A Soybean 101-kD Heat Shock Protein Complements a Yeast HSP104 Deletion Mutant in Acquiring Thermotolerance

Yuh-Ru Julie Lee, Ronald T. Nagao, and Joe L. Key
Department of Botany, University of Georgia, Athens, Georgia 30602

A cDNA clone encoding a 101-kD heat shock protein (HSP101) of soybean was isolated and sequenced. Genomic DNA gel blot analysis indicated that the corresponding gene is a member of a multigene family. The mRNA for HSP101 was not detected in 2-day-old etiolated soybean seedlings grown at 28°C but was induced by elevated temperatures. DNA sequence comparison has shown that the corresponding gene belongs to the Clp (caseinolytic protease) (or Hsp100) gene family, which is evolutionarily conserved and found in both prokaryotes and eukaryotes. On the basis of the spacer length between the two conserved ATP binding regions, this gene has been identified as a member of the ClpB subfamily. Unlike other Clp genes previously isolated from higher plants, the expression of this soybean Hsp101 gene is heat inducible, and it does not have an N-terminal signal peptide for targeting to chloroplasts. Transformation of the soybean Hsp101 gene into a yeast HSP104 deletion mutant complemented restoration of acquired thermotolerance, a process in which cells survive an otherwise lethal heat stress after they are given a permissive heat treatment.

INTRODUCTION

A set of proteins referred to as heat shock proteins (HSPs) is synthesized by cells in response to an increasing growth temperature and has been found in almost every organism studied to date (see Lindquist and Craig, 1988; Nover, 1991). The HSPs are classified into several families according to their molecular masses, and the HSPs with similar molecular masses among organisms usually share significant sequence identity. Not only is the synthesis of HSPs an immediate response to heat stress, but constitutively expressed homologs of HSPs are also essential for growth and metabolism at normal growth temperatures and during various stages of development (see Hightower and Nover, 1991; Vierling, 1991), suggesting that HSPs have fundamental and essential biological functions in cells.

The functions of HSPs have been extensively studied; some biochemical functions attributable to the HSP90, HSP70, and HSP60 proteins relate to their role as molecular chaperones (see Georgopoulos and Welch, 1993; Hendrick and Hartl, 1993). Whether HSPs play a role in protecting cells from heat damage and many other stresses has been a long-standing question. Cells or organisms can survive an otherwise lethal heat stress if they are given a permissive heat treatment prior to the severe heat stress. This phenomenon is referred to as acquired thermotolerance (Gerner and Scheider, 1975). Although some contradictory data exist (see Nagao et al., 1986; Lindquist and Craig, 1988), a large body of accumulated circumstantial evidence shows that synthesis of HSPs is strongly correlated with the acquisition of thermotolerance. It is commonly assumed that HSPs participate in the maintenance of cellular structures during the stress period and in the repair of structural damage, which allows cells to recover normal functions quickly after stress (Lin et al., 1984; Nagao et al., 1986; Lindquist and Craig, 1988). The fact that several HSPs function as molecular chaperones to prevent the aggregation and/or promote the proper folding of heat-denatured proteins helps to explain their role in heat stress (Jinn et al., 1989; Beckmann et al., 1992). In addition, because some HSPs have proteolytic activities and others serve as auxiliary components in proteolysis, HSPs may promote degradation of heat-damaged proteins during heat stress (see Parsell and Lindquist, 1993).

In yeast cells, Hsp104 is not detectable at normal growth temperatures but becomes a major product of protein synthesis shortly after a shift to high temperatures (Sanchez and Lindquist, 1990). By genetic deletion analysis, Sanchez and Lindquist (1990) showed that the yeast HSP104 gene is not an essential gene under normal growth conditions. When given a permissive heat treatment, however, yeast HSP104 deletion mutant cells (Δhsp104) do not acquire tolerance to an otherwise lethal heat treatment. Complementation of the Δhsp104 cells with the HSP104 gene restores the ability to acquire thermotolerance (Sanchez and Lindquist, 1990). These results demonstrate that Hsp104 plays a critical role in cell survival at extreme growth temperatures.

Soybean seedlings also synthesize HSPs with molecular masses of 100 kD and higher during heat treatment (Nagao et al., 1986). In this study, we report the complete sequence of an Hsp101 cDNA isolated from soybean and examine its...
expression and function in response to heat treatment and the acquisition of thermotolerance.

RESULTS

Isolation of Soybean cDNA Clones Encoding HSP101

A genomic fragment of the yeast HSP104 gene (EcoRI-SacI fragment, 2.6 kb, spanning the coding region of the gene) was used to screen a soybean cDNA library constructed from enriched high molecular mass poly(A)+ RNAs extracted from etiolated soybean seedlings incubated at 40°C for 1 hr (see Methods). Three independent cDNA clones hybridized to the yeast HSP104 gene. None of these cDNA clones contained a complete reading frame. One of these cDNA clones, p101-1, whose sequence was more similar to the yeast HSP104 gene than the others (Y.-R. Lee, R.T. Nagao, and J.L. Key, unpublished data), was selected for further analysis; results from these studies are reported here.

The cDNA clone p101-1, which is shown in Figure 1, contained a 1.2-kb insert. The open reading frame derived from p101-1 aligned with approximately one-third of the C-terminal portion of the yeast HSP104 coding region. Primer-directed extension reactions were conducted to synthesize the full-length cDNA with a complete open reading frame. Primer-directed extension was performed with a 24-base oligonucleotide designed to be specific to p101-1 and tested to be noncomplementary to the other two cDNA clones. A cDNA clone, designated p101-2, was obtained in the first primer-directed extension reaction. The open reading frame of the combination of p101-1 and p101-2 (Figure 1) aligned with ~90% of the yeast HSP104 coding region. Another cDNA clone, designated p101-3, was obtained in a subsequent primer-directed extension reaction; it provided the N-terminal end of the open reading frame (Figure 1). The soybean cDNA clone GmHsp101 was then created by ligation of p101-1, p101-2, and p101-3 (Figure 1). The GmHsp101 cDNA is 3049 bp long and contains an open reading frame encoding a putative peptide of 911 amino acids. The peptide, soybean HSP101, has a calculated molecular mass of 101 kD and a predicted pl of 6.1.

Characterization of GmHsp101

To identify the peptide product of the GmHsp101 cDNA, the poly(A)+ RNA that was hybrid selected by GmHsp101 was translated in vitro and resolved on a two-dimensional polyacrylamide gel. The hybrid-selected mRNAs translated into one major and one minor peptide, shown in Figure 2A. The minor peptide (97 kD) was also present in the vector control (data not shown) and therefore is considered nonspecific. Compared with the standard markers on the gel, the major peptide showed a molecular mass of 112 kD and a pl of 6.1; these values are close to those calculated from the deduced peptide sequence of GmHsp101 (Figure 2A).

The deduced amino acid sequence of GmHsp101 is similar to those of members of the conserved Clp (caseinolytic protease; Katayama et al., 1988) (or Hsp100) gene family found in both prokaryotes and eukaryotes (see the following discussion). The size of the soybean Hsp100 gene family was estimated by DNA gel blot analysis. Soybean genomic DNA was digested with BstXI and EcoRI, and the DNA gel blot was hybridized to GmHsp101. In each case, multiple bands were detected (Figure 2B), suggesting that the soybean Hsp100 gene family is composed of multiple copies of genes. Clp proteins are assigned into three subfamilies according to the length of the spacer between two highly conserved ATP binding regions (Gottesman et al., 1990; Squires and Squires, 1992). A probe representing the spacer region of GmHsp101 was also used to hybridize the soybean genomic DNA gel blot. A single band was detected in each case (Figure 2B), indicating that the spacer region–specific probe does not cross-hybridize with other Hsp100 genes. These data suggest that the corresponding subfamily of GmHsp101 may be composed of a single copy or of multiple copies having the same genomic organization in the spacer region.

Accumulation of Hsp101 mRNA Is Induced by Heat Treatments

Heat-induced accumulation of Hsp101 transcripts was examined by incubating 2-day-old etiolated soybean seedlings at
Hsp101 Gene from Soybean

Figure 2. Characterization of GmHsp101.

(A) Hybrid selection and in vitro translation. The peptide (indicated by an arrow) produced by hybrid selection and in vitro translation of transcripts hybridized to GmHsp101 was separated on a two-dimensional polyacrylamide gel. The 97-kD peptide was considered a nonspecific signal because it also appeared in the hybrid selection with the vector only. Molecular mass markers of 116 and 97 kD are indicated.

(B) DNA gel blot analysis. Soybean genomic DNA was digested with BstXI (B) or EcoRI (E); the DNA gel blots were hybridized to GmHsp101 and a probe representing the spacer region of GmHsp101 (a HindIII-HindII fragment, nucleotides 1501 to 1718), respectively. Molecular length markers are given at left in kilobases. Lane 1, the blot hybridized to GmHsp101; lane 2, the blot hybridized to the spacer-specific probe.

the normal growth temperature of 28°C and at various elevated temperatures. Soybean seedlings were incubated at 28, 35, 40, and 42.5°C for 1 hr, and poly(A)+ RNAs isolated from the seedlings were hybridized with GmHsp101. GmHsp101 hybridized to a 3-kb band on RNA gel blots, which is consistent with the length of the cDNA clone (3049 bp) and suggests that this cDNA is full length. Transcripts hybridizing to GmHsp101 were induced by evaluated temperatures but were not detectable in the mRNA isolated from soybean seedlings incubated at 28°C. The highest accumulation of Hsp101 transcripts was detected at 40 to 42.5°C, although there was substantial induction at 35°C. The results are shown in Figure 3A.

The accumulation of soybean Hsp101 transcripts was rapid, being readily detected after 30 min of heat treatment at 40°C (Figure 3B). During continuous heat treatment at 40°C, the steady state level of Hsp101 mRNA accumulation increased to a maximum level by 1 hr; the steady state level of Hsp101 mRNA declined significantly by 2 hr at 40°C (Figure 3B). This rapid decline between 1 and 2 hr contrasts with the case seen in other Hsp gene families. For example, the steady state levels of Hsp70 mRNA accumulation (hybridized to the cDNA

Figure 3. Accumulation of RNAs Hybridizing to GmHsp101.

Poly(A)+ RNAs were isolated from 2-day-old etiolated soybean seedlings that had been incubated in buffer for various treatments as indicated. RNA gel blots with 5 μg of poly(A)+ RNAs in each lane were hybridized with 32P-labeled probes.

(A) Accumulation of Hsp101 mRNA induced by heat treatments. The induction of Hsp101 mRNA at temperatures from 28 to 42.5°C for 1 hr is shown.

(B) Accumulation of Hsp101 mRNA during continuous heat treatment. The steady state accumulations of mRNA for Hsp101 (GmHsp101) or Hsp70 (pSB70) during continuous heat treatment at 40°C are shown. The autoradiographs at left were exposed for the same amount of time; a longer exposure of the RNA gel blot hybridized with GmHsp101 is shown at right.
Amino Acid Sequence Alignment of Soybean HSPlOl and Other ClpB Proteins

The deduced amino acid sequence of the GmHsp101 cDNA is similar to those of members of the conserved Clp (or Hsp100) gene family (Gottesman et al., 1990; Parsell et al., 1991). The Clp proteins possess two highly conserved regions of ~200 amino acid residues. Each of these regions contains a putative ATP binding site with the characteristic amino acid sequence GX2GXGGKT (X indicates an unspecified amino acid), which forms a glycine-rich flexible loop; this sequence is followed by another motif of at least four hydrophobic amino acids terminated by an aspartate ~60 residues downstream (Gottesman et al., 1990; Parsell et al., 1991). Two of these regions are separated by a variable spacer region and flanked by less conserved leader and trailer regions. Clp proteins are assigned to three subfamilies according to the length of the spacer region between the two ATP binding regions (Gottesman et al., 1990; Squires and Squires, 1992). The ClpA subfamily has the shortest spacer (five amino acid residues), and the ClpB subfamily has the longest (120 to 130 amino acid residues), with the ClpC subfamily being intermediate (60 to 70 amino acid residues). Soybean HSPlOl has 122 amino acid residues between the two ATP binding regions and thus is assigned to the ClpB subfamily by these criteria.

Figure 4 shows the amino acid sequence alignment of soybean HSPlOl with ClpB proteins from Trypanosoma brucei (Gottesman et al., 1990), yeast (Parsell et al., 1991), and Escherichia coli (Gottesman et al., 1990). Soybean HSPlOl is most similar to T. brucei ClpB, with these two proteins having 54% identity (71% similarity). Soybean HSPlOl is also highly related to yeast Hsp104, with 44% identity (65% similarity), and E. coli ClpB, with 59% identity (72% similarity). Noticeably, soybean HSPlOl possesses a highly negatively charged C terminus (EEIDDMEMEE), which is also characteristic of T. brucei ClpB (DEWE) and yeast Hsp104 (DTLGDDDEDESDNDEDDDDL), but is dissimilar to the E. coli ClpB protein (Figure 4).

Several Clp genes have been characterized from higher plants, including tomato (Gottesman et al., 1990), pea (Moore and Keegstra, 1993), and Arabidopsis (Kiyosue et al., 1993; Schirmer et al., 1994). Except for Arabidopsis HSPlOl, which is a ClpB homolog (see Schirmer et al., 1994, this issue), the rest of these proteins were classified as members of the ClpC subfamily owing to the spacer lengths in the range of 60 to 70 amino acids. These ClpC proteins also contain signal peptides for targeting to chloroplasts. ClpC in pea has been found localized in the chloroplasts (Moore and Keegstra, 1993). Although the cellular localization of soybean HSPlOl remains to be determined, unlike the ClpC proteins found in higher plants to date, soybean HSPlOl does not appear to have any of the characteristics of known N-terminal signal peptides for targeting to the chloroplast (Keegstra et al., 1989).

Functional Analysis of Soybean HSPlOl

Sanchez and Lindquist (1990) demonstrated that Hsp104 is required for the acquisition of thermotolerance in yeast cells. To test whether soybean HSPlOl and yeast Hsp104 are functionally similar, Δhsp104 cells were transformed with the plasmid construct pYSB101, which expresses soybean HSPlOl under the control of the yeast HSPlOl promoter (see Methods), and tested for the acquisition of thermotolerance. The transformation of pYSB101 into the Δhsp104 cells was checked by DNA gel blot hybridization, and the expression of soybean HSPlOl in the transformed cells was verified by protein gel blot analysis with polyclonal antibodies against soybean HSPlOl (data not shown).

To measure the ability of the cells to acquire thermotolerance, yeast cells were incubated at 37°C for 30 min prior to the heat treatment at 50°C. After heat treatment at 50°C, yeast cells were diluted and plated on agar plates to determine colony-forming ability (Sanchez and Lindquist, 1990). Soybean HSPlOl provided thermotolerance as effectively as yeast Hsp104 in the Δhsp104 cells when the cells were treated at 50°C for 10 min. The protective effect of soybean HSPlOl was less than that of yeast Hsp104 when the 50°C treatment was extended to 20 min, but the Δhsp104 cells transformed with pYSB101 were about 20-fold more tolerant to treatment at 50°C for 20 min than the corresponding untransformed Δhsp104 cells. The results are shown in Figure 5. A control experiment in which Δhsp104 cells were transformed with the vector showed a killing curve similar to that of the Δhsp104 cells in the thermotolerance assay (data not shown), suggesting the plasmid-borne Hsp101 is responsible for the induced thermotolerance.

DISCUSSION

Although low molecular mass HSPs (15 to 30 kD) are the most abundant HSPs synthesized in higher plants during heat stress, higher plants also accumulate substantial levels of several families of high molecular mass HSPs (60, 70, 90, and 100 kD), as do most other organisms (see Nagao et al., 1986; Vierling, 1991). A soybean cDNA clone that is homologous to the yeast HSP104 gene was isolated. The genes encoding yeast Hsp104 and soybean HSPlOl share significant sequence identities with members of the Clp (or Hsp100) gene family (Gottesman et al., 1990; Parsell et al., 1991; Squires and Squires, 1992). Based upon the length of the spacer between the two conserved ATP binding regions, both yeast Hsp104 and soybean HSPlOl are classified as members of the ClpB subfamily.

The cDNA GmHsp101 was assembled with an original cDNA clone isolated from library screening (p101-1 in Figure 1) and
Hsp101 Gene from Soybean 1893

Figure 4. Amino Acid Sequence Comparison of Soybean HSP101 and ClpB Proteins.

Amino acid sequences of soybean HSP101 (Gm), T. brucei ClpB (Tb), yeast Hsp104 (Sc), and E. coli ClpB (Ec) were aligned using the PILEUP program of the UWCGC suite. A gap weight of 3.0 and a gap length weight of 0.1 were used. Dots were introduced to optimize the alignment. Identical residues are indicated by uppercase letters on a black background, and similar residues are indicated by uppercase letters on a white background. Residues that are neither identical nor similar to each other are represented by lowercase letters on a white background. ATP-1 and ATP-2 stand for the first and second ATP binding regions, respectively. Each of the ATP binding regions is composed of two conserved sequence motifs, which are indicated by asterisks. The negatively charged C-terminal ends are boxed.
two cDNA clones derived from subsequent primer-directed extension reactions (p101-2 and p101-3 in Figure 1). The primer used in the first extension reaction was chosen based upon its specificity for p101-1, which is not complementary to two other soybean Hsp100-homologous cDNA clones that were also obtained by library screening (Y.-R.J. Lee, R.T. Nagao, and J.L. Key, unpublished data). When designing the primer for the second primer-directed extension reaction, sufficient comparative sequence data were unavailable among the three soybean Hsp100 homologs to generate a gene-specific primer. However, the sequences of p101-2 and p101-3 are exactly matched in an overlapping region of 875 bp, suggesting the extension of the same gene. Although the possibility that GmHsp101 represents a chimeric gene is not definitively excluded, the hybridization to a single band on the soybean genomic DNA gel blot with a spacer-specific probe (Figure 2B) indicates that cross-hybridization among different genes did not occur and suggests that cDNA clones p101-1, p101-2, and p101-3 are the most likely derivatives of the same gene. Transcripts hybrid selected by this cDNA were translated in vitro, and analysis by two-dimensional gel electrophoresis yielded a peptide (Figure 2A) whose molecular mass and pl value are in good agreement with the predictions from the deduced amino acid sequence.

Like other Hsp gene families, the Clp gene family includes members that are induced by heat stress and members that are constitutively expressed. Heat-inducible Clp proteins characterized to date are members of the ClpB subfamily (Sanchez and Lindquist, 1990; Kitagawa et al., 1991; Squires et al., 1991; Squires and Squires, 1992; Leonhardt et al., 1993). The accumulation of the transcripts that hybridized to the GmHsp101 cDNA was strictly heat inducible, as shown by RNA gel blot hybridization analyses (Figure 3). These data suggest a role for the ClpB proteins in heat stress.

The functions of several Clp proteins have been demonstrated. E. coli ClpA is the regulatory subunit of an ATP-dependent Clp protease (Hwang et al., 1988; Katayama et al., 1988). ClpA functions as an ATPase activating the proteolytic activity of the catalytic subunit (Katayama et al., 1988; Woo et al., 1989). Although it is possible that the general role for Clp proteins is to regulate cellular proteases, members of the Clp family may be involved in controlling some enzymatic activity other than proteolysis (Squires and Squires, 1992). An alternate hypothesis for the function of the Clp proteins is that they act as molecular chaperones, preventing the formation of insoluble protein aggregates, promoting their dissolution, or facilitating transport of precursor proteins across envelope membranes (Squires and Squires, 1992; Moore and Keegstra, 1993; Parsell and Lindquist, 1993).

E. coli ClpB and yeast Hsp104 genes are essential for cells to survive an otherwise lethal heat stress. A ClpB null mutation of E. coli led to reduced cell survival at 50°C (Squires et al., 1991). Yeast Hsp104 is required for cells to acquire thermostolerance (Sanchez and Lindquist, 1990). The function of soybean Hsp101 was tested by complementation of a yeast Hsp104 deletion mutant (Δhsp104 cells). Transformation of the soybean Hsp101 coding sequence into the Δhsp104 cells restored the defect of the mutant in the acquisition of thermostolerance 20-fold, although it was not as effective as the yeast Hsp104 gene (Figure 5). The production of soybean Hsp101 in the transformed yeast cells was confirmed by protein gel blot analysis, but it was not possible to make a quantitative comparison of the amount of soybean Hsp101 and yeast Hsp104 produced. Therefore, partial complementation could be due to insufficient production of protein or to the heterologous soybean Hsp101 (44% identity, 65% similarity with yeast Hsp104) not completely fulfilling the function of the yeast protein. However, GmHsp101 appears to perform a function similar to if not exactly the same as yeast HSP104 in the acquisition of thermostolerance during heat stress. Schirmer et al. (1994) isolated a heat-inducible Hsp101 cDNA clone from Arabidopsis; it was also able to complement partially the yeast Δhsp104 mutant in acquiring thermostolerance.

Clp proteins may be important to cells that must tolerate not only heat stress, but also other environmental stresses. Sanchez et al. (1992) showed that yeast Hsp104 is responsible for tolerance to heat, ethanol, arsenite, and long-term storage in the
cold; however, this protein has little or no importance in tolerance to copper and cadmium. The Clp-homologous cDNA clone (Erd1) from Arabidopsis was isolated based upon its dehydration-inducible property, suggesting that Clp proteins may have a function in protection from water stress (Kiyosue et al., 1993). Immunological analysis with antibodies against clone anti to copper and cadmium. The Clp-homologous cDNA may have a function in protection from water stress (Kiyosue thesis of Clp proteins to several different physical/environmental stress conditions. These preliminary data may also indicate a relatedness of synthesis of Clp proteins to soybean HSP101 detected the corresponding proteins from seedlings incubated in buffer containing heavy metals (arsenite or cadmium) or an amino acid analog (azetidine-2-carboxylic acid) (Y.-R.J. Lee, R.T. Nagao, and J.L. Key, unpublished data). These preliminary data may also indicate a relatedness of synthesis of Clp proteins to several different physical/environmental stress conditions. How these Clp proteins serve to protect cells challenged by various environmental stresses remains to be clarified.

METHODS

Materials

Two-day-old etiolated seedlings of soybean (Glycine max cv Williams 82) were grown as described by Lin et al. (1984). Two strains of yeast (Saccharomyces cerevisiae), the wild-type W303a and the HSP104 deletion mutant W303aΔhsp104, were prepared as described by Sanchez and Lindquist (1990). The heat treatments were done in incubation buffer or culture medium equilibrated at the desired temperatures in shaking water baths as previously described for soybean seedlings (Lin et al., 1984) or for yeast cells (Sanchez et al., 1992).

Construction and Screening of a Soybean cDNA Library

Poly(A)+ RNAs were isolated from 2-day-old etiolated soybean seedlings that had been heat treated at 40°C for 1 hr (Schöffl and Key, 1982). High molecular mass poly(A)+ RNAs encoding proteins above 40 kD were enriched as described by Roberts and Key (1991) and used to construct a cDNA library in the phage vector Uni-Zap (Stratagene). The library was screened by plaque hybridization to radiolabeled fragments of the yeast HSP104 gene using standard techniques (Sambrook et al., 1989) and reduced stringency. Filters were prehybridized under aqueous conditions using 6 x SSC (1 x SSC is 0.15 M NaCl, 0.015 M sodium citrate), 0.5% SDS, 5 x Denhardt's solution (1 x Denhardt's solution is 0.02% Ficoll, 0.02% PVP, 0.02% gelatin), and 100 μg/mL salmon sperm DNA at 60°C for 4 hr. 32P-labeled probe was added to fresh hybridization buffer, and filters were hybridized for 24 hr at 60°C. Filters were then washed three times (15 min each) with 2 x SSC, 0.1% SDS at room temperature, two times (15 min each) with 2 x SSC, 0.1% SDS at 60°C, and one time with 0.2 x SSC, 0.1% SDS at 60°C for 15 min.

Sequence Analysis

Nestled deletions from each end of the cDNA clones were generated by ExoIII/mung bean nuclease (Stratagene). DNA sequencing was performed on an Applied Biosystems 373A (Foster City, CA) at the University of Georgia Molecular Genetics Instrumentation Facility, Athens, GA. The DNA sequence of soybean GmHsp701 was submitted to GenBank (accession number L35272). DNA sequences were analyzed with the WUGCG computer program suite, which was developed by the Genetics Computer Group, University of Wisconsin, Madison (Devereux et al., 1984), and accessed through the BioSciences Computational Resource, University of Georgia. Alignment of sequences was done using the PILEUP program of the WUGCG suite with the default parameters (Devereux et al., 1984).

Oligonucleotide-Directed Mutagenesis and Construction of pYSSBlOl

To construct a plasmid that expressed soybean Hsp101 under the control of the yeast HSP104 promoter, the following strategy was applied. Two restriction sites, AfII and SphI, were introduced in front of and behind
the open reading frames of pYS104 (Sanchez and Lindquist, 1990) and GmHsp101, respectively, by oligonucleotide-directed mutagenesis (Perlak, 1990; Deng and Nickoloff, 1992). The plasmid pYS104 contains the entire yeast HSP104 gene. The construct, designated pYSSB101, was obtained by substitution of the AffII-Sphl fragment of pYS104 containing the coding region of the yeast HSP104 gene with the AffII-Sphl fragment of GmHsp101 containing the coding region of the soybean Hsp101 gene.

Thermotolerance Assay in Yeast Cells

The plasmid pYSSB101 was used to transform the yeast strain W303aΔhsp704 by the lithium acetate method (Ausubel et al., 1987). Induction and assay of thermotolerance in yeast cells were done as described by Sanchez and Lindquist (1990). The medium containing 10 g of yeast extract, 20 g of peptone, 20 g of glucose, and 40 mg of adenine per liter is referred to as YPDA medium. Yeast cells were grown at 25°C to mid-log phase (6 x 10^6 cells per mL) in YPDA liquid medium (wild type and Δhsp704) or in minimal medium (1.7 g of yeast nitrogen base minus amino acids and 20 g of glucose per liter) plus amino acids to maintain transformed plasmids (pYS104 or pYSSB101). Prior to the 50°C heat treatment, cells were incubated at 37°C for 30 min to induce heat shock protein synthesis. Following heat treatment at 50°C, cells were diluted in ice-cold YPDA medium and immediately plated on YPDA plates. Colonies that survived the 50°C treatment were counted 3 days after the treatment.

ACKNOWLEDGMENTS

We thank Dr. Susan Lindquist of the University of Chicago for generously providing the yeast HSP104 genomic clone pYS104 and the two yeast strains W303a and W303aΔhsp104. We thank Drs. Gary Kochert, Kevin O’Grady, and Robert Price for comments on the manuscript and Joyce Kochert for help in preparing the manuscript. Thanks also to members of Dr. Claiborne Glover’s laboratory for technical support on the yeast complementation assay. This research was supported by Department of Energy Grant No. DE-FG09-86ER/3602 to J.L.K. and R.T.N.

Received August 10, 1994; accepted October 20, 1994.

REFERENCES

A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance.
Y R Lee, R T Nagao and J L Key
Plant Cell 1994;6:1889-1897
DOI 10.1105/tpc.6.12.1889

This information is current as of March 1, 2014