x) !�v M 0. ThenM 0 !v N 0, corresponding to the original redex. However, there is no reason to expect than N 0now reduces to @[[N ]] (�x:x); in fact, it would have to expand back to recreate the administrativeredexes of the latter.One therefore has to prove instead that the implication above holds \modulo administrativereductions". This is formalized by the so-called \colon-translation" developed by Plotkin [35]. Forany term M and value K, one de�nes syntactically a term M : K and proves it equal to @[[M ]]Kwith the �rst series of administrative reductions performed (i.e., corresponding to the term M 0above). One then proves that if M !v N then M : K !�v N : K. Finally, for every reductionsequence M0 !v M1 !v :::!v Vwhere V is a non-functional value, one can take K = �x:x and get@[[M0]] (�x:x)!�v M0 : (�x:x)!�v M1 : (�x:x)!�v :::!�v V : (�x:x) = @(�x:x)V !v VIt is crucial to note that the colon-translation only removes enough redexes to \expose" the�rst real reduction. In particular, it never removes redexes within �-abstractions. Nor does it haveto, since it only acts as a proof technique, not a \code optimization" pass. In the new translation,on the other hand, we get a direct correspondence between reduction steps in the original and thetranslated term.Remark: It does seem possible to modify the colon-translation to perform more ad-ministrative reductions at translation time [22]. Nevertheless, a practical translation(i.e., for a full language like Scheme) based on such an approach could be awkward be-cause of the combinatorial explosion arising from translation-time distinctions betweenvalues and non-values in source terms. 12



Let us �rst observe a few elementary properties of the two-level translation. To simplify thepresentation, we will generally treat �-equivalent dynamic terms as equal.De�nition 1 If V is a value (i.e., either a variable or an abstraction), we de�ne	(V ) = @[[V ]] (�x:x)(This di�ers from Plotkin's 	 in that the latter does not eliminate administrative redexes insidetransformed �-abstractions). It is immediate that 	(V ) is itself a value.Lemma 1 If V is a value and P is not a value (i.e., an application), the following simple propertieshold (where K is any term, that is, a term of type syntax and � a static continuation, that is, aterm of type syntax ! syntax): @[[V ]]� = @�(	(V ))@[[V ]]0K = @K (	(V ))@[[P ]]� = @[[P ]]0 (�a:@�a)Proof: Immediate in all cases. 2Let us write substitution of N for x in M as M [x N ]. Now, we need to show that the staticparts of the translation do not interfere with substitution.De�nition 2 We say that a variable x occurs free in a static continuation � if for some M itoccurs free in @�M but not in M . � is called schematic if for any terms M and N , and variablex not occurring free in �, (@�M)[x N ] = @�(M [x N ])(informally, this ensures that � preserves the syntactic structure of its argument, and does notcapture any free variables occurring in it).One easily sees that any � de�ned using only static abstraction, static application, and thesyntax constructors (with any dynamic abstractions introducing only \new" variables) is schematic.We can now formalize how substitution of arbitrary values for identi�ers commutes with CPS-translation:Lemma 2 Let M be a term, V a value, x a variable, and let � be a schematic continuation andK any term. Then @[[M [x V ]]]� = (@[[M [x x0]]]�)[x0 	(V )]@[[M [x V ]]]0K = (@[[M [x x0]]]0K)[x0 	(V )]where x0 is a new variable (the renaming is necessary to take care of the case when x occurs freein � or K).Proof: By induction on M . All cases are straightforward (let y 6= x):13



@[[x[x V ]]]� = @[[V ]]� = @�(	(V )) = @�(x0[x0 	(V )])= (@�x0)[x0 	(V )] = (@[[x[x x0]]]�)[x0 	(V )]@[[y[x V ]]]� = @[[y]]� = (@[[y[x x0]]]�)[x0 	(V )]@[[(�x:M)[x V ]]]� = (same as y[x V ])@[[(�y:M)[x V ]]]� = @[[�y:M [x V ]]]� = @�(�y:�k:@[[M [x V ]]]0k)= @�(�y:�k:(@[[M [x x0]]]0k)[x0 	(V )])= (@�(�y:�k:@[[M [x x0]]]0k))[x0 	(V )]= (@[[�y:M [x x0]]]�)[x0 	(V )]= (@[[(�y:M)[x x0]]]�)[x0 	(V )]@[[(@MN)[x V ]]]� = @[[@(M [x V ])(N [x V ])]]�= @[[M [x V ]]] (�m:@[[N [x V ]]] (�n:@(@mn)(�a:@�a)))= (@[[M [x x0]]] (�m:(@[[N [x x0]]] (�n:@(@mn)(�a:@�a)))[x0 	(V )]))[x0 	(V )]= (@[[M [x x0]]] (�m:@[[N [x x0]]] (�n:@(@mn)(�a:@�a))))[x0 	(V )]= (@[[@(M [x x0])(N [x x0])]]�)[x0 	(V )]= (@[[(@MN)[x x0]]]�)[x0 	(V )]The cases for the second equation are analogous. 2Let us now recall the formal de�nition of the reduction strategies [35]:De�nition 3 One-step by-value reduction is de�ned as follows:@(�x:M)V !v M [x V ] M !v M 0@MN !v @M 0N N !v N 0@V N !v @V N 0(where V is a value), and similarly one-step by-name reduction:@(�x:M)N !n M [x N ] M !n M 0@MN !n @M 0N N !n N 0@xN !n @xN 0We write M !a N if both M !v N and M !n N . For any of the three reduction relations !,we use !+ and !� to refer to its transitive and re
exive-transitive closure, respectively.Lemma 3 Let M and N be terms such that M !v N , and let � be a schematic continuation.Then 14



@[[M ]]�!+a @[[N ]]�(in fact, in either two or three reductions).Proof: By induction on the derivation of !v :� Base case: @(�x:M)V !v M [x V ].@[[@(�x:M)V ]]� = @[[�x:M ]] (�m:@[[V ]] (�n:@(@mn)(�a:@�a)))= @[[V ]] (�n:@(@(�x:�k:@[[M ]]0k)n)(�a:@�a))= @(@(�x:�k:@[[M ]]0k)(	(V )))(�a:@�a)!a @(�k:(@[[M ]]0k)[x 	(V )])(�a:@�a)= @(�k:(@[[M [x x0]]]0k)[x0 	(V )])(�a:@�a)= @(�k:@[[M [x V ]]]0k)(�a:@�a)!a @[[M [x V ]]]0 (�a:@�a)Now the following two cases arise:{ M [x V ] is not a value. Then by Lemma 1, the last term is equal to @[[M [x V ]]]�, asrequired. The two reductions correspond to transferring the argument value and returncontinuation (if we use uncurried CPS translation, as in Section 4.3, only one reductionis needed).{ M [x V ] is a value. Then again Lemma 1 gives@[[M [x V ]]]0 (�a:@�a) = @(�a:@�a)(	(M [x V ]))!a @�(	(M [x V ]))= @[[M [x V ]]]�The additional reduction in this case corresponds to an application of the return contin-uation to the value just computed.� Inductive case 1: @MN !v @M 0N because M !v M 0.@[[@MN ]]� = @[[M ]] (�m:@[[N ]] (�n:@(@mn)(�a:@�a)))!+a @[[M 0]] (�m:@[[N ]] (�n:@(@mn)(�a:@�a)))= @[[@M 0N ]]�� Inductive case 2: @V N !v @V N 0 because N !v N 0.@[[@V N ]]� = @[[V ]] (�m:@[[N ]] (�n:@(@mn)(�a:@�a)))= @[[N ]] (�n:@(@(	(V ))n)(�a:@�a))!+a @[[N 0]] (�n:@(@(	(V ))n)(�a:@�a))= @[[V ]] (�m:@[[N 0]] (�n:@(@mn)(�a:@�a)))= @[[@V N 0]]�15



2If we restrict evaluation to closed terms, any term is either already a value or contains a redex.However, the results extend easily to open terms, with free variables treated as uninterpretedconstants (i.e., with no associated �-rules). In this case, there is a third possibility: evaluation mayhalt at a non-value term like @xy from which no further progress is possible.Following Plotkin, we de�ne:De�nition 4 A (necessarily open) term S is said to be stuck under a given strategy if it is neither avalue nor reducible by any of the reduction rules for that strategy. A quick inspection of De�nition 3shows that such terms must be of the following form (where V is a value and N is any term):Sv ::= @xV j @SvN j @V Sv (for call-by-value)Sn ::= @xV j @SnN j @xSn (for call-by-name)We note that every term stuck under CBN is also stuck under CBV.Lemma 4 Let M be any term and � a static continuation. If M is stuck under CBV then @[[M ]]�is stuck under any strategy.Proof: By structural induction on the stuck term M .Base case, M = @xV :@[[@xV ]]� = @[[x]] (�m:@[[V ]] (�n:@(@mn)(�a:@�a)))= @(@x(	(V )))(�a:@�a)where the inner application, and hence the entire term, is stuck.Inductive case 1, M = @SN :@[[@SN ]]� = @[[S]] (�m:@[[N ]] (�n:@(@mn)(�a:@�a)))which is stuck, by the induction hypothesis.Inductive case 2, M = @V S:@[[@V S]]� = @[[V ]] (�m:@[[S]] (�n:@(@mn)(�a:@�a)))= @[[S]] (�n:@(@(	(V ))n)(�a:@�a))which again is stuck by induction hypothesis. 2Remark: In a statically-typed setting, the above problem does not occur: the typingrules ensure that a non-functional constant will never be applied to an argument. How-ever, the argument extends easily to languages with the possibility of runtime errors(e.g., division by zero). A simple re�nement of the proof shows that the CPS translationcan even distinguish properly between di�erent error conditions, i.e., if evaluation ofthe original program causes a speci�c error, so does evaluation of the CPS-transformedprogram.We can now state the main result, analogous to Plotkin's \Indi�erence" and \Simulation"theorems for the original CPS translation: 16



Theorem 2 Let M be any �-term (not necessarily closed) and V a value. If M !�v V then@[[M ]] (�x:x) !�a @[[V ]] (�x:x) = 	(V ) (and in at most three times as many steps). In particular,if V is a free variable of the original term, M evaluates to 	(V ) = V . Conversely, if M does notevaluate to a value under the call-by-value strategy, then for no strategy will @[[M ]] (�x:x) evaluateto one.Proof: The �rst part follows immediately from Lemma 3 applied to every step of the reduc-tion. Conversely, any in�nite value-reduction sequence starting from M gives rise to an in�nite,strategy-independent reduction sequence starting from @[[M ]] (�x:x). Finally, if the original reduc-tion sequence stops at a CBV-stuck term S, the corresponding CPS reduction sequence ends in theterm @[[S]] (�x:x) which is stuck under any strategy (Lemma 4). 24 Enriching the CPS transformationThis section investigates the translation of �-terms as found in usual applicative-order functionallanguages and the problem of currying functions vs. tupling arguments.4.1 CPS translation of extended and applied �v -termsWe now turn to translating �v -terms applied over constants and (pure) primitive operations andextended with conditional expressions, let and letrec expressions (restricting the values that arebound recursively to be functions). Such applied and extended �-terms come straight from Schemeand Standard ML.Following the line of Section 2, Figure 4 displays a one-pass equational speci�cation of the CPStransformation. Primitive operations are treated di�erently from ordinary applications to simplifythe equations. If a primitive operator q is to be passed as a functional value, it must be writtenwith an explicit abstraction �x:q(x) | which can be done at syntax-analysis time.Again, the result of transforming a term M into CPS in an empty context is given by@[[M ]] (�m:m)and the result of transforming M in a dynamic context is given by�k:@[[M ]] (�m:@km)This instrumented new translation yields terms without extraneous redexes (if tail-calls arehandled as in Section 2.6), in one pass. We obtained these equations by analyzing the bindingtimes of the valuation functions of a continuation semantics of the �v -calculus, along the line ofSection 2. The simulation and indi�erence properties of CPS-transformed terms generalize to theabove translation, but with one exception: unless the primitive operations are also transformed intocontinuation-passing versions, there is no longer a direct correspondence between �-reductions inthe original and the CPS-transformed term. Thus, the optimized translation for primitives shouldonly be used for \completely pure" operations (see also Section 6.2).17



[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@�x[[�x:M ]] = ��:@�(�x:�k:@[[M ]] (�m:@km))[[@MN ]] = ��:@[[M ]] (�m:@[[N ]] (�n:@(@mn)(�a:@�a)))[[P!M; N ]] = ��:@[[P ]] (�p:p!@[[M ]]�;@[[N ]]�)[[q]] = ��:@�q[[q(M)]] = ��:@[[M ]] (�m:@�(q(m)))[[q(M;N)]] = ��:@[[M ]] (�m:@[[N ]] (�n:@�(q(m;n))))[[let x = N inM ]] = ��:@[[N ]] (�n:let x0 = n in @[[M [x x0]]]�)[[letrec f = �x:N inM ]] = ��: letrec f 0 = �x:�k:@[[N [f f 0]]] (�n:@kn))in @[[M [f f 0]]]�Figure 4: One-pass CPS transformation of extended and applied �v -termsAs always with non-trivial symbolic reductions in �-calculus, we face the problem of nameclashes. These can occur when a context is moved inside the scope of a binding construct, asillustrated in the following example:@([[�x:x+ (let x = 3 in x)]])(�v:v) = �x:�k:let x0 = 3 in @k (x+ x0)Had we not renamed the x introduced by the let, we would have inadvertently captured a freevariable of the static continuation �. However, variables declared in �-abstractions do not need tobe renamed because contexts are never moved inside the scope of a �-abstraction.Let us also note that if the subterm N in the translation of a let-expression is a value (notably,an abstraction), the corresponding variable in the transformed term will also be let-bound (asopposed to �-bound) to 	(N). Thus, the translation seems compatible with a restricted variant ofML-style polymorphism in which generalization can only be applied to values [24].4.2 On duplicating contextsThe CPS translation above duplicates contexts for each conditional expression:[[P!M; N ]] = ��:@[[P ]] (�p:p!@[[M ]]�;@[[N ]]�)which increases the size of residual terms, as pointed out by Steele [43]. For example, translatingthe direct style expression @f ((x!y; z)!4; 5)yields the more voluminous��:x! (y!@(@f 4)(�v:@kv) ; @(@f 5)(�v:@kv)) ;(z!@(@f 4)(�v:@kv) ; @(@f 5)(�v:@kv))and thus a bigger term to compile and correspondingly more object code to produce. For this reason,compiler writers usually refrain from duplicating contexts by introducing a dynamic let-expression18



to share the static continuation between the two branches of the conditional:[[P!M; N ]] = ��: let k = �a:@�ain @[[P ]] (�p:p!@[[M ]] (�m:@km);@[[N ]] (�n:@kn))where we have inserted the appropriate �-redexes, in the line of Section 2. This modi�cationrestores the linearity property of the static part of the translation, i.e., that bound variables ofstatic �-abstractions are used only once in their bodies, and thus maintains a linear relationshipbetween the sizes of the original and transformed terms.Because the let-expression introduces an explicit name for the context, each conditional branchde facto occurs in a dynamic context, just like the body of translated �-abstractions. As in Section2.6, we can use the special \tail-call" translation for these contexts:[[P!M; N ]] = ��:let k = �a:@�a in @[[P ]] (�p:p!@[[M ]]0k;@[[N ]]0k)For example, the expression above is translated into�k0: let k1 = �v0: let k2 = �v1:@(@f v1)k0in v0!@k2 4; @k25in x!@k1 y; @k1zStill there is room left for further simpli�cation, e.g., in the case of let-expressions. As revealedby a simple inspection of the equations, translating let-expressions whose headers are an applicationor a conditional expression will produce identity let expressions. These redundant let-expressionscan be prevented at translation time:[[let x = @N0N1 inM ]] = ��:@[[N0]] (�n0:@[[N1]] (�n1:@(@n0n1)(�x0:@[[M [x x0]]]�)))4.3 Currying vs. tuplingFor practical applications of the CPS transformation algorithm described above, we need the slightre�nement considered in this section.In a call-by-name language, there is a one-to-one correspondence between curried and non-curried forms of multi-argument functions, but for call-by-value this property is lost: there maybe several, non-equivalent ways of \currying" a function. For example, the curried form of thetwo-argument function g = �(a; b):(@f a) + bcan be written as either of the two terms:~g1 = �a:�b:(@f a) + b or ~g2 = �a:let x = @f a in �b:x+ bBoth of these qualify as curried forms of g, in the sense that for any pair of values a and b,@(@~g1a)b = @(@~g2a)b = @g (a; b)but ~g1 and ~g2 behave di�erently if applied to only a single argument a for which f fails to terminate.Since the CPS transform clearly needs to accommodate curried functions like ~g2 above, programswith \simple" curried functions appear unnecessarily complex. For example, curried addition19



�a:�b:(a+ b)must be translated to the somewhat awkward�a:�k:@k (�b:�k0:@k0 (a+ b))instead of the more natural �a:�b:�k:@k (a+ b)The problem is that a higher-order type like �1 ! [�2 ! �3] does not make it clear whether theoutermost function is \serious" or \trivial", as in these two last examples. This can be solvedby extending the source language with either a product type or a new \trivial function space"(restoring the equivalence between \trivially curried" and uncurried forms of functions).Moreover, the result of translating a function of type� ! �into CPS with \answer" type o, can itself be expressed in either \curried CPS":�0 ! [� 0 ! o]! oor \uncurried CPS:" �0 � [� 0 ! o]! oThe functions resulting from the curried CPS transform can be easily checked to be always trivial(i.e., immediately return a closure), but this is not clear from their type. Thus, if we want to treatthe transformation result itself as a call-by-value term, the uncurried form of the translation ismore precise.4.4 Multi-argument functionsFor languages like Standard ML, which have an explicit product type for expressing functions ofseveral arguments, we can essentially use the equations of Figure 4 directly. Multiple variablesin �-abstractions can be treated as syntactic sugar for projections from a single argument, andtuple construction becomes a new primitive operator. For a Scheme-like language, however, the\argument tuple" is not an autonomous entity, but is closely tied in with functional abstractionand application. We thus need to adjust the CPS equations of these two constructs slightly if wewant an uncurried source-to-source transformation:[[�(x1; :::; xn):E]] = ��:@�(�(x1; :::; xn; k):@[[E]] (�x:@kx))[[@E0 (E1; :::; En)]] = ��:@[[E0]](�f:@[[E1]] (�a1: :::@[[En]] (�an:@f (a1; :::; an; �x:@�x))))More precisely, an argument list is translated as follows:[[()]]� = ��:@�()[[E :: E�]]� = ��:@[[E]] (�h:@[[E�]]� (�t:@�(h :: t)))20



and a full application as:[[@E0 (E1; :::; En)]] = ��:@[[E0]] (�f:@[[(E1; :::; En)]]� (�l:@f (l � [�x:@�x])))where � represents list concatenation.Remark: To make the Scheme-style connection between lists and argument tupleseven closer, we could put the continuation argument �rst in the argument list ratherthan last. This would allow us to translate \variadic procedures" such as(lambda l (cdr l)) or (lambda (a b . l) b)directly into (lambda (k . l) (k (cdr l))) and (lambda (k a b . l) (k b))respectively. However, readability appears to su�er when the continuation argument,which is often large, must be followed by others in an application. Making continuationsoccur �rst is used sometimes to compile functional programs by program transformation[21]. It is simple to write a one-pass CPS transformer where continuations precedevalues | just swap values and continuations in any of the speci�cations displayed inthe �gures.5 Abstracting ControlSo far we have been investigating how to perform the CPS transformation. This section exploresproperties and extensions of the transformation function.5.1 Reynolds's escape operatorNot every �-calculus term is obtainable as a result of the CPS transformation. Some of the \unused"terms correspond to control operators in the source language. For example, the operator escape(interde�nable with Scheme's call/cc) can be de�ned by the equation:[[escape c in M ]] = ��:let c0 = �a:��0:@�a in @[[M [c c0]]]�As a control operator, escape captures the current continuation and provides a representation ofthis current continuation as if it were a function in the source program. Applying this function toa value amounts to abandoning the current context of computation and passing this value to thecaptured continuation. For example, transforming the term�f:escape c in 1 + (@f c)into CPS in an empty context (and unfolding the let) yields�f:�c:@(@f (�x:�k:@cx))(�v:@c(1+ v))As can be observed in the equation above, escape duplicates the code for the current continu-ation. Along the lines of Section 4.2, this can be prevented by the following equation:[[escape c in M ]] = ��:let k = �a:@�a in let c = �a:�k0:@ka in@[[M ]] (�m:@km)In the rest of this section, we shall waive concerns about such duplications of contexts.21



5.2 Shift and resetLet us note that even with escaping constructs, the result of the translation is in \ordinary" CPSform, i.e., with no nested function applications. This suggests that there is still a considerableamount of untapped expressive power in the CPS formalism, re
ecting control structures whosetranslations are more general �-terms. In particular, we can de�ne the two operators shift andreset, conceptually serving as composition and identity for continuation functions:[[shift c in M ]] = ��:let c = �a:��0:@�0 (@�a) in @[[M ]] (�m:m)[[hMi]] = ��:@�(@[[M ]] (�m:m))Shift abstracts the current context as an ordinary, composable procedure (in contrast to the ex-ceptional, non-composable procedures yielded by escape) and reset delimits the scope of sucha context. Shift also di�ers from escape by not implicitly duplicating the current continuation(Felleisen's C-operator introduced the behavior of not duplicating continuations [17]).For example,1 + h10 + shift c in @c(@c100)i ) 1 + (10 + (10 + 100)) ) 121With the fuller control over contexts a�orded by these two operators, we can express in a func-tional style many control structures that would otherwise have required us to either rewrite theprogram extensively or introduce side e�ects. For example, let us consider a functional represen-tation of \applicative" nondeterministic (in the sense of backtracking) programming, as embodied,e.g., in the programming language Icon [23].Let us de�ne a basic \nondeterministic choice" procedure:
ip = �():shift c in @c tt _ @cffWhen invoked, 
ip will \return" twice: once with each possible truth value. Here, we have speci�edthat the �nal answer of the nondeterministic program should be true if either of these two returnvalues causes the context to evaluate to true. For a canonical example, let ' be a boolean expressionwith free variables b1; :::; bn. To determine whether ' is satis�able (i.e., whether there exists anassignment of truth values to the variables making the whole expression true), we can now simplyevaluate the natural direct-style programhlet b1 = @
ip () in : : : let bn = @
ip () in 'iThis approach to nondeterministic programming also easily handles irregular search structures,where further tests may depend on outcome of previous \guesses", e.g., for simulating a nondeter-ministic �nite automaton [10].5.3 Control and promptWhile shift and reset are very similar to Felleisen's operators control and prompt [14], there is asigni�cant semantical di�erence between shift/reset and control/prompt: the context abstractedby shift is determined statically by the static program text, while control captures the contextup to the nearest dynamically enclosing prompt.22



The di�erence between shift and control is probably best displayed by the following twocharacteristic equations: h@f (shift c in M)i = hlet c = �x:h@f xi inMih@f (control c in M)i = hlet c = �x:@f x inMiNow if f is bound to a procedure that itself abstracts control, the context it will capture withthe shift semantics is still determined by the context where c is de�ned. On the other hand, withthe control semantics, a control operator occurring in f will capture the context at the point wherec is applied; in particular, it can capture part of M . (In the case where f is a simple procedurewith no control e�ects, the e�ects of the two operators coincide.)The shift/reset approach is based on viewing a program as computing a function expressedin CPS, i.e., on representing control with a function: the continuation. In contrast, prompt andcontrol were introduced independently of CPS and therefore they admit no such simple staticinterpretation. Their two denotational descriptions introduce an algebra of control and lead toa representation of continuations as prompt-delimited sequences of activation frames, and theircomposition as the concatenation of these sequences [18]. Earlier on, prompts were speci�ed withan operational description in terms of textual reductions [14]. In general, these static vs. dynamicinterpretations lead to di�erent behaviors [8].In our framework, reset naturally is the direct style counterpart of initializing the continuationof a CPS �-term with the identity function. Reset seems to be equivalent to prompt, but termsusing control in general have no CPS counterpart.5.4 CPS translation of terms that use shift and resetLet us note that the de�nitions of shift and reset do not yield CPS terms (because continuationsmay be applied to non-values). Therefore the de�ning terms lose the important property of enforcingstrict call-by-value evaluation ensured by proper CPS. However, we can restore that property bytranslating the de�ning (pure �v -calculus) terms once more into CPS, yielding a term in \meta-continuation passing style." Here, the � is treated as an ordinary functional parameter, while theproper evaluation order is ensured by a new continuation.For example, and leaving the @-notation aside for readability, the following term occurring inan empty context let f = �x:shift k in k(k(x))in 1 + h10 + f(100)igets CPS-transformed into let fc = �x:�k:k(k(x))in 1 + (fc 100 (�v:10+ v))As can be noticed, this term is not in CPS because the call to fc is not a tail-call and there is anested call to k in the de�nition of fc. But the second CPS transformation now gives a proper CPSterm (with h as the continuation parameter):let fcc = �x:�k:�h:kx (�a:k a h)in fcc 100 (�v:�h:h(10+ v)) (�a:1+ a)23



Remark: Iterating this construction leads to \extended CPS" and a whole hierarchyof control operators [10]. This is the real forte of a CPS-based approach to advancedcontrol structures: we obtain a natural notion of \levels" of control, allowing us toexpress, e.g., collections over all paths of a nondeterministic subcomputation, as de�nedin Section 5.2.5.5 Translating control operations in one passFollowing a binding time analysis of the equations of Section 5.2 (as in Section 2), let us expressthe CPS transformation of control operations using two-level �-terms:[[escape c in M ]] = ��:let c0 = �a:��0:@�a in @[[M [c c0]]]�[[shift c in M ]] = ��:let c0 = �a:��0:@�0 (@�a) in @[[M [c c0]]] (�m:m)[[hMi]] = ��:@�(@[[M ]] (�m:m))The CPS transformation now introduces let-expressions. These could be unfolded by substi-tuting the control abstractions for the identi�ers in the translated terms, as we �rst speci�ed it[10]: [[escape c in M ]] = ��:(@[[M [c c0]]]�)[c0 �a:��0:@�a][[shift c in M ]] = ��:(@[[M [c c0]]] (�m:m))[c0 �a:��0:@�0 (@�a)]However, these substitutions introduce residual �-redexes when control abstractions are appliedwithin the scope of their declaration. For example,@[[�x:shift c in 1 + (@cx)]] (�m:m) = �x:�c:@(@(�a:�k:1+ (@ka))x)cinstead of the preferable �x:�c:1+ (@cx)To keep this �-reduction at translation time, but again at the risk of duplicating contexts (asin shift c in (@c1) + (@c2)), we can distinguish between identi�ers that are declared within a�-abstraction and identi�ers that are declared within a control abstraction. Unfortunately, thisdecision clutters the transformation, much in the same way as introducing \�rst-class" primitiveoperators (cf. Section 4.1). We adopt the same simple solution: at syntax-analysis time, occurrencesof identi�ers declared within a control abstraction are guaranteed to occur only in applicationposition, which we single out by tagging this application with throw, as in Standard ML of NewJersey [13]. [[escape c in M ]] = ��:(@[[M [c c0]]]�)[c0 �a:��0:@�a][[shift c in M ]] = ��:(@[[M [c c0]]] (�m:m))[c0 �a:��0:@�0 (@�a)][[throw c M ]] = ��:@[[M ]] (�m:@(@cm)�)To avoid dealing with substitutions over translated terms, we can introduce a translation-timeenvironment mapping identi�ers to a translation-time �-abstraction if they are declared within acontrol abstraction. The following is the corresponding version of the CPS transformer, completed24



with the translation-time environment. The other equations are unchanged, except for the additionof an environment � passively transmitted everywhere.env = var! syntax! [syntax! syntax]! syntax[[[:::]]] : env ! [syntax! syntax]! syntax[[[escape c in M ]]] = ��:��:@(@[[[M [c c0]]]] [c0 7!�a:��0:@�a]�)�[[[shift c in M ]]] = ��:��:@(@[[[M [c c0]]]] [c0 7!�a:��0:@�0 (@�a)]�)(�m:m)[[[throw c M ]]] = ��:��:@(@[[[M ]]]�)(�m:@(@(@�c)m)�)Note how all the terms in the translation are static. All administrative reductions are performedat translation time, and no �-redexes are built for applications of control abstractions.5.6 The problem of name clashesNow only one problem remain: name clashes. These can occur when a control operator moves partof the context inside the scope of any binding construct, as illustrated in the following example:@(@[[[�x:@f (escape c in �f:throw c f)]]]�0)(�v:v) = �x:�k:@k (�f 0:�k0:@(@f f 0)k)The simplest solution is thus probably to systematically rename all bound variables.5.7 Direct Transformation into CPSWe can view the CPS transformation of Section 4.1 as an applicative order program expressingthe transformation algorithm. This program is expressed in a CPS-like style. This might leadone to believe that this program could be expressed more concisely using a \traditional" controloperator like call/cc. Unfortunately, this is not quite possible because this program is not inCPS. Notably, in the translation of @MN the continuation application @�a is a subterm of thesyntax-constructor �a: � � �. Conversely, in [[�x:M ]], the continuation � is applied to a potentiallynon-trivial term. Neither of these situations can arise from the translation of any conventionaldirect-style term (i.e., �-calculus + escape). However, with shift/reset we can express exactlysuch behavior. Let us rewrite the transformation equations using implicit continuations. The resultis displayed in Figure 5.The result of transforming a term M into CPS in an empty context is given byh[[M ]]iSimilarly, the result of transforming M in an arbitrary context is given by�k:h@k [[M ]]iThe CPS counterpart of the applicative-order program expressing this transformation algorithm(using the equations of Section 4.1 and the �rst set of equations of Section 5.5) can be veri�ed easilyto coincide with the original translator. Thus, the two transformers yield textually the same outputfor a given input; only their internal organization di�ers.25



[[x]] = x[[�x:M ]] = �x:�k:h@k [[M ]]i[[@MN ]] = shift c in @(@[[M ]][[N ]] )(�a:@ca)[[P!M; N ]] = shift c in [[P ]]!h@c [[M ]]i; h@c [[N ]]i[[q]] = q[[q(M)]] = q([[M ]])[[q(M;N)]] = q([[M ]]; [[N ]])[[let x = N inM ]] = shift c in let x0 = [[N ]] in h@c [[M [x x0]]]i[[letrec f = �x:N inM ]] = shift c in letrec f 0 = �x:�k:h@k [[M [f f 0]]]iin h@c [[M [f f 0]]]i[[escape k in M ]] = shift c in let k0 = �v:�k00:@cv in h@c [[M [k k0]]]i[[shift k in M ]] = shift c in let k0 = �v:�k00:@k00 (@cv) in h[[M [k k0]]]i[[hMi]] = h[[M ]]iFigure 5: Direct-style, one-pass CPS transformation of �v -termsThis set of equations can be seen as a meta-circular compiler from a language with the new con-trol operators into its purely functional subset. Alternatively (by omitting the equations for shiftand reset), it translates terms of a Scheme-like language (i.e., �-calculus + escape) into standardCPS. Such a transformation has a practical interest for compiling, e.g., Scheme or Standard MLprograms [43, 1], and thus constitutes a signi�cant example of using shift/reset: even the pureCPS translation is expressed naturally using the new control operators.As with all meta-circular de�nitions, we need to bootstrap it. If we have an interpreter fora language with shift/reset, we can use it to execute the translator on itself, obtaining a CPStransformer written in pure �-calculus. On the other hand, we can get an interpretive semanticsfor the extended language by translating a trivial (i.e., de�ning shift in terms of shift, etc.) self-interpreter into extended CPS [10]. This correspondence helps to ensure consistency between thetwo methods of language de�nition.6 Related Work6.1 CPS transformationTwo other works have independently employed CPS translations similar to the one presented here.The �rst one is Appel's CPS transformer in the Standard ML of New Jersey compiler [1]. Thesecond one is Wand's combinator-based compilation technique [45]. But neither motivate theirtransformer, e.g., as we do in Section 2, nor extend it to control operators or normal order, as wedo in Sections 5 and A.As revealed in the source code of the SML/NJ compiler, the CPS transformer operates in one26



pass by keeping a translation time continuation, based on �-redexes identical to those in Section2. However, in contrast to our work, the goal is not to aim at the \exact" continuation-passingcounterparts of source programs but to simplify them as much as possible, even if some of thesimpli�cations correspond to source reductions. Still no particular care is taken to avoid buildingextraneous �-redexes, such as those pointed out in Section 4.2. Instead, the compiler relies on apowerful and blind simpli�er of CPS terms that processes both these redexes and what correspondsto source reductions. It would be interesting to measure whether and how much our more preciseCPS transformer relieves the simpli�er.Similarly, devising a particular representation of run time procedures and their application(instead of our � and @), Wand also compiles programs based on a CPS transformer with the same�-redexes as in Section 2, but again without motivating them.Today Sabry and Felleisen are also investigating the CPS transformation in one pass, and Lawalland the �rst author are investigating the inverse \Direct Style" transformation [9, 11, 40].6.2 Primitive operatorsMost CPS-based compilers [43, 1, 45] and program analyzers [41] also use continuation-passingforms of even the primitive operators. However, the practical justi�cation of such a \radical CPS"transform is not completely clear. In particular, the oft-quoted advantage of having explicit namesfor all subexpressions can be realized equally well with let-expressions. Clearly, side-e�ecting op-erators need to be tied down by explicit conversion to continuation-passing variants. However,expressing \trivial computations" like tuple construction/destruction or arithmetic in CPS intro-duces unnecessary sequentialization and obscures the fact that such computations can be rearrangedor even eliminated or duplicated without a�ecting the meaning of the program.Remark: A possible problem here concerns primitive operators like division thatcan signal error conditions, but are otherwise \pure". Clearly, the translation shouldpreserve any exception-raising behavior of the original program, and not compromisethe order-of-evaluation independence of CPS terms. On the other hand, going to fullCPS for such almost-functional operators may still be overkill, for the reasons outlinedabove. However, it often seems possible to factor the original operator into two aspects:the control behavior (the process of computation, possibly error-raising) to be expressedin CPS and the pure (and hence freely rearrangable) function computed, in which casewe actually get the best of both worlds.6.3 Control operatorsFrom Reynolds's escape to call/cc in Scheme, control operators are nicely introduced withinthe CPS transformation [38, 16]. However, because CPS appears to constrain expressive power,Felleisen and others have successively proposed new control operators to compose continuations[15] and to limit their extent [14]. As later shown by Sitaram and Felleisen [42], inclusion ofcontrol delimiters is also necessary to obtain fully abstract models of control for CPS models with27



escape. The motivation for shift and reset was somewhat di�erent: rather than devising newtheories, new models, and new representations of control, we have set out to explore CPS morethoroughly. In particular, shift and reset are introduced together as representing composition andidentity on continuation functions respectively; proper CPS form is restored by iterating the CPStransformation [10].6.4 Partial evaluationPartial evaluation (or more accurately: program specialization [25]) makes heavy use of bindingtime information to process the static and the dynamic semantics of source programs [6], as we dohere. Recent work by Bondorf and the �rst author emphasize the issues of code duplication andtermination properties [3], and use the technique of enumerating �nitary constructs [2], as we doin Sections 2 and 4.2. The latter is also central to Shivers's work on higher-order 
ow analysis [41].All these concepts were pervasive in our derivation of a one-pass CPS transformer. In particular,the notion of a two-level �-calculus as advocated in Nielson and Nielson's TML [34] proves useful todevelop and to express new CPS transformations that distinguish properly between translation-timeand run-time constructs.With respect to partial evaluation, this development illustrates the connection between a CPStransformer and a �-calculus interpreter expressed in CPS. The former is a two-level version of thelatter.Moreover, our derivation illustrates a new trend in partial evaluation: using CPS to improvebinding time properties of source programs, leading to better specialization [7]. Work is going onto further automate the process.7 Conclusion and IssuesAs proven constructively in this paper, transforming �-terms into CPS can be expressed in onepass by moving administrative redexes to translation time in a context-free way. While the actualtransformation algorithm seems to have been independently discovered several times in slightlydi�erent forms, we believe that ours is the �rst systematic derivation and analysis of its correctnessand properties. The translation is easily extended to the usual constructs of applicative orderfunctional languages and also to account for control operators. And using two control operatorsshift and reset derived naturally from the CPS formalism, the translation can be formulated evenmore concisely and directly.The role of continuations in programming language design and implementation has long beendominated by pragmatic concerns. In the last few years, however, the subject has seen renewedtheoretical interest, especially with the introduction of concepts and methods from mathematicallogic and category theory, e.g., [22, 31, 19]. We believe that any investigation of advanced controlstructures based on the CPS transform will be able to pick up and integrate such developmentsmore directly than a free-standing approach derived from more intuitively \desirable" operationalbehavior could. And in fact, recent developments seem to support this conviction [32].28



Moreover, there is a close relationship between computational monads [30] and \generalizedCPS", as suggested in \Abstracting Control" [10] and properly formalized by Wadler [44]. Ef-fectively, this implies that CPS-based control operators like shift and reset can by themselvesuniformly express a rich class of computational behaviors, including partiality, nondeterminism,and state. It seems natural to take this as another indication that both the theoretical and prac-tical signi�cance of functional representations of control will only grow stronger in the years tocome.AcknowledgementsWe are grateful to the editor and the three referees. Thanks are also due to Karoline Malmkj�rand Dave Schmidt for their patience and to Chet Murthy for his enthusiasm.References[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.[2] Anders Bondorf. Automatic autoprojection of higher-order recursive equations. Science ofComputer Programming, 17:3{34, 1991.[3] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equations withglobal variables and abstract data types. Science of Computer Programming, 16:151{195,1991.[4] William Clinger. The Scheme 311 compiler, an exercise in Denotational Semantics. In Con-ference Record of the 1984 ACM Symposium on Lisp and Functional Programming, pages356{364, Austin, Texas, August 1984.[5] William Clinger and Jonathan Rees (editors). Revised4 report on the algorithmic languageScheme. LISP Pointers, IV(3):1{55, July-September 1991.[6] Charles Consel and Olivier Danvy. Static and dynamic semantics processing. In POPL'91 [36],pages 14{24.[7] Charles Consel and Olivier Danvy. For a better support of static data 
ow. In Proceedings ofthe Fifth ACM Conference on Functional Programming and Computer Architecture, number523 in Lecture Notes in Computer Science, pages 496{519, Cambridge, Massachusetts, August1991.[8] Olivier Danvy. Programming with tighter control. Special issue of the BIGRE journal: PuttingScheme to Work, (65):10{29, July 1989.[9] Olivier Danvy. Back to direct style. In Bernd Krieg-Br�uckner, editor, Proceedings of the FourthEuropean Symposium on Programming, number 582 in Lecture Notes in Computer Science,pages 130{150, Rennes, France, February 1992.[10] Olivier Danvy and Andrzej Filinski. Abstracting control. In LFP'90 [26], pages 151{160.[11] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In LFP'92[27]. 29



[12] Olivier Danvy and Carolyn L. Talcott, editors. Proceedings of the ACM SIGPLAN Workshopon Continuations, San Francisco, California, June 1992. Technical report STAN-CS-92-1426,Stanford University.[13] Bruce F. Duba, Robert Harper, and David MacQueen. Typing �rst-class continuations in ML.In POPL'91 [36], pages 163{173.[14] Matthias Felleisen. The theory and practice of �rst-class prompts. In Proceedings of theFifteenth Annual ACM Symposium on Principles of Programming Languages, pages 180{190,San Diego, California, January 1988.[15] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond continuations.Technical Report 216, Computer Science Department, Indiana University, Bloomington, Indi-ana, February 1987.[16] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. Reasoning withcontinuations. In Proceedings of the First Symposium on Logic in Computer Science, pages131{141, Cambridge, Massachusetts, June 1986. IEEE.[17] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactictheory of sequential control. Theoretical Computer Science, 52(3):205{237, 1987.[18] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Abstract contin-uations: A mathematical semantics for handling full functional jumps. In Proceedings of the1988 ACM Conference on Lisp and Functional Programming, pages 52{62, Snowbird, Utah,July 1988.[19] Andrzej Filinski. Linear continuations. In POPL'92 [37], pages 27{38.[20] Michael J. Fischer. Lambda calculus schemata. In Proceedings of the ACM Conference on Prov-ing Assertions about Programs, pages 104{109. SIGPLAN Notices, Vol. 7, No 1 and SIGACTNews, No 14, January 1972.[21] Pascal Fradet and Daniel Le M�etayer. Compilation of functional languages by program trans-formation. ACM Transactions on Programming Languages and Systems, 13:21{51, 1991.[22] Timothy G. Gri�n. A formulae-as-types notion of control. In Proceedings of the SeventeenthAnnual ACM Symposium on Principles of Programming Languages, pages 47{58, San Fran-cisco, California, January 1990. ACM Press.[23] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language. Prentice-Hall,1983.[24] Bob Harper and Mark Lillibridge. Polymorphic type assignment and CPS conversion. InDanvy and Talcott [12]. Technical report, Stanford University.[25] Neil D. Jones, Peter Sestoft, and Harald S�ndergaard. MIX: A self-applicable partial evaluatorfor experiments in compiler generation. LISP and Symbolic Computation, 2(1):9{50, 1989.[26] Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, Nice, France,June 1990.[27] Proceedings of the 1992 ACM Conference on Lisp and Functional Programming, San Francisco,California, June 1992. 30



[28] Chris Mellish and Steve Hardy. Integrating Prolog in the POPLOG environment. In John A.Campbell, editor, Implementations of PROLOG, pages 147{162. Ellis Horwood, 1984.[29] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. The MITPress, 1990.[30] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the FourthAnnual Symposium on Logic in Computer Science, pages 14{23, Paci�c Grove, California,June 1989. IEEE.[31] Chetan R. Murthy. Extracting Constructive Content from Classical Proofs. PhD thesis, De-partment of Computer Science, Cornell University, 1990.[32] Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical type systems: A-translation at work. In Danvy and Talcott [12]. Technical report, Stanford University.[33] Flemming Nielson. Two-level semantics and abstract interpretation. Theoretical ComputerScience, 69(2):117{242, 1989.[34] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code generation. Theo-retical Computer Science, 56(1):59{133, January 1988.[35] Gordon D. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical ComputerScience, 1:125{159, 1975.[36] Proceedings of the Eighteenth Annual ACM Symposium on Principles of Programming Lan-guages, Orlando, Florida, January 1991. ACM Press.[37] Proceedings of the Nineteenth Annual ACM Symposium on Principles of Programming Lan-guages, Albuquerque, New Mexico, January 1992. ACM Press.[38] John C. Reynolds. De�nitional interpreters for higher-order programming languages. In Pro-ceedings of 25th ACM National Conference, pages 717{740, Boston, 1972.[39] Jon G. Riecke. Should a function continue? Master's thesis, Department of Electrical Engineer-ing and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,January 1989.[40] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.In LFP'92 [27].[41] Olin Shivers. The semantics of Scheme control-
ow analysis. In Paul Hudak and Neil D.Jones, editors, Symposium on Partial Evaluation and Semantics-Based Program Manipulation,SIGPLAN Notices, Vol. 26, No 9, pages 190{198, New Haven, Connecticut, June 1991. ACM,ACM Press.[42] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: Full abstraction formodels of control. In LFP'90 [26], pages 161{175.[43] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Arti�cialIntelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,May 1978.[44] Philip Wadler. The essence of functional programming. In POPL'92 [37], pages 1{14.31



[45] Mitchell Wand. Correctness of procedure representations in higher-order assembly language.In Steve Brookes, Michael Main, Austin Melton, Michael Mislove, and David Schmidt, edi-tors, Mathematical Foundations of Programming Semantics, volume 598 of Lecture Notes inComputer Science, Pittsburgh, Pennsylvania, March 1991. 7th International Conference.

32



[[x]] = x[[�x:M ]] = ��:@�(�x:[[M ]])[[@MN ]] = ��:@[[M ]] (�m:@(@m [[N ]])�)Figure 6: Plotkin's CPS transformation of �n-terms[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@x(�a:@�a)[[�x:M ]] = ��:@�(�x:�k:@[[M ]] (�m:@km))[[@MN ]] = ��:@[[M ]] (�m:@(@m(�k:@[[N ]] (�n:@kn)))(�a:@�a))Figure 7: One-pass CPS transformation of �n-termsA Call by NameLet us consider Plotkin's equational speci�cation for transforming a �n-term into CPS [35], asdisplayed in Figure 6. We want to apply the method of Section 2 to stage the CPSn -transformation.Again, taken literally, this translation yields arti�cial redexes that must be post-reduced in a secondpass, although the size explosion is not as drastic as for call-by-value. For example, translating�f:�x:�y:@(@f y)xyields �k:@k (�f:�k:@k (�x:�k:@k (�y:�k:@(�k:@f (�m:@(@my)k))(�m:@(@mx)k))))whose post-reduction yields�k:@k (�f:�k:@k (�x:�k:@k (�y:�k:@f (�m:@(@my)(�m:@(@mx)k)))))This CPS counterpart of the �n-term can be equally evaluated using call-by-name or call-by-value. As a simple consequence, the continuation can be implemented as a strict function withoutaltering the meaning of the original �n -term.Can we subject the original speci�cation to the same treatment as in Section 2 and get a one-pass CPS transformer? The answer is yes but the resulting transformation shows less immediatesuccess. The original speci�cation can be transformed into the one in Figure 7 which does not buildany �-redex.The result of transforming a term M into CPS in an empty context is then given by@[[M ]] (�m:m)Again, this speci�cation, viewed as an applicative order program, can be re-expressed using shiftand reset. 33



[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@x(�a:@�a)[[�x:M ]] = ��:@�(�x:[[M ]]00)[[@MN ]] = ��:@[[M ]] (�m:@(@m [[N ]]00)(�a:@�a))[[:::]]00 : syntax[[x]]00 = x[[�x:M ]]00 = �k:@k (�x:[[M ]]00)[[@MN ]]00 = �k:@[[M ]] (�m:@(@m [[N ]]00)k)Figure 8: One-pass, \properly tail-recursive" CPS transformation of �n-termsHowever this new CPS translation su�ers from a de�ciency, as pinpointed by the followingobservation.Observation 2 A �n-term and its CPS counterpart are related as follows:� A variable is translated into one application and one �-abstraction.� A �-abstraction is translated into two �-abstractions and one application.� An application is translated into three applications and two �-abstractions.Whereas the two last points also hold for Plotkin's speci�cation, the �rst point reveals that the newtranslation actually produces more redexes! However, the new speci�cation only produces more�-redexes, which are not nearly as hard to get rid of as the �-redexes produced by the originaltranslation, as outlined now.�-redexes are only constructed in tail-contexts, for identi�ers occurring as �-abstraction bodies,and as arguments of functions (this corresponds to the ALGOL 60 situation of \suspending asuspension"). As in Section 2.6, they can eliminated at translation time by duplicating the rules(cf. Figure 8).Rationale: The auxiliary translation [[M ]]00 is used for the special case�k:@[[M ]] (�m:@km), thereby avoiding the construction of extraneous �-redexes.The result of transforming a term M into CPS in an empty context is then given by@[[M ]] (�m:m)whereas the result of transforming a term M into CPS in a dynamic context is given by[[M ]]00By construction, this instrumented new translation yields terms without �-redexes, in one pass.34



[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@x(�a:@�a)[[�x:M ]] = ��:@�(�k:�x:@[[M ]]0k)[[@MN ]] = ��:@[[M ]] (�m:@(@m(�a:@�a)) [[N ]]00)[[:::]]0 : syntax! syntax[[x]]0 = �k:@xk[[�x:M ]]0 = �k:@k (�k:�x:@[[M ]]0k)[[@MN ]]0 = �k:@[[M ]] (�m:@(@mk) [[N ]]00)[[:::]]00 : syntax[[x]]00 = x[[�x:M ]]00 = �k:@k (�k:�x:@[[M ]]0k)[[@MN ]]00 = �k:@[[M ]] (�m:@(@mk) [[N ]]00)Figure 9: One-pass, \properly tail-recursive" CPS transformation of �n -terms with continuations�rstA.1 Continuations �rstMaking continuations occur �rst introduces a new opportunity for extraneous �-redexes in residualCPS terms. The result of transforming a term can occur (1) in function position where the argumentis a static lambda that will be applied to a static continuation; (2) in function position where theargument is a static lambda that will be applied to a dynamic continuation; and (3) not in functionposition. These cases can be handled by a suitable series of tests on intermediate result or againby duplicating the rules as in Figure 9. Notice how [[:::]] terms correspond to case (1), [[:::]]0 termscorrespond to case (2), and [[:::]]00 terms correspond to case (3). This suggests that a Clinger-stylecompiler for �n-terms would be proven using a triple induction hypothesis [4].As usual, the result of transforming a term M into CPS in an empty context is then given by@[[M ]] (�m:m)whereas the result of transforming a term M into CPS in a dynamic context is given by�k:@[[M ]]0kor better, by [[M ]]00This �nal translation yields terms without �-redexes nor new �-redexes, in one pass.35


