1

This paper augments the input-output automaton model [LT87] with a notion of time that
allows us to reason about timed behaviors, especially behaviors in real-time systems where
real-time constraints on systems’ reaction times must be satisfied. The (untimed) input-
output automaton model is a natural model of computation that has been used extensively
to study concurrent systems. The model has many appealing properties. For example,
it i1s especially helpful when describing the interfaces between system components, and
it provides a clean compositional model for fair computation. The motivation for our
work is to find an equally intuitive generalization of the model to timed computation that
preserves these properties. Our generalization results in a compositional model for timed

Time-Constrained Automata®
(Extended Abstract)

Michael Merritt Francesmary Modugno
AT&T Bell Laboratories School of Computer Science

600 Mountain Avenue Carnegie Mellon University

Murray Hill, NJ 07974 Pittsburgh, PA 15213
merritt@research.att.com fmm@cs.cmu.edu

Mark R. Tuttle
DEC Cambridge Research Lab
One Kendall Sq., Bldg. 700
Cambridge, MA 02139

tuttle@crl.dec.com

Abstract

In this paper, we augment the input-output automaton model in order to reason
about time in concurrent systems, and we prove simple properties of this augmen-
tation. The input-output automata model is a useful model for reasoning about
computation in concurrent and distributed systems because it allows fundamental
properties such as fairness and compositionality to be expressed easily and naturally.
A unique property of the model is that systems are modeled as the composition of
autonomous components. This paper describes a way to add a notion of time to
the model in a way that preserves these properties. The result is a simple, com-
positional model for real-time computation that provides a convenient notation for
expressing timing properties such as bounded fairness.

Introduction

*To appear in Proceedings of the Second International Conference on Concurrency Theory (Con-

cur’91), Amsterdam, August, 1991.

computation with a time-bounded notion of fair computation in which many interesting
real-time constraints can be described simply. This model has been used to study problems
in real-time systems, and simple proof rules have been developed for it [LA90, AL89].

The input-output automaton model is unique in that it is especially well-suited for
modeling concurrent systems as the composition of autonomous components. A system
component is autonomous if it has complete control over its generation of output. More
precisely, its generation of output is a function of its own local state, not the global
state, and cannot be blocked simply because no other system component is ready to
receive the output. Our intuition is that these autonomous components represent the
physically realizable components of the system: a network node can transmit a message
over the network independent of the state of other nodes. Any natural model of concurrent
computation should make it easy to describe systems as the composition of autonomous
components.

While most models contain a submodel that supports such descriptions, these models
are so expressive that they include notions of composition that have no correspondence to
physical reality, and this unwanted expressive power complicates the models’ semantics
considerably. One example is CSP [Hoa85, KSdR*88]. In CSP, each process P has an
alphabet of actions it can perform, and the parallel composition P||Q of two processes P
and) requires that any action a in the intersection of their alphabets must be performed
simultaneously by both if it is performed at all. In part because there is no semantic
distinction between input and output actions in CSP, there is no notion of any individual
process determining the performance of an action, and hence there is (in general) no
notion of autonomy in the model. The parallel composition P||@ of P and) enables @
to keep P from performing any action a in the intersection of their alphabets simply by
refusing to perform a itself. Thinking of) as P’s environment, this means that any action
the environment can observe is an action the environment can synchronize with and block.
This makes some problems almost too easy to solve. For example, consider the solution to
the Dining Philosopher’s problem in [Hoa85]. Here the philosophers are described in terms
of actions like picking up and setting down forks, and the philosophers are placed in an
environment (the definitions of the forks) that can simply block a philosopher when it tries
to pick up a fork. The philosophers have no autonomy over their actions, and deadlock can
be avoided by composing with any process whose definition is simply a description of the
desired behaviors (cf. [CM84]). Because of the powerful operators in CSP, specifying an
acceptable solution to a problem can also require more than specifying the desired external
behavior (or traces). In contrast, in the input-output automaton model, it is natural to
accept as a solution to a problem any system with the desired external behavior that can
be expressed in the model.

Input-output automata can be viewed as a restriction of CSP and related models
[Mil80, Yi90, MT90, GL90] to a simple submodel, with a simple semantics, that captures
the notion of autonomy. A primary difference between the input-output automaton model
and these models is that the former makes a clear distinction between input and output
actions. In this model, each system component is modeled as an automaton with actions
labeling the state transitions. These actions are partitioned into input and output actions.
This partition is used to state two restrictions that guarantee that system components
are autonomous. First, automata are input-enabled, which means that any input action a
can be performed in any state s (there is a transition from s labeled a). Second, two

automata P and ¢ may be composed (essentially by identifying actions, as described
above) only when the output actions of P and @ are disjoint. Consequently, P has
complete control over its generation of output in the composition of P and Q: if a is an
output action of P, then it must be an input action of @ (if it is an action of @ at all);
and since () is input-enabled, it is willing to accept a as input in any state. Early work
involving continually enabled inputs appears in [LF81], and more recently in [Dil88].

A second difference is that fairness plays an important role in the input-output automa-
ton model. A system computation is faur if every system component is given the chance
to take a step infinitely often. The definition of fairness together with the weak (relative
to CSP) composition operator result in a simple compositional model of fair concurrent
computation. In this model automata generate fair behaviors, and when automata are
composed, the fair behaviors of the composition are a composition of the fair behaviors of
the components. Definitions of fairness in the same spirit appear in [LF81, Fra86, Jon87].

There are two natural approaches to extending the input-output automaton model to
include timing information. The first is to record time and timing constraints directly
in the automaton states and transition relation. This approach is exemplified by the
work of Shankar and Lam [SL87] (and also [HLP90]), in which time is modeled as a
component of the system state, and predicates on the time control system executions.
The second approach is to model time and timing constraints as external conditions
imposed on the executions of standard input-output automata. This approach is adopted
here. A timed execution is essentially an ordered pair (e, t), where e is the execution of an
input-output automaton, and £ is a function assigning times to the events occurring in e
(cf. [AH90, Lam91]). A timed automaton is a pair (A, P) consisting of an input-output
automaton A and a predicate P on the timed executions of A.

Separating time from the local state makes it easy to define a clean notion of automaton
composition. If instead time is recorded in the local state, then—in the straightforward
composition of such automata—the times in the local states will bear little relation to one
another. Some additional axioms or rules for automaton composition must be imposed
to keep the times more or less synchronized. Furthermore, there is no longer one single
variable in the state of the composition that records the current time, but rather a tuple of
variables, and the complexity increases with additional composition. On the other hand,
if time 1s externally assigned to events in a computation via a timing function ¢ as is done
here, then there is a simple syntactic mechanism for distinguishing the time component
that allows a simple definition of composition in which components are synchronized.

After augmenting the input-output model to include a notion of time, a timing condi-
tion called a boundmap is defined, essentially a bounded fairness condition that restricts
the amount of time that may elapse between consecutive steps of a system component.!
Both the fair and unfair computations of the untimed input-output model are natural
special cases of such boundmaps. One of the important results in this paper is that
our augmentation of the input-output automaton model to incorporate time is a com-
positional model for timed computations. The fact that it is a compositional model for
fair computation now follows as a special case. This modularity is one of the primary
advantages of our work.

The rest of this paper is organized as follows. In Section 2 we review the input-output

Lewis [Lew90] also assigns bounds to state transitions. His motivation is quite different from ours,
but we can generalize boundmaps slightly and capture his assignments.

automaton model. In Section 3 we augment the model to include time, and in Section 4
we define the composition of timed automata. In Section 5 we define a simple notation for
real-time constraints, and in Section 6 we define boundmaps as a special case. Finally, in
Section 7 we define what it means for one timed automaton to solve a problem described
by another timed automaton. Due to space limitations, we have omitted the proofs of
our results. We have also omitted any significant examples of how to use our framework,
but examples do appear in [LA90, AL89]|. A full version of this paper will contain both
proofs and examples.

2 Input-Output Automata

An input-output automaton A is defined by the following four components:

o A set of states, states(A), (possibly an infinite set) with a subset of start states,
start(A).

e A set of actions, acts(A), partitioned into sets of input, output and internal actions,
in(A), out(A), and int(A), respectively. The output and internal actions are called
the locally-controlled actions, and the input and output actions are called ezternal
actions, denoted ext(A).

e A transition relation steps(A) is a set of (state,action,state) triples, such that for
any state s’ and input action =, there is a transition (s',,s) for some state s.

e An equivalence relation part(A) partitioning the locally-controlled actions of A.
We interpret each class of the partition as the set of locally-controlled actions of
separate, autonomous components of the system being modeled by the automaton.

An ezecution of A is a finite or infinite sequence som;s;... of alternating states and
actions such that so is a start state, (s;_1,m;, s;) is a transition of A for all ¢, and if e is
finite then e ends with a state. The schedule of an execution is the subsequence of actions
appearing in e. The behavior of a schedule or execution o is the subsequence of external
actions appearing in o. An action 7 is enabled in state s’ if there is a transition (s, ,s)
for some state s; otherwise 7 is disabled. Since every input action is enabled in every
state, automata are said to be input-enabled.

An execution of a system is fair if each component is given a chance to take a step
infinitely often. Of course, a component can’t take a step when given the chance if none of
its actions are enabled. Formally, an execution e of automaton A is fair if for each class C
of part(A)—that is, for each system component—the following two conditions hold:

o If e is finite, then no action of C is enabled in the final state of e.

o If e is infinite, then either actions from C appear infinitely often in e, or states in
which no action of C is enabled appear infinitely often in e.

Automata can only be composed if their output actions are disjoint, and they do not
share any internal actions. This restriction, together with the input-enabling condition,
preserves the autonomy of independent components within a composition. To capture

this restriction we define the action signature of an automaton A, denoted sig(A), to be
the triple (in(A), out(A), int(A)). In general, an action signature S is a triple consisting
of three disjoint sets in(S), out(S), and nt(S). The union of these sets is denoted by
acts(S).

The action signatures {S; : ¢ € I} are compatible if for all 7,7 € I out(S;)Nout(S;) =0
and nt(S;) N acts(S;) = 0. The composition S = [[;c; S; of compatible action signatures
{S; : © € I} is defined to be the action signature with n(S) = U;cr in(S;) — User out(S;),
out(S) = Ujer out(S;), and int(S) = Uics int(S;).

The composition A = [[;cr A; of a set {A; : ¢ € I} of compatible automata (automata
with compatible action signatures) is defined to be the automaton with

o states(A) = [I;c; states(A;), o sig(A) = Ilicr sig(4s),
o start(A) = I[l;cs start(A;), o part(A) = U;cr part(4A;), and
e steps(A) equal to the set of triples ({a;},n, {al}) such that for all s € T

— if m € acts(A;) then (a;, 7, a}) € steps(A;), and
— if m & acts(A;) then a; = al.

(The products states(A) and start(A) are standard Cartesian products.) Since the au-
tomata A; are input-enabled, so is their composition, and hence their composition is indeed
an automaton. Notice that all output actions of an automaton A; (some representing com-
munication with other automata A;) become output actions of the composition, and not
internal actions. The definition of an operation internalizing output actions is straightfor-
ward. See [LT87, Tut87] for a more complete exposition of the model that includes such
extensions.

3 Timed Automata

We introduce time into the model by introducing function ¢ assigning times t; to the
states s; appearing in executions e = so7$; . . .; actually, £ maps the indices 7 to times ¢;.
A timing t is a mapping from a nonempty (possibly infinite) prefix of 0,1,2,... to the
nonnegative reals satisfying

e t is nondecreasing: ¢ < j implies ¢(z) < t(j7)

e t is unbounded: for every interval [t1,%s] of the real line, t(z) € [t1,%s] for at most
finitely many 3.

The length of an execution e is the number of actions (and hence state transitions) ap-
pearing in e. The length of a timing ¢ is k if t’s domain is the finite set {0,...,k}, and
infinite if £’s domain is the entire set of nonnegative integers.

A timed execution of an automaton A is an (untimed) execution e of A together with a
timing t of the same length; we denote this timed execution by €. In other words, a timed
execution is an execution together with a timing assigning times to states appearing in the
execution. Notice that a timing also induces an assignment of times to actions. Intuitively,

since the action m; is the cause of the (instantaneous) transition from state s;_; to s;, and
since the system entered the state s; at time ¢(z), we can view the action m;—or, perhaps
more accurately, the completion of m;—as having occurred at time t(z). In fact, when
t(0) = 0, it is convenient to represent the timed execution € by so(my,t1)s1(m2,t2)s2 .. .,
where t; = t(i) (see [AL89]).

Timed schedules and behaviors of A are defined in a similar way. A timed sequence o
consists of a sequence a of actions of A and a timing ¢ of the same length, giving an initial
time ¢(0) and a time for each action in a. When ¢(0) = 0, it is convenient to denote
the timed sequence a' by (m1,¢1)(72,t2) ..., where @ = mymy... and ¢; = t(3). A timed
schedule of A is a timed sequence o where o is a schedule of A, and a timed behavior of A
is a timed sequence (3* where 8 is a behavior of A.

A timaing property P for an automaton A is any predicate on timed executions of A:
given any timed execution e’ of A, the predicate P is either true or false of e. For
example, a timing property could describe a desirable property that the timed executions
of an automaton should exhibit.

A timed automaton is an ordered pair (A, P) consisting of an automaton A and a
timing property P for A. Our intuition is that the automaton A describes the possi-
ble computations of the system, and the property P describes how these computations
progress with time.

A timed ezecution of (A, P) is a timed execution e’ of A that satisfies P. We denote
the set of timed executions of (A, P) by timed-ezecs(A, P). Given a timed execution €’
of (A, P), the timed schedule obtained by deleting the states appearing in e is denoted
by sched(e'). For example, when ¢(0) = 0, if €' = so(my,¢1)s1(ma,2) . . ., then sched(c*) =
(m1,t1)(m2,¢2) Similarly, given a timed schedule o' of (A, P), the timed behavior
obtained by deleting the internal actions of A appearing in o is denoted by beh(c*). As
a shorthand, we write beh(e’) = beh(sched(e')). The set timed-scheds(A, P) of timed
schedules of (A, P) is the set of all timed schedules sched(e’) of all timed executions e of
(A, P). Similarly, the set timed-behs(A, P) of timed behaviors of (A, P) is the set of all
timed behaviors beh(e?) of all timed executions e’ of (A, P).

4 Composition of Timed Automata

Timed automata can be composed to yield other timed automata. Composition has the
property that the behavior of a composition is a composition of the behaviors of the
components. This compositionality is an important aspect of our model.

Like untimed automata, the composition of timed automata is defined only for com-
patible automata. Unlike untimed automata, however, composition is defined only for
finite collections of automata. This guarantees that timings in the resulting composition
are unbounded: if we try to compose an infinite collection of automata (A4;, P;) where
each P; requires that an action is performed at time 1, then an infinite number of actions
are performed at time 1 in an execution of the composition, violating the requirement
that timings are unbounded. In this paper, compositions are assumed to be compositions
of finite collections of compatible automata.

To motivate the definition of timed composition, we note that every execution e of
an untimed composition A = [] A; induces an execution e|A; of A;: if e = somys; ...,

then e|A; is the result of deleting 7;s; whenever 7; is not an action of A; and replacing the
remaining global states s; with A;’s local state s;|4; in s;. Intuitively, e| 4; is the sequence
of state transitions through which A; moves during the execution e of A. Similarly,
every timed execution €' of A induces a timed execution €‘|A; of A;: when t(0) = 0, if
et = so(m1,t1)s1(ma,t2) . .., then €| A; is the result of deleting (7;,t;)s; whenever 7; is not
an action of A; and replacing the remaining s; with s;|4;. Given a timed sequence a’ of
actions of A, the timed sequence af|A; of actions of A; is derived similarly.

The composition [[(A;, P;) of a finite collection of timed automata (A;, P;) is the timed
automaton (A, P) where

o A =1]] A; is the composition of the A;, and

o P =[] P; is the timing property for A that is true of a timed execution e’ iff P; is
true of e*|A; for every 1.

Another way to formulate the definition of [] P; is to extend each local property P; to
a global property, and then to define [] P; to be the conjunction of the resulting global
properties. More precisely, given a collection of timed automata (A;,), let A = [T 4;
and define P# to be the timing property for A defined as follows: a timed execution e
of A satisfies P iff ef|A; satisfies P;. We now have the following:

Proposition 1: If (A, P) = [I(A;, B;), then P = A P~.

It is interesting to explore the relationship between the global executions of [[(A4;, P;)
and the local executions of the (A;, P;). First of all, it is easy to see that every execution

of TI(A4;, P;) induces an execution of (4;, P;):

Proposition 2: Let (A4, P) = [I(A;, P;). If € is a timed execution of (A4, P), then €| 4;

is a timed execution of (A;, P;) for every 3.
On the other hand, we can prove a kind of converse:

Proposition 3: Let (A4, P) = [1(A;, P), let e be any sequence of alternating states and
actions of A, and let ¢ be any timing of the same length. If ef| A; is a timed execution of
(A;, P;) for every i, then €’ is a timed execution of (A4, P).

More generally, one might wonder when it is possible to take a collection of arbitrary timed
executions e of the (4;, P;) and “paste” them together to construct a timed execution e
of the composition [J(A;, P;) such that e‘|A; = e¥. In the case of untimed automata, if
there is a total ordering a of the actions appearing in the e; such that a|A; = sched(e;)
for every 1, then there is an execution e of [A; such that a = sched(e) and e|A; = e; for
every ¢. In the case of timed automata, the existence of a global timing ¢ consistent with
the local timings ¢; is also required:

Proposition 4: Let (4, P) = [](4;, P;), and suppose e is a timed execution of (4;, P;)
for every i. If there exists a timed sequence af of actions of A such that af|A4; = sched(e)
for every 7, then there exists a timed execution €’ of (A, P) such that o = sched(e’) and
et|A; = €¥ for every i.

Analogous results hold for schedules and behaviors:

Proposition 5: If €’ is a timed execution of [[(4;, P;), then sched(e?)|A; = sched(ef|A;)
and beh(e')|A; = beh(e'|A;).

Finally, we can use these results to prove the main result of this section: that our model
is a compositional model of timed behavior. In other words, the observable behavior of
a composition of timed automata is a composition of the observable behaviors of the
component timed automata. First, we must define this composition of behaviors. Let

(A, P) =TI(A;, P;), and define
1 timed-execs(A;, P;)

to be the set of e where e is a sequence of alternating states and actions of A and ¢ is a
timing of the same length such that e*|A; € timed-ezecs(A;, P;) for each i. The definitions
of [] timed-scheds(A;, P;) and [] timed-behs(A;, P;) are the obvious analogs. We can prove
the following:

Proposition 6: If (A, P) = [;c;(4;, P;), then
1. timed-ezecs(A, P) = [I;cr timed-ezecs(A;, P;),
2. timed-scheds(A, P) = [l;c; timed-scheds(A;, P;), and
3. timed-behs(A, P) = [I;c; timed-behs(A;, P;).

5 Timing Properties: Response Times

The idea of being “fair” to each component in a composition of automata comes up
repeatedly in the theory of input-output automata. Informally, we view each class C in
the partition of an automaton’s locally-controlled actions as the locally-controlled actions
of a single component in the system being modeled by the automaton. Being fair to each
system component means being fair to each class of actions. This means each class is
given an infinite number of chances to perform an action. On each chance, either some
action of C is enabled and is performed, or no action of C is enabled and this class must
pass on its chance to perform an action. More than just giving each class C' an infinite
number of chances to perform an action from C, we might require that the time between
chances actually falls in some interval {l,u}. What we actually define is a bound on the
elapsed time from the moment an action is enabled to the time it is performed. Since
this is really a special case of bounding response times, the time that elapses between two
events, we first define a simple notion for bounding response times, and return to bounded
fairness in Section 6. This more general definition is useful in its own right when we are
specifying desired response times at a level of abstraction where the ultimate partitioning
of the system into components is not yet apparent (or desired).

To begin with an example, suppose one requires that the time elapsing between a
request for a resource and the satisfaction of that request not exceed time €. In order to
be able to respond to requests in a timely manner, the system must be given the chance

(or time) to respond. For example, if a user is allowed to withdraw a request before
it 1s fulfilled, then we might weaken our requirement to say that if a request remains
unfulfilled for time ¢, then it will be fulfilled within that time (that is, a request cannot
remain unfulfilled for longer than time €). We want to be able to capture statements of
the form “if condition X holds for enough time, then condition Y becomes true.” On
the other hand, other considerations may require or depend upon certain response times
taking more than a certain amount of time: “condition X must hold for enough time
before condition Y becomes true.” These considerations motivate us to formulate general
notation for specifying upper and lower bounds on response time.

In our case, the conditions X and Y of interest are that the system is in a certain
state or has performed a certain action. Let A be an automaton, let S be a subset of A’s
states and II be a subset of A’s actions. We denote by (S,II) the event (or condition)
corresponding to entering a state in .S or performing an action in II. Given an execution

e = $o7y . .., we denote the finite prefix som; . .. sg of e by e[k]. A finite prefix e[k] satisfies
(S,10) iff

e k=0and so € 5, or
e k> 0 and either s, € S or m, € IL

Intuitively, (S,1II) is true at time k if either the state entered at time k is in S or the
action performed at time k (implying that & > 0) is in II.

5.1 Upper Bounds on Response Times

Let A be an automaton, let S and S’ be subsets of A’s states, let IT and II’ be subsets of A’s
actions, and let u > 0 be a nonnegative real number. We say that a timed execution e
of A satisfies the upper bound

(S,1I) =% (S',11),
which we read as “(.5,II) leads to (S’,II') in time at most u,” iff for every 7 > 0,

if e[t] satisfies (.5, II)
then, for some j > 7 with ¢(5) < ¢(7) + w,

either e[j] satisfies (S’,II') or e[j] does not satisfy (5, 1I).

If ¢ 1s a strictly increasing function, meaning that successive states are assigned distinct
times, then this condition is equivalent to saying that if (S,II) is continuously true for
the next u time units, then (S',II') becomes true within the next u time units.

For notational convenience, we often omit reference to a set S or II when it is empty,
and we denote a singleton set {z} by z. For example, we write S 5% II' in place of
(S,II) 53 (S',II') when IT and S’ are empty. As another example, notice that if enabled(r)
is the set of states where the action is 7 is enabled, then enabled(w) <5 7 says that if
action 7 is continuously enabled for the next e time units, then 7 is performed within
time e.

In a similar manner, we say that e’ satisfies the strict upper bound

(S,1I) <z (S',11")

10

just as above, except that we replace the condition t(7) < ¢(z) + u with t(3) < t(z) + u.
Notice that when u = oo, this strict upper bound requires that (S,II) cannot be true
forever without (S’,II') becoming true, although there is no finite bound on the delay
until this event occurs. In contrast, we find it convenient to define (S,II) 53 (S',II')
to be true for any S,S’,II and II'. With this convention, these two conditions allow us
to express as extreme cases the classes of fair and unfair executions of an automaton,
respectively. Finally, as one would expect, increasing the upper bound u weakens the

conditions (5,1I) 53 (S',II') and (S,II) <3 (S, II').

5.2 Lower Bounds on Response Times

Consider an execution e in which 7 is continuously enabled. In this case, the upper bound
enabled(m) <5 m says that = will be performed at least once every e time units, and it
seems that a lower bound enabled(7) 25 7 ought to say that 7 will be performed at most
once every € time units. Consider, however, an execution e in which 7 is intermittently
enabled. In this case, the upper bound enabled(m) 55 7 says that 7 cannot remain enabled
for more than € time units without being performed, and it seems that a lower bound
enabled(m) 25 m ought to say that 7 must be enabled at least € time units before being
performed. Combining these remarks, enabled(w) 25 = should mean that = must be
enabled at least € time units between performances.

A natural way of capturing this intuition is to say that a timed execution e’ of A

satisfies the lower bound (S,II) .2} (S',II') iff for every 5 > 0,

if e[7] satisfies (S, 1)
then for some 7 < j with ¢(z) < t(5) —{

e[k] satisfies (S,II) for all k with 2 < k < 7, and
e[k] does not satisfy (S',II') for any k with 7 < k < j.

Consider once again the condition enabled(w) 25 m. Given an execution e’ with a strictly
increasing timing ¢ (meaning that each state is assigned a distinct time), this condition
says that in order for w to be performed at time 7, it must be enabled throughout the
time interval [T — €,7), and must not be performed in the interval (7 — ¢, 7). Notice, for
example, that it is perfectly acceptable for m to be performed at both times 7 — € and T,
as long as 7 is enabled throughout the intervening interval (and, in particular, in the state
at time 7 — € immediately following the first performance of).

While this definition is sufficient for our definition of bounded fairness in Section 6,
it does have one weakness that it easy to repair: it says that (S5, II) must hold for ! time
units before (S’,II') can hold, but suppose there are two, independently timed paths by
which (S’,II') might become true. For example, consider an automaton with a single
output action response and two independent input actions, fast-request and slow-request,
that enable the response action. The automaton has three states, including an initial
state start. The input actions fast-request and slow-request take each state to the states
fast and slow, respectively, and the output action response takes both fast and slow to
start again. Intwitively, fast-request and slow-request are high- and low-priority requests,
respectively, that response be performed: the delay between fast-request and response is
to be at least 5 time units, while the delay between slow-request and response is to be at

11

least 10 time units. We want to say that response may be performed only if the automaton
has been in the state fast for 5 time units or in the state slow for 10 time units, but the
definition of a lower bound given above does not let us express this in a natural way. This
i1s because it does not allow us to distinguish the performance of response via the state
fast from the performance of response via the state slow.

Such examples have led us to the following definition of a lower bound. Given a
nonnegative real number [, we say that a timed execution e’ of A satisfies the lower bound

(S,10) 2 (S, I1"),
which we read as “(S,II) leads to (S’,II') in time at least {,” iff for every j > 0,

if e[j — 1] satisfies (S,II) and e[j] satisfies (S’,IT')
then for some 7 < j with ¢(z) < t(5) —{

e[k] satisfies (S,II) for all k with 2 < k < 7, and
e[k] does not satisfy (S',II') for any k with 7 < k < j.

This definition recognizes the fact that (S’,Il') may become true via several computational
paths, and says that if it becomes true via the path satisfying (S,II), then (S,II) must
have been satisfied for the preceding [time units. Returning to the example above, notice
that this definition of a lower bound allows us to express the different timing requirements
with the conditions fast 25 response and slow ZX response.

Similarly, we say that e satisfies the strict lower bound
(5,10) 24 (', 1T')

just as above, except that we replace the condition ¢(z) < ¢(j)— lwith t(z) < t(3)-!. Again,
decreasing the lower bound ! weakens the conditions (S,II) .2} (S’,II') and (S,II) 3}
(S',IT").

5.3 Combining Upper and Lower Bounds

We can combine the upper and lower bound conditions given above into a single condition
as follows. We define the timing property

(S,1II) &y (S, 1I1")

to be the conjunction of the timing properties (S,1I) .2} (S',II) and (S,II) 53 (S',1I);
that is, a timed execution must satisfy both the upper and lower bounds. For example,
the condition enabled(w) %4 7 says that # must be enabled at least ! time units between
performances of 7, and that 7 cannot remain enabled from longer that u time units with-
out being performed Notice, by the way, that since the conditions (S,II) =% (S5',IT')
and (S,II) 2% (S',II') are equivalent to true (that is, they are valid), the condltlon
(S,II) =3 (S' IT') is equivalent to (S,II) &y (S’,II'), and the condition (5,1I) .2} (S',II')
is equivalent to (S,II) &3 (S',II'). We note that, in an analogous way, we can define
the conditions (S, II) &3 (“‘] (S',II), (S,II) & (S',1II), and (S,II) & (S',II). We use {I,u}
to denote any one of these intervals when its open or closed nature is unimportant. As
expected, enlarging the interval {l,u} weakens the the timing property.

12

Given a collection of timing properties P; for automata A;, Proposition 1 says that
the timing property P = [[P; for A =][A; can be viewed as the conjunction AP/ of
timing properties for A, where each P is the extension of the local property P; for A; to
a global property for A. The following proposition shows how to perform this extension
for the upper and lower bounds defined in this section.

Proposition 7: Let (A, P) =[[(A;, P;). Let S and S’ be subsets of A;’s states, and let II
and II' be subsets of A;’s actions. Define

S* = {s € states(A) : s|A; € S} and
S’ = {s € states(A) : s|A; € S'}.
If P, = (S,II) &yt (S',IT'), then P# = (S4,1I) & (574, IT").

6 Timing Properties: Boundmaps

With the notation just defined, it is now easy to capture our notion of bounded fairness,
the notion that a class C is given an infinite number of chances to perform an action, and
that the time between chances actually falls in some interval {l,u}. Given an automa-
ton A, a boundmap b for A is a mapping that maps each class C of part(A4) to an interval
b(C) = {l(C),u(C)} of the real line. Given an automaton A and a class C of part(A), we
denote by enabled(A, C) (or just enabled(C) when A is clear from context) the set of A’s
states in which some action of C is enabled. We often abuse notation and denote by b
both the boundmap b and the timing property

B, df /\ enabled (C) %3 C.

We refer to (A, b) as a time-bounded automaton, a special case of a timed-automaton.

Given that the definition of a boundmap is motivated by the definition of a fair execu-
tion, it is not surprising that the fair executions of an automaton A can be characterized
as the timed executions of a timed automaton (A,b) with a fair boundmap b. The fair
boundmap of A is the boundmap b defined by b(C) = [0, 00) for all C' € part(A). Notice
that if C' is continuously enabled from some point of an execution, then this boundmap
requires the eventual performance of an action in C, since some action of C' must be
performed before time oo.

Proposition 8: Let A be an automaton, and let b be the fair boundmap for A. Given
any timed execution e’ of A, e is a fair execution of A iff €’ is a timed execution of (A, d).

Similarly, we define the unfair boundmap of A as the boundmap b defined by b(C) = [0, 0]
for all C € part(A); the following is immediate.

Proposition 9: Let A be an automaton, and let b be the unfair boundmap for A. Given
any timed execution €’ of A, e is an execution of A iff €’ is a timed execution of (4, b).

13

These results show that the classes of fair and unfair computations can be understood in
terms of extreme cases of boundmaps.

There is a very simple relationship between the boundmap of a composition of timed
automata and the boundmaps of the individual component automata.

Proposition 10: Let A = [] A;. Suppose b; is a boundmap for A; for each i, and
suppose b is a boundmap for A defined by b(C) = b;(C) if C € part(A;). Then (A,b) =

Given this result, we define [](A;, b;) to be (A,b) where b is the boundmap defined as
stated in this proposition. This result together with Proposition 6 shows that our model
i1s a compositional model of time-bounded fair computation. Again, we can view the
composition [](A;, b;) in terms of extending local timing properties to global properties:

Proposition 11: Suppose (4,b) = [1(A;, b;). If Po = enabled(A;,C) %S C, then P2 =
enabled (A, C) %% C.

7 Solvability

In addition to describing implementations of concurrent systems, input-output automata
are useful for expressing specifications of such systems [LT87]. Accordingly, given two
(untimed) automata A and A’, we say that A solves A’ if they have the same external
actions—that is, in(A) = in(A’) and out(A) = out(A')—and every fair behavior of A
is a fair behavior of A’. Intuitively, the fair behaviors of A are the behaviors that can
be witnessed by an external observer of A—someone who cannot see the inner workings
of A, its internal actions. Since every behavior of A is a behavior of A’, any correctness
condition satisfied by the behaviors of A’ is satisfied by the behaviors of A as well. In
particular, any problem “solved” by A’ is also “solved” by A.

The definition of solvability has a natural extension to timed automata: given two
timed automata (A, P) and (A, P'), we say that (A, P) solves (A’, P') if they have the
same external actions and timed-behs(A, P) C timed-behs(A’, P'). As with the untimed
case, solvability for timed automata has properties that support hierarchical and modular
verification techniques. For example, an immediate result of the definition is that “solves”
is a transitive relation:

Proposition 12: If (A, P) solves (A’, P') and (A', P') solves (A", P"), then (A, P) solves
(14”7 PII)‘

One consequence of this result is that we can prove that an implementation (A, P)
satisfies its specification (A’, P') by constructing a sequence of intervening models (A, P) =
(Ao, Po), ..., (Ar, Pr) = (4', P') and proving that (A4;, P;) solves (A;y1, Piy1) for every 1.
This means that hierarchical proof strategies are possible in this model, where each (A4;, F;)
1s a model of the system at increasingly higher levels of conceptual abstraction. Elsewhere
[LA90], refinement mappings have been used to construct this sort of hierarchical proof
in this model.

Notice that if P is in some sense a stronger timing property than P’, then is should
immediately follow that (A, P) solves (A, P'). Unfortunately, it is difficult to give general

14

syntactic conditions on timing properties P and P’ that imply that P is stronger than P’.
In the case of boundmaps, however, such a characterization is quite simple. Given two
boundmaps b and b’ with the same domain (that is, b and b’ are defined on the same sets
of classes C), we define b C V' if b(C) C b'(C) for all C. Intuitively b makes stronger
requirements than b'. It is easy to see that A with the stronger boundmap b solves A with
a weaker boundmap b

Proposition 13: For any automaton A, if b C b’ then (A, b) solves (A4, b').

Finally, since—like the untimed input-output model—this model of timed computa-
tion is a compositional model, one technique for proving that one composition of timed
automata solves another composition is to prove that each component of the first compo-
sition solves the corresponding component of the second:

PI‘OpOSitiOIl 14: Suppose (A, P) = HiGI(Ai7 PZ) and (AI, PI) = HiGI(A:Ii; PZI) If (A“ PZ)
solves (A, P!) for every ¢ € I, then (A, P) solves (A', P').

8 Conclusion

We have presented a model for reasoning about time in concurrent systems. Our de-
cision to base the model on the input-output automaton model was motivated by (in
our judgment) the naturalness and utility of the model in the context of asynchronous
concurrent systems. The model has been used extensively to model concurrency control
and recovery in transaction systems, resource allocation, concurrent data structures, net-
work communication, and other problems (e.g., [LT89, LM88, LMWF88, Blo87, WLLS88,
LMF88, Her88]). It has been used to specify these problems, to describe and analyze
algorithmic solutions, and to prove lower bounds and impossibility results. The model
has many natural properties (such as compositionality), and this work was motivated
by our desire to find an equally intuitive generalization to real-time concurrent systems.
The simple definition of a timed execution results in a modular, compositional model
of timed concurrent computation; and in the definition of a boundmap we feel we have
found the natural generalization of both fair and unfair executions of the input-output
automaton model. We note that our goal has been only to devise a natural semantic
model of timed computation. We have not considered logics for expressing general timing
properties—although we feel the “leads to” notation does cover a lot of the interesting
timing constraints—nor have we considered proof systems for such logics. It appears,
however, that our model is a suitable semantic model for most logics and proofs systems
appearing in the literature (such as [HLP90, AH90, ACD90]). However, simple proof

techniques for timed automata have already been investigated [LA90].

References

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time
systems. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science, pages 414-425. IEEE, June 1990.

[AH90]

[AL89]

[Blo87]

[CM84]

[Dil88]

[Frag86]
[GL90]

[Her88]

[HLP90]

[Hoa85]

[Jon87]

[KSdR+88]

[LA9O]

[Lam91]

[Lew90]

15

Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expres-
siveness. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science, pages 390-401. IEEE, June 1990.

Hagit Attiya and Nancy Lynch. Time bounds for real-time process control in the
presence of timing uncertainty. Technical Memo MIT/LCS/TM-403, MIT Labora-
tory for Computer Science, July 1989.

Bard Bloom. Constructing two-writer atomic registers. In Proceedings of the 6th
Annual ACM Symposium on Principles of Distributed Computing, pages 249-259.
ACM, August 1987.

K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACM
Transactions on Programming Languages and Systems, 6(4):632—-646, 1984.

David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. PhD thesis, Department of Computer Science, Carnegie Mel-
lon University, February 1988. Available as Technical Report CMU-CS-88-119.

Nissim Francez. Fairness. Springer-Verlag, Berlin, 1986.

Richard Gerber and Insup Lee. CCSR: A calculus for communicating shared re-
sources. In J. C. M. Baeten and J. W. Klop, editors, Lecture Notes in Computer
Science, volume 458, Proceedings of Concur ’90, pages 263—-277. Springer-Verlag,
August 1990.

Maurice Herlihy. Impossibility and universality results for wait-free synchronization.
In Proceedings of the 7th Annual ACM Symposium on Principles of Distributed
Computing, pages 276-290. ACM, August 1988.

Eyal Harel, Orna Lichtenstein, and Amir Pnueli. Explicit clock temporal logic.
In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science,
pages 401-413. IEEE, June 1990.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
Englewood Cliffs, New Jersey, 1985.

Bengt Jonsson. Compositional Verification of Distributed Systems. PhD thesis,
Uppsala University, Uppsala, Sweden, 1987. Published by Direkt Offset, Nystrém
& Co AB, Uppsala.

R. Koymans, R. K. Shyamasundar, W. P. de Roever, R. Gerth, and S. Arun-
Kumar. Compositional semantics for real-time distributed computing. Information
and Computation, 79:210-256, 1988.

Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing properties.
In Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing, pages 265—280. ACM, August 1990.

Leslie Lamport. A temporal logic of actions. Research Report 57, DEC Systems
Research Center, January 1991.

Harry R. Lewis. A logic of concrete time intervals. In Proceedings of the 5th Annual
IEEFE Symposium on Logic in Computer Science, pages 380-389. IEEE, June 1990.
Also available at Harvard Technical Report TR-07-90.

[LF81]

[LM88]

[LMF88]

[LMWF88]

[LT87]

[LT89]

[Mil80]

[MT90]

[SL87]

[Tut87]

[WLL88]

[Yi90]

16

Nancy A. Lynch and Michael J. Fischer. On describing the behavior and implemen-
tation of distributed systems. Theoretical Computer Science, 13(1):17-43, January
1981.

Nancy A. Lynch and Michael Merritt. Introduction to the theory of nested transac-
tions. Theoretical Computer Science, 62:123-185, 1988. Earlier versions appeared
in Proceedings of the International Conference on Database Theory, 1986, and as

MIT Technical Report MIT/LCS/TR-367.

Nancy A. Lynch, Yishay Mansour, and Alan Fekete. Data link layer: Two impos-
sibility results. In Proceedings of the 7Tth Annual ACM Symposium on Principles of
Distributed Computing, pages 149-170. ACM, August 1988. Also available as MIT
Technical Report MIT/LCS/TM-355.

Nancy A. Lynch, Michael Merritt, William E. Weihl, and Alan Fekete. A theory
of atomic transactions. In Proceedings of the International Conference on Database
Theory, 1988. Also available as MIT Technical Memo MIT/LCS/TM-362.

Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 137-151. ACM, August 1987. A full version is available
as MIT Technical Report MIT/LCS/TR-387.

Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3), 1989. Also available as MIT Technical Memo MIT/LCS/TM-
373.

Robin Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science 92. Springer-Verlag, Berlin, 1980.

Faron Moller and Chris Tofts. A temporal calculus of communicating systems. In
J. C. M. Baeten and J. W. Klop, editors, Lecture Notes in Computer Science, volume
458, Proceedings of Concur ’90, pages 401-415. Springer-Verlag, August 1990.

A.Udaya Shankar and Simon S. Lam. Time-dependent distributed systems: Proving
safety, liveness and real-time properties. Distributed Computing, pages 61-79, 1987.

Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms. Master’s
thesis, Massachusetts Institute of Technology, Laboratory for Computer Science,

April 1987. Available as MIT Technical Report MIT/LCS/TR-387.

Jennifer L. Welch, Leslie Lamport, and Nancy A. Lynch. A lattice-structured proof
of a minimum spanning tree algorithm. In Proceedings of the Tth Annual ACM
Symposium on Principles of Distributed Computing, pages 28-43. ACM, August
1988.

Wang Yi. Real-time behaviour of asynchronous agents. In J. C. M. Baeten and
J. W. Klop, editors, Lecture Notes in Computer Science, volume 458, Proceedings
of Concur 90, pages 502-520. Springer-Verlag, August 1990.

