$K_{a, k}$ minors in graphs of bounded tree-width

Thomas Böhme*
Institut für Mathematik
Technische Universität Ilmenau
Ilmenau, Germany
John Maharry ${ }^{\dagger \ddagger}$
Department of Mathematics and Computing
Franklin College
Franklin, IN, USA
Bojan Mohar ${ }^{59}$
Department of Mathematics
University of Ljubljana
Ljubljana, Slovenia

October 17, 2000

Abstract

It is shown that for any positive integers k and w there exists a constant $N=N(k, w)$ such that every 7-connected graph of tree-width less than w and of order at least N contains $K_{3, k}$ as a minor. Similar result is proved for $K_{a, k}$ minors where a is an arbitrary fixed integer and the required connectivity depends only on a. These are the first results of this type where fixed connectivity forces arbitrarily large (nontrivial) minors.

1 Introduction

In this paper, all graphs are finite and may have loops and multiple edges. A graph H is a minor of a graph $G, H \leq_{\mathrm{m}} G$, if H can be obtained from a

[^0]subgraph of G by contracting connected subgraphs. There are many results concerning the structure of graphs that do not contain a certain graph as a minor. These excluded graphs include K_{5} and $K_{3,3}$ [13], V_{8} [8], the 3-cube [6] and the octahedron [7]. See also [2] and [12]. There are well-known structures which guarantee a certain minor exists for large graphs. For instance, any 5 -connected graph on at least 11 vertices contains the 3 -cube as a minor [6]. Any 5-connected non-planar graph on at least 8 vertices contains a V_{8} minor [8]. In addition, there are Ramsey-type results similar to the fact that any sufficiently large connected graph contains either a k path or a k-star. Oporowski, Oxley and Thomas [11] proved that any large 4-connected graph must have a large minor from a set of four families of graphs. Ding [3] has characterized large graphs that do not contain a $K_{2, k}$ minor. A corollary of his result is that any large 5-connected graph contains a $K_{2, k}$ minor.

Our results are a cross section of all of these types of results:
Theorem 1.1 For any positive integers k and w there exists a constant $N=N(k, w)$ such that every 7-connected graph of tree-width less than w and of order at least N contains $K_{3, k}$ as a minor.

Theorem 1.2 There is a function $c: \mathbb{N} \rightarrow \mathbb{N}$ such that for any $a \geq 3$ the following holds. For any positive integers k and w there exists a constant $N=N(k, w)$ such that every $c(a)$-connected graph of tree-width less than w and of order at least N contains $K_{a, k}$ as a minor.

Theorem 1.1 is sharp in the sense that the 7 -connectivity condition cannot be relaxed. Moreover, the function $c(a)$ in Theorem 1.2 must be at least $2 a+1$. These facts follow from the following construction of a family of arbitrarily large $2 a$-connected graphs (of tree-width $3 a-1$) none of which contain a $K_{a, 2 a+1}$-minor.

Let m and a be integers greater than 3. Define the graph $N_{m, a}$ as follows. Let the vertices be indexed $v_{x, y}$ where $1 \leq x \leq m$ and $1 \leq y \leq a$. The vertex $v_{x, y}$ is adjacent to another vertex $v_{w, z}$ if and only if $w \in\{x-1, x, x+1\}$ where $x \pm 1$ is considered modulo m.

Proposition 1.3 For any integers $a \geq 3$ and $m \geq 3, K_{a, 2 a+1} \not \leq_{\mathrm{m}} N_{m, a}$.
Proof. Suppose the theorem is false for some $a \geq 3$. Let m be the least integer such that $N_{m, a} \geq_{\mathrm{m}} K_{a, 2 a+1}$. Let the clasps of $N_{m, a}$ be defined as $C L_{i}=\left\{v_{i, y} \mid y=1,2, \ldots, a\right\}$ for $i=1,2, \ldots, m$.

As $N_{m, a} \geq{ }_{\mathrm{m}} K_{a, 2 a+1}$, there is a set of $2 a+1$ connected subgraphs, $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{2 a+1}\right\}$, and a set of a connected subgraphs of $N_{m, a}, \mathcal{T}=$ $\left\{T_{1}, T_{2}, \ldots, T_{a}\right\}$, such that for every i, j there is an edge from some vertex in T_{i} to some vertex in S_{j} and such that all these subgraphs are pairwise disjoint. Assume that the S_{i} and T_{i} are chosen with $l:=\sum_{i=1}^{2 a+1}\left|V\left(S_{i}\right)\right|+$ $\sum_{i=1}^{a}\left|V\left(T_{i}\right)\right|$. Then each of the subgraphs in $\mathcal{S} \cup \mathcal{T}$ is a path meeting each clasp in at most one vertex. Let \mathcal{S}_{1} be the set of single vertex subgraphs contained in \mathcal{S}. It is easy to see that \mathcal{T} cannot contain any single vertex subgraphs.

Claim 1: For every $1 \leq i \leq m$, there is a subgraph $S_{j} \in \mathcal{S}_{1}$ such that $S_{j} \subseteq C L_{i}$.

Suppose $C L_{i}$ does not contain any of the subgraphs in \mathcal{S}_{1}. Then contracting a matching of isze a between $C L_{i}$ and $C L_{i-1} \cup C L_{i+1}$ (indices taken modulo m) using as many edges of $\mathcal{S} \cup \mathcal{T}$ as possible gives a subgraph of $N_{m-1, a}$ that still contains $K_{a, 2 a+1}$ as a minor. This contradiction to the minimality of m proves the claim.

Claim 2: If there is a subgraph in \mathcal{S} that contains at least two vertices, then there is a clasp that contains no member of \mathcal{S}_{1}.

Suppose S_{1} (say) intersects $C L_{1}$ and $C L_{2}$. By the minimality of l, we may assume that $S_{1} \cap C L_{m}=\emptyset$. Moreover, there is a subgraph T_{j} that does not intersect $C L_{1} \cup C L_{2} \cup C L_{3}$. Otherwise, the intersection of S_{1} with $C L_{1}$ could be removed from S_{1}. Therefore, a single vertex subgraph $S_{i} \in \mathcal{S}_{1}$ contained in $C L_{2}$ would not be adjacent to T_{j}. Hence, the clasp $C L_{2}$ is as stated in the claim.

Claims 1 and 2 imply that all subgraphs in \mathcal{S} are single vertices. To complete the proof, notice that if every clasp of $N_{m, a}$ contains one of the single vertex subgraphs of \mathcal{S}_{1}, then each T_{j} must must contain at least $m-2$ vertices in order to be adjacent to all of the subgraphs in \mathcal{S}. Hence $|V(\mathcal{S})|+|V(\mathcal{T})| \geq|\mathcal{S}|+(m-2)|\mathcal{T}| \geq 2 a+1+(m-2) a>m a=\left|V\left(N_{m, a}\right)\right|$. This contradiction completes the proof.

In our proof of Theorem 1.2, $c(3)=7$ and $c(a)=264 a+1$ for $a \geq 4$, and we have no intention to find the best possible value for $c(a)$. However, the previous example shows that $c(a)$ must be at least $2 a+1$ for $a \geq 3$. It is worth remarking that our proof of Theorem 1.2 works also for $c(a)=3 a-1$ if we assume that the minimum degree is at least $264 a+1$.

2 Bounded tree-width structure

A tree decomposition of a graph G is a pair (T, Y), where T is a tree and Y is a family $\left\{Y_{t} \mid t \in V(T)\right\}$ of vertex sets $Y_{t} \subseteq V(G)$, such that the following two properties hold:
(W1) $\bigcup_{t \in V(T)} Y_{t}=V(G)$, and every edge of G has both ends in some Y_{t}.
(W2) If $t, t^{\prime}, t^{\prime \prime} \in V(T)$ and t^{\prime} lies on the path in T between t and $t^{\prime \prime}$, then $Y_{t} \cap Y_{t^{\prime \prime}} \subseteq Y_{t^{\prime}}$.

The width of a tree decomposition (T, Y) is $\max _{t \in V(T)}\left(\left|Y_{t}\right|-1\right)$. It was shown in [11] that if a graph G has a tree decomposition of width at most w then G has a tree decomposition of width at most w that further satisfies:
(W3) For every two vertices t, t^{\prime} of T and every positive integer k, either there are k disjoint paths in G between Y_{t} and $Y_{t^{\prime}}$, or there is a vertex $t^{\prime \prime}$ of T on the path between t and t^{\prime} such that $\left|Y_{t^{\prime \prime}}\right|<k$.
(W4) If t, t^{\prime} are distinct vertices of T, then $Y_{t} \neq Y_{t^{\prime}}$.
(W5) If $t_{0} \in V(T)$ and B is a component of $T-t_{0}$, then $\bigcup_{t \in V(B)} Y_{t} \backslash Y_{t_{0}} \neq \emptyset$.
In the rest of the paper we give the proof of Theorems 1.1 and 1.2. We let $a \geq 3, k$, and w be given positive integers. Let G be an $c(a)$-connected graph with a tree decomposition (T, Y) of width at most w that satisfies (W1)-(W5).

We will develop a structure that is similar to that used in [11]. First, we define the constants that will be used in the proofs.

$$
\begin{aligned}
& n_{5}=r^{n_{4}}, \quad \text { where } r=(k-1)\binom{w+1}{a} \\
& n_{4}=n_{3}^{w+1} \\
& n_{3}=\left(2 n_{2}\right)^{p}, \quad \text { where } p=2^{w+1} \\
& n_{2}=n_{1}^{q}, \quad \text { where } q=2\binom{(w+1}{2} \\
& n_{1}= \begin{cases}2 k(2 w+3)^{2} & \text { if } a=3 \\
2 k(c(a)+2 a+2)-4 a-2 & \text { if } a \geq 4\end{cases}
\end{aligned}
$$

We assume that $|V(G)|=N \geq(w+1) n_{5}$ and that G has no $K_{a, k}$-minor. By (W1) we have

Claim 2.1 $|V(T)| \geq n_{5}$.
Claim 2.2 Every vertex of T has degree at most $r=(k-1)\binom{w+1}{a}$.
Proof. Suppose $t_{0} \in V(T)$ has degree at least $r+1$. Let \mathcal{C} be the set of components of $G-Y_{t_{0}}$. By (W2) and (W5), it is clear that $|\mathcal{C}| \geq r+1$. For $C \in \mathcal{C}$, let $X(C)$ be the set of vertices of $Y_{t_{0}}$ adjacent to some vertex of C. Clearly, $|X(C)| \geq a$ for every $C \in \mathcal{C}$ since G is $c(a)$-connected and $c(a) \geq a$. By the Pigeonhole Principle, there is a set $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ of k components for which $\bigcap_{C \in \mathcal{C}^{\prime}} X(C)$ contains a (or more) vertices of $Y_{t_{0}}$. By contracting B to a vertex for each $B \in \mathcal{C}^{\prime}$, we see that G contains a $K_{a, k}$ minor, a contradiction.

From this it follows that
Claim 2.3 T contains a path R of length $|E(R)| \geq n_{4}$.
The proof of the following claim can be found in [11].
Claim 2.4 There is a subsequence of length n_{3} of the vertices of $V(R)$, $r_{1}, r_{2}, \ldots, r_{n_{3}}$, such that for some $s \geq 1,\left|Y_{r_{i}}\right|=s$ for $i=1,2, \ldots, n_{3}$ and for every vertex of R between r_{1} and $r_{n_{3}},\left|Y_{r_{i}}\right| \geq s$.

From now on we replace R by the subpath from r_{1} to $r_{n 3}$. Note that because of the $c(a)$-connectivity and (W5), $c(a) \leq s \leq w+1$.

By (W3) and Claim 2.4, there are s disjoint paths in G from $Y_{r_{1}}$ to $Y_{r_{n_{3}}}$. Fix these paths, denote them by $P_{1}, P_{2}, \ldots, P_{s}$, and put $Z=P_{1} \cup \cdots \cup P_{s}$. Since G is 3 -connected, these paths can be chosen such that every Z-bridge in G is attached to at least two of the paths (cf., e.g., [4]), which we assume henceforth.

Notice that for any $t, t^{\prime} \in\left\{r_{1}, \ldots, r_{n_{3}}\right\}$ and for every $j \in\{1, \ldots, s\}$ there is a unique subpath of P_{j} with one end in Y_{t} and the other end in $Y_{t^{\prime}}$. Denote this subpath by $P_{j}\left(t, t^{\prime}\right)$.

The path P_{j} is said to be trivial if it consists of a single vertex, and it is said to be everywhere nontrivial (almost nontrivial) w.r.t. the sequence $r_{1}, \ldots, r_{n_{3}}$ if $P_{j}\left(r_{i}, r_{i+1}\right)$ contains at least three (respectively, at least two) vertices for each $i=1, \ldots, n_{3}-1$.

Claim 2.5 There is a subsequence $q_{1}, q_{2}, \ldots, q_{n_{2}}$ of $r_{1}, \ldots, r_{n_{3}}$ of length n_{2} such that for each $j=1, \ldots, s, P_{j}\left(q_{1}, q_{n_{2}}\right)$ is either trivial or everywhere nontrivial (w.r.t. the subsequence).

Proof. Clearly, there is a subsequence of $r_{1}, \ldots, r_{n_{3}}$ of length $\sqrt{n_{3}}$ such that the corresponding segment of P_{1} is either trivial or everywhere almost nontrivial with respect to the subsequence. By repeating this argument on the subsequence for P_{2}, \ldots, P_{s}, respectively, we end up with a sequence of length at least $2 n_{2}$ such that every path is either trivial or everywhere almost nontrivial. By taking every second element of this sequence, the required subsequence $q_{1}, q_{2}, \ldots, q_{n_{2}}$ is obtained.

The paths P_{j} and P_{l} are said to be everywhere bridge connected (resp. everywhere bridge disconnected) with respect to a sequence p_{1}, \ldots, p_{n} of vertices of R if for every $i=1, \ldots, n-1$, there exists (resp. does not exist) a Z-bridge which has a vertex of attachment in $P_{j}\left(p_{i}, p_{i+1}\right)$ and a vertex of attachment in $P_{l}\left(p_{i}, p_{i+1}\right)$.

Claim 2.6 There is a subsequence $p_{1}, p_{2}, \ldots, p_{n_{1}}$ of $q_{1}, \ldots, q_{n_{2}}$ of length n_{1} such that for every distinct pair of indices $j, l \in\{1, \ldots, s\}, P_{j}\left(p_{1}, p_{n_{1}}\right)$ and $P_{l}\left(p_{1}, p_{n_{1}}\right)$ are either everywhere bridge connected or everywhere bridge disconnected (w.r.t. the new subsequence).

Proof. The proof is similar to the proof of Claim 2.5 except that we have to repeat the subsequence argument $\binom{s}{2} \leq\binom{ w+1}{2}$ times.

3 The auxiliary graph A

Our next goal is to examine the structure of the auxiliary graph A which contains information about which pairs of the paths are everywhere bridge connected. The graph A has vertex set $V(A)=\left\{P_{1}, \ldots, P_{s}\right\}$, and the paths P_{j} and P_{l} are adjacent vertices in A if they are everywhere bridge connected w.r.t. $p_{1}, \ldots, p_{n_{1}}$ (cf. Claim 2.6).

Claim 3.1 Suppose that $U \subseteq V(A)$ contains only everywhere nontrivial paths. If the subgraph of A induced by U is connected, then $V(A) \backslash U$ contains at most $a-1$ vertices that are adjacent to U in A.

Proof. Suppose that P_{1}, \ldots, P_{a} are vertices in $V(A) \backslash U$ adjacent to U in A. Contract each path $P_{j}(j=1, \ldots, a)$ in G to a single vertex w_{j}. Next, for $i=1,3,5, \ldots, 2 k-1$, contract all segments $P_{j}\left(p_{i}, p_{i+1}\right)$, where $P_{j} \in U$, and also contract all edges in bridges connecting these segments in G, to get k vertices $z_{1}, z_{3}, \ldots, z_{2 k-1}$ in a minor of G. Clearly, $n_{1} \geq 2 k$, so
$z_{1}, z_{3}, \ldots, z_{2 k-1}$ exist. Since U is adjacent to P_{1}, \ldots, P_{a} in A, it is easy to see that vertices w_{1}, \ldots, w_{a} and $z_{1}, z_{3}, \ldots, z_{2 k-1}$ give rise to a $K_{a, k}$ minor of G.

We shall apply Claim 3.1 together with the help of the following lemma.
Lemma 3.2 Let H be a connected graph. If H has at least $2 a^{2}$ vertices of degree ≥ 3, then H contains a tree T with $\geq a$ vertices of degree 1 .

Proof. Let d be the maximum vertex degree in H, and let v_{0} be a vertex of degree d. If $d \geq a$, then T is the star centered at v_{0}. So, suppose that $d<a$. Then it is sufficient to prove the following. Assuming that H has at least $2 a^{2}-(d-1)^{2}$ vertices of degree ≥ 3, we shall prove by induction on $a-d$ that the tree T exists. Let N_{1} be the set of all vertices of degree ≥ 3 which can be reached from v_{0} on paths whose internal vertices all have degree 2 . Then $1 \leq\left|N_{1}\right| \leq d$. Let N_{2} be the "second neighborhood" of v_{0}, consisting of vertices of degree ≥ 3 which are not in $N_{1} \cup\left\{v_{0}\right\}$ and which can be reached from v_{0} on paths for which exactly one internal vertex has degree ≥ 3. Similarly, let N_{3} be the "third neighborhood" of v_{0}. Then $1 \leq\left|N_{2}\right| \leq d(d-1)$ and $\left|N_{3}\right| \geq 1$ since H is connected and $2 a^{2}-(d-1)^{2}>$ $1+d+d(d-1) \geq 1+\left|N_{1}\right|+\left|N_{2}\right|$. Let $v_{3} \in N_{3}$, and let W be a path from v_{0} to v_{3} which contains precisely two other vertices of degree ≥ 3. Now, contract W to a vertex \tilde{v}_{0} and remove possible parallel edges. Denote the resulting graph by \tilde{H}. If a vertex of \tilde{H} has degree smaller than in H, then it was adjacent to two (or three) vertices of W. This implies that \tilde{H} has at least $2 a^{2}-(d-1)^{2}-(2 d-1)=2 a^{2}-((d+1)-1)^{2}$ vertices of degree ≥ 3. Since v_{0} and v_{3} have no common neighbors, \tilde{v}_{0} is its vertex of maximum degree $\geq d+1$. By the induction hypothesis, \tilde{H} contains a tree \tilde{T} with at least a vertices of degree 1. Clearly, \tilde{T} gives rise to the required tree T in H.

At least one of the paths is everywhere nontrivial, say P_{1}. Let A_{1} be the induced subgraph of A on the everywhere nontrivial paths. Let A_{0} be the induced subgraph of A consisting of the connected component of A_{1} containing P_{1} together with (at most $a-1$) trivial paths adjacent to that component.

From now on we shall assume that G is $c(a)$-connected, where $c(3)=7$ and $c(a)=264 a+1$ for $a \geq 4$.

Claim 3.3 $A_{0} \cap A_{1}$ has at least $\left\lceil\frac{c(a)-a+1}{2}\right\rceil$ vertices. If $a=3, A_{0}$ is isomorphic to a path or a cycle on at least four vertices. If $a \geq 4$, then every
vertex of $A_{0} \cap A_{1}$ has degree at most $a-1$ and at most $2 a^{2}$ of these vertices have degree more than 2 in $A_{0} \cap A_{1}$.

Proof. Let $U=V\left(A_{0} \cap A_{1}\right), x=|U|$, and $y=\left|V\left(A_{0}\right)\right|-x$. By Claim 3.1 we see that $y \leq a-1$. Since the $2 x+y$ endvertices of the paths in A_{0} in $Y_{p_{1}}$ and $Y_{p_{3}}$ separate the graph G, we have $2 x+y \geq c(a)$. This implies that $x \geq(c(a)-a+1) / 2$, and proves the first part of the claim.

By Claim 3.1, every vertex in $A_{0} \cap A_{1}$ has degree at most $a-1$ in A. If $a=3$, this implies that $A_{0} \cap A_{1}$ is a path or a cycle, and the trivial paths in $V\left(A_{0}\right)$ can be adjacent only to vertices of degree ≤ 1 in $A_{0} \cap A_{1}$. This implies that A_{0} is a path or a cycle. If $\left|V\left(A_{0}\right)\right| \leq 3$, then the endpoints of the paths in $V\left(A_{0}\right)$ would give a ≤ 6-separator in G.

Suppose now that $a \geq 4$. By Claim 3.1 every vertex of $A_{0} \cap A_{1}$ has degree at most $a-1$. Suppose that there are more than $2 a^{2}$ vertices of degree ≥ 3. By Lemma 3.2, $A_{0} \cap A_{1}$ contains a tree T with $\geq a$ vertices of degree 1 . Let U be the set of vertices of degree ≥ 2 in T. The subgraph of A induced by U is connected, and Claim 3.1 yields a contradiction. This completes the proof.

Denote by $Z^{\prime}(i)$ the union of $P_{j}\left(p_{i}, p_{i+1}\right)$ where $P_{j} \in V\left(A_{0}\right), i=1,2, \ldots$, $n_{1}-1$. Let Z_{i} be the subgraph of G obtained by taking the union of $Z^{\prime}(i)$ and all those Z-bridges B that have all vertices of attachment in $Z^{\prime}(i)$ such that there is no $i^{\prime}<i$ for which B would have all its vertices of attachment in $Z^{\prime}\left(i^{\prime}\right)$.

4 Finding $K_{3, k}$ minors

In this section we consider the case when $a=3$ since the best possible connectivity 7 requires more elaborate techniques than the general case treated in the next section. For $i=1,2, \ldots, n_{1}-2 w-2$, let $H_{i}=\bigcup_{k=0}^{2 w} Z_{i+k}$. Let $R, R^{\prime} \in V\left(A_{0}\right)$ be paths which are adjacent in A_{0}. For $i=1,2, \ldots, n_{1}-2 w-2$ define the graph $D_{i}=D_{i}\left(R, R^{\prime}\right)$ as follows. First, take $S=\left(R \cup R^{\prime}\right) \cap H_{i}$ together with all Z-bridges in H_{i} that have vertices of attachment on R and on R^{\prime}. Finally, add two edges e_{1}, e_{2}, where e_{1} joins the "left" endvertices, λ in $R \cap H_{i}$ and λ^{\prime} in $R^{\prime} \cap H_{i}$, and e_{2} joins the "right" endvertices, ρ and ρ^{\prime}, of these two paths. Then $S+e_{1}+e_{2}=: C$ is a cycle in D_{i}. If $R\left(R^{\prime}\right)$ is everywhere trivial, then $\lambda=\rho\left(\lambda^{\prime}=\rho^{\prime}\right)$.

Claim 4.1 Suppose that $a=3$. Then for every i, there are adjacent vertices R, R^{\prime} of A_{0} such that $D_{i}\left(R, R^{\prime}\right)$ has no embedding in the plane where the vertices $\lambda, \lambda^{\prime}, \rho^{\prime}, \rho$ would lie on the outer face in the prescribed order.

Proof. Suppose that H_{i} is a planar graph. Let v_{j} be the number of vertices of degree j in H_{i}. By Euler's formula and standard counting arguments it follows that

$$
\begin{equation*}
L:=\sum_{j \geq 0}(6-j) v_{j} \geq 12 . \tag{1}
\end{equation*}
$$

Observe that H_{i} has at most $2 s$ vertices of degree ≤ 6 since the minimum degree in G is at least 7 (by the 7 -connectivity of G). On the other hand, since at least three of the paths in H_{i} are nontrivial, these paths contain at least $3(2(2 w+1)-1)=12 w+3$ vertices of degree ≥ 7 in H_{i}. Therefore,

$$
L \leq 6 \cdot 2 s-(12 w+3) \leq 12(w+1)-12 w-3=9
$$

This contradiction to (1) shows that H_{i} is not planar. Recall that A_{0} is a path or a cycle on at least 4 vertices, $R_{1}, \ldots, R_{d}, d \geq 4$. This implies, in particular, that no Z-bridge in H_{i} is attached to more than two of the paths (otherwise, there would be a 3 -cycle in A_{0}, and so A_{0} would be equal to the 3 -cycle). Moreover, if every $D_{i}\left(R_{j}, R_{j+1}\right)(j=1, \ldots, d$, indices taken modulo d) has an embedding in the plane with the corresponding cycle C_{j} being the outer cycle, then $\bigcup_{j=1}^{d} D_{i}\left(R_{j}, R_{j+1}\right) \supseteq H_{i}$ would be planar as well, contrary to the above. Hence, there is an index j such that $D_{i}\left(R_{j}, R_{j+1}\right)$ has no such embedding. Since there are no local Z-bridges, $D_{i}\left(R_{j}, R_{j+1}\right)$ neither has an embedding in the plane where the vertices $\lambda, \lambda^{\prime}, \rho^{\prime}, \rho$ are on the outer face in the prescribed order.

We shall need a result about crossing paths from from [9]. A separation of a graph G is a pair (A, B) of subraphs with $A \cup B=G$ and $E(A \cap B)=\emptyset$, and its order is $|V(A \cap B)|$. By a society we mean a pair (G, Ω), where G is a graph and Ω a cyclic permutation of a subset $\bar{\Omega}$ of $V(G)$. A cross in (G, Ω) is a pair of disjoint paths in G with ends s_{1}, t_{1} and s_{2}, t_{2}, respectively, all in $\bar{\Omega}$, such that $s_{1}, s_{2}, t_{1}, t_{2}$ occur in Ω in that order (but not necessarily consecutive). The following formulation of a theorem of Robertson and Seymour [9] appears in [10].

Theorem 4.2 (Robertson and Seymour) Let (G, Ω) be a society such that there is no separation (A, B) of G of order ≤ 3 with $\bar{\Omega} \subseteq V(A) \neq V(G)$. Then the following are equivalent:
(a) There is no cross in (G, Ω).
(b) G can be drawn in a disc with the vertices in $\bar{\Omega}$ drawn on the boundary of the disc in order given by Ω.

Claim 4.3 If $D_{i}\left(R, R^{\prime}\right)$ is nonplanar, then one of the following holds:
(a) $D_{i}\left(R, R^{\prime}\right)$ contains disjoint paths Q_{1}, Q_{2} connecting λ with ρ^{\prime} and λ^{\prime} with ρ, respectively.
(b) $D_{i}\left(R, R^{\prime}\right)$ contains a path Q (resp., $\left.Q^{\prime}\right)$ disjoint from R^{\prime} (resp., R) which connects λ and ρ (resp., λ^{\prime} and ρ^{\prime}) such that after replacing R (resp., R^{\prime}) by Q (resp., Q^{\prime}), there is a Z-bridge in H_{i} which is attached to more than two of the paths P_{1}, \ldots, P_{s}.

Proof. Let $H=D_{i}\left(R, R^{\prime}\right)$. Let C be the cycle of H defined before Claim 4.1. Let $\bar{\Omega}$ be the set of vertices of C which are incident with an edge in $E(G) \backslash E(H)$. The cyclic order of $\bar{\Omega}$ on C defines the society (H, Ω). Since G is 4-connected and no vertex in $V(H) \backslash \bar{\Omega}$ is incident with an edge in $E(G) \backslash E(H)$, there is no separation (A, B) of H of order ≤ 3 with $\bar{\Omega} \subseteq V(A) \neq V(G)$. Since H is nonplanar, Theorem 4.2 implies that there is a cross R_{1}, R_{2} in (H, Ω). Let α_{i}, β_{i} be the endvertices of $R_{i}(i=1,2)$. We may assume that:
(i) None of the vertices $\lambda, \lambda^{\prime}, \rho, \rho^{\prime}$ is an internal vertex of R_{1} or R_{2}.

Subject to (i) choose the cross R_{1}, R_{2} such that
(ii) $\left\{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right\}$ contains as many vertices in $\left\{\lambda, \lambda^{\prime}, \rho, \rho^{\prime}\right\}$ as possible and, subject to (i) and (ii)
(iii) as few edges in $E(H) \backslash E\left(R \cup R^{\prime}\right)$ as possible.

If $\lambda, \lambda^{\prime}, \rho, \rho^{\prime}$ are all endvertices of R_{1}, R_{2}, then we have (a). Hence we may assume that λ is not an endvertex of R_{1}, R_{2}. If $R \cap\left(R_{1} \cup R_{2}\right) \neq \emptyset$, let v be the first vertex of $R_{1} \cup R_{2}$ on R (starting at λ towards ρ). We may assume that $v \in V\left(R_{1}\right)$. Let $R_{1}=R_{1}^{\prime} \cup R_{1}^{\prime \prime}$ where $V\left(R_{1}^{\prime}\right) \cap V\left(R_{1}^{\prime \prime}\right)=\{v\}$. By replacing one of the segments R_{1}^{\prime} or $R_{1}^{\prime \prime}$ in R_{1} by a segment from v to λ on R, a new cross is obtained which contradicts (ii) or (iii), except when R_{1}^{\prime} or $R_{1}^{\prime \prime}$ is the segment of R from v to ρ. In particular, three of the endvertices of R_{1}, R_{2} are on R^{\prime}. The above proof implies that λ^{\prime} and ρ^{\prime} are the endvertices of the paths. Since R_{1}, R_{2} cross, R_{1} joins a vertex $x \in V\left(R^{\prime}\right) \backslash\left\{\lambda^{\prime}, \rho^{\prime}\right\}$ with ρ, and R_{2} joins λ^{\prime} and ρ^{\prime}, where R_{2} is disjoint from R. It is easy to see, that this gives (b).

Suppose now that $R \cap\left(R_{1} \cup R_{2}\right)=\emptyset$. Condition (ii) implies that λ^{\prime} and ρ^{\prime} are the endvertices of R_{1} and R_{2}, respectively. There is a C-bridge B in H such that $E\left(R_{1} \cup R_{2}\right) \cap E(B) \neq \emptyset$. Since B is not a local bridge, it is attached to R as well. Therefore, there is a path L in B from R to $R_{1} \cup R_{2}$
(say to R_{2}) which is internally disjoint from $C \cup R_{1} \cup R_{2}$. Let y be the vertex of R_{1} which is as close as possible to ρ^{\prime} on R^{\prime}. Let R_{2}^{\prime} be the segment of R_{2} from $R_{2} \cap L$ to the end of R_{2} distinct from ρ^{\prime}. By (iii), R_{2}^{\prime} is disjoint from the segment $Q^{\prime \prime}$ of R^{\prime} from y to ρ^{\prime}. Therefore, the path Q^{\prime} composed of the segment of R_{1} from λ^{\prime} to y and $Q^{\prime \prime}$ can be taken as the path Q^{\prime} in (b). Note that, after replacing R^{\prime} by Q^{\prime}, the Z-bridge containing $L \cup R_{2}^{\prime}$ will be attached to at least three paths in $\left\{P_{1}, \ldots, P_{s}\right\}$.

We are ready to complete the proof of Theorem 1.1. Suppose that $a=3$ and that A_{0} is a path or a cycle on consecutive vertices R_{1}, \ldots, R_{d}, where $4 \leq d \leq w+1$. Let $D_{i}^{j}=D_{i}\left(R_{j}, R_{j+1}\right), j=1, \ldots, d$. We shall only consider the indices i of the form $i=1+t(2 w+2), t=0,1, \ldots$, and we call them admissible indices.

Let us first assume that the case (b) of Claim 4.3 occurs less than $2 k d$ times at admissible indices i. Since there are at least $4 k d$ admissible indices, Claim 4.3(a) implies that there is an index $j \in\{1, \ldots, d\}$, and there are admissible indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n_{1}-2 w-2$ such that
(i) each of $D_{i_{1}}^{j}, D_{i_{2}}^{j}, \ldots, D_{i_{k}}^{j}$ contains paths as stated in Claim 4.3(a), and
(ii) for $l=1, \ldots, k-1, i_{l+1}-i_{l} \geq 2 w+2$.

We can exchange the segments of the paths R_{j} and R_{j+1} in $H_{i_{l}}$ by the two paths Q_{1}, Q_{2} of Claim 4.3(a). In this way the new paths in $H_{i_{l}} \cup Z_{i_{l}+2 w+2}$ would no longer satisfy the condition of Claim 3.1. Namely, if R_{j} and R_{j+1} have degrees d_{1}, d_{2} in A_{0}, then they would be everywhere bridge connected (w.r.t. the sequence $p_{i_{1}-1}, p_{i_{2}-1}, \ldots, p_{i_{k}-1}$) with $d_{1}+d_{2}-1$ other paths. If $d_{1}=d_{2}=2$, this gives a $K_{3, k}$ minor in the same way as in the proof of Claim 3.1 (since one of R_{j} or R_{j+1} is everywhere nontrivial). If $d_{1}=1$ (say), then the path R_{j+2} has degree 2 in A_{0} by Claim 3.3 and (in addition to R_{j+3}) it becomes everywhere bridge connected to the two new paths (w.r.t. the sequence $\left.p_{i_{1}-1}, p_{i_{2}-1}, \ldots, p_{i_{k}-1}\right)$. It is easy to see from the definition of A_{0} that R_{j+2} cannot be trivial, so the proof of Claim 3.1 applies again.

Let us now assume that the case (b) of Claim 4.3 occurs $2 k d$ or more times (for admissible indices i). Then there is an index $j \in\{1, \ldots, d\}$, and there are admissible indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n_{1}-2 w-2$ such that
(i) each of $D_{i_{1}}^{j}, D_{i_{2}}^{j}, \ldots, D_{i_{k}}^{j}$ contains a path Q (or each of $D_{i_{1}}^{j}, D_{i_{2}}^{j}, \ldots, D_{i_{k}}^{j}$ contains a path Q^{\prime}) as stated in Claim 4.3(b), and
(ii) for $l=1, \ldots, k-1, i_{l+1}-i_{l} \geq 2 w+2$.

For any $D_{i_{l}}^{j}$ we replace the segment of R_{j} (resp., R_{j+1}) by the corresponding path Q (resp., Q^{\prime}) such that there is a Z-bridge (where Z is defined as the union of the new paths) attached to R_{j}, R_{j+1}, and R_{j+2} (or R_{j-1}). We may assume that k of these bridges, B_{1}, \ldots, B_{k} are attached to R_{j}, R_{j+1}, and R_{j+2}. Now, there is a $K_{3, k}$-minor obtained by contracting R_{j}, R_{j+1}, R_{j+2} into single vertices and adding paths in B_{1}, \ldots, B_{k} to these vertices. This completes the proof of Theorem 1.1.

5 Finding $K_{a, k}$ minors for $a \geq 4$

Suppose now that $a \geq 4$ and $c(a)=264 a+1$. Let $r=2 c(a)+2$. For $i=1,2, \ldots, n_{1}-r$, let $H_{i}=\bigcup_{j=0}^{r-1} Z_{i+j}$. We also write $S_{i}=Y_{p_{i}}$.

Claim 5.1 For every $1 \leq i \leq n_{1}-r$, the average degree of vertices in H_{i} is at least $c(a)-\frac{1}{2}$.

Proof. Every vertex of G has degree at least $c(a)$. Let $s_{0}=\left|V\left(A_{0} \cap A_{1}\right)\right|$ be the number of everywhere nontrivial paths in $V\left(A_{0}\right)$. Then

$$
\begin{equation*}
\left|V\left(H_{i}\right)\right| \geq s_{0}(2 r+1)>4 s_{0} c(a) . \tag{2}
\end{equation*}
$$

Each trivial path in $V\left(A_{0}\right)$ is everywhere bridge connected to some nontrivial path. Hence, the degree of the corresponding vertex in H_{i} is at least $r / 2 \geq$ $c(a)$. Only the ends of nontrivial paths can have degree less than $c(a)$ in H_{i}. This fact and inequality (2) imply that

$$
2\left|E\left(H_{i}\right)\right| \geq c(a)\left(\left|V\left(H_{i}\right)\right|-2 s_{0}\right) \geq\left(c(a)-\frac{1}{2}\right)\left|V\left(H_{i}\right)\right| .
$$

This completes the proof.
A graph L is said to be q-linked if it has at least $2 q$ vertices and for any ordered q-tuples $\left(s_{1}, \ldots, s_{q}\right)$ and $\left(t_{1}, \ldots, t_{q}\right)$ of $2 q$ distinct vertices of L, there exist pairwise disjoint paths P_{1}, \ldots, P_{q} such that for $i=1, \ldots, q$, the path P_{i} connects s_{i} and t_{i}. Such collection of paths is called a linkage of $\left(s_{1}, \ldots, s_{q}\right)$ and $\left(t_{1}, \ldots, t_{q}\right)$.

Claim 5.2 For every $1 \leq i \leq n_{1}-r$, there exists a subgraph L_{i} of H_{i} which is 3a-linked.

Proof. Mader [5] proved that every graph of average degree at least $4 c$ contains a c-connected subgraph. Therefore, since H_{i} has average degree at least $c(a)-1 \geq 264 a, H_{i}$ contains a $66 a$-connected subgraph L_{i}. Bollobás and Thomason [1] have shown that every $22 t$-connected graph is t-linked. Hence, the graph L_{i} is $3 a$-linked.

We will now construct a disjoint paths $\mathcal{P}_{1}^{\circ}, \ldots, \mathcal{P}_{a}^{\circ}$ by routing the paths P_{1}, \ldots, P_{s} through L_{i} in at least k pairwise disjoint subgraphs H_{i}. In each graph L_{i}, there will also be an extra vertex linked to each of the a paths. Contracting these paths will then give a $K_{a, k}$-minor in G.

Claim 5.3 In H_{i}, there exist $2 a$ pairwise disjoint paths, $Q_{1}^{(i)}, \ldots, Q_{a}^{(i)}$ and $Q_{1}^{\prime(i)}, \ldots, Q_{a}^{\prime(i)}$ such that the following hold:
(a) For $l=1,2, \ldots, a$, the path $Q_{l}^{(i)}$ starts in L_{i} and ends in S_{i+r}.
(b) For $l=1,2, \ldots, a$, the path ${Q_{l}^{\prime}}^{(i)}$ starts in S_{i} and ends in L_{i}.
(c) Every path $Q_{l}^{(i)}$ and $Q_{l}^{\prime(i)}(l=1,2, \ldots, a)$ has only its endvertices in $S_{i} \cup S_{i+r} \cup V\left(L_{i}\right)$.

Proof. Let $\Pi_{0}=V\left(A_{0}\right) \backslash V\left(A_{1}\right)$ be the set of vertices of H_{i} corresponding to the trivial paths in A_{0}. Let $\mathcal{W}=\left\{W_{1}, \ldots, W_{2 a}\right\}$ be a set of $2 a$ pairwise disjoint paths joining $V\left(L_{i}\right)$ with $S_{i} \cup S_{i+r}$ such that:
(1) $W_{l} \subseteq H_{i}-\Pi_{0}$ for every $l=1,2, \ldots, 2 a$.
(2) The number of edges in $\bigcup_{l=1}^{2 a} E\left(W_{l}\right) \backslash \bigcup_{j=0}^{r-1} E\left(Z^{\prime}(i+j)\right)$ is minimum.
(3) Subject to (2), if n_{L} is the number of paths W_{l} ending in S_{i}, and n_{R} is the number of paths W_{l} ending in $S_{i+r},\left|n_{L}-n_{R}\right|$ is minimum.

Disjoint paths satisfying (1) exist by large connectivity: Since $c(a) \geq$ $3 a-1$, and $\left|V\left(L_{i}\right)\right|>3 a$, and $\left|S_{i} \cup S_{i+r}\right| \geq 3 a-1$, there exist $3 a-1$ disjoint paths from $V\left(L_{i}\right)$ to $S_{i} \cup S_{i+r+1}$ by Menger's theorem. Since there are at most $a-1$ vertices in Π_{0}, the removal of those paths which intersect Π_{0} leaves at least $2 a$ paths satisfying condition (1).

If at least two paths of \mathcal{W} intersect a path P_{j}, then let W and W^{\prime} be the paths that intersect P_{j} as close as possible (on P_{j}) to S_{i} and S_{i+r}, respectively. If $W=W^{\prime}$, suppose that the intersection u of W with P_{j} nearest S_{i} (say) comes before the intersection nearest S_{i+r}. By (2), W ends at S_{i}, i.e., its segment from u to its end coincides with the segment $P_{j}\left(u, S_{i}\right)$
of P_{j}. This shows that $W \neq W^{\prime}$. Then the path W (resp. W^{\prime}) must end at S_{i} (resp. S_{i+r}) by (2).

Suppose that precisely one path, say $W \in \mathcal{W}$, intersects a path P_{j}. In this case we can elect to have W ending at $P_{j} \cap S_{i}$ or at $P_{j} \cap S_{i+r}$ by following the path P_{j}. This implies that the value $\left|n_{L}-n_{R}\right|$ in (3) can be made to be zero. Then $n_{L}=n_{R}=a$.

Now let the a paths in \mathcal{W} that end in S_{i} be called $Q_{1}^{\prime(i)}, Q_{2}^{\prime(i)}, \ldots, Q_{a}^{\prime(i)}$ and the a paths in \mathcal{W} that end in S_{i+r} be called $Q_{1}^{(i)}, Q_{2}^{(i)}, \ldots, Q_{a}^{(i)}$. It is easy to see that (c) may be requested. This completes the proof.

Let T be a spanning tree of $A_{0} \cap A_{1}$. By Claim 3.3, $|V(T)| \geq a$. This implies the following claim.

Claim 5.4 There are vertices $t_{1}, t_{2}, \ldots, t_{a}$ of T such that for $l=1,2, \ldots, a$, the vertex t_{l} is a leaf of the subtree $T \backslash\left\{t_{1}, \ldots, t_{l-1}\right\}$.

For each $i=1,2, \ldots, n_{1}-r$ and each $l=1,2, \ldots, a$, let $J_{l}^{(i)} \in\left\{P_{1}, \ldots, P_{s}\right\}$ be the vertex of T such that $Q_{l}^{(i)}$ ends up on the corresponding path in G. Choose an enumeration of $Q_{1}^{(i)}, Q_{2}^{(i)}, \ldots, Q_{a}^{(i)}$ such that, for $l=1,2, \ldots, a$, the distance from $J_{l}^{(i)}$ to t_{l} in T is minimum (where smaller values of l have preference over the larger values).

Choose a similar enumeration of $Q_{1}^{\prime(i)}, \ldots, Q_{a}^{\prime(i)}$.
Define $\alpha=r+4 a+2$ and for $t=1, \ldots, k$ set $i_{t}=1+(t-1) \alpha$. Observe that $i_{k}=n_{1}-r$.

To construct the path \mathcal{P}_{l}°, we first link $Q_{l}^{\left(i_{t}\right)}$ to ${Q_{l}^{\prime}}^{\left(i_{t+1}\right)}$ for every $t=$ $1, \ldots, k-1$. Then each ${Q_{l}^{\prime}}^{\left(i_{t}\right)}$ is linked to $Q_{l}^{\left(i_{t}\right)}$ inside $L_{i_{t}}(t=1, \ldots, k)$. We do this as described below.

Let $i^{\prime}=i+\alpha$. Link $Q_{l}^{(i)}$ with $Q_{l}^{\left(i^{\prime}\right)}$ as follows: Follow the path $J_{l}^{(i)}$ from $J_{l}^{(i)} \cap S_{i+r}$ through $2 l$ segments to the separator $S_{i+r+2 l}$. Continue the path within $Z_{i+r+2 l}$ to the path t_{l}. This can be done by following the bridges between paths corresponding to the path in the spanning tree T from $J_{l}^{(i)}$ to t_{l}.

Construct a similar path from $Q_{l}^{\prime\left(i^{\prime}\right)}$ to t_{l} using bridges in $Z_{i^{\prime}-2 l}$. Then connect these paths along t_{l}, and denote by P_{l}^{i} the resulting path joining $Q_{l}^{(i)}$ with $Q_{l}^{\prime\left(i^{\prime}\right)}$.

Claim 5.5 The constructed paths $P_{l}^{i}(l=1, \ldots, a)$ are pairwise disjoint.
Proof. Consider two of the paths, say P_{l}^{i} and P_{m}^{i}, where $l<m$. There are four possibilities where these two paths may intersect:
(1) P_{l}^{i} intersects $J_{m}^{(i)}$ inside $Z_{i+r+2 l}$: This is not possible since $J_{m}^{(i)}$ would then be closer to t_{l} in T, and the path $Q_{m}^{(i)}$ would be indexed before $Q_{l}^{(i)}$.
(2) P_{m}^{i} intersects t_{l} inside $Z_{i+r+2 m}$: This is not possible since t_{l} is a leaf in $T \backslash\left\{t_{1}, \ldots, t_{l-1}\right\}$.

The remaining cases, when P_{l}^{i} intersects P_{m}^{i} inside $Z_{i^{\prime}-2 l}$ or inside $Z_{i^{\prime}-2 m}$ (respectively) are handled similarly. This completes the proof.
 Choose u_{l}^{\prime} to be a neighbor of u_{l} in $L_{i} \backslash\left\{v_{1}, \ldots, v_{a}, u_{1}, \ldots, u_{a}\right\}$. Since L_{i} is $3 a$-linked, the minimum degree of L_{i} is at least $3 a$, so such neighbors exist. The vertices u_{l}^{\prime} may even be chosen so that they are pairwise distinct. Let $v_{1}^{\prime}=u_{1}^{\prime}$, and let $v_{2}^{\prime}, \ldots, v_{a}^{\prime}$ be distinct neighbors of v_{1}^{\prime} in L_{i}. We may assume that if $v_{\alpha}^{\prime}=u_{\beta}^{\prime}$, then $\alpha=\beta$.

Since L_{i} is $2 a$-linked, there is a linkage from $\left(v_{1}, \ldots, v_{a}, v_{1}^{\prime}, \ldots, v_{a}^{\prime}\right)$ to $\left(u_{1}, \ldots, u_{a}, u_{1}^{\prime}, \ldots, u_{a}^{\prime}\right)$. The resulting paths joining v_{l} and $u_{l}(l=1, \ldots, a)$ are used to link ${Q_{l}^{\prime(i)}}^{(i)}$ and $Q_{l}^{(i)}$ inside L_{i}, for $i \in\left\{i_{1}, \ldots, i_{k}\right\}$. Together with the paths $P_{l}^{i}, i \in\left\{i_{1}, \ldots, i_{k-1}\right\}$, this determines the path \mathcal{P}_{l}°. On the other hand, the paths in the linkage from $\left(v_{1}^{\prime}, \ldots, v_{a}^{\prime}\right)$ to $\left(u_{1}^{\prime}, \ldots, u_{a}^{\prime}\right)$ are disjoint from $\mathcal{P}_{1}^{\circ}, \ldots, \mathcal{P}_{a}^{\circ}$ and can be used to link v_{1}^{\prime} to each of these paths.

Now, it can be shown that G contains a $K_{a, k}$ minor: For each $l=1, \ldots, a$, contract the path \mathcal{P}_{l}° to a single vertex. For $i \in\left\{i_{1}, \ldots, i_{k}\right\}$, the vertex $v_{1}^{\prime} \in$ $V\left(L_{i}\right)$ is joined to $u_{1}^{\prime}, \ldots, u_{a}^{\prime}$ and hence to each of the a paths $\mathcal{P}_{1}^{\circ}, \ldots, \mathcal{P}_{a}^{\circ}$. Since this is repeated k times, we get a $K_{a, k}$ minor in G.

The proof of Theorem 1.2 is complete.

6 Conclusion

Our more recent results show that the condition on bounded tree-width in Theorem 1.1 can be removed. The authors plan a second paper in which the large tree-width case is handled. This will prove the following, which was conjectured independently by Ding [3] and the authors:

There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that any 7-connected graph on at least $f(k)$ vertices contains a $K_{3, k}$ minor.

It seems reasonable to the authors that this result can be extended to $K_{4, k}$-minors and possibly even to $K_{a, k}$-minors. The logical conjectures would be the following:

Conjecture 6.1 There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that any 9-connected graph on at least $f(k)$ vertices contains a $K_{4, k}$ minor.

Conjecture 6.2 There are functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $c: \mathbb{N} \rightarrow \mathbb{N}$ such that any $c(a)$-connected graph on at least $f(k)$ vertices contains a $K_{a, k}$ minor.

Our final remark is that the sequence of graphs $K_{a, k}$, where a is fixed and k tends to infinity, is essentially the only family of graphs for which a result like our Theorem 1.2 holds. More precisely:

Theorem 6.3 Let c and $w \geq c$ be positive integers, and let $H_{k}(k \geq 1)$ be a sequence of graphs such that $\lim _{k \rightarrow \infty}\left|V\left(H_{k}\right)\right|=\infty$. Suppose that for any positive integer k there exists an integer $N(k)$ such that every c-connected graph of tree-width $\leq w$ and of order at least $N(k)$ contains H_{k} as a minor. Then $H_{k} \leq_{\mathrm{m}} K_{c, N(k)}$ for $k \geq 1$.

Proof. Clearly, the graph $K_{c, N(k)}$ is c-connected and has tree-width $c \leq w$. By the assumption on the family $H_{k}, K_{c, N(k)}$ contains H_{k} as a minor.

References

[1] B. Bollobás, A. Thomason, Highly linked graphs, Combinatorica 16 (1996) 313-320.
[2] R. Diestel, Graph Decompositions - A Study in Infinite Graph Theory, Oxford University Press, Oxford, 1990.
[3] Guoli Ding, private communication.
[4] M. Juvan, J. Marinček, B. Mohar, Elimination of local bridges, Math. Slovaca 47 (1997) 85-92.
[5] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend grosser Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972) 86-97.
[6] J. Maharry, A characterization of graphs with no cube minor, J. Combin. Theory Ser. B, to appear.
[7] J. Maharry, An excluded minor theorem for the octahedron, J. Graph Theory 31 (1999) 95-100.
[8] N. Robertson, private communication.
[9] N. Robertson, P. D. Seymour, Graph minors. IX. Disjoint crossed paths, J. Combin. Theory Ser. B 49 (1990) 40-77.
[10] N. Robertson, P. D. Seymour, An outline of a disjoint paths algorithm, in: "Paths, Flows, and VLSI-Layout," B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds., Springer-Verlag, Berlin, 1990, pp. 267-292.
[11] B. Oporowski, J. Oxley, R. Thomas, Typical subgraphs of 3- and 4connected graphs, J. Combin. Theory Ser. B 57 (1993) 239-257.
[12] R. Thomas, Recent excluded minor theorems for graphs, in "Surveys in Combinatorics, 1999 (Canterbury)," Cambridge Univ. Press, Cambridge, 1999, pp. 201-222.
[13] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570-590.

[^0]: *E-mail address: tboehme@theoinf.tu-ilmenau.de
 ${ }^{\dagger}$ Supported in part part by the International Research Project SLO-US-007 on Graph Minors.
 ${ }^{\ddagger}$ E-mail address: maharrj@franklincollege.edu
 ${ }^{\S}$ Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-0502-0101-98, and the International Research Project SLO-US-007 on Graph Minors.
 ${ }^{4}$ E-mail address: bojan.mohar@uni-lj.si

