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Abstract

It is shown that for any positive integers k and w there exists a
constant N = N(k, w) such that every 7-connected graph of tree-width
less than w and of order at least N contains K3,k as a minor. Similar
result is proved for Ka,k minors where a is an arbitrary fixed integer
and the required connectivity depends only on a. These are the first
results of this type where fixed connectivity forces arbitrarily large
(nontrivial) minors.

1 Introduction

In this paper, all graphs are finite and may have loops and multiple edges.
A graph H is a minor of a graph G, H ≤m G, if H can be obtained from a
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subgraph of G by contracting connected subgraphs. There are many results
concerning the structure of graphs that do not contain a certain graph as a
minor. These excluded graphs include K5 and K3,3 [13], V8 [8], the 3-cube
[6] and the octahedron [7]. See also [2] and [12]. There are well-known
structures which guarantee a certain minor exists for large graphs. For
instance, any 5-connected graph on at least 11 vertices contains the 3-cube
as a minor [6]. Any 5-connected non-planar graph on at least 8 vertices
contains a V8 minor [8]. In addition, there are Ramsey-type results similar
to the fact that any sufficiently large connected graph contains either a k-
path or a k-star. Oporowski, Oxley and Thomas [11] proved that any large
4-connected graph must have a large minor from a set of four families of
graphs. Ding [3] has characterized large graphs that do not contain a K2,k

minor. A corollary of his result is that any large 5-connected graph contains
a K2,k minor.

Our results are a cross section of all of these types of results:

Theorem 1.1 For any positive integers k and w there exists a constant
N = N(k,w) such that every 7-connected graph of tree-width less than w
and of order at least N contains K3,k as a minor.

Theorem 1.2 There is a function c : N → N such that for any a ≥ 3 the
following holds. For any positive integers k and w there exists a constant
N = N(k,w) such that every c(a)-connected graph of tree-width less than w
and of order at least N contains Ka,k as a minor.

Theorem 1.1 is sharp in the sense that the 7-connectivity condition can-
not be relaxed. Moreover, the function c(a) in Theorem 1.2 must be at least
2a + 1. These facts follow from the following construction of a family of
arbitrarily large 2a-connected graphs (of tree-width 3a − 1) none of which
contain a Ka,2a+1-minor.

Let m and a be integers greater than 3. Define the graph Nm,a as follows.
Let the vertices be indexed vx,y where 1 ≤ x ≤ m and 1 ≤ y ≤ a. The vertex
vx,y is adjacent to another vertex vw,z if and only if w ∈ {x − 1, x, x + 1}
where x ± 1 is considered modulo m.

Proposition 1.3 For any integers a ≥ 3 and m ≥ 3, Ka,2a+1 6≤m Nm,a.

Proof. Suppose the theorem is false for some a ≥ 3. Let m be the least
integer such that Nm,a ≥ m Ka,2a+1. Let the clasps of Nm,a be defined as
CLi = {vi,y | y = 1, 2, . . . , a} for i = 1, 2, . . . ,m.
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As Nm,a ≥ m Ka,2a+1, there is a set of 2a + 1 connected subgraphs,
S = {S1, S2, . . . , S2a+1}, and a set of a connected subgraphs of Nm,a, T =
{T1, T2, . . . , Ta}, such that for every i, j there is an edge from some vertex
in Ti to some vertex in Sj and such that all these subgraphs are pairwise
disjoint. Assume that the Si and Ti are chosen with l :=

∑2a+1
i=1 |V (Si)| +

∑a
i=1 |V (Ti)|. Then each of the subgraphs in S ∪ T is a path meeting each

clasp in at most one vertex. Let S1 be the set of single vertex subgraphs
contained in S. It is easy to see that T cannot contain any single vertex
subgraphs.

Claim 1: For every 1 ≤ i ≤ m, there is a subgraph Sj ∈ S1 such that
Sj ⊆ CLi.

Suppose CLi does not contain any of the subgraphs in S1. Then con-
tracting a matching of isze a between CLi and CLi−1∪CLi+1 (indices taken
modulo m) using as many edges of S ∪ T as possible gives a subgraph of
Nm−1,a that still contains Ka,2a+1 as a minor. This contradiction to the
minimality of m proves the claim.

Claim 2: If there is a subgraph in S that contains at least two vertices,
then there is a clasp that contains no member of S1.

Suppose S1 (say) intersects CL1 and CL2. By the minimality of l, we
may assume that S1 ∩ CLm = ∅. Moreover, there is a subgraph Tj that
does not intersect CL1 ∪CL2 ∪CL3. Otherwise, the intersection of S1 with
CL1 could be removed from S1. Therefore, a single vertex subgraph Si ∈ S1

contained in CL2 would not be adjacent to Tj . Hence, the clasp CL2 is as
stated in the claim.

Claims 1 and 2 imply that all subgraphs in S are single vertices. To
complete the proof, notice that if every clasp of Nm,a contains one of the
single vertex subgraphs of S1, then each Tj must must contain at least
m − 2 vertices in order to be adjacent to all of the subgraphs in S. Hence
|V (S)|+ |V (T )| ≥ |S|+ (m− 2)|T | ≥ 2a + 1 + (m− 2)a > ma = |V (Nm,a)|.
This contradiction completes the proof.

In our proof of Theorem 1.2, c(3) = 7 and c(a) = 264a + 1 for a ≥ 4,
and we have no intention to find the best possible value for c(a). However,
the previous example shows that c(a) must be at least 2a+1 for a ≥ 3. It is
worth remarking that our proof of Theorem 1.2 works also for c(a) = 3a− 1
if we assume that the minimum degree is at least 264a + 1.
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2 Bounded tree-width structure

A tree decomposition of a graph G is a pair (T, Y ), where T is a tree and Y
is a family {Yt | t ∈ V (T )} of vertex sets Yt ⊆ V (G), such that the following
two properties hold:

(W1)
⋃

t∈V (T ) Yt = V (G), and every edge of G has both ends in some Yt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then
Yt ∩ Yt′′ ⊆ Yt′ .

The width of a tree decomposition (T, Y ) is maxt∈V (T )(|Yt| − 1). It was
shown in [11] that if a graph G has a tree decomposition of width at most w
then G has a tree decomposition of width at most w that further satisfies:

(W3) For every two vertices t, t′ of T and every positive integer k, either
there are k disjoint paths in G between Yt and Yt′ , or there is a vertex
t′′ of T on the path between t and t′ such that |Yt′′ | < k.

(W4) If t, t′ are distinct vertices of T , then Yt 6= Yt′ .

(W5) If t0 ∈ V (T ) and B is a component of T − t0, then
⋃

t∈V (B) Yt \Yt0 6= ∅.

In the rest of the paper we give the proof of Theorems 1.1 and 1.2. We
let a ≥ 3, k, and w be given positive integers. Let G be an c(a)-connected
graph with a tree decomposition (T, Y ) of width at most w that satisfies
(W1)–(W5).

We will develop a structure that is similar to that used in [11]. First, we
define the constants that will be used in the proofs.

n5 = rn4, where r = (k − 1)

(

w + 1

a

)

n4 = nw+1
3

n3 = (2n2)
p, where p = 2w+1

n2 = nq
1, where q = 2(

w+1

2 )

n1 =

{

2k(2w + 3)2 if a = 3
2k(c(a) + 2a + 2) − 4a − 2 if a ≥ 4

We assume that |V (G)| = N ≥ (w+1)n5 and that G has no Ka,k-minor.
By (W1) we have
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Claim 2.1 |V (T )| ≥ n5.

Claim 2.2 Every vertex of T has degree at most r = (k − 1)
(w+1

a

)

.

Proof. Suppose t0 ∈ V (T ) has degree at least r + 1. Let C be the set of
components of G − Yt0 . By (W2) and (W5), it is clear that |C| ≥ r + 1.
For C ∈ C, let X(C) be the set of vertices of Yt0 adjacent to some vertex
of C. Clearly, |X(C)| ≥ a for every C ∈ C since G is c(a)-connected and
c(a) ≥ a. By the Pigeonhole Principle, there is a set C′ ⊆ C of k components
for which

⋂

C∈C′ X(C) contains a (or more) vertices of Yt0 . By contracting
B to a vertex for each B ∈ C′, we see that G contains a Ka,k minor, a
contradiction.

From this it follows that

Claim 2.3 T contains a path R of length |E(R)| ≥ n4.

The proof of the following claim can be found in [11].

Claim 2.4 There is a subsequence of length n3 of the vertices of V (R),
r1, r2, . . . , rn3

, such that for some s ≥ 1 , |Yri
| = s for i = 1, 2, . . . , n3 and

for every vertex of R between r1 and rn3
, |Yri

| ≥ s.

From now on we replace R by the subpath from r1 to rn3
. Note that

because of the c(a)-connectivity and (W5), c(a) ≤ s ≤ w + 1.
By (W3) and Claim 2.4, there are s disjoint paths in G from Yr1

to Yrn3
.

Fix these paths, denote them by P1, P2, . . . , Ps, and put Z = P1 ∪ · · · ∪ Ps.
Since G is 3-connected, these paths can be chosen such that every Z-bridge
in G is attached to at least two of the paths (cf., e.g., [4]), which we assume
henceforth.

Notice that for any t, t′ ∈ {r1, . . . , rn3
} and for every j ∈ {1, . . . , s} there

is a unique subpath of Pj with one end in Yt and the other end in Yt′ . Denote
this subpath by Pj(t, t

′).
The path Pj is said to be trivial if it consists of a single vertex, and it

is said to be everywhere nontrivial (almost nontrivial) w.r.t. the sequence
r1, . . . , rn3

if Pj(ri, ri+1) contains at least three (respectively, at least two)
vertices for each i = 1, . . . , n3 − 1.

Claim 2.5 There is a subsequence q1, q2, . . . , qn2
of r1, . . . , rn3

of length n2

such that for each j = 1, . . . , s, Pj(q1, qn2
) is either trivial or everywhere

nontrivial (w.r.t. the subsequence).

5



Proof. Clearly, there is a subsequence of r1, . . . , rn3
of length

√
n3 such

that the corresponding segment of P1 is either trivial or everywhere almost
nontrivial with respect to the subsequence. By repeating this argument on
the subsequence for P2, . . . , Ps, respectively, we end up with a sequence of
length at least 2n2 such that every path is either trivial or everywhere almost
nontrivial. By taking every second element of this sequence, the required
subsequence q1, q2, . . . , qn2

is obtained.

The paths Pj and Pl are said to be everywhere bridge connected (resp.
everywhere bridge disconnected) with respect to a sequence p1, . . . , pn of
vertices of R if for every i = 1, . . . , n − 1, there exists (resp. does not exist)
a Z-bridge which has a vertex of attachment in Pj(pi, pi+1) and a vertex of
attachment in Pl(pi, pi+1).

Claim 2.6 There is a subsequence p1, p2, . . . , pn1
of q1, . . . , qn2

of length
n1 such that for every distinct pair of indices j, l ∈ {1, . . . , s}, Pj(p1, pn1

)
and Pl(p1, pn1

) are either everywhere bridge connected or everywhere bridge
disconnected (w.r.t. the new subsequence).

Proof. The proof is similar to the proof of Claim 2.5 except that we have
to repeat the subsequence argument

(s
2

) ≤ (w+1
2

)

times.

3 The auxiliary graph A

Our next goal is to examine the structure of the auxiliary graph A which
contains information about which pairs of the paths are everywhere bridge
connected. The graph A has vertex set V (A) = {P1, . . . , Ps}, and the paths
Pj and Pl are adjacent vertices in A if they are everywhere bridge connected
w.r.t. p1, . . . , pn1

(cf. Claim 2.6).

Claim 3.1 Suppose that U ⊆ V (A) contains only everywhere nontrivial
paths. If the subgraph of A induced by U is connected, then V (A) \ U
contains at most a − 1 vertices that are adjacent to U in A.

Proof. Suppose that P1, . . . , Pa are vertices in V (A) \ U adjacent to U
in A. Contract each path Pj (j = 1, . . . , a) in G to a single vertex wj .
Next, for i = 1, 3, 5, . . . , 2k − 1, contract all segments Pj(pi, pi+1), where
Pj ∈ U , and also contract all edges in bridges connecting these segments in
G, to get k vertices z1, z3, . . . , z2k−1 in a minor of G. Clearly, n1 ≥ 2k, so
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z1, z3, . . . , z2k−1 exist. Since U is adjacent to P1, . . . , Pa in A, it is easy to
see that vertices w1, . . . , wa and z1, z3, . . . , z2k−1 give rise to a Ka,k minor of
G.

We shall apply Claim 3.1 together with the help of the following lemma.

Lemma 3.2 Let H be a connected graph. If H has at least 2a2 vertices of
degree ≥ 3, then H contains a tree T with ≥ a vertices of degree 1.

Proof. Let d be the maximum vertex degree in H, and let v0 be a vertex
of degree d. If d ≥ a, then T is the star centered at v0. So, suppose that
d < a. Then it is sufficient to prove the following. Assuming that H has
at least 2a2 − (d − 1)2 vertices of degree ≥ 3, we shall prove by induction
on a − d that the tree T exists. Let N1 be the set of all vertices of degree
≥ 3 which can be reached from v0 on paths whose internal vertices all have
degree 2. Then 1 ≤ |N1| ≤ d. Let N2 be the “second neighborhood” of v0,
consisting of vertices of degree ≥ 3 which are not in N1 ∪ {v0} and which
can be reached from v0 on paths for which exactly one internal vertex has
degree ≥ 3. Similarly, let N3 be the “third neighborhood” of v0. Then
1 ≤ |N2| ≤ d(d− 1) and |N3| ≥ 1 since H is connected and 2a2 − (d− 1)2 >
1 + d + d(d − 1) ≥ 1 + |N1| + |N2|. Let v3 ∈ N3, and let W be a path from
v0 to v3 which contains precisely two other vertices of degree ≥ 3. Now,
contract W to a vertex ṽ0 and remove possible parallel edges. Denote the
resulting graph by H̃. If a vertex of H̃ has degree smaller than in H, then
it was adjacent to two (or three) vertices of W . This implies that H̃ has at
least 2a2 − (d− 1)2 − (2d − 1) = 2a2 − ((d + 1)− 1)2 vertices of degree ≥ 3.
Since v0 and v3 have no common neighbors, ṽ0 is its vertex of maximum
degree ≥ d + 1. By the induction hypothesis, H̃ contains a tree T̃ with at
least a vertices of degree 1. Clearly, T̃ gives rise to the required tree T in H.

At least one of the paths is everywhere nontrivial, say P1. Let A1 be
the induced subgraph of A on the everywhere nontrivial paths. Let A0 be
the induced subgraph of A consisting of the connected component of A1

containing P1 together with (at most a − 1) trivial paths adjacent to that
component.

From now on we shall assume that G is c(a)-connected, where c(3) = 7
and c(a) = 264a + 1 for a ≥ 4.

Claim 3.3 A0 ∩ A1 has at least ⌈ c(a)−a+1
2 ⌉ vertices. If a = 3, A0 is iso-

morphic to a path or a cycle on at least four vertices. If a ≥ 4, then every

7



vertex of A0 ∩A1 has degree at most a− 1 and at most 2a2 of these vertices
have degree more than 2 in A0 ∩ A1.

Proof. Let U = V (A0 ∩ A1), x = |U |, and y = |V (A0)| − x. By Claim 3.1
we see that y ≤ a − 1. Since the 2x + y endvertices of the paths in A0 in
Yp1

and Yp3
separate the graph G, we have 2x + y ≥ c(a). This implies that

x ≥ (c(a) − a + 1)/2, and proves the first part of the claim.
By Claim 3.1, every vertex in A0 ∩A1 has degree at most a− 1 in A. If

a = 3, this implies that A0 ∩ A1 is a path or a cycle, and the trivial paths
in V (A0) can be adjacent only to vertices of degree ≤ 1 in A0 ∩ A1. This
implies that A0 is a path or a cycle. If |V (A0)| ≤ 3, then the endpoints of
the paths in V (A0) would give a ≤ 6-separator in G.

Suppose now that a ≥ 4. By Claim 3.1 every vertex of A0∩A1 has degree
at most a− 1. Suppose that there are more than 2a2 vertices of degree ≥ 3.
By Lemma 3.2, A0 ∩A1 contains a tree T with ≥ a vertices of degree 1. Let
U be the set of vertices of degree ≥ 2 in T . The subgraph of A induced by
U is connected, and Claim 3.1 yields a contradiction. This completes the
proof.

Denote by Z ′(i) the union of Pj(pi, pi+1) where Pj ∈ V (A0), i = 1, 2, . . . ,
n1 − 1. Let Zi be the subgraph of G obtained by taking the union of Z ′(i)
and all those Z-bridges B that have all vertices of attachment in Z ′(i) such
that there is no i′ < i for which B would have all its vertices of attachment
in Z ′(i′).

4 Finding K3,k minors

In this section we consider the case when a = 3 since the best possible con-
nectivity 7 requires more elaborate techniques than the general case treated
in the next section. For i = 1, 2, . . . , n1 − 2w − 2, let Hi =

⋃2w
k=0 Zi+k. Let

R,R′ ∈ V (A0) be paths which are adjacent in A0. For i = 1, 2, . . . , n1−2w−2
define the graph Di = Di(R,R′) as follows. First, take S = (R ∪ R′) ∩ Hi

together with all Z-bridges in Hi that have vertices of attachment on R and
on R′. Finally, add two edges e1, e2, where e1 joins the “left” endvertices,
λ in R ∩ Hi and λ′ in R′ ∩ Hi, and e2 joins the “right” endvertices, ρ and
ρ′, of these two paths. Then S + e1 + e2 =: C is a cycle in Di. If R (R′) is
everywhere trivial, then λ = ρ (λ′ = ρ′).

Claim 4.1 Suppose that a = 3. Then for every i, there are adjacent vertices
R,R′ of A0 such that Di(R,R′) has no embedding in the plane where the
vertices λ, λ′, ρ′, ρ would lie on the outer face in the prescribed order.
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Proof. Suppose that Hi is a planar graph. Let vj be the number of vertices
of degree j in Hi. By Euler’s formula and standard counting arguments it
follows that

L :=
∑

j≥0

(6 − j)vj ≥ 12. (1)

Observe that Hi has at most 2s vertices of degree ≤ 6 since the minimum
degree in G is at least 7 (by the 7-connectivity of G). On the other hand,
since at least three of the paths in Hi are nontrivial, these paths contain at
least 3(2(2w + 1) − 1) = 12w + 3 vertices of degree ≥ 7 in Hi. Therefore,

L ≤ 6 · 2s − (12w + 3) ≤ 12(w + 1) − 12w − 3 = 9.

This contradiction to (1) shows that Hi is not planar. Recall that A0 is a
path or a cycle on at least 4 vertices, R1, . . . , Rd, d ≥ 4. This implies, in
particular, that no Z-bridge in Hi is attached to more than two of the paths
(otherwise, there would be a 3-cycle in A0, and so A0 would be equal to
the 3-cycle). Moreover, if every Di(Rj , Rj+1) (j = 1, . . . , d, indices taken
modulo d) has an embedding in the plane with the corresponding cycle Cj

being the outer cycle, then
⋃d

j=1 Di(Rj , Rj+1) ⊇ Hi would be planar as well,
contrary to the above. Hence, there is an index j such that Di(Rj , Rj+1)
has no such embedding. Since there are no local Z-bridges, Di(Rj , Rj+1)
neither has an embedding in the plane where the vertices λ, λ′, ρ′, ρ are on
the outer face in the prescribed order.

We shall need a result about crossing paths from from [9]. A separation
of a graph G is a pair (A,B) of subraphs with A∪B = G and E(A∩B) = ∅,
and its order is |V (A ∩ B)|. By a society we mean a pair (G,Ω), where G
is a graph and Ω a cyclic permutation of a subset Ω of V (G). A cross in
(G,Ω) is a pair of disjoint paths in G with ends s1, t1 and s2, t2, respectively,
all in Ω, such that s1, s2, t1, t2 occur in Ω in that order (but not necessarily
consecutive). The following formulation of a theorem of Robertson and
Seymour [9] appears in [10].

Theorem 4.2 (Robertson and Seymour) Let (G,Ω) be a society such
that there is no separation (A,B) of G of order ≤ 3 with Ω ⊆ V (A) 6= V (G).
Then the following are equivalent:

(a) There is no cross in (G,Ω).

(b) G can be drawn in a disc with the vertices in Ω drawn on the boundary
of the disc in order given by Ω.
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Claim 4.3 If Di(R,R′) is nonplanar, then one of the following holds:

(a) Di(R,R′) contains disjoint paths Q1, Q2 connecting λ with ρ′ and λ′

with ρ, respectively.

(b) Di(R,R′) contains a path Q (resp., Q′) disjoint from R′ (resp., R)
which connects λ and ρ (resp., λ′ and ρ′) such that after replacing R
(resp., R′) by Q (resp., Q′), there is a Z-bridge in Hi which is attached
to more than two of the paths P1, . . . , Ps.

Proof. Let H = Di(R,R′). Let C be the cycle of H defined before Claim
4.1. Let Ω be the set of vertices of C which are incident with an edge
in E(G) \ E(H). The cyclic order of Ω on C defines the society (H,Ω).
Since G is 4-connected and no vertex in V (H) \ Ω is incident with an edge
in E(G) \ E(H), there is no separation (A, B) of H of order ≤ 3 with
Ω ⊆ V (A) 6= V (G). Since H is nonplanar, Theorem 4.2 implies that there
is a cross R1, R2 in (H,Ω). Let αi, βi be the endvertices of Ri (i = 1, 2). We
may assume that:

(i) None of the vertices λ, λ′, ρ, ρ′ is an internal vertex of R1 or R2.

Subject to (i) choose the cross R1, R2 such that

(ii) {α1, α2, β1, β2} contains as many vertices in {λ, λ′, ρ, ρ′} as possible
and, subject to (i) and (ii)

(iii) as few edges in E(H) \ E(R ∪ R′) as possible.

If λ, λ′, ρ, ρ′ are all endvertices of R1, R2, then we have (a). Hence we
may assume that λ is not an endvertex of R1, R2. If R ∩ (R1 ∪ R2) 6= ∅, let
v be the first vertex of R1 ∪ R2 on R (starting at λ towards ρ). We may
assume that v ∈ V (R1). Let R1 = R′

1∪R′′
1 where V (R′

1)∩V (R′′
1) = {v}. By

replacing one of the segments R′
1 or R′′

1 in R1 by a segment from v to λ on
R, a new cross is obtained which contradicts (ii) or (iii), except when R′

1 or
R′′

1 is the segment of R from v to ρ. In particular, three of the endvertices of
R1, R2 are on R′. The above proof implies that λ′ and ρ′ are the endvertices
of the paths. Since R1, R2 cross, R1 joins a vertex x ∈ V (R′) \ {λ′, ρ′} with
ρ, and R2 joins λ′ and ρ′, where R2 is disjoint from R. It is easy to see, that
this gives (b).

Suppose now that R ∩ (R1 ∪R2) = ∅. Condition (ii) implies that λ′ and
ρ′ are the endvertices of R1 and R2, respectively. There is a C-bridge B in
H such that E(R1 ∪ R2) ∩ E(B) 6= ∅. Since B is not a local bridge, it is
attached to R as well. Therefore, there is a path L in B from R to R1 ∪R2
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(say to R2) which is internally disjoint from C∪R1∪R2. Let y be the vertex
of R1 which is as close as possible to ρ′ on R′. Let R′

2 be the segment of
R2 from R2 ∩ L to the end of R2 distinct from ρ′. By (iii), R′

2 is disjoint
from the segment Q′′ of R′ from y to ρ′. Therefore, the path Q′ composed
of the segment of R1 from λ′ to y and Q′′ can be taken as the path Q′ in
(b). Note that, after replacing R′ by Q′, the Z-bridge containing L∪R′

2 will
be attached to at least three paths in {P1, . . . , Ps}.

We are ready to complete the proof of Theorem 1.1. Suppose that a = 3
and that A0 is a path or a cycle on consecutive vertices R1, . . . , Rd, where
4 ≤ d ≤ w + 1. Let Dj

i = Di(Rj , Rj+1), j = 1, . . . , d. We shall only consider
the indices i of the form i = 1 + t(2w + 2), t = 0, 1, . . ., and we call them
admissible indices.

Let us first assume that the case (b) of Claim 4.3 occurs less than 2kd
times at admissible indices i. Since there are at least 4kd admissible indices,
Claim 4.3(a) implies that there is an index j ∈ {1, . . . , d}, and there are
admissible indices 1 ≤ i1 < i2 < · · · < ik ≤ n1 − 2w − 2 such that

(i) each of Dj
i1

,Dj
i2

, . . . ,Dj
ik

contains paths as stated in Claim 4.3(a), and

(ii) for l = 1, . . . , k − 1, il+1 − il ≥ 2w + 2.

We can exchange the segments of the paths Rj and Rj+1 in Hil by the
two paths Q1, Q2 of Claim 4.3(a). In this way the new paths in Hil∪Zil+2w+2

would no longer satisfy the condition of Claim 3.1. Namely, if Rj and Rj+1

have degrees d1, d2 in A0, then they would be everywhere bridge connected
(w.r.t. the sequence pi1−1, pi2−1, . . . , pik−1) with d1 + d2 − 1 other paths. If
d1 = d2 = 2, this gives a K3,k minor in the same way as in the proof of Claim
3.1 (since one of Rj or Rj+1 is everywhere nontrivial). If d1 = 1 (say), then
the path Rj+2 has degree 2 in A0 by Claim 3.3 and (in addition to Rj+3)
it becomes everywhere bridge connected to the two new paths (w.r.t. the
sequence pi1−1, pi2−1, . . . , pik−1). It is easy to see from the definition of A0

that Rj+2 cannot be trivial, so the proof of Claim 3.1 applies again.
Let us now assume that the case (b) of Claim 4.3 occurs 2kd or more

times (for admissible indices i). Then there is an index j ∈ {1, . . . , d}, and
there are admissible indices 1 ≤ i1 < i2 < · · · < ik ≤ n1 − 2w − 2 such that

(i) each of Dj
i1

,Dj
i2

, . . . ,Dj
ik

contains a path Q (or each of Dj
i1

,Dj
i2

, . . . ,Dj
ik

contains a path Q′) as stated in Claim 4.3(b), and

(ii) for l = 1, . . . , k − 1, il+1 − il ≥ 2w + 2.
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For any Dj
il

we replace the segment of Rj (resp., Rj+1 ) by the corresponding
path Q (resp., Q′) such that there is a Z-bridge (where Z is defined as the
union of the new paths) attached to Rj, Rj+1, and Rj+2 (or Rj−1). We may
assume that k of these bridges, B1, . . . , Bk are attached to Rj , Rj+1, and
Rj+2. Now, there is a K3,k-minor obtained by contracting Rj , Rj+1, Rj+2

into single vertices and adding paths in B1, . . . , Bk to these vertices. This
completes the proof of Theorem 1.1.

5 Finding Ka,k minors for a ≥ 4

Suppose now that a ≥ 4 and c(a) = 264a + 1. Let r = 2c(a) + 2. For
i = 1, 2, . . . , n1 − r, let Hi =

⋃r−1
j=0 Zi+j . We also write Si = Ypi

.

Claim 5.1 For every 1 ≤ i ≤ n1 − r, the average degree of vertices in Hi is
at least c(a) − 1

2 .

Proof. Every vertex of G has degree at least c(a). Let s0 = |V (A0 ∩ A1)|
be the number of everywhere nontrivial paths in V (A0). Then

|V (Hi)| ≥ s0(2r + 1) > 4s0c(a). (2)

Each trivial path in V (A0) is everywhere bridge connected to some nontrivial
path. Hence, the degree of the corresponding vertex in Hi is at least r/2 ≥
c(a). Only the ends of nontrivial paths can have degree less than c(a) in Hi.
This fact and inequality (2) imply that

2|E(Hi)| ≥ c(a)(|V (Hi)| − 2s0) ≥ (c(a) − 1

2
)|V (Hi)|.

This completes the proof.

A graph L is said to be q-linked if it has at least 2q vertices and for
any ordered q-tuples (s1, . . . , sq) and (t1, . . . , tq) of 2q distinct vertices of L,
there exist pairwise disjoint paths P1, . . . , Pq such that for i = 1, . . . , q, the
path Pi connects si and ti. Such collection of paths is called a linkage of
(s1, . . . , sq) and (t1, . . . , tq).

Claim 5.2 For every 1 ≤ i ≤ n1− r, there exists a subgraph Li of Hi which
is 3a-linked.
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Proof. Mader [5] proved that every graph of average degree at least 4c
contains a c-connected subgraph. Therefore, since Hi has average degree at
least c(a) − 1 ≥ 264a, Hi contains a 66a-connected subgraph Li. Bollobás
and Thomason [1] have shown that every 22t-connected graph is t-linked.
Hence, the graph Li is 3a-linked.

We will now construct a disjoint paths P◦
1 , . . . ,P◦

a by routing the paths
P1, . . . , Ps through Li in at least k pairwise disjoint subgraphs Hi. In each
graph Li, there will also be an extra vertex linked to each of the a paths.
Contracting these paths will then give a Ka,k-minor in G.

Claim 5.3 In Hi, there exist 2a pairwise disjoint paths, Q
(i)
1 , . . . , Q

(i)
a and

Q′
1
(i), . . . , Q′

a
(i) such that the following hold:

(a) For l = 1, 2, . . . , a, the path Q
(i)
l starts in Li and ends in Si+r.

(b) For l = 1, 2, . . . , a, the path Q′
l
(i) starts in Si and ends in Li.

(c) Every path Q
(i)
l and Q′

l
(i) (l = 1, 2, . . . , a) has only its endvertices in

Si ∪ Si+r ∪ V (Li).

Proof. Let Π0 = V (A0) \ V (A1) be the set of vertices of Hi corresponding
to the trivial paths in A0. Let W = {W1, . . . ,W2a} be a set of 2a pairwise
disjoint paths joining V (Li) with Si ∪ Si+r such that:

(1) Wl ⊆ Hi − Π0 for every l = 1, 2, . . . , 2a.

(2) The number of edges in
⋃2a

l=1 E(Wl) \
⋃r−1

j=0 E(Z ′(i + j)) is minimum.

(3) Subject to (2), if nL is the number of paths Wl ending in Si, and nR

is the number of paths Wl ending in Si+r, |nL − nR| is minimum.

Disjoint paths satisfying (1) exist by large connectivity: Since c(a) ≥
3a−1, and |V (Li)| > 3a, and |Si ∪Si+r| ≥ 3a−1, there exist 3a−1 disjoint
paths from V (Li) to Si ∪ Si+r+1 by Menger’s theorem. Since there are at
most a − 1 vertices in Π0, the removal of those paths which intersect Π0

leaves at least 2a paths satisfying condition (1).
If at least two paths of W intersect a path Pj, then let W and W ′ be

the paths that intersect Pj as close as possible (on Pj) to Si and Si+r,
respectively. If W = W ′, suppose that the intersection u of W with Pj

nearest Si (say) comes before the intersection nearest Si+r. By (2), W ends
at Si, i.e., its segment from u to its end coincides with the segment Pj(u, Si)
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of Pj . This shows that W 6= W ′. Then the path W (resp. W ′) must end at
Si (resp. Si+r) by (2).

Suppose that precisely one path, say W ∈ W, intersects a path Pj . In
this case we can elect to have W ending at Pj∩Si or at Pj∩Si+r by following
the path Pj . This implies that the value |nL −nR| in (3) can be made to be
zero. Then nL = nR = a.

Now let the a paths in W that end in Si be called Q′
1
(i), Q′

2
(i), . . . , Q′

a
(i)

and the a paths in W that end in Si+r be called Q
(i)
1 , Q

(i)
2 , . . . , Q

(i)
a . It is

easy to see that (c) may be requested. This completes the proof.

Let T be a spanning tree of A0 ∩ A1. By Claim 3.3, |V (T )| ≥ a. This
implies the following claim.

Claim 5.4 There are vertices t1, t2, . . . , ta of T such that for l = 1, 2, . . . , a,
the vertex tl is a leaf of the subtree T \ {t1, . . . , tl−1}.

For each i = 1, 2, . . . , n1−r and each l = 1, 2, . . . , a, let J
(i)
l ∈ {P1, . . . , Ps}

be the vertex of T such that Q
(i)
l ends up on the corresponding path in G.

Choose an enumeration of Q
(i)
1 , Q

(i)
2 , . . . , Q

(i)
a such that, for l = 1, 2, . . . , a,

the distance from J
(i)
l to tl in T is minimum (where smaller values of l have

preference over the larger values).
Choose a similar enumeration of Q′

1
(i), . . . , Q′

a
(i).

Define α = r + 4a + 2 and for t = 1, . . . , k set it = 1 + (t− 1)α. Observe
that ik = n1 − r.

To construct the path P◦
l , we first link Q

(it)
l to Q′

l
(it+1) for every t =

1, . . . , k − 1. Then each Q′
l
(it) is linked to Q

(it)
l inside Lit (t = 1, . . . , k). We

do this as described below.
Let i′ = i+α. Link Q

(i)
l with Q′

l
(i′) as follows: Follow the path J

(i)
l from

J
(i)
l ∩Si+r through 2l segments to the separator Si+r+2l. Continue the path

within Zi+r+2l to the path tl. This can be done by following the bridges

between paths corresponding to the path in the spanning tree T from J
(i)
l

to tl.
Construct a similar path from Q′

l
(i′) to tl using bridges in Zi′−2l. Then

connect these paths along tl, and denote by P i
l the resulting path joining

Q
(i)
l with Q′

l
(i′).

Claim 5.5 The constructed paths P i
l (l = 1, . . . , a) are pairwise disjoint.

Proof. Consider two of the paths, say P i
l and P i

m, where l < m. There are
four possibilities where these two paths may intersect:
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(1) P i
l intersects J

(i)
m inside Zi+r+2l: This is not possible since J

(i)
m would

then be closer to tl in T , and the path Q
(i)
m would be indexed before

Q
(i)
l .

(2) P i
m intersects tl inside Zi+r+2m: This is not possible since tl is a leaf

in T \ {t1, . . . , tl−1}.

The remaining cases, when P i
l intersects P i

m inside Zi′−2l or inside Zi′−2m

(respectively) are handled similarly. This completes the proof.

Let vl be the vertex of Q′
l
(i) in Li, and let ul be the vertex of Q

(i)
l in Li.

Choose u′
l to be a neighbor of ul in Li \ {v1, . . . , va, u1, . . . , ua}. Since Li is

3a-linked, the minimum degree of Li is at least 3a, so such neighbors exist.
The vertices u′

l may even be chosen so that they are pairwise distinct. Let
v′1 = u′

1, and let v′2, . . . , v
′
a be distinct neighbors of v′1 in Li. We may assume

that if v′α = u′
β , then α = β.

Since Li is 2a-linked, there is a linkage from (v1, . . . , va, v
′
1, . . . , v

′
a) to

(u1, . . . , ua, u
′
1, . . . , u

′
a). The resulting paths joining vl and ul (l = 1, . . . , a)

are used to link Q′
l
(i) and Q

(i)
l inside Li, for i ∈ {i1, . . . , ik}. Together with

the paths P i
l , i ∈ {i1, . . . , ik−1}, this determines the path P◦

l . On the other
hand, the paths in the linkage from (v′1, . . . , v

′
a) to (u′

1, . . . , u
′
a) are disjoint

from P◦
1 , . . . ,P◦

a and can be used to link v′1 to each of these paths.
Now, it can be shown that G contains a Ka,k minor: For each l = 1, . . . , a,

contract the path P◦
l to a single vertex. For i ∈ {i1, . . . , ik}, the vertex v′1 ∈

V (Li) is joined to u′
1, . . . , u

′
a and hence to each of the a paths P◦

1 , . . . ,P◦
a .

Since this is repeated k times, we get a Ka,k minor in G.
The proof of Theorem 1.2 is complete.

6 Conclusion

Our more recent results show that the condition on bounded tree-width in
Theorem 1.1 can be removed. The authors plan a second paper in which
the large tree-width case is handled. This will prove the following, which
was conjectured independently by Ding [3] and the authors:

There is a function f : N → N such that any 7-connected graph on at
least f(k) vertices contains a K3,k minor.

It seems reasonable to the authors that this result can be extended to
K4,k-minors and possibly even to Ka,k-minors. The logical conjectures would
be the following:

15



Conjecture 6.1 There is a function f : N → N such that any 9-connected
graph on at least f(k) vertices contains a K4,k minor.

Conjecture 6.2 There are functions f : N → N and c : N → N such that
any c(a)-connected graph on at least f(k) vertices contains a Ka,k minor.

Our final remark is that the sequence of graphs Ka,k, where a is fixed
and k tends to infinity, is essentially the only family of graphs for which a
result like our Theorem 1.2 holds. More precisely:

Theorem 6.3 Let c and w ≥ c be positive integers, and let Hk (k ≥ 1) be
a sequence of graphs such that limk→∞ |V (Hk)| = ∞. Suppose that for any
positive integer k there exists an integer N(k) such that every c-connected
graph of tree-width ≤ w and of order at least N(k) contains Hk as a minor.
Then Hk ≤m Kc,N(k) for k ≥ 1.

Proof. Clearly, the graph Kc,N(k) is c-connected and has tree-width c ≤ w.
By the assumption on the family Hk, Kc,N(k) contains Hk as a minor.
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