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The Role of Knowledge in Discourse Comprehension: 
A Construction-Integration Model 

Walter Kintsch 
University of  Colorado 

In contrast to expectation-based, predictive views of discourse comprehension, a model is developed 
in which the initial processing is strictly bottom-up. Word meanings are activated, propositions 
are formed, and inferences and elaborations are produced without regard to the discourse context. 
However, a network of interrelated items is created in this manner, which can be integrated into a 
coherent structure through a spreading activation process. Data concerning the time course of word 
identification in a discourse context are examined. A simulation of arithmetic word-problem under- 
standing provides a plausible account for some well-known phenomena in this area. 

Discourse comprehension, from the viewpoint of a computa- 
tional theory, involves constructing a representation of a dis- 
course upon which various computations can be performed, the 
outcomes of  which are commonly taken as evidence for com- 
prehension. Thus, after comprehending a text, one might rea- 
sonably expect to be able to answer questions about it, recall or 
summarize it, verify statements about it, paraphrase it, and 
SO o n .  

To achieve these goals, current theories use representations 
with several mutually constraining layers. Thus, there is typi- 
cally a linguistic level of  representation, conceptual levels to 
represent both the local and global meaning and structure of  a 
text (e.g., the micro- and macrostructure, constituting the text 
base in van Dijk & Kintsch, 1983), and a level at which the text 
itself has lost its individuality and its information content has 
become integrated into some larger structure (e.g., van Dijk & 
Kintsch's situation model). 

Many different processes are involved in constructing these 
representations. To mention just a few, there is word identifi- 
cation, where, say, a written word like bank must somehow 
provide access to what we know about banks, money, and 
overdrafts. There is a parser that turns phrases like the old 
men and women into propositions such as AND[OLD[MENI,OLD 
[WOMEN]]. There is an inference mechanism that concludes 
from the phrase The hikers saw the bear that they were scared. 
There are macro-operators that extract the gist of a passage. 
There are processes that generate spatial imagery from a verbal 
description of a place. 

It is one thing for a theorist to provide some formal descrip- 
tion (e.g., a simulation model) for how such processes can occur 
and for what the computational steps were that led to a particu- 
lar word identification, inference, or situation model. It is quite 
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another to control construction processes in such a way that at 
each point in the process exactly the right step is taken. Part 
of the problem has to do with the characteristic ambiguity of  
language: How do we make sure that we access the financial 
meaning of  bank, and not the meaning of  riverbank? Why did 
we parse the old men and women as we did--maybe the women 
were not old at all. Why did we infer that the hikers were scared 
rather than that they had their eyes open, or a myriad of  other 
irrelevancies? Of all the many ways macro-operators could be 
applied, how did we get just the right sequence to reach a plausi- 
ble gist without making the wrong generalizations? The number 
of possible alternative steps is distressingly large in constructing 
discourse representations, and without firm guidance, a com- 
putational model could not function properly for long. That is 
where knowledge comes in. 

General knowledge about words, syntax, the world, spatial 
relations--in short, general knowledge about anything--con- 
strains the construction of  discourse representations at all lev- 
els. Indeed, this is what makes it possible to construct these rep- 
resentations. There is a striking unanimity among current theo- 
ries about how this is done. 

Our conceptions about knowledge use in discourse compre- 
hension are dominated by the notions of  top-down effects and 
expectation-driven processing. Knowledge provides part of  the 
context within which a discourse is interpreted. The context is 
thought of  as a kind of  filter through which people perceive the 
world. At the level of  word recognition and parsing, it lets 
through only the appropriate meaning of  an ambiguous word 
or phrase and suppresses the inappropriate one. Through se- 
mantic priming, the feature counter of the logogen for bank 
as afinancial institution will be incremented and will reach its 
threshold before that of  riverbank in the right context (Morton, 
1969). Parsing a sentence is often thought of as predicting each 
successive constituent from those already analyzed on the basis 
of  syntactic rules (Winograd, 1983). Scripts, frames, and sche- 
mata constrain the inferences an understander makes (as in 
Schank & Abelson, 1977), thereby preventing the process from 
being swamped in a flood of irrelevancies and redundancies. 
Arithmetic strategies generate just the right hypothesis in solv- 
ing a word problem and preclude the wrong ones (Kintsch & 
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Greeno, 1985). In a word, knowledge makes understanding pro- 
cesses smart: It keeps them on the right track and avoids explor- 
ing blind alleys. People understand correctly because they sort 
of  know what is going to come. This program of research is well 
expressed by the following quotation from Schank (1978, p. 
94), which served as a motto for Sharkey's (1986) model of text 
comprehension: 

We would claim that in natural language understanding, a simple 
rule is followed. Analysis proceeds in a top-down predictive man- 
ner. Understanding is expectation based. It is only when the expec- 
tations are useless or wrong that bottom-up processing begins. 

Empirically, this position is questionable: Even fluent readers 
densely sample the words of  a text, as indicated by their eye 
fixations (Just & Carpenter, 1980), making the bottom-up mode 
appear the rule rather than the exception. ComputationaUy, it 
is not an easy idea to make work. It is difficult to make a system 
smart enough so that it will make the right decisions, yet keep 
it flexible enough so that it will perform well in a broad range 
of  situations. On the one hand, one needs to make sure that 
exactly the right thing (word meaning, proposition, inference) 
will be constructed; for that purpose one needs powerful, smart 
rules that react sensitively to subtle cues. On the other hand, 
humans comprehend well in ever-changing contexts and adapt 
easily to new and unforeseen situations; for that purpose one 
needs robust and general construction rules. Scripts and 
frames, as they were first conceived, are simply not workable: If  
they are powerful enough, they are too inflexible, and if they 
are general enough, they fail in their constraining function. This 
dilemma has long been recognized (e.g., Schank, 1982; van Dijk 
& Kintsch, 1983), and efforts have been undertaken to make 
expectation-driven processes sufficiently flexible (e.g., Schank's 
memory organization packets, or MOPs). In this article, an al- 
ternative solution to this problem will be explored. 

Cons t ruc t ion  o f  Discourse Representat ions 

The traditional approach to modeling knowledge use in com- 
prehension has been to design powerful rules to ensure that the 
right elements are generated in the right context. The problem 
is that it is very difl~cult to design a production system powerful 
enough to yield the right results but flexible enough to work in 
an environment characterized by almost infinite variability. 
The approach taken here is to design a much weaker production 
system that generates a whole set of  elements. These rules need 
to be just powerful enough so that the right element is likely 
to be among those generated, even though others will also be 
generated that are irrelevant or outright inappropriate. An inte- 
gration process will then be used to strengthen the contextually 
appropriate elements and inhibit unrelated and inappropriate 
ones. Weak productions can operate in many different contexts 
because they do not have to yield precise outputs; on the other 
hand, a context-sensitive integration process is then required to 
select among the outputs generated. The integration phase is 
the price the model pays for the necessary flexibility in the con- 
struction process. 

The model proposed here has been termed a construction- 
integration model to emphasize its most salient feature. It com- 
bines a construction process in which a text base is constructed 

from the linguistic input as well as from the comprehender's 
knowledge base, with an integration phase, in which this text 
base is integrated into a coherent whole. The knowledge base 
is conceptualized as an associative network. The construction 
process is modeled as a production system. Indeed, it is a gener- 
alization of  the production system used in earlier work, such as 
the simulation-of-comprehension processes developed by Flet- 
cher (1985) and Dellarosa (1986) after the model of  Kintsch and 
Greeno (1985). The main difference is that instead of  precise 
inference rules, sloppy ones are used, resulting in an incoherent, 
potentially contradictory output. However, this output struc- 
ture is itself in the form of an associative net, which can be 
shaped into a coherent text base via relaxation procedures in 
the connectionist manner (e.g., Rumelhart & McClelland, 
1986). Thus, the model represents a symbiosis of  production 
systems and connectionist approaches.l 

Certain limitations of  the present article are worth noting at 
this point, for it does not offer a solution to all the problems in 
discourse understanding. Thus, it is not primarily concerned 
with the specific strategies (or rules) for the construction of  text 
propositions or inferencing. Instead, it relies in this respect on 
what is available in the literature as well as on whatever future 
researchers will be able to come up with. The only point it 
makes is that whatever these strategies or rules are, they will be 
easier to formulate within the present framework, which allows 
them to be both weaker and more general. Thus, one need not 
worry about constructing just the right inference, but can be 
content with a much sloppier rule. Sometimes, of  course, even 
the latter type of  rule may be hard to come by, whereas in other 
cases (e.g., in the word problems discussed later) promiscuous 
hypothesis generation is straightforward (while selecting just 
the right one can be tricky). 

Knowledge Representation 

The process of constructing a discourse representation relies 
heavily on knowledge. To understand how it operates, one must 
first have an idea of how the to-be-used knowledge is organized. 
Typically, theorists have tried to create knowledge structures 
to support smart processes: semantic nets, frames, scripts, and 
schemata. As has been argued elsewhere (Kintsch, in press), 
such fixed structures are too inflexible and cannot adapt readily 
enough to the demands imposed by the ever-changing context 
of the environment. Instead, a minimally organized knowledge 
system is assumed here in which structure is not prestored, but 
generated in the context of the task for which it is needed. An 
associative net with positive as well as negative interconnections 
serves this purpose. 

Knowledge is represented as an associative net, the nodes of  

Conceivably, a purer conneetionist model might be constructed. In 
the present model, an associative knowledge net is used to build a text- 
base net, which is then integrated. McClelland (1985) has put forth the 
idea of a connection information distributor, which is a subnetwork in 
which the units are not dedicated and connections are not hardwired. 
Instead, this subnetwork is programmable by inputs from the central 
network where the knowledge that controls processing in the subnet- 
work is stored. One could say that the production rules in the present 
model have the function of programming such a subnetwork. 
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which are concepts or propositions. 2 The nodes in this net are 
interconnected. Connections among nodes have a strength 
value, which may be positive, zero, or negative, ranging from 1 
to - 1. Nodes consist of a head plus a number of  slots for argu- 
ments. Thus, the nodes of  the knowledge net are formally equiv- 
alent to the propositions used to represent texts (e.g., Kintsch, 
1974). 3 The slot specifies the nature of  the relation between the 
head and the argument. Slots may represent attributes, parts, 
cases of verbs, or arguments of  functions. They need not be 
named, but may be named if  the relation is a common one (such 
as the cases of verb frames). The arguments of  a proposition are 
concepts or other propositions. The number of arguments in a 
proposition may vary from one to some small number. Exam- 
ples of  common types of nodes in the knowledge net are (a) 
MARY, (b) CAKE, (C) SWEET[CAKE], (d) BAKE[agent:MARY,ob- 
ject:CAKE], (e) CONSEQUENCE[condition:NOT[WATCH[agent: 
MARY,object:CAKE],effect:BURN[object:CAKE]]. Examples A 
and B are lexical nodes that have associated with them percep- 
tual procedures that identify certain patterns in the environ- 
m e n t - e i t h e r  the objects themselves or the written or spoken 
words, such as MARY and CAKE, respectively. In the following I 
shall not deal with these perceptual procedures explicitly. The 
semantic and associative relations into which MARY and CAKE 
enter, which constitute a part of  the general knowledge net, are 
the focus of  interest here. MARY and CAKE appear as arguments 
in Examples C through E in various roles (the agent and object 
slots, etc.). 

There are two ways of  looking at the list of propositions in 
Examples A through E. On the one hand, it could be considered 
simply as a portion of  a general knowledge network, whereas on 
the other hand, it could be considered the propositional base of 
a (brief) discourse, in which a particular Mary bakes and burns 
a particular cake. 4 Thus, the elements of which knowledge nets 
and text bases are constructed are the same. Indeed, as will be 
detailed later, text bases are formed by selecting, modifying, and 
rearranging propositional elements from the knowledge net. 
However, text bases are not part of  the knowledge net, but sepa- 
rate structures with their own properties. 

Concepts are not defined in a knowledge net, but their mean- 
ing can be constructed from their position in the net. The im- 
mediate associates and semantic neighbors of  a node constitute 
its core meaning. Its complete and full meaning, however, can 
be obtained only by exploring its relations to all the other nodes 
in the net. Meaning must be created. As a first step one could 
add all propositions in the net directly related to a node to ob- 
tain what Mudersbach (1982) termed the first level of  meaning; 
then all propositions directly related to the propositions at the 
first level can be added to form a second level, and so on, until 
the whole knowledge net is involved. Note, however, that such 
a construction is a theoretical exercise without direct psycho- 
logical correspondence. It is not possible to deal with the whole, 
huge knowledge net at once. Instead, at any moment only a tiny 
fraction of  the net can be activated, and only those propositions 
of the net that are actually activated can affect the meaning of a 
given concept. Thus, the meaning of a concept is always situa- 
tion specific and context dependent. It is necessarily incomplete 
and unstable: Additional nodes could always be added to the 
activated subnet constituting the momentary meaning of  a con- 

FIRST-NTL-BANK~ MONEY I ISA[BANK2,RIVERBANK] 

/I "" / I""  ISA[BANK1,FINAN. INS'T] bank OVERFLOW[RIVE R,BANK2] 

Figure 1. A fragment of the associative net for BANK. (Positive connec- 
tions are indicated by arrows, negative ones by circles; asterisks indicate 
further, unnamed nodes.) 

cept, but at the cost of  losing some of  the already activated 
nodes. 5 

The notion of  an associative net is not unfamiliar, but  it is 
usually thought of  as relating concepts only, not propositional 
nodes. Two extremely simple examples will illustrate the nature 
of  such an associative net. First, consider the representation of 
the homonym BANK in an associative net. Positive connections 
are indicated by arrows, negative ones by circles. Asterisks indi- 
cate further, unspecified nodes. Of course, each of  the concepts 
and propositions shown in Figure 1 participate in the general 
knowledge net beyond the single connection shown here. As a 
second example, consider the proposition BAKE[agent:PER- 
SON,object:CAKE] (see Figure 2). Once again, only a fragment 
of the complete network is shown, just to illustrate certain types 
of connections. 

Representing knowledge in a propositional network has sev- 
eral advantages. Primarily, it provides a common format for the 
knowledge base and for the mental representation of  discourse. 
Furthermore, we have by now considerable experience working 
with propositional structures, whereas other forms of  represen- 

2 Formally, concepts and propositions can be treated alike (e.g., An- 
derson, 1980). 

3 This use of the term proposition differs from the standard one in 
logic. Furthermore, not all authors who use comparable semantic units 
in their analyses use the same term. For instance, Dik (1980) talked 
about predicates and terms combining to form predications. Wilensky 
(1986) used relation and aspectuals. In spite of this terminological disar- 
ray and the possibility of confusion with the meaning of proposition in 
logic, proposition appears to be the most widely accepted term and will 
be retained here. 

4 The extreme informality of this notation is chosen for ease of expo- 
sition. Frequently, of course, a more precise formalism is needed. It is 
fairly straightforward to elaborate the present informal notation when- 
ever that is the case. For example, in the computer simulation of word 
problem solving by I)ellarosa (1986), the LOOPS language provides a 
ready-made type-token distinction. There seems to be no reason, how- 
ever, to burden a general discussion like the present one with a cumber- 
some, formal notation when it is not needed. 

5 As with proposition, this is a nonstandard use of the term's meaning. 
Meaning is used here as shorthand for the momentary, subject- and situ- 
ation-specific activated semantic and experiential context of a concept. 
Clearly, this is not what many people have in mind when they speak 
about the meaning of a word--though it is a conception of meaning 
quite appropriate for a psychological processing model. 
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LIKE[Ag:PERS,Obj:[EATIPERS,CAKE]]] 

BAKE[Ins:SUN, / 
Obj:PART-OF-COUNTRY]/ 

BAKE[Ag:PE RS,Obj:B RIG KS] 

Figure 2. A fragment of the associative net for BAKE. 

tation are less well understood (e.g., the spatial-imagery and lin- 
ear structures of Anderson, 1983; the mental models of John- 
son-Laird, 1983; or whatever the appropriate representation in 
the affective system might be, as in Zajonc, 1980). However, the 
decision to use a propositional representation does not imply 
that all other forms of knowledge are to be considered unimpor- 
tant or nonexistent. It would be desirable to expand the model 
to include nonpropositional representations, but one would 
first have to learn how to operate with such forms of representa- 
tion. 

Construction Processes 

The steps in constructing a text base according to the con- 
struction-integration model involve: (a) forming the concepts 
and propositions directly corresponding to the linguistic input; 
(b) elaborating each of these elements by selecting a small num- 
ber of its most closely associated neighbors from the general 
knowledge net; (c) inferring certain additional propositions; 
and (d) assigning connection strengths to all pairs of elements 
that have been created. 

The result is an initial, enriched, but incoherent and possibly 
contradictory text base, which is then subjected to an integra- 
tion process to form a coherent structure. 

In Step A of this process, a propositional representation of 
the text is constructed from a parsed linguistic input, such as the 
words of a text with suitable syntactic annotations, and from a 
knowledge system as envisioned earlier. Note that the parser 
itself is not a part of the present model. The basic process of 
proposition building has been described in van Dijk and 
Kintsch (1983, chapter 4) and Kintsch (1985). I will illustrate 
it here with some simple examples. Consider the sentence Mary 
bakes a cake. The parser output needed is Mary (agent of BAKE) 
bakes (predicate) a cake (object of BAKE). Mary, bake, and cake 
activate their corresponding lexical nodes, and MARY and CAKE 
are assigned the roles of agent and object in the BAKE proposi- 
tion. As was suggested in Figure 2, BAKE requires a PERSON as 
agent, hence a test is made whether MARY is a person. This may 
either involve a search through the knowledge net for the propo- 
sition ISA[MARY,PERSON] or, should that search prove unsuc- 
cessful, an attempt to infer this proposition (e.g., the net may 
contain only propositions to the effect that MARY is a name and 

that persons have names; exactly how such problem-solving ac- 
tivity occurs within an associative net will not be considered 
here). 

The present model, however, differs in a significant way from 
my earlier conceptions: It does not require that the right, and 
only the right, proposition always be formed. Instead, the con- 
struction rules for building propositions can be weakened, al- 
lowing for the formation of incomplete or "wrong" proposi- 
tions. Proposition building is on-line, and frequently, all the rel- 
evant information for building just the right one is not available 
on-line, leading to false starts or incompleted attempts. In the 
aforementioned example, this has no interesting consequences; 
for example, if in response to the phrase Mary bakes . . ,  the 
proposition BAKE[MARY,$I--the dollar sign indicates an unfilled 
slot--is formed, it will simply be replaced by the complete 
proposition when the rest of the sentence is processed. However, 
consider an example discussed by Frazier and Rayner (1982): 
The linguists knew the solution of the problem wouM not be 
easy Here, the on-line construction of propositions is not so 
simple. First, the proposition KNOW[LINGUISTS,S] is formed. 
Then, by the strategy of minimal attachment, the subsequent 
noun phrase is interpreted as the object of KNOW, yielding 
KNOW[LINGUISTS,SOLUTION]. The final verb phrase, however, 
requires a subject, so [NOT[EASY[SOLUTION]] is constructed. As 
Frazier and Rayner pointed out, this does not involve a reinter- 
pretation of the sentence. Subjects do not go back, noting in 
some way that solution of theproblem had been attached to the 
wrong proposition, and repair this error. Instead, the incorrectly 
formed KNOW proposition somehow just disappears; the de- 
scription of the integration process that follows shows how. 

A third example of proposition building, involving pronoun 
identification, will be discussed here. There exists good psycho- 
logical evidence that pronouns may activate more than one pos- 
sible referent (e.g., Frederiksen, 1981). Thus, in The lawyer dis- 
cussed the case with the judge. He said '7 shall send the defen- 
dant to prison.'" the following propositions would be formed: 
DISCUSS [ LAWYER, JUDGE,  CASE ] ; SAY [ LAWYER, [ SEND [ LAW- 
YER, DEFENDANT, PRISON ] ] ] ; a n d  SAY [ JUDGE,  [ SEND l JUDGE, 
DEFENDANT,PRISON]l]. Eventually, of course, the right interpre- 
tation comes to dominate the wrong one, as will be shown 
shortly. 

In Step B of the construction process, each concept or propo- 
sition that has been formed in Step A serves as a cue for the 
retrieval of associated nodes in the knowledge net. The retrieval 
process itself is modeled after well-known theories that have 
been developed and tested in the memory literature (Raaijmak- 
ers & Shiffrin, 198 l). Suppose that node i in the knowledge net 
is positively associated with n other nodes in the net. Let s(i,j) 
be the associative strength between nodes i andj. Then the prob- 
ability that the retrieval cuej will retrieve nodej is 

P(j l i )  - ,S(i'J) (1) 

X s(i, h) 
h=l 

Note that each concept or proposition in the text base serves as 
an independent retrieval cue, hence the particularly simple 
form of the retrieval process. (An intersection search would be 
required if the items in the text base acted as a compound cue.) 
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On each retrieval attempt, an item among the associates of  i is 
selected according to Equation 1. A sampling-with-replace- 
ment process is assumed so that dominant associates may be 
retrieved more than once. The number of  retrieval attempts 
with item i as the cue is assumed to be fixed and is a parameter 
of  the model, k. In the examples that follow, k was chosen to 
be 2 or 3, mostly to reduce the complexity of  these examples. 
However, one may speculate that the most realistic value of k 
would not be much higher, perhaps between 5 and 7. 

Consider some simple examples. 
1. Suppose the word bank is presented as part of  a text. It 

will activate the lexical nodes BANKI (financial institution) as 
well as BANK2 (riverbank), plus some of their associates; for ex- 
ample, the construction process might pick from Figure 1: 
BANKI, MONEY, FIRST-NATIONAL-BANK, BANK2, RIVER, OVER- 
FLOW[RIVER,BANK2]. 

2. Suppose the sentence Lucy persuaded Mary to bake a cake 
is presented as part of a text. The parser should provide a phrase 
structure tree as output, from which the proposition PER- 
SUADE[LUCY,MARY,BAKE[MARY,CAKEI] is constructed. Each 
text proposition activates propositions closely related to it in the 
general knowledge net, regardless of  the discourse context. For 
instance, in the case of BAKEIMARY,CAKE] we might thus obtain 
LIKE[MARY,EAT[MARY,CAKE]], PUT[MARY,CAKE,IN-OVEN], RE- 
SULT[BAKE[MARY,CAKEI,HOT[CAKE]], PREPARE[MARY,DINNER]. 
These propositions are all closely associated with baking a cake 
(Figure 2). Note, however, that elaborating the text base in this 
way is not just a question of retrieving associated propositions 
from the knowledge net. The arguments of  these retrieved prop- 
ositions must be treated as variables that are to be bound to the 
values specified by the retrieval cue. Thus, because MARY is the 
agent of  the text proposition, MARY is made the agent in the 
knowledge propositions it brings into the text representation, 
instead of  PERSON in Figure 2. Similarly, although the informal- 
ity of  the present notation hides this, CAKE now is the particular 
one MARY bakes, not the generic one in Figure 2. These knowl- 
edge propositions function as potential inferences. Out of  con- 
text there is no way of  determining which of  them are relevant: 
Maybe Mary really likes to eat cake, but perhaps she is in 
the process of  cooking dinner, in which case PREPARE 
[MARY,DINNER] might become a macroproposition (what van 
Dijk, 1980, calls a construction). But it is also possible that next 
she will burn her fingers when she takes the cake out of the oven, 
making HOT, which plays no role at all in the other contexts, the 
relevant inference. At this point, the construction process lacks 
guidance and intelligence; it simply produces potential infer- 
ences, in the hope that some of  them might turn out to be useful. 

3. In the third example, if the proposition SEND[LAWYER,DE- 
FENDANT,PRISON] has been formed, the knowledge net contri- 
butes nothing, because one presumably does not know any- 
thing about lawyers sending defendants to prison. (Of course, 
LAWYER, DEFENDANT, and PRISON would each be associatively 
elaborated separately.) If, however, JUDGE rather than LAWYER 
were the agent of SEND, the elaboration process would contrib- 
ute the information that this implies that the judge is sentencing 
the defendant and so forth. 

Step C in the construction process, the generation of addi- 
tional inferences, is necessary because not all inferences that 
are required for comprehension will, in general, be obtained by 

-.5 

o 
MONEY ~ BANK10 .1 OBANK2 ~ .s # RIVER 

o... 
-.5 

Figure 3. Connections between BANK1 and BANK2 and their associates. 

the random elaboration mechanism described earlier. In some 
cases more focused problem-solving activity is necessary to 
generate the desired inferences. Exactly how this is to be done 
is, however, beyond the scope of this article. I merely wish to 
point out here that in addition to the undirected elaboration 
which results from Step B of  the construction process, there is 
still a need for controlled, specific inferences. Two types of  such 
inferences are of  particular importance in comprehension. 
Bridging inferences (Haviland & Clark, 1974; Kintsch, 1974) 
are necessary whenever the text base being constructed is inco- 
herent (i.e., whenever either the original text base itself or the 
elaborated text base remains incoherent by the criteria dis- 
cussed in van Dijk and Kintsch, 1983, chapter 5). Second, mac- 
ropropositions have to be inferred (as discussed in general terms 
in chapter 6 of van Dijk & Kintsch, 1983, and operationalized 
as a production system by Turner, McCutchen, & Kintsch, 
1986). Macropropositions are also elaborated associatively, as 
described in Step B for micropropositions. 

What has been constructed so far is a set of  propositions con- 
raining the (micro)propositions directly derived from the text, 
a randomly selected set of  associates for each of  these, the mac- 
ropropositions generated from the text, and their associates. 
The final Step D of the construction process involves the speci- 
fication of the interconnections between all of  these elements. 
There are two ways in which elements are interconnected. (a) 
The propositions directly derived from the text (hence referred 
to as "text propositions") are positively interconnected with 
strength values proportional to their proximity in the text base. 
Specific realizations of this principle are described in the dis- 
cussion of Figure 4. (b) If  propositions i andj  are connected in 
the general knowledge net with the strength value s(i,g), -1  < 

s(i,j) < 1, and if i and j become members of  a text base, the 
strength of  their connection in the text base is s(i,j). In other 
words, propositions in the text base inherit their interconnec- 
tions from the general knowledge net. Strength values are addi- 
tive, up to a maximum of 1, in those cases in which an inherited 
strength value combines with a text-base-determined connec- 
tion. 

Consider, for instance, the portion of  a network that is gener- 
ated when the word bank activates both BANK1 and BANK2, as 
well as the associations MONEY and RIVER. A possible pattern 
of connections is shown in Figure 3, where for simplicity, con- 
nection strengths have been limited to ---.5 or 1. Alternatively, 
the graph shown in Figure 3 can be expressed in matrix form 
as shown in Table 1. BANKI is associated with MONEY, BANK2 
with RIVER, but inhibitory connections exist between MONEY 
and BANK2 and between RIVER and BANKI. 

An example of text propositions that are interconnected via 
their positions in the text base is shown in Figure 4. LUCY is 
connected most strongly to WEED[LUCY,GARDEN], and least 
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Table 1 
Connectivity Matrix for the Graph Shown in Figure 3 

Proposition 1 2 3 4 

1. MONEY - -  0.5 --0.5 0.0 
2. BANKI 0.5 - -  -- 1.0 --0.5 
3. BANK2 --0.5 -- 1.0 - -  0.5 
4. RIVER 0.0 --0.5 0.5 - -  

Table 2 
Connectivity Matrix for the Graph Shown in Figure 4 

Proposit ion 1 2 3 4 

1. LUCY - -  0.9 0.7 0.4 
2. WEED 0.9 - -  0.9 0.7 
3. GARDEN 0.7 0.9 - -  0.9 
4. VEGETABLE 0.4 0.7 0.9 

strongly to VEGETABLE[GARDEN]. Although there are many 
possible ways to assign numerical connection strengths to ex- 
press this pattern of  connectivity, the one chosen here results in 
the matrix shown in Table 2. 

Inferences inherit positive and negative interconnections 
from the general knowledge net, as seen in Figure 5. The result 
of the construction process is, therefore, a network expressable 
as a connectivity matrix, consisting of all the lexical nodes ac- 
cessed, all the propositions that have been formed, plus all the 
inferences and elaborations that were made at both the local 
and global level and their interconnections. 

Integration 

The network that has been constructed so far is not yet a suit- 
able text representation. It was carelessly constructed and is 
therefore incoherent and inconsistent. At all levels of  the repre- 
sentation, components associated with the text elements were 
included without regard to the discourse context, and many of  
them are inappropriate. An integration process in the connec- 
tionist manner can be used to exclude these unwanted elements 
from the text representation (e.g., see Rumelhart & McClel- 
land, 1986, and Waltz & Pollack, 1985, for discourse). 

Text comprehension is assumed to be organized in cycles, 
roughly corresponding to short sentences or phrases (for further 
detail, see Kintsch & van Dijk, 1978; Miller & Kintsch, 1980). 
In each cycle a new net is constructed, including whatever is 
carried over in the short-term buffer from the previous cycle. 6 
Once the net is constructed, the integration process takes over: 
Activation is spread around until the system stabilizes. More 
specific, an activation vector representing the initial activation 
values of  all nodes in the net is postmultiplied repeatedly with 
the connectivity matrix. After each multiplication the activa- 
tion values are renormalized: Negative values are set to zero, 
and each of  the positive activation values is divided by the sum 
of  all activation values, so that the total activation on each cycles 
remains at a value of  one (e.g., Rumelhart & McClelland, 
1986). Usually, the system finds a stable state fairly rapidly; if 

LUCY,~WEED[LUCY'~ N] 

GARDEN 

VEGETABLE[GARDEN] 
Figure 4. The text base for Lucy weeded the vegetable garden. 

the integration process fails, however, new constructions are 
added to the net, and integration is attempted again. Thus, 
there is a basic, automatic construction-plus-integration pro- 
cess that normally is sufficient for comprehension. This process 
is more like perception than problem solving, but when it fails, 
rather extensive problem-solving activity might be required to 
bring it back on track. These processes will not be considered 
further here. 

The result of the integration process is a new activation vec- 
tor, indicating high activation values for some of  the nodes in the 
net and low or zero values for many others. The highly activated 
nodes constitute the discourse representation formed on each 
processing cycle. In principle, it includes information at many 
levels: lexical nodes, text propositions, knowledge-based elabo- 
rations (i.e., various types of inferences), as well as macroprop- 
ositions. 

A few simple examples will illustrate what is at issue here. 
Consider Lucy persuaded Mary to bake a cake, which was dis- 
cussed earlier. The PERSUADE proposition will pull in related 
knowledge items, just as was shown for BAKE. However, out of 
context the integration process will not yield any striking re- 
suits. In the context of  Lucy made tomato soup and sauteed 
some porkchops with herbs. She set the table and persuaded 
Mary to bake a cake, the integration process has very different 
results: PREPARE[LUCY,DINNER] emerges as the dominant prop- 
osition (macroproposition) because most of  the other proposi- 
tions in the text base contribute to its activation value. That the 
cake was hot, or that she put it into the oven, disappears from 
the representation with activation values around zero. 

Next, consider the example just discussed, where a perfectly 
good propositional strategy led to a wrong result. For The lin- 
guists knew the solution of the problem would not be easy, the 
text base that was constructed is shown in Figure 6. It corre- 
sponds to the connectivity matrix exhibited in Table 3 if con- 
nection strengths are assigned as in Table 2. (KNOW[SOLUTION] 

and NOT[EASYI are connected positively via KNow[S] but nega- 
tively via EASY, which adds up to 0.) The activation vector (.25, 

6 That integration occurs at the end of each processing cycle is pro- 
posed here merely as a simplifying assumption. Although there is clearly 
something going on at the end of sentences (e.g., Aaronson & Scarbor- 
ough, 1977), integration does not need to wait for a sentence boundary 
(see the evidence for the "immediacy assumption"; Just & Carpenter, 
1980; Sanford & Garrod, 1981). It would be quite possible to apply the 
relaxation procedure outlined here repeatedly in each cycle, as proposi- 
tions are being constructed. This would allow for the disambiguation of 
word senses before the end of a cycle. Because inferences and macro- 
propositions are usually not available before the end of a processing 
cycle, end-of-cycle integration plays an especially important role. 
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Figure 5. Inferences generated from WEEDILUCY, 
GARDEN] and their interconnections. 

Table 3 
Connectivity Matrix for the Graph Shown in Figure 6 

Proposition 1 2 3 4 

1. KNOW[S] - -  0.9 0.7 0.9 
2. KNOW[SOL] 0.9 - -  -1.0 0.0 
3. EASY 0.7 -1.0 - -  0.9 
4. NOT 0.9 0.0 0.91 - -  

.25,.25,.25) corresponding to the assumption that all text prop- 
ositions are equally activated initially is repeatedly multiplied 
with this matrix, renormalizing the obtained activation values 
after each multiplication as described earlier. To decide when 
the activation vector has stabilized, the following criterion was 
established: A stable state is reached when the average change 
in the activation values after a multiplication is less than .001. 
Although this is an arbitrary criterion, even large changes (by 
one order of magnitude in either direction) make only minor 
differences in the final activation values obtained in this and 
many other cases. In the present case, this criterion is reached 
after 10 operations, yielding the final activation vector (.325, 
.000, .325, .350)--that is, the wrong KNOW[LINGUISTS,SOLU- 
TIONI, which does not fit into the text base, has been deacti- 
vated. The integration process similarly resolves the problem 
of multiple pronoun referents. For The lawyer discussed the 
case with the judge. He said '7 shall send the defendant to 
prison," propositions were constructed for both lawyer and 
judge as referents of he. However, the process of associative 
elaboration generated some additional information for 
SEND[JUDGE,DEFENDANT,PRISON], but not for SEND[LAW- 
YER,DEFENDANT,PRISON]. The resulting text base is shown in 
Figure 7. To obtain the corresponding connectivity matrix (see 
Table 4), connection strengths among text base propositions 
were assigned as in Table 2, and among associates as in Table 3 
(other assignments result in different numerical values for the 
final activation vector, but its pattern remains the same as long 
as the essential features of  the matrix are preserved--for exam- 
ple, which connections are positive, negative, and zero). As- 
sume an initial activation vector of (.25, .25, .25, .25, .25, 0, 0), 
reflecting the fact that only the text propositions themselves are 
activated initially. After 19 multiplications with the connectiv- 
ity matrix, the two propositions in which he had been identified 
as the lawyer have activation values of 0, whereas the corre- 
sponding judge propositions have activation values of.261 and 
.283, respectively. Just a little knowledge was enough to choose 
the correct referent. 

After this general description of the construction-plus-activa- 
tion model, two specific applications will be discussed in more 
detail: how words are identified in a discourse context, and how 
a propositional text base and situation model are constructed 
when comprehension depends heavily on activating a rich 
knowledge set. For that purpose, arithmetic word problems 
were chosen as the example, because the knowledge that needs 
to be activated is particularly well defined in that domain, and 
unambiguous criteria of  understanding exist--a solution is ei- 
ther right or wrong. The purpose of these examples is twofold: 
to show how the general framework proposed can be elaborated 
into specific models in these experimental situations, and to 
compare the performance of  these models with empirical obser- 
vations and experimental results as a first test of the psychologi- 
cal adequacy of these models. 

Word Identification in Discourse 

The first problem to be considered in detail is how knowledge 
is used in understanding the meaning of words in a discourse. 
The previously sketched model implies that word meanings 
have to be created anew in each context, that this is initially 
strictly a bottom-up process with context having its effects in 
the integration phase, and that this construction-plus-integra- 
tion process takes time, with different factors influencing suc- 
cessive phases of the process. 

Context effects in word recognition are ubiquitous in the ex- 
perimental literature, and the explanation of these context 
effects has been a primary goal of theories of word recognition. 
Typically, it is taken for granted in these theories that because 

Figure 6. The strategic construction of a text base: SOLUTION-OF-THE- 
PROBLEM is first assigned to KNOW, then to EASY. (The dollar sign is a 
placeholder.) 

Figure 7. The strategic construction of a text base: The pronoun he is 
identified with two potential, mutually exclusive referents. (Instead of 
writing out whole propositions, the abbreviation [.] is used for the argu- 
ments of a proposition when they can be readily inferred.) 
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Table 4 
Connectivity Matrix for the Graph Shown in Figure 7 

Proposition 1 2 3 4 5 6 7 

1. DISC w 0.9 0.9 0.7 0.7 0.0 0.0 
2. SAYILAWYER] 0.9 - -  --1.0 0.9 0.0 0.0 0.0 
3. SAY[JUDGE] 0.9 --1.0 - -  0.0 0.9 0.0 0.0 
4. SEND[LAWYER] 0.7 0.9 0.0 - -  -- 1.0 0.0 0.0 
5. SEND[JUDGE] 0.7 0.0 0.9 -- 1.0 - -  0.5 0.5 
6. IMPLY 0.0 0.0 0.0 0.0 0.5 - -  0.5 
7. SENT 0.0 0.0 0.0 0.0 0.5 0.5 - -  

context influences word recognition, contextual factors interact 
with the perceptual processes. Context effects are said to be top- 
down and expectation driven and are said to facilitate (or some- 
times interfere with) the perceptual analysis. Similar ideas were 
once current in related fields, such as the "New Look" in per- 
ception (Brunet & Postman, 1949) and the filter theory of atten- 
tion (Broadbent, 1958). People perceive what they expect or 
want, attention filters out the irrelevant. Some words are recog- 
nized because the context favors them; others are not because 
the context inhibits them. How these top-down effects of  con- 
text are realized differs in detail among theories, but all the most 
influential current theories postulate interactive processes in 
which contextually expected words are favored. In the logogen 
model (Morton, 1969, 1979), context primes semantic features 
that enter into the feature counter of  a logogen and therefore 
strengthen that logogen. In Forster's search model (Forster, 
1976), perceptual analysis defines a candidate set that is then 
searched by semantic relations or by word frequency. In Beck- 
er's verification model (Becker, 1976), both a set of sensory can- 
didates and a set of semantic candidates are created, with the 
latter being verified first. In the cohort model of Marslen-Wil- 
son and Welsh (1978), context is used to exclude members of 
the cohort from the very beginning. Norris (1986) has recently 
reviewed these models and pointed out that they all involve 
some sort of  priming mechanism through which context effects 
are mediated. 

The model of how knowledge is used in discourse suggests 
a fundamentally different approach. Following earlier work by 
Kintsch and Mross (1985) and Norris (I 986), the present model 
is neither interactive, nor does it involve priming. As these au- 
thors have argued, word identification is not simply a matter of 
lexical access. Rather, it is a complex process that responds to 
different influences at different stages. These stages, however, 
are merely convenient verbal labels. In fact, processing is con- 
tinuous, and there is significant temporal overlap between the 
different subprocesses defining these stages. In the first stage 
(which was termed sense activation by Kintsch & Mross, 1985), 
the number of  word candidates consistent with the perceptual 
input is progressively reduced through perceptual feature anal- 
ysis. As in Forster or Becker, a set of  sensory candidates is cre- 
ated through perceptual analysis, but its size decreases as the 
analysis progresses. This process rapidly reduces the number of  
word candidates to some manageable number, but not necessar- 
ily to one. At this point (probably at about 50 ms, see Fischler & 
Goodman, 1978), the semantic context comes into play. Some 
small number oflexical nodes has now been selected, each one 

activating a few of  its strongest semantic or associative neigh- 
bors in the knowledge network. If  there is a node whose associ- 
ates fit into whatever context is present, it will be taken as the 
meaning of  the to-be-identified word. What fits is determined 
by the integration process sketched earlier. This is the sense- 
selection stage of  Kintsch and Mross. 

Note that if the perceptual analysis had been allowed to con- 
tinue for a sufficient period of  time, for most words it would 
have yielded a result eventually by itself, and probably the same 
one. It is just that the association check helped to shortcut this 
process. With homonyms, however, the association check plays 
a crucial role: Perceptual analysis alone cannot decide which 
meaning of bank to select in any given context. 

Sense selection by means of  an association check is the very 
first of  a possibly very long series of  contextual plausibility 
checks (Norris's term). It comes first because the associative/ 
semantic context of  a lexical node can be computed rapidly. 
As more information about the context becomes available, the 
sentence and discourse meaning begin to emerge, and more and 
deeper plausibility checks can be performed as long as there still 
is time. This is the sense-elaboration phase, in which the mean- 
ing of  a word is contextually explored and elaborated. However, 
once a response has been made in a recognition experiment, or 
once the process moves on in a discourse, elaboration is termi- 
nated. Thus, word meanings are usually identified long before 
complex inferences are made in comprehending a discourse. 

At this point, a "meaning" has been constructed for the word 
in this particular context. It consists of  the lexical node that has 
been activated (the contextually inappropriate nodes that had 
been activated have by now been deactivated through the vari- 
ous context checks), the associative and semantic neighbors of  
that node, the sentence and discourse context in which the word 
participated, and some inferences and elaborations that were 
produced in the course of  the various plausibility checks that 
explored the role of  that word in the given context. 

What do we need to make such a model of  word identification 
work? We shall disregard the perceptual analysis and take for 
granted that a certain number of  appropriate lexical nodes has 
been activated (e.g., multiple semantic nodes for a homonym). 
We then need to compute the sentences and phrases in which 
the word in question participates, or more accurately, the prop- 
ositions in which the corresponding concept token (for which 
the lexical node serves as the type) plays a role. Finally, we need 
to construct inferences and elaborations when necessary. 

A model of word recognition that thus far is identical with the 
one favored here has recently been developed by Norris (1986). 
Norris called it the "checking model" and compares and con- 
trasts it with the other extant models of word recognition in the 
literature. In Norris's model, the plausibility of word candi- 
dates in any given context is evaluated. The recognition crite- 
rion for contextually plausible words is lowered and that for 
implausible words is increased. By manipulating criterion bias 
in this way, Norris accounted for a wide range of  observations 
from threshold and other types of  recognition experiments. 

Instead of  equating plausibility with criterion bias, a different 
mechanism--integration--is used here. This mechanism has 
the great advantage of  being applicable not only at the word- 
recognition level (which is what Norris was concerned with), 



ROLE OF KNOWLEDGE IN DISCOURSE COMPREHENSION 171 

but it is equally suited to modeling knowledge integration at 
higher levels. 

When a word is perceived, one or more lexical nodes are ac- 
cessed, and some of their neighboring nodes that are closely 
related associatively or semantically are also activated. Sim- 
ilarly, when a proposition is constructed, a number of associa- 
tively and semantically related propositions are also con- 
structed. Both related concepts and related propositions serve 
to determine the plausibility of the core words and propositions. 
A richly interconnected structure is thus formed, through 
which activation can spread, so that positively interconnected 
items strengthen each other, while unrelated items drop out and 
inconsistent items become inhibited. Or, said differently, im- 
plausible items will be suppressed, whereas plausible ones sup- 
port each othernat  the level of word recognition as well as of 
textual integration. 

Time Course of Activation of Words 
in a Discourse Context 

The model of word recognition just outlined is consistent 
with a great deal of experimental data. Norris (1986) has re- 
viewed the word recognition literature in great detail and shown 
that his checking model accounts for the rich empirical findings 
in that area better than any of its competitors. The construc- 
tion-integration model is closely related to Norris's model. On 
the one hand, it is more specific in that it proposes computa- 
tional procedures by means of which Norris's "plausibility 
check" could actually be achieved, whereas on the other hand 
it replaces Norris's shift in criterion bias with the computation- 
ally more feasible integration mechanism. It appears likely that 
the present model can handle all the data the checking model 
accounts for, in just the same way and for just the same reasons 
as the checking model. There is, however, another part of the 
literature on word recognition that is not discussed in Norris 
(1986): the work on word identification in discourse. The em- 
pirical findings in this area are also in good agreement with the 
construction-integration model. 

In a lexical decision task, the subject sees a string of letters 
and must decide as quickly as possible whether it forms an En- 
glish word. Ifa  target word is preceded by a closely related word, 
the response to the target word is speeded up (on the order of 
20 to 40 ms) in comparison with unrelated control words. This 
priming effect has been well documented for some time and is 
obtained in list contexts (e.g., Meyer & Schvaneveldt, 1971) as 
well as in discourse contexts (e.g., Swinney, 1979). However, the 
discourse context is actually irrelevant to the priming effect. 
What matters is merely the associative relation between the 
prime word and the target word. As has been shown repeatedly 
(Kintsch & Mross, 1985; Swinney, 1979; Till, Mross, & 
Kintsch, in press; also equivalent results obtained with a nam- 
ing task by Seidenberg, Tanenhaus, Leiman, & Bienkowsky, 
1982), homonyms will prime strong associates of both their 
meanings, irrespective of the discourse context and in spite of 
the fact that the context-inappropriate meaning of the hom- 
onym never enters consciousness. Furthermore, context appro- 
priate inferences that are not associatively related to a priming 
word are not responded to any faster than unrelated control 
words. However, all of this depends on the amount of time al- 

lowed for the processing of the priming word. If the target word 
closely follows the priming word, so that the processing of the 
prime is still in its initial stages, the results are as already de- 
scribed. However, if there is enough time for more complete 
processing of the priming word in its discourse context, quite 
different results are observed. In this case, context-appropriate 
associates are still primed, but inappropriate associates no 
longer are, whereas context-appropriate inferences now become 
strongly primed. This time course of knowledge activation can 
be described in more detail by some illustrative experimental 
results. 

In the study by Till et al. (in press), subjects read sentences 
like The townspeople were amazed to find that all the buildings 
had collapsed except the mint. After the priming word mint they 
were given a lexical decision task, with the target word being 
either money, candy, or earthquake. That is, the target was a 
context-appropriate associate of the prime (money), a context- 
inappropriate associate (candy), or a topical inference word 
(earthquake), respectively. In addition, the interval between the 
presentation of the prime and the target word (stimulus-onset 
asynchrony, or SOA) was varied from 200 ms to 1500 ms. In 
the first case, the prime could only be incompletely processed; 
with an SOA of 500 ms, a somewhat deeper processing of the 
prime was possible before a response had to be given to the 
target word; and with 1,000 ms, extensive processing of both 
the prime word and its discourse context was possible. The data 
are shown in Figure 8. To keep this presentation simple, Figure 
8 shows the average priming effects observed in the three experi- 
ments of Till et al. for SOAs of 200, 300, 400, 500, 1,000, and 
1,500 ms. The value shown for associates at 200 ms, for in- 
stance, is the difference between the mean reaction time for con- 
text-inappropriate and context-appropriate associates at that 
prime-target asynchrony. It is the average of two such values 
obtained in two different experiments--showing the data sepa- 
rately for each experiment merely complicates the picture with- 
out changing its essential features. The value for inferences, 
similarly, is based on the difference between topic words and 
unrelated control words. The purpose of Figure 8 is, therefore, 
merely to give an impression of the over-all shape of the results 
of this study (for more detailed analyses, the original article 
must be consulted). 

Targets that are contextually appropriate associates of the 
priming word are primed at all four SOAs. Contextually inap- 
propriate targets, however, are primed only when the priming 
word is still in its initial processing stages; by 400 ms inappro- 
priate associates are no longer activated. Topical inferences are 
primed only if there is ample time, more than 500 ms, for the 
processing of the prime and its discourse context. This observa- 
tion implies that the topic was not inferred immediately as soon 
as the relevant information became available, but was left for 
the sentence wrap-up period. Till et al 's sentences were written 
in such a way that the topic could have been inferred before the 
last word in the sentence. This, however, is not what happened: 
Topics were inferred only after the whole sentence was read, 
requiring more than 500 ms of processing time. Thus, the full 
contextual meaning of the prime required about 1 s to emerge. 

Data like these suggest that the initial activation of lexical 
knowledge is independent of the discourse context. What mat- 
ters is only the (relatively fixed and stable) associative/semantic 



172 WALTER KINTSCH 

Figure 8. Context effects as indexed by the reaction time difference to context inappropriate and appropriate 
associates or inferences as a function of processing time, after Till, Mross, and Kintsch ( ! 988). 

context of each word by itself. This stage of sense activation, 
however, is quickly followed by a process of  sense selection in 
which the discourse context becomes effective: By 500 ms, con- 
text-inappropriate associates are deactivated (see also Seiden- 
berg et al., 1982, and Swinney, 1979). If  given more time, con- 
text effects grow even stronger: By 1,000 ms, contextually ap- 
propriate inference words are strongly and reliably primed even 
in the absence of associative connections (similarly for recogni- 
tion, see McKoon & Rateliff, 1986). 

Clearly, this pattern of  results is in excellent agreement quali- 
tatively with the model of  knowledge use in discourse presented 
earlier. Right after a word is perceived, it activates its whole asso- 
ciative neighborhood in a context-independent way, with the 
consequence that strong associates of a word are likely to be 
represented in working memory and hence will be primed in a 
lexical decision task, whether they are context appropriate or 
not. The knowledge-integration process then results in the de- 
activation of material that does not fit into the overall discourse 
context (such as context-inappropriate associates). Note that 
in order to disambiguate words on-line, the integration phase 
cannot be delayed until the end of a processing cycle; word 
senses are disambiguated before that. In the model, therefore, 
as soon as a text proposition is constructed and its associates 
have been generated, they will be integrated into whatever con- 
text exists at that time in working memory. Thus, each process- 
ing cycle involves many integrations, and the single integration 
operation performed at the end of each cycle in many of the 
examples discussed here is merely a simplification, adopted 
whenever one is not concerned with the on-line generation of 
word meanings. Finally, contextual inferences should require 
the most time to become activated on the average because al- 
though they sometimes result from the initial knowledge sam- 

piing, in other cases repeated sampling or, further, strategic 
elaboration might be required. 

Earlier, an example was given of one of the texts used in the 
Till et al. (in press) study. The predictions of  the model will be 
illustrated by means of this example. The aforementioned text 
(The townspeople were amazed to find that all the buildings had 
collapsed except the mint) has the following propositional repre- 
sentation: 

1. TOWNSPEOPLE 
2. AMAZED[TOWNSPEOPLE,P3] 
3. COLLAPSE[P4] 
4. ALL-BUT[BUILDING,MINT l 
5. BUILDING 
6. MINT 

Connection strengths of .9, .7, .4, and 0 were assigned to text 
propositions one, two, three, or more steps apart in the text base 
(e.g., P1 is two steps away from P3, connected via P2). Next, 
each text proposition was allowed to access at random two of 
its neighbors in the long-term associative net. This process was 
simulated by having an informant provide free associations to 
phrases based on each of these six propositions. For instance, 
the phrase all buildlings but the mint elicited the associations 
many buildings and mint is a building. Of course, MONEY and 
CANDY were chosen as the associates of  MINT. Each text propo- 
sition was connected by a value of .5 to its associates, yielding 
an 18 • 18 connectivity matrix. Activation was then allowed to 
spread from the text propositions to the knowledge elabora- 
tions. Specifically, an initial activation vector with 1/6's corre- 
sponding to the text propositions and zeros otherwise was multi- 
plied with the connectivity matrix until the pattern of  activation 
stabilized. As a result, text propositions achieved activation val- 
ues between .0987 and .  1612, depending on how closely they 
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were tied into the text base, and the knowledge elaborations had 
much lower activation values, between .0142 and .0239, with 
both MONEY and CANDY having a value of.0186. Thus, at this 
stage of processing, MONEY and CANDY are equally activated. 

Activation continues to spread, however, and differences be- 
gin to emerge among the activation values for the various 
knowledge elaborations that have been added to the text base. 
The reason for this is that the knowledge elaborations are con- 
nected not only to the text propositions that had pulled them 
into the net but also to other text propositions as well as to each 
other. To approximate these interrelations, a connection value 
of .5 was assigned to any two propositions sharing a common 
argument. Because the homophone mint contributed associa- 
tions to the subnet that refers to both of its senses, an inhibiting 
connection of - .5  was assigned to MINT/CANDY and BUILDING, 
whereas CANDY and MONEY themselves were connected by a 

- 1. Continued multiplication of the activation vector with this 
connectivity matrix yielded a stable pattern (average change < 
.001) after 11 operations. At this point text propositions had 
activation values ranging between. 1091 and .0584. Several of 
the knowledge elaborations reached values in this range, for ex- 
ample, .0742 for both ISA[MINT,BUILDING] and MONEY and 
.0708 for KILL/BUILDING,TOWNSPEOPLE], whereas others had 
faded away by this time; for example, MAN, which entered the 
subnet as an associate of  TOWNSPEOPLE, had an activation value 
of.0070 and, most significantly, .0000 for CANDY. This stage of 
processing corresponds to the 400- and 500-ms points in Figure 
8" MINT is now clearly embedded in its context as a kind of 
building, and the inappropriate association CANDY is no longer 
activated. 

The next processing stage involves the construction of a topi- 
cal inference--what is the sentence about? While the exact op- 
erations involved in the construction of such inferences are be- 
yond the scope of this article, van Dijk and Kintsch (1983, 
chapter 6) have discussed some of the mechanisms involved, 
such as a strategy of looking for causal explanations, which is 
what actual subjects appear to use predominantly in the follow- 
ing case. If given enough time, the modal response of human 
readers is that the sentence is about an earthquake that de- 
stroyed a town. Thus, the (empirically determined) proposi- 
tions EARTHQUAKE and CAUSE/EARTHQUAKE,P3] were added 
to the text base and connected with the text-base propositions 
from which they were derived by a value of .5. The two new 
propositions were given initial activation values of zero, and the 
integration process was resumed; that is, activation now spread 
from the previously stabilized subnet into the newly con- 
structed part of the net. Nine more integration cycles were re- 
quired before the expanded net stabilized. As one would expect, 
the two new inferences did not alter the pattern of activation 
much, but both of them became fairly strongly activated 
(thereby diminishing activation values in the already existing 
portion of the net). The topical inferences EARTHQUAKE and 
CAUSE/EARTHQUAKE,P3] ended up with activation values of 
.0463 and .0546, respectively, among the most strongly acti- 
vated inferences in the net. At this point, the process appears 
to coincide with the time interval between 1,000 and 1,500 ms 
shown in Figure 8. 

The construction-integration model thus accounts for the 
data in Figure 8 by means of an intricate interplay between con- 

Figure 9. The changing meaning of MINT. (The activation values of all 
propositions directly connected to MINT at the beginning and at the end 
of the process. The [.] notation is used as an abbreviation for the argu- 
ments of a proposition.) 

struction and integration phases: the construction of the text 
base and the context-free, associative knowledge elaboration 
during the first 350 ms of processing; the establishment of a 
coherent text base, which appears to be complete by 400 ms; 
and finally, an inference phase, involving new construction and 
new integration and requiring more than 500 ms of processing 
under the conditions of the Till et al. study. The model does 
not account for the time values cited here, but it describes a 
processing sequence in accordance with the empirically deter- 
mined time sequence. 

In many models of word identification, the problem is 
thought to be "How do we get from a certain (acoustic or visual) 
stimulus pattern to the place in the mental lexicon where the 
meaning of this word is stored?" In the present model, word 
identification is much more deeply embedded into the process 
of discourse understanding. The lexical node itself provides just 
one entry point into the comprehender's long-term memory 
store of knowledge and experiences, and what eventually be- 
comes activated from that store depends on the discourse con- 
text. In conceptions of the lexicon like that of Mudersbach's 
(1982), the meaning of a word is given by its "neighborhood" 
in the associative network into which it is embedded. Neighbor- 
hoods may be defined narrowly or broadly (nodes one link away 
vs. nodes several links away). In the present model, the meaning 
of a word is also given by its neighborhood--narrowly or 
broadly defined--not in the long-term memory net as a whole, 
but in the subnet that has been constructed as the mental repre- 
sentation of the discourse of which the word is a part. Because 
that representation changes as processing proceeds, word 
meanings change with it. 

Figure 9 depicts the changing meaning of MINT in our exam- 
ple. MINT is directly linked to nine propositions in the network; 
indirectly it is linked to the whole net, of course. If one takes as 
its contextual meaning only its immediate neighbors, one finds 
at the beginning of processing mostly closely related proposi- 
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tions from the text base plus three weakly activated knowledge 
elaborations that in part do not fit into the context at all 
(CANDY). At the end of the process, however, the context-inap- 
propriate association has dropped out, other inferences have 
been added, and the activation is more evenly distributed 
among text propositions and knowledge elaborations. Thus, 
textual information becomes part of the contextual meaning 
of a word, in contrast to most traditional conceptions of 
"meaning" 

This example is, of course, no more than an illustration. Pa- 
rameters in our calculations could be changed. For example, 
more than just two associates could be sampled initially in the 
process of knowledge elaboration. In this case the neighbor- 
hood of MINT would contain many more knowledge elabora- 
tions than are shown in Figure 9, where there is a strong pre- 
dominance of text propositions. Not enough is known at pres- 
ent to set some of these parameters with confidence. But Figure 
9 does reflect certain aspects of the data correctly: the equal 
initial activation of MONEY and CANDY, the later emergence of 
the topical inference EARTHQUAKE. Although much more re- 
search is needed to produce a more adequate picture of how the 
contextual meaning of words is constructed during discourse 
comprehension, here is a technique that at least may help us to 
do so. 

Arithmetic Word Problems 

How children understand and solve simple word arithmetic 
problems provides an excellent domain to try out the construe- 
tion-plus-integration model. Unlike with many other types of 
discourse, there are clear-cut criteria for when a problem is 
solved correctly, and the formal knowledge of arithmetic that is 
necessary for its solution is easily defined. However, word prob- 
lems, like all other texts, share the ambiguity and fuzziness of 
all natural language. Not only formal, arithmetic knowledge is 
involved in understanding these problems, but all kinds of lin- 
guistic and situational knowledge. What makes word problems 
hard--and interestingmare often not their formal properties, 
but the way a problem is expressed linguistically and the way 
formal arithmetic relations map into the situations being de- 
scribed. Thus, word problems are ideal from the standpoint of 
knowledge integration because it is precisely the integration of 
formal arithmetic knowledge and linguistic and situational un- 
derstanding that is at issue here. 

Another reason for choosing the domain of word problems is 
that there already exist alternative formal models of how chil- 
dren solve simple word arithmetic problems (Briars & Larkin, 
1984; Kintsch & Greeno, 1985). Specifically, the work of 
Kintsch and Greeno will be taken as a starting point here. Their 
model represents a union of the work on problem solving in 
arithmetic by Riley, Greeno, and Heller (1983) on the one hand, 
and that on discourse understanding by van Dijk and Kintsch 
(1983) on the other. Kintsch and Greeno (1985) added to the 
discourse-comprehension strategies of the van Dijk and 
Kintsch model some special purpose strategies for solving word 
arithmetic problems, which they named the arithmetic strate- 
gies. For instance, if the model encounters a quantity proposi- 
tion, such as "six marbles," it forms a set and tries to fill in 
the various slots of the set schema: what the objects are, the 

cardinality of the set, a specification of the objects (e.g., that 
the marbles are owned by Fred), and the relation between the 
present set and other sets in the problem (the six marbles were 
given to Fred by Tom, which might identify them as a "transfer 
set"). Thus, the Kintsch and Greeno model for word problems 
builds a text base in quite the same way as in the van Dijk and 
Kintsch general theory of text comprehension, but it then forms 
a very specialized situation or problem model in terms of sets 
of objects and their interrelations. It solves a problem by recog- 
nizing a particular pattern of relations among sets (such as 
TRANSFER-IN or  SUPERSET) and then using a stored-solution 
procedure appropriate to that case. 7 Thus, in terms of the fore- 
going discussion about knowledge use in discourse, the Kintsch 
and Greeno model is a "smart" model: Production rules are 
formulated in such a way that in each situation exactly the right 
arithmetic strategy is fired. 

The Kintsch and Greeno model of solving arithmetic word 
problems is useful in several ways. The model identifies differ- 
ent classes of errors, such as errors caused by a lack of arithme- 
tic knowledge, errors caused by linguistic misunderstandings, 
and errors that do not reflect a lack of knowledge at all but 
result from resource limitations. Certain formulations of word 
problems overload the resources of the comprehender, espe- 
cially short-term memory, leading to a breakdown in process- 
ing. As Kintsch and Greeno have shown, within each arithmetic 
problem type there exists a strong correlation between the fre- 
quency of errors made in solving the problem and the memory 
load imposed by it, even though there are no differences within 
problem types in either the arithmetic or linguistic knowledge 
required for solution. 

The model distinguishes between linguistic and arithmetic er- 
rors and helps us to investigate to what extent errors made by 
second- and third-grade pupils are caused by a failure to under- 
stand properly the text of the word problem, rather than by a 
faulty knowledge of arithmetic (e.g., Dellarosa, 1986; Della- 
rosa, Kintsch, Reusser, & Weimer, in press; Kintsch, 1987). If 
certain linguistic misunderstandings about the meanings of 
such key words as have more than, have altogether, or some are 
built into the knowledge base of the model, the model produces 
a pattern of wrong answers and misrecall of the problem state- 
ments that strikingly parallels some of the main types of errors 
that experimental subjects make. This is a good example of how 
much can be achieved even with the use of knowledge-poor rep- 
resentations in studies of discourse processing. The Kintsch and 
Greeno model knows about arithmetic (its arithmetic strate- 
gies), and it knows about the meaning of words (its lexicon; a 
semantic net in Dellarosa, 1986). However, it has no general 
world knowledge that would allow it to understand the situation 
described in a word problem. It merely picks out the crucial 
arithmetic information from the discourse and builds a propo- 
sitional text base for it. This is good enough for some purposes 
(e.g., the investigation of resource limitations or linguistic fac- 
tors in understanding as mentioned earlier, or to predict recall, 
summarization, or readability as in Kintsch & van Dijk, 1978, 
and related work), but it is not good enough for other purposes. 

7 Computer simulations of this model have been developed by Flet- 
cher (1985) and Dellarosa (1986) and are available from the author. 
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The limits of  this approach are illustrated by a well-known 
observation: If a word problem is embedded into a concrete, 
familiar situation or action context, it is much easier to solve 
than when the same problem is expressed abstractly (e.g., Del- 
larosa et al., in press; Hudson, 1983). Thus, Five birds saw three 
worms on the ground, and each bird tried to get a worm. How 
many birds didn't get a worm?is easy for first graders, but There 
are five red marbles and three green marbles. How many more 
red marbles are there than green marbles? is very hard, even 
though the two problems are equivalent in form. 

The Kintsch and Greeno model does not account for this 
difference. What is needed is a model in which all knowledge 
relevant to the understanding of  a word problem becomes inte- 
grated into a representation that is sensitive to arithmetic as 
well as to situational information. In the model to be described 
shortly, this is achieved by forming many different hypotheses 
about the arithmetic relations in the problem, instead of  only a 
single one, and then by looking for information in the text in 
support of each hypothesis. Thus, situational and arithmetic 
information can combine in forming the problem interpreta- 
tion. 

Arithmetic Strategies 

Arithmetic knowledge forms a special subset of  a person's 
general knowledge network. Sets of objects can be represented 
by a propositional schema with the slots object, specification, 
quantity, and role (i.e., their relation to other sets)--equivalent 
to the set schema of  Kintsch and Greeno (1985). Superordinate 
schemata can be similarly defined. Thus, a TRANSFER-IN 
schema can be set up with slots for a START, TRANSFER-IN, and 
RESULT SET. With each such superordinate schema, various 
arithmetic procedures (such as the counting strategies of 
Kintsch & Greeno, 1985) can be associated. 

Arithmetic knowledge is used in the same way as general 
world knowledge. That is, propositions that represent various 
hypotheses about the arithmetic structure of  a word problem 
are constructed as the text of  the word problem is read and 
become part of  the subnet. Several possible arithmetic hypothe- 
ses are constructed at each point, and whatever evidence in the 
text favors one or the other of these hypotheses is connected 
positively to it. 

The strategies required for solving arithmetic word problems 
have been described in Kintsch and Greeno (1985) and Kintsch 
(1984) and have been incorporated into the computer simula- 
tion of Dellarosa (1986). However, they are used here in a 
different way. In the aforementioned works, the intent was to 
circumscribe the conditions under which each strategy is ap- 
plied so accurately that only the correct one is fired in each 
word problem. Here, strategies fire promiscuously whenever 
they are supported, however weakly, by the text, and it is left for 
the integration process to weed out what is not wanted, just as 
all sorts of  general knowledge propositions are activated that 
later turn out to be useless. A problem is solved when the right 
superordinate schema is more strongly activated than its alter- 
natives, which then triggers the desired arithmetic procedures. 

Three forms of  arithmetic strategies need to be considered. 
There are strategies that form arithmetic hypotheses about sets, 
strategies that determine the nature of the connections between 

various text propositions and these hypotheses, and strategies 
that form superordinate arithmetic schemata on the basis of  
which arithmetic calculations can be performed. 

1. Hypotheses about sets are propositions of  the form SET- 
[object:X,specification:Y, quantity:Z,role:W], where X refers 
to an object, such as TULIP; Y is one or more other text prop- 
ositions, specifying X further--for example, PAST[LOCA- 
TION[TULIP,IN-GARDEN]]; Z is a quantity proposition with X as 
argument--for example, FOURTEEN[TULIP]; and W indicates 
the role of  the set in some superschema, such as WHOLE or PART. 

2. Whenever a quantity proposition is encountered in the 
text base, possible arithmetic hypotheses derivable from it are 
constructed (e.g., two otherwise identical propositions with the 
roles WHOLE and PART). Propositions in the text base that pro- 
vide evidence for any of  these alternatives are then connected 
positively to it. Key words can be used for this purpose, as in 
Kintsch and Greeno (1985): Collection terms such as altogether 
indicate WHOLE sets; give/take, of these, and have more/less 
than indicate PART sets. In addition, general world knowledge 
about situations and actions is used to determine what is a 
WHOLE and what are its PARTS. The strategies involved have 
been described in Kintsch (1984): restricted subsets, conjunc- 
tion, and time-ordered possession/location. 

Restricted subsets. If  the specification of  one set is more gen- 
eral than that of another, the former is assigned the role of  
WHOLE and the latter that of PART. Examples are LARGE-WIN- 
DOW, SMALL-WINDOW versus  WINDOW, or  ON-UPPER-SHELF, 
ON-LOWER-SHELF versus  ON-SHELF. 

Conjunction. If  the object or specification of one set consists 
of  the conjunction of the objects or specification of  two other 
sets, the former is the WHOLE and the others the PARTS. This 
conjunction may be explicit as in YESTERDAY, TODAY, and 
YESTERDAY&TODAY, o r  implicit, as in TEDDYBEAR, DOLL, 
and TOY. 

Time-orderedpossession/location. If  the specification slots of  
three sets contain either HAVE[agent,object] or LOCATION[ob- 
ject,place], or the negations of  these propositions, as well as in- 
formation to establish a temporal order, WHOLE and PART roles 
can be assigned to the three sets according to the resulting pat- 
terns. For instance, if the specifications of three sets are 
TIMEI [ HAVE, JOE, P [ MARBLES ] ] ; TIME2 [ GIVE, JOE, TOM, Q 
[MARBLES]], w h i c h  implies TIME2[NOT[HAVE,JOE,QtMARBLES]]; 
and TIME3IHAVE[JOE,Z[MARBLES]], SETI is indicated as the 
WHOLE set. 

3. The PART-WHOLE schema is the only arithmetic super- 
schema to be considered in the examples that follow, though 
various TRANSFER and COMPARISON schemata could have been 
treated in the same way, as in Kintsch and Greeno (1985). 
Three hypotheses can be formed about the PART-WHOLE 
schema, depending on whether the first, second, or third of  the 
sets formed is to be considered the WHOLE set. (Note that the 
order in which the sets were formed in the word problem, not 
their true temporal order, is at issue here.) Thus, a proposition 
with the head PPW, which is simply a mnemonic for PART- 
PART-WHOLE, expresses the hypothesis that the problem is a 
PART-WHOLE problem with the third set as the WHOLE: 
PPW[roIe[SETI,PART],role[SET2,PART],roIe[SET3,WHOLE]]. As- 
sociated with this schema is the equation QI + Q2 = Q3, where 
Qi is the quantity of  the i-th set, as well as procedures to solve 
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Figure 10. The elaborated text base for the first sentence of the Manolita 
problem. (Each proposition is indicated by a single word. Text proposi- 
tions are connected by solid lines, their associates by broken lines. Asso- 
ciates are marked with an asterisk,) 

this equation, depending on which of  the quantities happens to 
be unknown. 

Examples  and Issues 

Three examples will be analyzed here to show how the model 
understands, or fails to understand, as the case may be, arithme- 
tic word problems. To see how these examples work, it is neces- 
sary to present at least the first one in sufficient detail. This 
problem is intended simply as an illustration of  the basic mech- 
anisms of the model--nothing much of  interest happens with 
respect to the arithmetic, and textually, the only thing of  sig- 
nificance is that a simple inference is formed, which, however, 
is crucial for the understanding of the problem. Two more ex- 
amples, which will not be presented in as much detail, will serve 
as illustrations of  how the model can account for some well- 
known facts about word-problem solving that alternative 
models (Briars & Larkin, 1984; Kintsch & Greeno, 1985) do 
not handle readily. 

Inferences 

Manolita tried to weed her father's garden. "You sure weeded it;' 
said Mr. Mundoza, "There were fourteen tulips in the garden and 
now there are only six." How many tulips did she pull out by mis- 
take? 

This problem, modified from the "Thinking Stories" of Wil- 
loughby, Bereiter, Hilton, and Rubinstein (1981), requires for 
its solution the application of one of  the LOCATION strategies: 
There were so many tulips in the garden, then some were pulled 
out, and now so many are left. A simple, knowledge-based infer- 
ence becomes necessary: that the tulips that were pulled out are 
no longer in the garden. The knowledge-activation mechanism 
of the present model readily supplies this inference, and the 
problem will be solved successfully. 

The model processes this problem in three cycles, which in- 
cludes the first sentence, the statement by Mr. Mundoza, and 
the question sentence. The first sentence simply sets up a con- 
text and is not directly relevant to the arithmetic. In Figure 10, 
the way the model understands this sentence is indicated, albeit 
in abbreviated form. The propositions constructed from the 

sentence itself are (P1) MANOLITA, (P2) GARDEN, (P3) TRY[ 
MANOLITA,P4], (P4) WEED[MANOLITA,GARDEN], (P5) FA- 
THER'S[GARDEN]. Only the first terms of  these propositions are 
shown in Figure 10. Also shown in Figure l0 are the proposi- 
tions that were added to the text base through the process of  
associative-knowledge elaboration (they are marked with an as- 
terisk and, once again, abbreviated: *NAME stands for ISA[MAN- 
OLITA,NAME], etc.). Because no simulation of a general knowl- 
edge network is available, Or even conceivable, the process of  
knowledge elaboration must be approximated empirically. An 
informal procedure was adopted for this purpose: Three per- 
sons were asked to provide free associations to phrases corre- 
sponding to P1 through P5 (as well as to corresponding phrases 
from the remaining two sentences of  this word problem), and 
the responses generated by at least two persons were considered 
as the top associates of  each proposition in the general knowl- 
edge net (up to a maximum of three associations per proposi- 
tion). 

The text base shown in Figure 10 serves as a basis for deriving 
a connectivity matrix, using the principles illustrated earlier in 
Tables l and 2: Text propositions are connected depending on 
their proximity in the text base, each text proposition is con- 
nected to its associates by a value of.5, and knowledge derived 
propositions are interconnected by the same value if they share 
an argument, or by - .5  if different word senses are involved 
(this does not occur in the present example). 

An initial activation vector consisting of.2 s for the five prop- 
ositions directly derived from the text, followed by 13 zeros for 
the propositions generated from the knowledge net, was then 
repeatedly updated by multiplying it with the connectivity ma- 
trix until the activation values stabilized, as in the examples 
discussed previously. In the present case, activation levels stabi- 
lize after l0 iterations. The resulting pattern of  activation is 
shown in the first panel of Figure 11. WEED[MANOLITA,GAR- 
DEN], whose centrality in the text base is apparent in the graphi- 
cal representation, has the highest activation value, and the 
other text-derived propositions also have fairly high activation 
values. Knowledge-derived propositions are considerably less 
activated. The four most strongly activated propositions (P1 
through P4) are retained in the short-term buffer and enter the 
second processing cycle. 

The second processing cycle is shown in Figure 12. The four 
propositions held over in the short-term memory buffer from 
Cycle 1 are joined by 9 new text propositions and 11 associated 
propositions from the knowledge base. (Because of  lack of  
space, the latter are indicated only by asterisks.) The quantity 
propositions FOURTEEN[TULIP] and SIX[TULIP] generate four 
arithmetic hypotheses: that the 14 tulips that were in the garden 
in the past are, respectively, a PART or WHOLE set, and that the 
6 tulips now in the garden are a PART or WHOLE set. What the 
reader knows about weeding gardens provides the crucial infor- 
mation that discriminates among these hypotheses: The tulips 
before the garden was weeded are the WHOLE set, and only a 
PART is left after the weeding. This knowledge is expressed in 
the connectivity matrix by connecting PAST with WHOLE[ 14], 
and PRESENT with PART[6]. 

The last three propositions that enter the subnet are the su- 
perordinate arithmetic hypotheses PPW, PWP, and WPP. They 
receive support from their corresponding first-order arithmetic 
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Figure 11. The result of the integration process for the three sentences 
in the Manolita problem. (Propositions are indicated by single words; 
inferences are marked by an asterisk; their arrangement in the figure is 
approximate. The ordinate shows the activation values of each proposi- 
tion after the process has stabilized. Propositions carried over from one 
processing cycle to the next are connected by arrows.) 

11. (If the activation process is extended to twice the number 
of  cycles, the activation values for the arithmetic hypotheses, 
measured to four decimal places, do not change at all.) All text- 
derived propositions remain strongly activated, while none of  
the textual inferences (e.g., MUNDOZA is a NAME of a MALE, 
TULIPS are FLOWERS, RED, and GROW-IN-HOLLAND) reach a 
high level of activation. This is intuitively quite plausible. As 
far as the arithmetic is concerned, the problem is at this point 
understood correctly and practically solved: WHOLE[ 14] is more 
strongly activated than its alternative, PART[14]. Similarly, 
PART[6] is stronger than WHOLE[6]. The correct hypothesis, 
WPP, is the most strongly activated of  the three alternative 
superschemata. 

Note that the text propositions and inferences are, in general, 
much more strongly activated than the arithmetic hypotheses. 
Therefore, the activation values of the latter must be considered 
separately, relative to each other, rather than in relation to the 
text propositions when it comes to selecting propositions to be 
maintained in the short-term memory buffer. This imbalance 
is required for the model to work. If the arithmetic hypotheses 
are weighted more heavily, they draw the activation away from 
the text itself, and the system cannot stabilize: It will flip-flop 
between alternative, mutually contradictory arithmetic sche- 
mata. The arithmetic hypotheses have to be anchored in a stable 
text representation. 

For the third and final sentence, the short-term memory 
buffer needs to carry over both text propositions to establish 
textual coherence and arithmetic hypotheses to take advantage 
of the understanding of the problem that has been achieved so 
far. It has been assumed here that the four strongest text propo- 
sitions as well as the four strongest arithmetic hypotheses are 
carried over in the buffer, as shown in Figure 13. (There are, of  
course, other plausible alternatives.) The three text propositions 

hypotheses. Thus, whatever strength each arithmetic hypothe- 
sis gathers from the text is fed into the superordinate arithmetic 
schemata consistent with it. These schemata are mutually ex- 
clusive and inhibit each other with connection values o f -  1. 
Note that only at this final level is inhibition among arithmetic 
hypotheses used: The hypotheses that a particular set of objects 
plays the role of  WHOLE or PART set are also mutually exclusive, 
but they are not allowed to inhibit each other; they merely col- 
lect more or less positive evidence, which they then transmit to 
the superordinate stage where a selection among alternatives is 
made. 

The resulting connectivity matrix then becomes the multi- 
plier of  the activation-state vector for the 28 propositions partic- 
ipating in this second processing cycle. Initially, these activation 
values are positive for the text-derived propositions, and zero 
otherwise, except for the propositions carried over in the buffer, 
which retain the activation values they reached in the last cycle. 
In this case, the activation vector stabilizes already after seven 
operations. The results are shown in the second panel of Figure 

Figure 12. The elaborated text base for the second sentence of the Man- 
olita problem. (Four propositions were carried over from the previous 
cycle in the short-term memory buffer. Solid lines connect text proposi- 
tions, broken lines inferences; nonarithmetic inferences are indicated 
by asterisks only.) 
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Mrs. Nosho was telling Mark about the two huge aquariums she 
kept when she was a little girl. "There were 30 fish in one and 40 
fish in the other, so you can tell how many fish I had" How many 
fish did Mrs. Nosho have? 

In a simulation run of  this problem the model failed because it 
did not come up with the transitive inference HAVE[X,Y]&CON- 
TAIN[Y,Z] implies HAVE[X,Z]. At this point, the process needs to 
go into a problem-solving mode in which the information in 
the text is elaborated in a more focused manner than is possible 
with the automatic-comprehension mechanisms discussed 
here. 

generated on the basis of  this sentence bring with them into the 
net six knowledge propositions, one of  which is NOT[CON- 
TAIN[GARDEN,TULIP]], which turns out to be crucial for the so- 
lution of  the problem. In addition, new hypotheses about the 
question set are formed, and the schemata PPW and PWP, 
which were lost after the second cycle, are reconstructed. Be- 
cause the child knows about weeding gardens, the tulips that 
were pulled out are identified as a part of  those that were in the 
garden in the beginning. Hence, a connection that favors the 
PART hypothesis over the WHOLE hypothesis is formed between 
the inference NOT[CONTAIN[GARDEN,TULIP]] and PART[?]. It 
completes the pattern that is the condition for the use of a LOCA- 
TION strategy: some tulips at one place in the past, then some 
not there, now some are left. 

The new net requires 43 operations to stabilize. The 
knowledge-based inference NOT[CONTAIN[GARDEN,TULIP]] 
achieves an activation level above the range of  the text proposi- 
tions (Figure 11, third panel). The picture is completely clear 
as far as the arithmetic is concerned: All the correct hypotheses 
are strongly activated, and all incorrect alternatives have low or 
zero activation values. 

The final steps in the solution of the problem are procedural. 
From information associated with the WPP pattern the equa- 
tion 14 = 6 + ? is generated, which is then used to obtain the 
correct answer. A lot of  mountains had to be moved to achieve 
a very simple result! 

The Manolita problem was solved without problem solving. 
The basic comprehension operations were sufficient; that is, it 
produced the inference that the pulled-out tulips are not in the 
garden, which was required for the application of  the LOCATION 
strategy. However, this is not always the case. In many, not nec- 
essarily difficult, problems, more focused problem-solving op- 
erations are required because the random-inference generation 
process described earlier fails to generate the required infer- 
ence. Consider the following "thinking problem": 

Context Effects 

Problems embedded into a familiar situational context are 
much easier to solve than problems that must be solved without 
this situational support (e.g., Hudson, 1983). Thus, birds catch- 
ing worms present a concrete, understandable situation that 
makes it clear what is the whole and what are the parts, whereas 
abstract, ill-constrained problems do not. All depends on 
whether the right arithmetic strategy is used; the situation is of  
no help. 

In the worm-and-bird problem, the text provides a situa- 
tional constraint for the interpretation of the problem that has 
very little to do with arithmetic per se. It is the knowledge about 
birds eating worms that matters. The birds trying to catch the 
worm are understood as the WHOLE set, with the birds catching 
worms as one PART. and the birds unable to get a worm as the 
other PART. This understanding was achieved not because a cer- 
tain key phrase, like how many more, was parsed correctly but 
on the basis of general world knowledge. If  there are birds, some 
of  whom catch and some of  whom do not catch a worm, what 
is the WHOLE set and what are the PARTS is given by general 
world knowledge that is not specific to arithmetic. The arithme- 
tic can hardly go wrong here because the well-known situation 
guarantees the right interpretation of  the problem. It is this as- 
pect that the present model deals with most effectively. 

Context, however, does not always facilitate problem solu- 
tion, it may also interfere with it. Consider this typical school 
problem, with its highly impoverished context: 

Fred has four Chevies and three Fords. (a) How many cars does he 
have altogether? (b) How many more Chevies does he have than 
Fords? 

Context is no help with this problem; it must be solved on the 
basis of  specialized arithmetic strategies, on the basis of  the key 
words have altogether for Question A and have more than for 
Question B. Of course, children are much more familiar with 
the former (e.g., Riley et HI., 1983), but if the right strategies are 
available, both problems will be solved. In the model, too, the 
altogether in Question A will be connected with the HOW- 
MANY/WHOLE hypothesis, and the have more than will be con- 
nected with the HOW-MANY/PART hypothesis in Question B, 
and both questions will be answered equally well. After the first 
sentence, PART and WHOLE hypotheses are established for both 
the Chevies and the Fords, but there is not much to distinguish 
them; the superordinate schemata PPW, PWP, and WPP are 
only weakly activated and hardly differentiated. Question A, on 
the other hand, correctly activates the PPW hypothesis, and 
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Question B yields the WPP result. Thus, if the arithmetic 
knowledge is available, it makes very little difference which 
question follows the problem statement. 

In contrast, if the problem is only slightly contextualized, the 
model can be biased in favor of one of  the questions, and actu- 
ally fails when it gets the wrong one. Suppose, the foregoing 
problem is changed to read 

Fred has a nice collection of antique cars. Four of his cars are Chev- 
ies, and three are Fords. 

Collection, like some, is constructed as a quantity proposition, 
and hence PART and WHOLE hypotheses for a set of  cars with 
unspecified quantity are established in the first processing cycle. 
They are both activated equally, however, at this point. This 
changes dramatically with the second sentence: The four Chev- 
ies and three Fords are both identified as PART sets because of  
the phrase of his. In consequence, the model begins to favor 
the WPP hypotheses. When it receives Question A, the WPP 
hypothesis is decisively strengthened, and the problem is solved 
correctly. On the other hand, if it is given Question B, the model 
becomes confused between the WPP and PWP hypotheses, 
which are both equally activated, and fails to solve the problem. 

Thus, we have here an example where the problem context 
interferes with the solution of  a problem. It biases the problem 
in favor of  one particular interpretation, so that when another 
interpretation is required, the whole process fails. It is impor- 
tant, however, to analyze exactly why the model failed to answer 
Question B correctly: After processing the second sentence, it 
was so strongly convinced that the four Chevies and three Fords 
were both PART sets that it did not carry over the corresponding 
WHOLE set hypotheses and therefore had no way of using the 
information in the have-more-than question in support of  the 
CHEVIES/WHOLE hypothesis. Thus, rather special circum- 
stances prevented the model from answering Question B. In 
slightly different circumstances, it could have done so: (a) if the 
buffer were large enough, the CHEVY/WHOLE hypothesis would 
not have been lost, or (b) if the model had been allowed to reread 
the problem statement. 

Question Specificity 

The final example illustrates some different aspects of  word- 
problem solving; namely the complex role that redundant spec- 
ifications of  sets may have. On the one hand, overspecifying a 
set can be helpful because it provides more than one way to refer 
to it. On the other hand, redundant specifications increase the 
length of the text and thus the likelihood that some important 
piece of information is no longer in active memory when it is 
required. In the following problem, three versions of the ques- 
tion are possible: 

Joe had a collection of nine marbles. He started his collection with 
some beautiful red marbles. Then Lucy added six pink marbles to 
his collection as a present. (a) How many beautiful red marbles did 
he start his collection with? (b) How many marbles did he start his 
collection with? (c) How many beautiful red marbles did he have? 

The first processing cycle results in undifferentiated hypotheses 
about the nine marbles. The set constructed in the second cycle, 
on the other hand, is dearly a PART set, as is the one constructed 

in the third cycle. Indeed, at the end of  the third cycle, the model 
understands the problem essentially correctly, with the WPP 
schema greatly exceeding alternative hypotheses in activation 
value. To understand what happens next, it is necessary to know 
which text propositions were maintained in the buffer at the end 
of  the third cycle: Only propositions from the third sentence are 
carried over, while the propositions from the second sentence 
are no longer held in active memory at this point. This has non- 
trivial consequences when the question is asked. In Versions A 
and B everything is all right, because the question itself identi- 
fies the question set as a PART set--starting a collection serves 
this function, just as it did in Sentence 2. Version C of  the ques- 
tion, on the other hand, does not yield a correct solution. The 
question itself does not indicate the role of  the question set, and 
there is no information from the second sentence still available 
in active memory that would help to identify its role either; be- 
cause there are already several strong PART hypotheses around, 
the model tends toward the hypothesis that the question set has 
the role of  a WHOLE; the PWP schema thus becomes more acti- 
vated than the correct WPP schema. 

However, this is far from an unequivocal prediction of failure 
for Version C of  the question. With a slightly larger buffer, or 
with a little less irrelevant material intervening (pink marbles, 
as a present), the critical information from the second sentence 
could have been maintained in the buffer and used to solve the 
problem. Or even more obviously, the problem solver could re- 
read the problem or perform a reinstatement search (Kintsch & 
van Dijk, 1978; Miller & Kintsch, 1980) to activate the required 
information from long-term memory. Rather the prediction is 
that children, like the model, would have more trouble with 
Question C, and fail more frequently, than with either A or B. 

Thus, the more specific the question the better. But how irrel- 
evant or redundant material will affect the difficulty of  a word 
problem is a more complex story. It may be quite harmless, or 
may even facilitate problem solving, if the question exploits a 
redundancy in the specification of  a set. But it may be a source 
of  difficulty and even a cause of  failure when the question is 
asked in an unhelpful way. The present model has the flexibility 
to handle these complex effects of  context: Many small effects 
are allowed to add up and pull the model one way or another. 
The "smart" models of Kintsch and Greeno (1985) and Briars 
and Larkin (1984) have no ready way to cope with these subtle 
contextual demands: Either the right strategy is used or not. 

Discussion 

How people recall relevant knowledge when they read a text 
is reminiscent of  another experimental paradigm that has been 
studied extensively in psychological laboratories: how people re- 
call lists of  words. A widely used explanation for the recall of  
word lists is based on the generation-recognition principle. 
Some words are recalled directly, perhaps from a short-term 
memory buffer, and these words are then used to generate other 
semantically or contextually related, plausible recall candi- 
dates. Words that have actually appeared in the to-be-learned 
list will be recognized among these candidates and recalled, 
whereas intrusions will tend to be rejected. Generation-recog- 
nition theories have had their detractors, and in their most 
primitive form they are certainly inadequate to account for the 
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more complex phenomena of  list recall. However, sophisticated 
versions of  this theory are widely accepted now. Almost every 
current model of  list recall includes a generation/retrieval as 
well as a recognition/editing stage. 

The model of  knowledge use in discourse comprehension 
proposed here has two analogous stages: First, a propositional 
network must be constructed, and then it must be edited or inte- 
grated. The way the construction process is thought of  here is a 
straight extension of previous work on discourse processing. 
The words and phrases that make up a discourse are the raw 
material from which a mental representation of  the meaning of  
that discourse is constructed. This mental representation takes 
the form of a propositional text base. Text bases combine two 
sources of  information: the text itself and knowledge--knowl- 
edge about language as well as knowledge about the world. To 
construct even a single proposition, an appropriate frame must 
be retrieved from one's store of knowledge, and its slots must 
be filled in the way indicated by the text. The novel aspect of  
the present model is that the role of  knowledge is greatly ex- 
panded in this process. Previously, one could think of the text 
base--to put it crudelymas a translation into "propositiona- 
leese" of  the sentences in the text. Now, the text base becomes 
a much richer structure than before. Not only does it contain 
the propositions directly derivable from the text, but also each 
of  these propositions brings with it a number of  other proposi- 
tions that are closely connected to it in the general knowledge 
net. Thus, propositions are constructed just as before (e.g., van 
Dijk & Kintsch, 1983); yet where previously a single proposi- 
tion was formed, a whole cluster is generated now. 

Crucial in the present model is how this duster of proposi- 
tions is obtained: by a context-free process of activation of  the 
closest neighbors of  the original text-derived proposition in the 
general knowledge net. Of course, such a process will inevitably 
activate a lot of  material that is irrelevant for any given context 
and, indeed, inconsistent with it. However, the price that has to 
be paid for promiscuity is not very high: The resulting text base 
is a connectionist net in which further spreading activation pro- 
cesses rapidly take care of inconsistencies and irrelevancies. 
What is gained by this dumb and seemingly wasteful process of 
random knowledge activation is flexibility and context sensitiv- 
ity. The research on knowledge activation in psychology, as well 
as the experience with artificial intelligence systems, suggests 
that it is very difficult to activate knowledge intelligently. Pre- 
diction or expectation-based systems that use frames or scripts 
do not adapt easily to new contexts; prestructured knowledge 
hardly ever is exactly in the form that is needed. The construc- 
tion-integration scheme proposed here may turn out to be more 
successful in this respect. 

The general framework sketched earlier could be extended 
and elaborated in various ways as more experience with it is 
obtained. It might prove necessary, for instance, to resort to 
greater formalization in the propositional notation used here. 
However, until it becomes quite clear what the gains of greater 
formalization would be, a robust, easy-to-use system is to be 
preferred, even at the cost of some imprecision. 

Perhaps more important might be elaborations of  the 
knowledge-sampling mechanism. As presented here, each text- 
derived proposition activates its own strongest associates. It 

might be worthwhile to explore schemes whereby pairs or clus- 
ters of  propositions activate their strongest joint associates. 

Similarly, other criteria for stabilizing a network might be ex- 
plored. For instance, networks might be made to maximize 
some statistic like harmony, as in Smolensky (1986). This might 
have considerable advantages. For instance, it is not always pos- 
sible now to compare different networks in terms of  how fast 
they reach equilibrium, because the number of  cycles required 
depends strongly on the number of  nodes in the network. In 
addition, at present there is no really satisfactory way to tell how 
good an equilibrium a process achieves. In the word arithmetic 
problems, all one can tell is whether the right hypothesis is more 
strongly activated than its competitors, but comparisons of  the 
size of  that difference across problems are problematic. 

Constructive processes other than the ones explored here will 
need to be considered. For word arithmetic problems, the most 
important constructions involved the arithmetic hypotheses. 
The construction of  macropropositions could be neglected, 
mostly because the word problems were short ones and their 
macrostructure played no role in the problem-solving process) 
For many other types of text, construction rules to form succes- 
sive layers of abstractions and generalizations, as described by 
Turner et al. (1986), would be of  primary interest. The macro- 
structure of  a text could thus be made an integral part of  a text 
base rather than a separate component, as it is presently treated. 

Thus, there are a great many rules necessary to make the con- 
struction-integration model work for proposition building, as- 
signing references and coreferences, bridging inferences, form- 
ing macrostructures, elaborating knowledge, and so on. Some 
of  these construction rules are reasonably well worked out at 
this point, others are available within restricted domains, but 
many problems remain as yet unsolved. Thus, some of the same 
problems are encountered here as in conventional expectation- 
driven, top-down models of comprehension--but with one 
difference: Weaker, more general rules can be used here because 
these rules need not be fine-tuned to an ever-changing context. 
Whatever rules are still needed ought to be easier to work out 
within the construction-integration framework. 

In van Dijk and Kintsch (1983), an imporant distinction was 
made between text bases and situation models. The former cor- 
respond to the propositional representation of  a text, both at 
the level of  the micro- and macrostructure. The latter corre- 
spond to a representation of the text that is integrated with 
other knowledge. Thus, in terms of  the present model, the inte- 
grated text base--after irrelevant and inconsistent information 
has been deactivated and important knowledge elements have 
been absorbed--is a kind of  situation model. The qualifying 
phrase "a kind of"  is needed because text bases, integrated or 
not, are always propositional, whereas van Dijk and Kintsch 
specifically left open the possibility that situation models may 
be nonpropositional (e.g., Perrig & Kintsch, 1985). Situation 
models, under certain circumstances, may thus be like John- 
son-Laird's (1983) mental models. 9 

s Longer problems in which the macrostructure does play a role have 
been investigated by Dellarosa et al. (1988). Depending on whether a 
word problem establishes a theme of competition or cooperation be- 
tween two protagonists, compare or combine problems will be solved 
most easily. 
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The theory of knowledge use in discourse comprehension has 
been presented here at two levels: first, it is presented in terms 
of a general computational mechanism, at the level of what Py- 
lyshyn (1985) called the "cognitive virtual machine"; and sec- 
ond, as a particular model that specifies how this mechanism is 
used in word identification in discourse and in understanding 
and solving word problems. The function of the model is pri- 
marily explanatory. Certain phenomena can now be interpreted 
within the framework of the model; for example, why a particu- 
lar formulation of a word problem is especially hard or easy. 
Unlike less complex theories, however, there is no direct link 
between explanation and prediction in the present case. Un- 
qualified experimental predictions are hard to come by in a 
model as complex as the present one. At best, one might predict 
that a particular problem should be a difficult one, but that 
might mean several different things at the empirical level: that 
the solution fails, that a particular error occurs, that extra mem- 
ory resources are required, that a reinstatement search will oc- 
cur, that the problem must be read twice, and so forth. Even if 
we knew precisely what the "knowledge-use virtual machine" 
was like, our ability to make precise experimental predictions 
that are testable in conventional ways would still be severely 
limited. That, however, is not to say that such theories are with- 
out empirical consequences. Although we cannot predict par- 
ticular events, predictions concerning classes of events are quite 
feasible (e.g., the different ways people might have trouble with 
word problems). Furthermore, our new-found understanding of 
why and how certain things happen can have important conse- 
quences for how certain texts are created in the first place or for 
instructional practices designed to help people with particular 
comprehension tasks. 

9 Unlike the representation of the text itself--the text base, which is 
always propositional--situation models may have a different represen- 
tation format, although this possibility was not considered in the present 
article. Both text bases and situation models are mental models of one 
kind or another in the sense of Gentner and Stevens (1983), though not 
necessarily in the more restrictive sense of Johnson-Laird (1983). 
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