Petri Nets, Traces,
and Local Model Checking

Allan Cheng*
BRICS!

Computer Science Department, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark
e-mail:acheng@daimi.aau.dk
Phone: +45 8942 3188 Fax: +45 8942 3255

Abstract

It has been observed that the behavioural view of concurrent systems that all
possible sequences of actions are relevant is too generous; Not all sequences should
be considered as likely behaviours. By taking progress fairness assumptions into
account one obtains a more realistic behavioural view of the systems. In this paper
we consider the problem of performing model checking relative to this behavioural
view. We present a C'T'L-like logic which is interpreted over the model of concurrent
systems labeled 1-safe nets. It turns out that Mazurkiewicz trace theory provides
a useful setting in which the progress fairness assumptions can be formalized in a
natural way. We provide the first, to our knowledge, set of sound and complete
tableau rules for a C'T'L-like logic interpreted under progress fairness assumptions.

keywords: fair progress, labeled 1-safe nets, local model checking, maximal
traces, partial orders, inevitability

1 Introduction

Recently attention has focused on behavioural views of concurrent systems in which con-
currency or parallelism is represented explicitly [18, 11, 22, 20, 23]. This is is done by
imposing more structure on models for concurrent systems, in our case an independence
relation on the transitions.

Our main objective is to explore the use of the extra structure of independence in the
context of specification logics. This paper introduces and studies a C'T'L-like branching
time temporal logic, P-C'TL, interpreted over the reachability graph of labelled 1-safe
nets.

Labeled 1-safe nets are Petri nets whose transitions are labeled by actions from a
set Act and whose reachable markings have at most one token on any place. Labeled

*This work has been supported by The Danish Research Councils.
TBasic Research in Computer Science, Centre of the Danish National Research Foundation.

142

1-safe nets are for example obtained by translating agents from various process algebras
or constructed as the synchronization of finite automata.

As an example let us consider the process agent fix (X = a.X)[(7.6.0). Its transition
graph is given below to the left. The initial state is ¢z and s; and s, are the only other
reachable states. The agent can also be represented by the labeled 1-safe net to the right,

containing three transitions labeled a, 7, and b respectively [14, 23].
b

D . f9 £ @C%@u o

The net gives us a more concrete model of the process agent. It shows that the
transition labeled a is independent of those labeled 7 and 6. We can therefore add more

structure to the above transition system by providing a relation which explicitly states
this independence. The new transition system is an example of a labeled asynchronous
transition system (l-ATS) [19, 1, 23, 15]. In general, we can obtain such a labeled
asynchronous transition system as the case graph, extended with implicit information
about independence, of a labeled 1-safe net. In this paper, we will concentrate on labeled
1-safe nets.

The logic P-C'TL contains one important feature which is the model-theoretic incorpo-
ration of progress. What corresponds to quantified “until” path formulas in C'T'L is in our
setting interpreted over firing sequences of labeled 1-safe nets respecting certain progress
assumptions. This is formalized using maximal traces in the framework of Mazurkiewicz
trace-theory, where we make explicit use of the notion of independence between tran-
sitions. As an example the formula Ev(tt), “eventually b is enabled” (#t means
"True”), is true of the process agent example under the assumption of progress (our
interpretation) , but not without (standard CTL interpretation). Our interpretation is
conservative in the sense that if we interpret P-CTL over standard lts we get the standard
CTL interpretation.

Work on expressing progress assumptions and fairness assumptions can be found in
for example Manna and Pnueli’s book on temporal logic [10]. Often it involves “coding”
these assumptions using linear time temporal logic formulas of the form ¢4, = 1, which
require a more detailed knowledge of the particular system. We are able to avoid this
obstacle and treat progress assumptions uniformally.

In the standard setting of C'T'L-like logics interpreted over labeled transition systems,
model checking has been described in [4] using a state based algorithm, and in [8, 21]
using tableaux rules. Model checking in the framework of partial order semantics has
been described in [17, 16].

In this paper we present the first, to our knowledge, set of sound and complete tableau
rules in the style of [8, 21] for a CTL-like logic interpreted in the trace theoretic framework.
The rules are a generalization of those in [8, 21] in the sense that if we restrict model
checking to labeled 1-safe nets without independent transitions, our tableau rules work
in the same way. Using the distinction between “local” and “global” model checking as
advocated by Stirling and Walker in [21] our method must be classified as “local” model
checking. Local model checking has the advantage that it isn’t necessary to have an
explicit representation of all the states of the system being investigated. This is however
necessary for the global model checking algorithm of [4]. Labeled 1-safe P/T nets are
examples of models which can be "locally” model checked without necessarily generating

143

the entire reachability graph/state space.

In [2] related work is presented. There, based on the approach in [4], we present a
global model checking algorithm for P-CTL . By choosing this approach, contrary to a
tableau based as in [8, 21], we obtain a polynomial time algorithm (in the size of the
reachability graph). Also, different extensions of P-CTL in the form of modal operators
expressing concurrent or conflicting behaviour are considered.

The rest of the paper is organized as follows. In section 2 we provide the necessary
definitions. In section 3 we present the logic and its interpretation. Section 4 contains
a motivating example followed by the tableau rules and the definition of tableaux. In
section 5 we state the main result, soundness and completeness of the proposed tableau
rules. Finally section 6 contains the conclusion and suggestions for future work.

2 Basic Definitions

In this section we recall some basic definitions. Furthermore we state some facts and
lemmas. First we define concurrent alphabets, the fundamental structure in Mazurkiewicz
trace theory [11].

Definition 1 Concurrent alphabet and traces

e A concurrent alphabet (A, 1) is a set A and a relation I C A x A, the independence
relation, which is symmetric and irreflexive.

In the following assume a fixed concurrent alphabet (A,).

o Gliven a set A we define A = A*U A%, r.e. A™ is the set of all finite and infinite
sequences of elements from A.

o Define concatenation o of elements in A™ as:

uov:{u if Jul = oo

uv else

For notational convenience we will write uv instead of wowv.

o Let <,y be the usual prefix ordering on sequences and w3 the projection on
{a,b}>°. We define a preorder < on A® which demands that the relative order
of arbitrary elements a and b, which are in conflict, i.e. (a,b) & I, must be the same
when tgnoring other elements of the sequences. Formally:

u=v iff (V(a,b)& I 7py(u) <prer Tap(v))

o Define an equivalence relation = on A™ asu = v if u v and v < u. Let [u] denote
the equivalence class containing u.

o Fact: = is a congruence with respect to o.

o The elements of A/ = will be called traces.

144

o for[u],[v] € A>® /= we define [u] < [v] if u < v. It can be shown that this relation
is a partial order. We will write [u] < [v] if and only if u = v and u Z v.

o Fuact: for u,v € A*:

—u=v iff u=y v

— [u] = [v] ¢ff (Fu' € A% [uu'] = [v])

where =y is the well known equivalence used by Mazurkiewicz when defining finite
traces, see [11].

We have chosen to present traces using projections 7(,p). In this way finite as well
as infinite traces are handled in a uniform way. Similar definitions can be found in for
example [7].

We now define labeled 1-safe nets, the labeled version of 1-safe nets!.

Definition 2 1-safe nets

A 1-safe net, or just a net, is a fourtuple N = (P,T,F, My) such that

o P and T are finite disjoint sets; their elements are called places and transitions,
respectively.

o FC(PxT)U(T x P); Fis called the flow relation.

o My C P; My ts called the initial marking of N; in general, a set M C P s called a
marking of N.

Given a € PUT, the preset of a, denoted by *a, is defined as {a’' | a'Fa}; the postset
of a, denoted by a®, is defined as {a’' | aFa'}. We define the independence relation [to
be the irreflexive symmetric relation over T' defined by t11t, off *t5 N *13 =

Definition 3 Firing sequences
Let N = (P,T,F, M) be a net.

o A transitiont € T is enabled at @ marking M of N if *t C M and (M —*t)Nt* = 0.
We denote the set of enabled transitions at a marking M by next(M).

o Gliven a transition t, we define a relation - between markings as follows: M - M’
if t is enabled at M and M' = (M — *t) Ut*. The transition t is said to occur (or
fire) at M. If My S4M B By, for some markings My, M, ... M,, then the
sequence o = t1...1, is called an occurrence sequence. M, is the marking reached
by o, and this is denoted My = M,. A marking M is reachable if it is the marking
reached by some occurrence sequence.

o Gliven a marking M of N, the set of reachable markings of the net (P, T, F, M) (i.e.,
the net obtained replacing the initial marking My by M) is denoted by [M).

LAn equivalent definition can be given in terms of Place/Transition nets, see [3].

145

o A labeled 1-safe net N = (P, T,F, My,l) is just a 1-safe net together with a map
[:T — Act, mapping each transition to an action in Act.

The behaviour of a net is captured by the reachability graph.

Definition 4 Reachability graph

o The reachability graph of a net N is the edge-labeled graph, (V, E)n, whose vertices,

V', are the reachable markings of N; if M LM for a reachable marking M, then
there is an edge from M to M’ labeled with t.

In the following we assume a fixed labeled 1-safe net N and consider its reachability
graph (V, F)n. We will use the symbols p, ¢, ... to denote vertices in (V, F)y and p N
to denote that there is an edge between p and ¢ labeled with ¢. Notice that (T, 71) is a
concurrent alphabet. If nothing else is mentioned it is implicitly assumed that (7, 1) is
used to generate the congruence =.

Definition 5 Path

o Define a path from p € V' as a sequence, finite or infinite, of events t1,t5,..., for
which there exists states py, pa, ... such that p b, I L, pg -+ -. Notice that the firing
rules of the net ensure the uniqueness of the p;’s if they exist. We therefore also refer
to p 4, P 1ZA po -+ as a path from p and use the notation p = where o = t1ty---.
Define path(p) C T to be all paths from p and use the notation p = to indicate
that o € path(p).

o A path from p is maximal if it is either infinite or ends in a deadlocked state (or
Just a deadlock) p,, that is, a state p, such that p, 4.

o Due to the firing rules of the nets we have that = respect the path property, formally:
(Vo € path(p). (Vo' € [o]. p=)). Hence path(p) can be partitioned into elements of
T/ =. Moreover if o is finite then p = q implies (Vo' € [o]. p L q).

o Gliven o € path(p),|o| = oo,0 = tity---. A transition t is said to be continuously
concurrently enabled along p %= p LN m N pg -+ if and only if t is enabled from
a certain point and independent of the rest of the transitions taken along p =,
formally: (In € IN. (V5 > n. p; LA tlt;11)). Notice that the irreflexivity of 1
implies that from a certain point t is never taken along the path p 5. Whenever
p is understood we simply say that t is continuously concurrently enabled along o.
In the process agent example from the introduction, T is continuously concurrently

enabled along 1 o

e Define comp(p) as the mazimal elements with respect to = of path(p)/ =. For
o € [0'] € comp(p) we refer to p = as a computation from p. In the process agent
example, Tha™ is a computation from 1 while a® is not, when we use a, b, and 7 to
refer to the corresponding transitions.

146

Lemma 6 [If t is continuously concurrently enabled along o € path(p) then for any
o' € [o] t is continuously concurrently enabled along o', that is, = respects continu-
ously concurrently enabled. Hence for o € path(p) we say that t € T is continuously
concurrently enabled along [o] if ¢ is continuously concurrently enabled along o.

Lemma 7 Given o € path(p),|o| = co. Then (3t € T. t is continuously concurrently
enabled along o) iff (o’ € path(p). [o] < [07]).

Above, we have identified the maximal traces as maximal elements in a partial order.
Lemma 5 explains why we concentrate on these traces. They represent executions (of
a concurrent system) which are fair with respect to progress of independent processes.
In [12] the term “concurrency fairness” is used for such behaviours. Compared to other
notions of “fairness” in the context of concurrent systems, “progress fairness” is a very
weak assumption, see [10] for a comparison.

3 The Logic P-CTL and its Interpretation

In this section, we assume a fixed labeled 1-safe net N = (P, T, F, My, [). Our logic has
the following syntax, where a € Act.

A = tt|_‘A|A1/\A2|<>aA|A1U3A2|A1UVA2

In Hennessy-Milner logic [13], <a> A expresses the fact that one can perform an
action a from a state and, in doing so, reach another state at which A holds. Similarly,
the O, A expresses that a transition labeled o can be performed reaching a state where A
holds. ¢t is an abbreviation for TRUFE. The “until” operators Uz and Uy are introduced as
generalizations of their counterparts in [4], here interpreted over maximal traces, following
Mazurkiewicz [11].

The logic is interpreted over the reachability graph (V, E')xy of NV as follows, where p € V,
a € Act, and we have written |= instead of Ex since N was fixed. Only the non trivial
cases are presented.

e pECLA M (FteT qeVii(t)=a ApLg A qgEA)

o pE A U3z Ay iff (H[U]Ecomp(p),pi:pogplng---.
(30 <n < Jol-(pn = Az) A (01 < pi = A1)

t1

o p A Uy Ay iff (V]o'] € comp(p). (Vo €[0], pB=pSp B py-e
(F0<n<lol.p, EF A2 AVO<i<n.p = A1)

Furthermore, we define ff = —tt, <a> A = O,A, F A = tt UA, G A = —~F-A,
FEv A =tt UyA, and Al A = —Fv—-A. The meaning of FvA is that eventually/inevitably
A will hold along any path that satisfies the progress assumptions (fair progress) while
AlA means that along some progress fair path A always holds. In the process agent
example from the introduction we have ¢ | Ko 1tt.

Definition 8 Given a labeled 1-safe net N = (P, T,F, My, 1) and a formula A. The
model checking problem of N and A is the problem of deciding whether or not My = A.

147

4 A Tableau Method for Model Checking

Local model checking as tableau systems has been presented in [21]. As opposed to a global
model checker [4] (see also [2], where a global model checker for P-CTL is presented), which
checks if all states of the system satisfies a formula, a local model checker only checks if a
specific state satisfies a given formula. For local model checkers based on tableau systems
this is done by only visiting states if the tableau rules require it. Hence the local model
checker may well be able to show that a state satisfies a formula without visiting all states
of the system. For systems with a compact representation, such as 1-safe nets (where a
state of the system/net is considered to be a marking), a local model checker only has
to generate new parts of the reachability graph when the tableau rules require it. Since
the size of the reachability graph can be exponentially bigger than the size of the net, a
local model checker sometimes has an advantage over a global model checker, since it can
perform model checking using less memory.

In this section we present a local model checker based on a tableau system for model
checking formulas from our logic. We begin by considering an example to give some
intuition about the problems we are faced with when looking for a tableau system. Since
our interpretation of the logical operators in P-C'T'L coincides with the usual interpretation
when there is no concurrency in the nets, we would also like the tableau system to be a
conservative extension of those presented in [8, 21]. The main difficulty is how to generalize
the unfolding formulas in P-CTL which correspond to minimal fixed-point assertions.

4.1 Unfolding Minimal Fixed-Point Assertions

Below we consider a very simple reachability graph, ¢;, which is generated by the 1-safe
net to the right.

t1:a1 ta:ap

ta:a t4ioy
i5:a te:g tg:ae
tyios
t1:001 toiop
t4 oy
‘/tw'y ‘/tg -y

pr Pps @ ©

The t;’s are the transitions, the Greek letters the labels, and pg the initial marking.
The independence relation is the smallest such containing (#1,t5), (3, %5), (f2,t6), (4, t6).
Now po =, —Ev <y> tt because of e.g. [(t1tstats)™] € comp(po) and no state along
the computation (#;t5t2t4)™ satisfies <~ > tt. However if we restrict yourselves to the

states po, p1, ps, p1, pr (veferred to as g2) we do indeed have pg |=,, Fv <y>1t, since every
computation from py must eventually reach py — t5 cannot be continuously ignored.

148

Let us consider how a tableau (proof tree) for py =4, Fv <y>tt might look like:

po b Ev <y>tt

p1 b Ev <y>it pa b Ev <y>tt
poF Ev<y>tt psk Fv<y>it pa <>t
pa b Ev <y>it pr Ett
pa <>t
pr bt

The above tree is constructed according to some intuitive tableau rules. Although
informal, the example provides the first important observation. The leftmost branch
begins and ends with the sequent pg = Fv <y>1t. In the p-calculus Ev <y>tt is expressed
by the formula pX. <v>ttV[Act] X. Hence based on the tableau methods from [8, 21], one
might expect that the above tree should be discarded as a tableau since in the unfolding
of the minimal fixed-point assertion reaches itself. However in the current framework, we

o0

, 1s not

interpret the logic over maximal traces, and the detected loop, (po 4, I L, Po)
a computation from pg since the transition ¢5 is continuously concurrently enabled. This
example suggests that we might allow the unfolding of a minimal fixed-point assertion to
reach itself. The cases in which this will be allowed should include the existence of an
transition that is continuously concurrently enabled along the loop represented by such a
branch. Our solution to this problem is to annotate the logic used in the tableau rules.
The idea is to keep track of the transitions which are continuously concurrently enabled
and update this information as one unfolds the reachability graph via the tableau rules.

So in our case t5 would be “remembered” along the py — p; — po branch.
Let us consider a second example. This time we use ¢;. Again we construct in an
intuitive and informal manner a tree rooted in the sequent py = Fv <y>tt:

po F Ev <y>tt

pFEEv <y>tt pab Ev<y>tt ps b Fv<y>it p2 F Ev <y>tt
poF Ev <y>tt pshk Fv <y>tt pa E<y>tt ps E<y>tt ps - Ev <y>tt po b Fv<y>it
pa b Ev <y>tt pr Ett ps 1t ps F Ev <y>tt
pa <>t ps E<y>tt
pr bt ps 1t

Again the interesting parts are the branches that unfold a minimal fixed-point assertion
into itself. There are two such branches, the leftmost and the rightmost. However along
both of these there are transitions which are continuously concurrently enabled, 5 for
the left branch and tg for the right branch. So according to the previous remarks these
branches shouldn’t discard the tree from being a tableau. But we do wish to discard
the tree as a tableau since py =, —Fv <v> tt. The problem is that by composing
the two loops (po 4o B po) and (po Zop, po) we can obtain an infinite path
(po h, m s, Do BN P2 SN po)>°. Along this path there is no transition which is continuously
concurrently enabled, that is, it is a computation from py. Moreover no state along the
loop satisfies <v>tt. This fact should discard the tree from being a tableau.

One solution to the problem of detecting such ”combined” loops is to continue to
unfold the minimal fixed-point assertions py = Ev <v>tt. If we unfold the fixed point
assertion once more in the above example, still updating and propagating the information

149

kept in the annotation, we will obtain a leaf with the information that we have found a
looping path along which no transition is continuously concurrently enabled. This could
discard the tree from being a tableau.

It turns out that the remaining problem is to find some general bound on the number
of times we allow the unfolding of a minimal fixed-point assertion. In the next subsection
we provide the necessary definitions. The bound we use is at most |T'|, the number of
transitions in the labeled 1-safe net.

4.2 Tableau Rules

In this section we consider a fixed labeled 1-safe net NV and its reachability graph (V, E)y.

4.2.1 Annotated Logic

Before giving the tableau rules, we define the syntax of an annotated logic which is used
in the tableau rules:

B = tt| =B | BiABy | OuB | By US By | By US By

where 1 < n < oo, C C V. The model checking will be performed by unfolding parts of
the reachability graph into a tree structure. The unfolding will take place under certain
constraints which restrict the size of the tree structure. The intuition is that C keeps track
of which states have been visited and prevents unnecessary unfolding.

For the Uy operator we need a more elaborate annotation. In the tableau rules we use
the following annotations: By Uép’n’T/) By, By Uép’n’T/’V/’_}) By, and B Uép’n’T/’V/’H) B,
where By, By are formulas from the annotated logic and p € V., T C T, V! C V, and
n € IN. V' plays the same role as C and T" keeps track of which transitions have been
concurrently enabled but ignored along the path corresponding to the current branch in
the tree. p is a state from which we try to detect certain “critical loops”. In the example
from section 4.1 p would correspond to py and the “critical loops” would correspond to

t1 ta d to t4
po —— po an po —— po,

4.2.2 Rules

In this section we present the tableau rules. There is a trade off between the rules and the
definition of tableaux. One can obtain simple rules at the cost of a complicated definition
of tableaux?. At the cost of presenting less simple tableau rules we keep the definition of
tableaux simple.

The rules will consist of tableau rules for sequents of the form p = B. The rules can be
read from top to bottom as: “the top sequent holds (B holds at p) if the bottom sequents
and side conditions hold”.

?The set of simple rules we have identified requires a global side condition in the definition of tableanx.

150

10)

11)

12)

13)

14)

Tableau Rules

p"Bl A Bz
pk B

pt By

pk CuB

q

p"Bl Ug Bz

pt By

p"Bl USBZ

pk B

g+ B, USPT) B,

p"Bl ch Bz

pt By

p"Bl ch Bz

pEB b B USY By g F By

P F Bl ch Bz
pF B, UG TR b

pt B, U™ B,

P - Bl Uv(/py”_lylemv_*) B2

q [B1 Uv(/p,n,Tl,VI,—*) 32

q F B, % F B, Uv(/p,n,elfT',V'U{q},—*) B,

q - Bl Uv(/pynylevlv_*) B2

qF By

q - B, Uv(/p,n,T',V'U{q}y—») B,

q [B1 Uv(/p,n,Tl,@ﬁ—) 32

q [B1 Uv(/p,n,Tl,Vlﬁ—) 32

q F B, % F B, Uv(/p,n,elfT',V'U{q},*) B,

q - Bl Uv(/pynylevlv‘_) B2

qF By

P - Bl Uv(/pynylevlv‘_) B2

pt B UP" T B,

151

UVCU{P} B2

tET,qEV,p—t>q
l(t):a

pécC.
peCteT g€ V,p—y.

pécC.

p & C,next(p) = {t1, ...
0<me N,

,tm},

(V1<i<m pq)

peC
O<neIN,T"#0

q & V' next(q) = {t1,...
0<me N,

,tm},

(V1<i<m g q)

and for D C T, ¢t € T, we define
tID=DIt={t' e D|U'It}.

qg V'

q & V' next(q) = {t1,...
O<meN,g#p

,tm},

(V1<i<m g q)

qg V'

Some explanation of the rules seems appropriate. Rules 1 to 4 should be reasonably
clear. The annotation of the Uz operator prevents unnecessary unfolding.

The remaining rules are all concerned with the Uy operator. If p = A; Uy Ay then by
definition of |= there are two fundamental cases which can occur. Either there exists a
finite path along which A; A —A; holds until either =A; A —A; holds or a deadlock is
reached, or else there exists an infinite computation along which =A; A A, holds. The
latter situation reduces to the existence of an infinite computation from p which consists
of at most |T'| 100ps 0y, 04, —100pTqip from a state p’ reachable from p. This is illustrated
as follows:

qupl

AN

Tpp! Y,
pP——=p 5 >4
P g qui—loop

Rules 6 and 7 take care of the part denoted o,,. Rules 8, 9, and 11 take care of
Oplg; Tgi—loop, and rules 12 and 14 take care of o,

The next step is to define derivation trees which are build up according to the tableau
rules.

4.2.3 Derivation Trees and Tableaux

In this section we define the tableaux. This is done by first defining a larger class of trees,
derivation trees, which are generated according to the tableau rules. The next step is to
restrict the class of derivation trees, using the annotation of the formulae, to a subclass
of derivation trees which will be defined to be the tableaux.

Derivation trees are defined inductively in the usual manner, except perhaps for nega-
tion. That is, if Ty,...,T, are derivation trees with roots matching the sequents under
the bar of a rule and the side conditions are fulfilled then one obtains a new derivation
tree by “pasting the derivation trees together” according to the rule. The root of the new
derivation tree is labeled by the sequent above the bar.

First we define the basis, all trees having a single node, the root, labeled with the
shown sequent.

e p -1t is a derivation tree.
e pF =B is a derivation tree.

pF By US By, where p € C is a derivation tree.

p By Uép’n’T/) By, where n =0 or T" = 0.
o ¢ By Uép’n’T/’V/’H)BQ, where g € V.
By applying the rules we can obtain new derivation trees, for example:

o If 7} is a derivation tree with root p F By and T; is a derivation tree with root
g B Uacu{p} By, where p ¢ C and 3t € T.p L g then pk B US By is a
T, T,
derivation tree with root p - B Uac Bs.

152

o If T is a derivation tree with root p = By and p ¢ C then pF B, US B, s a
T
derivation tree with root p - B U\g Bs.

Nothing else is a derivation tree. Next, using the annotation of the formulae, we obtain
two useful definitions:

o Let Ann be the obvious function which takes a formula A from the first grammar
and annotates all its U3 and Uy operators with C =), giving a formula Ann(A) from
the second grammar. A formula B from the second grammar is said to be clean if
there exists a formula A from the first grammar such that B equals Ann(A).

e Sequents of the form ¢ - B U\Sq’n’w) By, where n € IN and ¢ € V', and of the form

qt By US By, where g € C, are called terminal sequents.

We can now define tableaux and will hereby restrict our attention to meaningful deriva-
tion trees. We get rid of meaningless derivation trees as for example p = —tt.
A tableau is a derivation tree T with root p = Ann(A) such that either

o A=1ttor
e A= -A" and there exists no tableau with root p - Ann(A’) or
e A is not of the above form and

— every proper subtree T” of T whose root is labeled with a clean formula is itself
a tableau and

— T has no leaves labeled with terminal sequents.

5 Soundness and Completeness

Having given the necessary definitions we are now ready to state the main result, which
holds for the reachability graph of a labeled 1-safe net NV, where p is a reachable marking
of N:

Theorem 9
Soundness:
If T is a tableau with root p = Ann(A) then p E A.
Completeness:

If p E A then there exists a tableau with root p = Ann(A).

Proof. The proof proceeds by structural induction, showing soundness and complete-
ness simultaneously. The main difficulty is the Uy operator. The proof is constructed
using the technique from [2]. 0

153

As an example, we show that the process agent from the introduction will eventually
be able to fire a transition labeled by a b action (assume the transitions are t1, t5, and
t5, and are labeled a, 7, and b). By the previous theorem, to show ¢ | Ev(tt) it is
sufficient to construct a tableau with root ¢ F ¢t Ud (tt).

iU (1)

it ikt U (th) s bt U (tt)
ik o U TR s) 51 F it
T1 S9 F ot

where T is

ikttt (s)
ikt 0TS sty sy b 0GP S sty i

ikt USRS (s) 51 Ftt
ikt U5 (<h> 1) 5o bt
T

where T4 is

ikt U5 O =) s
ittt ik sy sy b oT O T s)
ikt U5 O S) (ps) 51 Ftt
ikt U501 (<> 1) so 1

Notice that if we restrict ourselves to labeled 1-safe nets where the independence
relation is empty and translate A; Uz Az as pX. Az V (A1 A <Aet>X) and Ay Uy Ay as
pX. Ay V (AN <Act>tt A [Act] X) (actually applying this translation recursively on the
subformulas A; and Aj) our proof rules will work in essentially the same manner as those
presented in [8, 21].

6 Conclusion and Future Work

Partial order semantics for concurrent systems have gained interest because interleav-
ing models of concurrency have failed to provide an acceptable interpretation of what it
means for events of a concurrent system to be independent. Much work has been de-
voted to translate obtained results and notions from the interleaving models to the “true
concurrency” models [6, 5, 23, 9]. Trying to contribute to the “translation of results” we
have provided proof rules for a CTL-like logic interpreted over maximal traces. The work
which we have tried to “translate” can be found in [8, 21]. Our work supports automatic
verification of distributed systems whose liveness properties are only provable under the
assumption of progress.

A modal operator specifying concurrent behaviour have been presented in [9]. In
[2] we present other modal operators specifying concurrent or conflicting behaviour. By
extending P-CTL with such modal operators one can also obtain undecidability results
such as those in [9]. Also, the operators presented in [2] are all incomparable. The choice
of the modal operators has partly been made because we want to draw attention to the

154

fact that there is no obvious choice. This leaves open the problem of identifying a (set
of) more general modal operator(s).

Another research area might be to handle a more expressive logic (perhaps one con-
taining a recursion operator) in a similar way, that is, define the interpretation of the
formulas over maximal traces and proving soundness and completeness of some tableau
proof rules.

Finally the general satisfiability problem for some of the extended logics is still an
open problem.

Acknowledgements: 1thank Mogens Nielsen and Nils Klarlund for inspiring discussions
and comments.

References

[1] M. A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University of Sussex,
1988. PhD in computer science, report no.1/88.

[2] Allan Cheng. Local model checking and traces. Technical report, Daimi, Computer Science
Department, Aarhus University, May 1994. BRICS Report Series RS-94-17.

[3] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe nets. In
Proc. FSTETCS 13, Thirteenth Conference on the Foundations of Software Technology &
Theoretical Computer Science, pages 326-337. Springer-Verlag (LNCS 761), Bombay, India,
December 1993. To appear in TCS, volume 148.

[4] Edmund M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state
concurrent system using temporal logic. ACM Transactions on Programming Languages
and Systems, 8(2):244-263, 1986.

[5] Lalita Jategaonkar and Albert Meyer. Deciding true concurrency equivalences on finite safe
nets. In Proc. ICALP’93, pages 519-531, 1993.

[6] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and open maps. In Proc.
LICS’93, Fighth Annual Symposium on Logic in Computer Science, pages 418-427, 1993.

[7] Marta Z. Kwiatkowska. Event fairness and non-interleaving concurrency. Formal Aspects
of Computing, 1:213-228, 1989.

[8] Kim G. Larsen. Proof systems for Hennessy-Milner logic with recursion. In Proceedings of
CAAP, Nancy France, pages 215-230. Springer-Verlag (LNCS 299), March 1988.

[9] Kamal Lodaya, Rohit Parikh, R. Ramanujam, and P. S. Thiagarajan. A logical study
of distributed transition systems. Technical report, School of Mathematics, SPIC Science
Foundation, Madras, 1993. To appear in Information and Computation, a preliminary
version appears as Report TCS-93-8.

[10] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer Verlag, 1992.

[11] Antoni Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other
Models of Concurrency, pages 279-324. Springer-Verlag (LNCS 255), 1986.

155

[12]

[13]

[14]

[22]

[23]

Antoni Mazurkiewicz, Edward Ochmarnski, and Wojciech Penczek. Concurrent systems and
inevitability. Theoretical Computer Science, 64():281-304, 1989.

Robin Milner. Communication and Concurrency. Prentice Hall International Series In
Computer Science, C. A. R. Hoare series editor, 1989.

Madhavan Mukund and Mogens Nielsen. CCS, Locations and Asynchronous Transition
Systems. Proc. Foundations of Software Technology and Theoretical Computer Science 12,
pages 328-341, 1992.

Ernst R. Olderog. Nets, Terms and Formulas. Cambridge University Press, 1991. Number
23 Tracts in Theoretical Computer Science.

Doron Peled and Amir Pnueli. Proving partial order liveness properties. In Proc. ICALP 90,
pages 553-571. Springer-Verlag (LNCS 443), 1990.

Wojciech Penzcek. Temporal logics for trace systems: On automated verification. Interna-
tional Journal of Foundations of Computer Science, 4 (1):31-67, 1993.

Wolfgang Reisig. Petri Nets — An Introduction. EATCS Monographs in Computer Science
Vol.4, 1985.

M. W. Shields. Concurrent machines. Computer Journal, 28:449-465, 1985.

Fugene W. Stark. Concurrent transition systems. Theoretical Computer Science, 64():221-
269, 1989.

Colin P. Stirling and David Walker. Local model checking in the modal mu-calculus. Tech-
nical Report ECS-LFCS-89-78, Laboratory for Foundations of Computer Science, Depart-
ment of Computer Science — University of Edinburgh, May 1989.

Glynn Winskel. Event structures. In Petri Nets: Applications and Relationships to Other
Models of Concurrency, pages 325-390. Springer-Verlag (LNCS 255), 1986.

Glynn Winskel and Mogens Nielsen. Models for concurrency. Technical Report DAIMI
PB-429, Computer Science Department, Aarhus University, November 1992. To appear
as a chapter in the Handbook of Logic and the Foundations of Computer Science, Oxford
University Press.

156

