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1-safe nets are for example obtained by translating agents from various process algebrasor constructed as the synchronization of �nite automata.As an example let us consider the process agent �x (X = a:X)j(�:b:0). Its transitiongraph is given below to the left. The initial state is i and s1 and s2 are the only otherreachable states. The agent can also be represented by the labeled 1-safe net to the right,containing three transitions labeled a, � , and b respectively [14, 23].i s1 s2!"a#�� � // !"a#�� b // !"a#�� τ b

aThe net gives us a more concrete model of the process agent. It shows that thetransition labeled a is independent of those labeled � and b. We can therefore add morestructure to the above transition system by providing a relation which explicitly statesthis independence. The new transition system is an example of a labeled asynchronoustransition system (l-ATS ) [19, 1, 23, 15]. In general, we can obtain such a labeledasynchronous transition system as the case graph, extended with implicit informationabout independence, of a labeled 1-safe net. In this paper, we will concentrate on labeled1-safe nets.The logic P-CTL contains one important feature which is the model-theoretic incorpo-ration of progress. What corresponds to quanti�ed \until" path formulas in CTL is in oursetting interpreted over �ring sequences of labeled 1-safe nets respecting certain progressassumptions. This is formalized using maximal traces in the framework of Mazurkiewicztrace-theory, where we make explicit use of the notion of independence between tran-sitions. As an example the formula Ev(<b> tt), \eventually b is enabled" (tt means"True"), is true of the process agent example under the assumption of progress (ourinterpretation) , but not without (standard CTL interpretation). Our interpretation isconservative in the sense that if we interpret P-CTL over standard lts we get the standardCTL interpretation.Work on expressing progress assumptions and fairness assumptions can be found infor example Manna and Pnueli's book on temporal logic [10]. Often it involves \coding"these assumptions using linear time temporal logic formulas of the form �fair )  , whichrequire a more detailed knowledge of the particular system. We are able to avoid thisobstacle and treat progress assumptions uniformally.In the standard setting of CTL-like logics interpreted over labeled transition systems,model checking has been described in [4] using a state based algorithm, and in [8, 21]using tableaux rules. Model checking in the framework of partial order semantics hasbeen described in [17, 16].In this paper we present the �rst, to our knowledge, set of sound and complete tableaurules in the style of [8, 21] for a CTL-like logic interpreted in the trace theoretic framework.The rules are a generalization of those in [8, 21] in the sense that if we restrict modelchecking to labeled 1-safe nets without independent transitions, our tableau rules workin the same way. Using the distinction between \local" and \global" model checking asadvocated by Stirling and Walker in [21] our method must be classi�ed as \local" modelchecking. Local model checking has the advantage that it isn't necessary to have anexplicit representation of all the states of the system being investigated. This is howevernecessary for the global model checking algorithm of [4]. Labeled 1-safe P/T nets areexamples of models which can be "locally" model checked without necessarily generating143



the entire reachability graph/state space.In [2] related work is presented. There, based on the approach in [4], we present aglobal model checking algorithm for P-CTL . By choosing this approach, contrary to atableau based as in [8, 21], we obtain a polynomial time algorithm (in the size of thereachability graph). Also, di�erent extensions of P-CTL in the form of modal operatorsexpressing concurrent or con
icting behaviour are considered.The rest of the paper is organized as follows. In section 2 we provide the necessaryde�nitions. In section 3 we present the logic and its interpretation. Section 4 containsa motivating example followed by the tableau rules and the de�nition of tableaux. Insection 5 we state the main result, soundness and completeness of the proposed tableaurules. Finally section 6 contains the conclusion and suggestions for future work.2 Basic De�nitionsIn this section we recall some basic de�nitions. Furthermore we state some facts andlemmas. First we de�ne concurrent alphabets, the fundamental structure in Mazurkiewicztrace theory [11].De�nition 1 Concurrent alphabet and traces� A concurrent alphabet (A; I) is a set A and a relation I � A�A, the independencerelation, which is symmetric and irre
exive.In the following assume a �xed concurrent alphabet (A; I).� Given a set A we de�ne A1 = A� [ A!, i.e. A1 is the set of all �nite and in�nitesequences of elements from A.� De�ne concatenation � of elements in A1 as:u � v = ( u if juj =1uv elseFor notational convenience we will write uv instead of u � v.� Let �pref be the usual pre�x ordering on sequences and �(a;b) the projection onfa; bg1. We de�ne a preorder � on A1 which demands that the relative orderof arbitrary elements a and b, which are in con
ict, i.e. (a; b) 62 I, must be the samewhen ignoring other elements of the sequences. Formally:u � v i� (8(a; b) 62 I: �(a;b)(u) �pref �(a;b)(v))� De�ne an equivalence relation � on A1 as u � v if u � v and v � u. Let [u] denotethe equivalence class containing u.� Fact: � is a congruence with respect to �.� The elements of A1=� will be called traces.144



� For [u]; [v] 2 A1=� we de�ne [u] � [v] if u � v. It can be shown that this relationis a partial order. We will write [u] � [v] if and only if u � v and u 6� v.� Fact: for u; v 2 A�:{ u � v i� u �M v{ [u] � [v] i� (9u0 2 A�: [uu0] = [v])where �M is the well known equivalence used by Mazurkiewicz when de�ning �nitetraces, see [11].We have chosen to present traces using projections �(a;b). In this way �nite as wellas in�nite traces are handled in a uniform way. Similar de�nitions can be found in forexample [7].We now de�ne labeled 1-safe nets, the labeled version of 1-safe nets1.De�nition 2 1-safe netsA 1-safe net, or just a net, is a fourtuple N = (P; T; F;M0) such that� P and T are �nite disjoint sets; their elements are called places and transitions,respectively.� F � (P � T ) [ (T � P ); F is called the 
ow relation.� M0 � P ; M0 is called the initial marking of N ; in general, a set M � P is called amarking of N .Given a 2 P [ T , the preset of a, denoted by �a, is de�ned as fa0 j a0Fag; the postsetof a, denoted by a�, is de�ned as fa0 j aFa0g. We de�ne the independence relation I tobe the irre
exive symmetric relation over T de�ned by t1It2 i� �t�1 \ �t�2 = ;.De�nition 3 Firing sequencesLet N = (P; T; F;M0) be a net.� A transition t 2 T is enabled at a marking M of N if �t �M and (M� �t)\t� = ;.We denote the set of enabled transitions at a marking M by next(M).� Given a transition t, we de�ne a relation t! between markings as follows: M t!M 0if t is enabled at M and M 0 = (M � �t) [ t�. The transition t is said to occur (or�re) at M . If M0 t1! M1 t2! � � � tn! Mn for some markings M1;M2; : : :Mn, then thesequence � = t1 : : : tn is called an occurrence sequence. Mn is the marking reachedby �, and this is denoted M0 �!Mn. A marking M is reachable if it is the markingreached by some occurrence sequence.� Given a marking M of N , the set of reachable markings of the net (P; T; F;M) (i.e.,the net obtained replacing the initial marking M0 by M) is denoted by [Mi.1An equivalent de�nition can be given in terms of Place/Transition nets, see [3].145



� A labeled 1-safe net N = (P; T; F;M0; l) is just a 1-safe net together with a mapl : T ! Act, mapping each transition to an action in Act.The behaviour of a net is captured by the reachability graph.De�nition 4 Reachability graph� The reachability graph of a net N is the edge-labeled graph, (V;E)N , whose vertices,V , are the reachable markings of N ; if M t! M 0 for a reachable marking M , thenthere is an edge from M to M 0 labeled with t.In the following we assume a �xed labeled 1-safe net N and consider its reachabilitygraph (V;E)N . We will use the symbols p; q; : : : to denote vertices in (V;E)N and p t! qto denote that there is an edge between p and q labeled with t. Notice that (T; I) is aconcurrent alphabet. If nothing else is mentioned it is implicitly assumed that (T; I) isused to generate the congruence �.De�nition 5 Path� De�ne a path from p 2 V as a sequence, �nite or in�nite, of events t1; t2; : : : ; forwhich there exists states p1; p2; : : : such that p t1! p1 t2! p2 � � �. Notice that the �ringrules of the net ensure the uniqueness of the pi's if they exist. We therefore also referto p t1! p1 t2! p2 � � � as a path from p and use the notation p �! where � = t1t2 � � �.De�ne path(p) � T1 to be all paths from p and use the notation p �! to indicatethat � 2 path(p).� A path from p is maximal if it is either in�nite or ends in a deadlocked state (orjust a deadlock) pn, that is, a state pn such that pn 6!.� Due to the �ring rules of the nets we have that � respect the path property, formally:(8� 2 path(p): (8�0 2 [�]: p �0!)). Hence path(p) can be partitioned into elements ofT1=�. Moreover if � is �nite then p �! q implies (8�0 2 [�]: p �0! q).� Given � 2 path(p); j�j = 1; � = t1t2 � � �. A transition t is said to be continuouslyconcurrently enabled along p �!= p t1! p1 t2! p2 � � � if and only if t is enabled froma certain point and independent of the rest of the transitions taken along p �!,formally: (9n 2 IN: (8j � n: pj t! ^ tItj+1)). Notice that the irre
exivity of Iimplies that from a certain point t is never taken along the path p �!. Wheneverp is understood we simply say that t is continuously concurrently enabled along �.In the process agent example from the introduction, � is continuously concurrentlyenabled along i a1�!.� De�ne comp(p) as the maximal elements with respect to � of path(p)= �. For� 2 [�0] 2 comp(p) we refer to p �! as a computation from p. In the process agentexample, �ba1 is a computation from i while a1 is not, when we use a, b, and � torefer to the corresponding transitions.146



Lemma 6 If t is continuously concurrently enabled along � 2 path(p) then for any�0 2 [�] t is continuously concurrently enabled along �0, that is, � respects continu-ously concurrently enabled. Hence for � 2 path(p) we say that t 2 T is continuouslyconcurrently enabled along [�] if t is continuously concurrently enabled along �.Lemma 7 Given � 2 path(p); j�j = 1. Then (9t 2 T: t is continuously concurrentlyenabled along �) i� (9�0 2 path(p): [�] � [�0]).Above, we have identi�ed the maximal traces as maximal elements in a partial order.Lemma 5 explains why we concentrate on these traces. They represent executions (ofa concurrent system) which are fair with respect to progress of independent processes.In [12] the term \concurrency fairness" is used for such behaviours. Compared to othernotions of \fairness" in the context of concurrent systems, \progress fairness" is a veryweak assumption, see [10] for a comparison.3 The Logic P-CTL and its InterpretationIn this section, we assume a �xed labeled 1-safe net N = (P; T; F;M0; l). Our logic hasthe following syntax, where � 2 Act.A ::= tt j :A j A1 ^ A2 j 3�A j A1 U9 A2 j A1 U8 A2In Hennessy-Milner logic [13], <a> A expresses the fact that one can perform anaction a from a state and, in doing so, reach another state at which A holds. Similarly,the 3�A expresses that a transition labeled � can be performed reaching a state where Aholds. tt is an abbreviation for TRUE. The \until" operators U9 and U8 are introduced asgeneralizations of their counterparts in [4], here interpreted over maximal traces, followingMazurkiewicz [11].The logic is interpreted over the reachability graph (V;E)N of N as follows, where p 2 V ,� 2 Act, and we have written j= instead of j=N since N was �xed. Only the non trivialcases are presented.� p j= 3�A i� (9t 2 T; q 2 V: l(t) = � ^ p t! q ^ q j= A)� p j= A1 U9 A2 i� (9 [�] 2 comp(p); p �!= p0 t1! p1 t2! p2 � � � :(9 0 � n � j�j: (pn j= A2) ^ (80 � i < n: pi j= A1)))� p j= A1 U8 A2 i� (8[�0] 2 comp(p): (8� 2 [�0]; p �!= p t1! p1 t2! p2 � � � :(9 0 � n � j�j: pn j= A2 ^ 80 � i < n: pi j= A1)))Furthermore, we de�ne � � :tt, <�> A � 3�A, F A � tt U9A, G A � :F:A,Ev A � tt U8A, and Al A � :Ev :A. The meaning of EvA is that eventually/inevitablyA will hold along any path that satis�es the progress assumptions (fair progress) whileAlA means that along some progress fair path A always holds. In the process agentexample from the introduction we have i j= Ev <b>tt.De�nition 8 Given a labeled 1-safe net N = (P; T; F;M0; l) and a formula A. Themodel checking problem of N and A is the problem of deciding whether or not M0 j= A.147



4 A Tableau Method for Model CheckingLocal model checking as tableau systems has been presented in [21]. As opposed to a globalmodel checker [4] (see also [2], where a global model checker for P-CTL is presented), whichchecks if all states of the system satis�es a formula, a local model checker only checks if aspeci�c state satis�es a given formula. For local model checkers based on tableau systemsthis is done by only visiting states if the tableau rules require it. Hence the local modelchecker may well be able to show that a state satis�es a formula without visiting all statesof the system. For systems with a compact representation, such as 1-safe nets (where astate of the system/net is considered to be a marking), a local model checker only hasto generate new parts of the reachability graph when the tableau rules require it. Sincethe size of the reachability graph can be exponentially bigger than the size of the net, alocal model checker sometimes has an advantage over a global model checker, since it canperform model checking using less memory.In this section we present a local model checker based on a tableau system for modelchecking formulas from our logic. We begin by considering an example to give someintuition about the problems we are faced with when looking for a tableau system. Sinceour interpretation of the logical operators in P-CTL coincides with the usual interpretationwhen there is no concurrency in the nets, we would also like the tableau system to be aconservative extension of those presented in [8, 21]. The main di�culty is how to generalizethe unfolding formulas in P-CTL which correspond to minimal �xed-point assertions.4.1 Unfolding Minimal Fixed-Point AssertionsBelow we consider a very simple reachability graph, g1, which is generated by the 1-safenet to the right.p1 p0 p2p3 p4 p5 p6p7 p8t3:�3 //t5:�5 
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1 3 5 6 2 4αThe ti's are the transitions, the Greek letters the labels, and p0 the initial marking.The independence relation is the smallest such containing (t1; t5); (t3; t5); (t2; t6); (t4; t6).Now p0 j=g1 :Ev <
> tt because of e.g. [(t1t3t2t4)1] 2 comp(p0) and no state alongthe computation (t1t3t2t4)1 satis�es <
> tt. However if we restrict yourselves to thestates p0; p1; p3; p4; p7 (referred to as g2) we do indeed have p0 j=g2 Ev <
>tt, since everycomputation from p0 must eventually reach p4 | t5 cannot be continuously ignored.148



Let us consider how a tableau (proof tree) for p0 j=g2 Ev <
>tt might look like:p0 ` Ev <
>ttp1 ` Ev <
>ttp0 ` Ev <
>tt p3 ` Ev <
>ttp4 ` Ev <
>ttp4 `<
>ttp7 ` tt p4 ` Ev <
>ttp4 `<
>ttp7 ` ttThe above tree is constructed according to some intuitive tableau rules. Althoughinformal, the example provides the �rst important observation. The leftmost branchbegins and ends with the sequent p0 ` Ev <
>tt. In the �-calculus Ev <
>tt is expressedby the formula �X: <
>tt_[Act]X. Hence based on the tableau methods from [8, 21], onemight expect that the above tree should be discarded as a tableau since in the unfoldingof the minimal �xed-point assertion reaches itself. However in the current framework, weinterpret the logic over maximal traces, and the detected loop, (p0 t1! p1 t3! p0)1, is nota computation from p0 since the transition t5 is continuously concurrently enabled. Thisexample suggests that we might allow the unfolding of a minimal �xed-point assertion toreach itself. The cases in which this will be allowed should include the existence of antransition that is continuously concurrently enabled along the loop represented by such abranch. Our solution to this problem is to annotate the logic used in the tableau rules.The idea is to keep track of the transitions which are continuously concurrently enabledand update this information as one unfolds the reachability graph via the tableau rules.So in our case t5 would be \remembered" along the p0 ! p1 ! p0 branch.Let us consider a second example. This time we use g1. Again we construct in anintuitive and informal manner a tree rooted in the sequent p0 ` Ev <
>tt:p0 ` Ev <
>ttp1 ` Ev <
>ttp0 ` Ev <
>tt p3 ` Ev <
>ttp4 ` Ev <
>ttp4 `<
>ttp7 ` tt p4 ` Ev <
>tt p5 ` Ev <
>ttp4 `<
>ttp7 ` tt p5 `<
>ttp8 ` tt p2 ` Ev <
>ttp6 ` Ev <
>ttp5 ` Ev <
>ttp5 `<
>ttp8 ` tt p0 ` Ev <
>ttAgain the interesting parts are the branches that unfold a minimal �xed-point assertioninto itself. There are two such branches, the leftmost and the rightmost. However alongboth of these there are transitions which are continuously concurrently enabled, t5 forthe left branch and t6 for the right branch. So according to the previous remarks thesebranches shouldn't discard the tree from being a tableau. But we do wish to discardthe tree as a tableau since p0 j=g1 :Ev <
> tt. The problem is that by composingthe two loops (p0 t1! p1 t3! p0) and (p0 t2! p2 t4! p0) we can obtain an in�nite path(p0 t1! p1 t3! p0 t2! p2 t4! p0)1. Along this path there is no transition which is continuouslyconcurrently enabled, that is, it is a computation from p0. Moreover no state along theloop satis�es <
>tt. This fact should discard the tree from being a tableau.One solution to the problem of detecting such "combined" loops is to continue tounfold the minimal �xed-point assertions p0 ` Ev <
> tt. If we unfold the �xed pointassertion once more in the above example, still updating and propagating the information149



kept in the annotation, we will obtain a leaf with the information that we have found alooping path along which no transition is continuously concurrently enabled. This coulddiscard the tree from being a tableau.It turns out that the remaining problem is to �nd some general bound on the numberof times we allow the unfolding of a minimal �xed-point assertion. In the next subsectionwe provide the necessary de�nitions. The bound we use is at most jT j, the number oftransitions in the labeled 1-safe net.4.2 Tableau RulesIn this section we consider a �xed labeled 1-safe net N and its reachability graph (V;E)N .4.2.1 Annotated LogicBefore giving the tableau rules, we de�ne the syntax of an annotated logic which is usedin the tableau rules:B ::= tt j :B j B1 ^B2 j 3�B j B1 UC9 B2 j B1 UC8 B2where 1 � n < 1, C � V . The model checking will be performed by unfolding parts ofthe reachability graph into a tree structure. The unfolding will take place under certainconstraints which restrict the size of the tree structure. The intuition is that C keeps trackof which states have been visited and prevents unnecessary unfolding.For the U8 operator we need a more elaborate annotation. In the tableau rules we usethe following annotations: B1 U (p;n;T 0)8 B2, B1 U (p;n;T 0;V 0;!)8 B2, and B1 U (p;n;T 0;V 0; )8 B2,where B1, B2 are formulas from the annotated logic and p 2 V , T 0 � T , V 0 � V , andn 2 IN . V 0 plays the same role as C and T 0 keeps track of which transitions have beenconcurrently enabled but ignored along the path corresponding to the current branch inthe tree. p is a state from which we try to detect certain \critical loops". In the examplefrom section 4.1 p would correspond to p0 and the \critical loops" would correspond top0 t1! t3! p0 and p0 t2! t4! p0.4.2.2 RulesIn this section we present the tableau rules. There is a trade o� between the rules and thede�nition of tableaux. One can obtain simple rules at the cost of a complicated de�nitionof tableaux2. At the cost of presenting less simple tableau rules we keep the de�nition oftableaux simple.The rules will consist of tableau rules for sequents of the form p ` B. The rules can beread from top to bottom as: \the top sequent holds (B holds at p) if the bottom sequentsand side conditions hold".2The set of simple rules we have identi�ed requires a global side condition in the de�nition of tableaux.150



Tableau Rules^, 1) p ` B1 ^ B2p ` B1 p ` B23�, 3) p ` 3�Bq ` { t 2 T; q 2 V; p t! q{ l(t) = �UC9 , 3) p ` B1 UC9 B2p ` B2 { p 62 C:4) p ` B1 UC9 B2p ` B1 q ` B1 UC[fpg9 B2 { p 62 C; t 2 T; q 2 V; p t! q:UC8 , 5) p ` B1 UC8 B2p ` B2 { p 62 C:6) p ` B1 UC8 B2p ` B1 q1 ` B1 UC[fpg8 B2 � � �qm ` B1 UC[fpg8 B2 { p 62 C; next(p) = ft1; : : : ; tmg;0 < m 2 IN;{ (8 1 � i � m: p ti! qi)7) p ` B1 UC8 B2p ` B1 U (p;jnext(p)j;next(p))8 B2 { p 2 C8) p ` B1 U (p;n;T 0)8 B2p ` B1 U (p;n�1;T 0;;;!)8 B2 { 0 < n 2 IN; T 0 6= ;9) q ` B1 U (p;n;T 0;V 0;!)8 B2q ` B1 qi ` B1 U (p;n;eiIT 0;V 0[fqg;!)8 B2 { q 62 V 0; next(q) = ft1; : : : ; tmg;0 < m 2 IN;{ (8 1 � i � m: q ti! qi)and for D � T , t 2 T , we de�netID = DIt = ft0 2 D j t0It g:10) q ` B1 U (p;n;T 0;V 0;!)8 B2q ` B2 { q 62 V 011) q ` B1 U (p;n;T 0;V 0[fqg;!)8 B2q ` B1 U (p;n;T 0;;; )8 B212) q ` B1 U (p;n;T 0;V 0; )8 B2q ` B1 qi ` B1 U (p;n;eiIT 0;V 0[fqg; )8 B2 { q 62 V 0; next(q) = ft1; : : : ; tmg;0 < m 2 IN; q 6= p{ (8 1 � i � m: q ti! qi)13) q ` B1 U (p;n;T 0;V 0; )8 B2q ` B2 { q 62 V 014) p ` B1 U (p;n;T 0;V 0; )8 B2p ` B1 U (p;n;T 0)8 B2 151



Some explanation of the rules seems appropriate. Rules 1 to 4 should be reasonablyclear. The annotation of the U9 operator prevents unnecessary unfolding.The remaining rules are all concerned with the U8 operator. If p 6j= A1 U8 A2 then byde�nition of j= there are two fundamental cases which can occur. Either there exists a�nite path along which A1 ^ :A2 holds until either :A1 ^ :A2 holds or a deadlock isreached, or else there exists an in�nite computation along which :A1 ^ A2 holds. Thelatter situation reduces to the existence of an in�nite computation from p which consistsof at most jT j loops �p0qi�qi�loop�qip0 from a state p0 reachable from p. This is illustratedas follows: p p0 qi�pp0 // �p0qi //"# �qip0�� "!�qi�loop OORules 6 and 7 take care of the part denoted �pp0. Rules 8, 9, and 11 take care of�p0qi�qi�loop, and rules 12 and 14 take care of �qip0.The next step is to de�ne derivation trees which are build up according to the tableaurules.4.2.3 Derivation Trees and TableauxIn this section we de�ne the tableaux. This is done by �rst de�ning a larger class of trees,derivation trees, which are generated according to the tableau rules. The next step is torestrict the class of derivation trees, using the annotation of the formulae, to a subclassof derivation trees which will be de�ned to be the tableaux.Derivation trees are de�ned inductively in the usual manner, except perhaps for nega-tion. That is, if T1; : : : ; Tn are derivation trees with roots matching the sequents underthe bar of a rule and the side conditions are ful�lled then one obtains a new derivationtree by \pasting the derivation trees together" according to the rule. The root of the newderivation tree is labeled by the sequent above the bar.First we de�ne the basis, all trees having a single node, the root, labeled with theshown sequent.� p ` tt is a derivation tree.� p ` :B is a derivation tree.� p ` B1 UC9 B2, where p 2 C is a derivation tree.� p ` B1 U (p;n;T 0)8 B2, where n = 0 or T 0 = ;.� q ` B1 U (p;n;T 0;V 0; )8 B2, where q 2 V 0.By applying the rules we can obtain new derivation trees, for example:� If T1 is a derivation tree with root p ` B1 and T2 is a derivation tree with rootq ` B1 UC[fpg9 B2, where p 62 C and 9t 2 T:p t! q then p ` B1 UC9 B2T1 T2 is aderivation tree with root p ` B1 UC9 B2.152



� If T is a derivation tree with root p ` B2 and p 62 C then p ` B1 UC8 B2T is aderivation tree with root p ` B1 UC8 B2.Nothing else is a derivation tree. Next, using the annotation of the formulae, we obtaintwo useful de�nitions:� Let Ann be the obvious function which takes a formula A from the �rst grammarand annotates all its U9 and U8 operators with C = ;, giving a formulaAnn(A) fromthe second grammar. A formula B from the second grammar is said to be clean ifthere exists a formula A from the �rst grammar such that B equals Ann(A).� Sequents of the form q ` B1 U (q;n;;)8 B2, where n 2 IN and q 2 V , and of the formq ` B1 UC9 B2, where q 2 C, are called terminal sequents.We can now de�ne tableaux and will hereby restrict our attention to meaningful deriva-tion trees. We get rid of meaningless derivation trees as for example p ` :tt.A tableau is a derivation tree T with root p ` Ann(A) such that either� A = tt or� A = :A0 and there exists no tableau with root p ` Ann(A0) or� A is not of the above form and{ every proper subtree T 0 of T whose root is labeled with a clean formula is itselfa tableau and{ T has no leaves labeled with terminal sequents.5 Soundness and CompletenessHaving given the necessary de�nitions we are now ready to state the main result, whichholds for the reachability graph of a labeled 1-safe net N , where p is a reachable markingof N :Theorem 9Soundness:If T is a tableau with root p ` Ann(A) then p j= A.Completeness:If p j= A then there exists a tableau with root p ` Ann(A).Proof. The proof proceeds by structural induction, showing soundness and complete-ness simultaneously. The main di�culty is the U8 operator. The proof is constructedusing the technique from [2]. 2153



As an example, we show that the process agent from the introduction will eventuallybe able to �re a transition labeled by a b action (assume the transitions are t1, t2, andt3, and are labeled a, � , and b). By the previous theorem, to show i j= Ev(<b> tt) it issu�cient to construct a tableau with root i ` tt U;8 (<b>tt).i ` tt U;8(<b>tt)i ` tt i ` tt Ufig8 (<b>tt)i ` tt U (i;2;ft1;t2g)8 (<b>tt)T1 s1 ` tt Ufig8 (<b>tt)s1 `<b>tts2 ` ttwhere T1 isi ` tt U (i;1;ft1;t2g;;;!)8 (<b>tt)i ` tt U (i;1;ft2g;fig;!)8 (<b>tt)i ` tt U (i;1;ft2g;;; )8 (<b>tt)i ` tt U (i;1;ft2g)8 (<b>tt)T2 s1 ` tt U (i;1;ft1g;fig;!)8 (<b>tt)s1 `<b>tts2 ` tt i ` ttwhere T2 isi ` tt U (i;0;ft2g;;;!)8 (<b>tt)i ` tt i ` tt U (i;0;ft2g;fig;!)8 (<b>tt)i ` tt U (i;0;ft2g;;; )8 (<b>tt)i ` tt U (i;0;ft2g)8 (<b>tt) s1 ` tt U (i;0;;;fig;!)8 (<b>tt)s1 `<b>tts2 ` ttNotice that if we restrict ourselves to labeled 1-safe nets where the independencerelation is empty and translate A1 U9 A2 as �X:A2 _ (A1 ^ <Act>X) and A1 U8 A2 as�X:A2 _ (A1^ <Act>tt ^ [Act]X) (actually applying this translation recursively on thesubformulas A1 and A2) our proof rules will work in essentially the same manner as thosepresented in [8, 21].6 Conclusion and Future WorkPartial order semantics for concurrent systems have gained interest because interleav-ing models of concurrency have failed to provide an acceptable interpretation of what itmeans for events of a concurrent system to be independent. Much work has been de-voted to translate obtained results and notions from the interleaving models to the \trueconcurrency" models [6, 5, 23, 9]. Trying to contribute to the \translation of results" wehave provided proof rules for a CTL-like logic interpreted over maximal traces. The workwhich we have tried to \translate" can be found in [8, 21]. Our work supports automaticveri�cation of distributed systems whose liveness properties are only provable under theassumption of progress.A modal operator specifying concurrent behaviour have been presented in [9]. In[2] we present other modal operators specifying concurrent or con
icting behaviour. Byextending P-CTL with such modal operators one can also obtain undecidability resultssuch as those in [9]. Also, the operators presented in [2] are all incomparable. The choiceof the modal operators has partly been made because we want to draw attention to the154
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