
Time-Constrained Automata�(Extended Abstract)Michael MerrittAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974merritt@research.att.com Francesmary ModugnoSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213fmm@cs.cmu.eduMark R. TuttleDEC Cambridge Research LabOne Kendall Sq., Bldg. 700Cambridge, MA 02139tuttle@crl.dec.comAbstractIn this paper, we augment the input-output automaton model in order to reasonabout time in concurrent systems, and we prove simple properties of this augmen-tation. The input-output automata model is a useful model for reasoning aboutcomputation in concurrent and distributed systems because it allows fundamentalproperties such as fairness and compositionality to be expressed easily and naturally.A unique property of the model is that systems are modeled as the composition ofautonomous components. This paper describes a way to add a notion of time tothe model in a way that preserves these properties. The result is a simple, com-positional model for real-time computation that provides a convenient notation forexpressing timing properties such as bounded fairness.1 IntroductionThis paper augments the input-output automaton model [LT87] with a notion of time thatallows us to reason about timed behaviors, especially behaviors in real-time systems wherereal-time constraints on systems' reaction times must be satis�ed. The (untimed) input-output automaton model is a natural model of computation that has been used extensivelyto study concurrent systems. The model has many appealing properties. For example,it is especially helpful when describing the interfaces between system components, andit provides a clean compositional model for fair computation. The motivation for ourwork is to �nd an equally intuitive generalization of the model to timed computation thatpreserves these properties. Our generalization results in a compositional model for timed�To appear in Proceedings of the Second International Conference on Concurrency Theory (Con-cur'91), Amsterdam, August, 1991.

2computation with a time-bounded notion of fair computation in which many interestingreal-time constraints can be described simply. This model has been used to study problemsin real-time systems, and simple proof rules have been developed for it [LA90, AL89].The input-output automaton model is unique in that it is especially well-suited formodeling concurrent systems as the composition of autonomous components. A systemcomponent is autonomous if it has complete control over its generation of output. Moreprecisely, its generation of output is a function of its own local state, not the globalstate, and cannot be blocked simply because no other system component is ready toreceive the output. Our intuition is that these autonomous components represent thephysically realizable components of the system: a network node can transmit a messageover the network independent of the state of other nodes. Any natural model of concurrentcomputation should make it easy to describe systems as the composition of autonomouscomponents.While most models contain a submodel that supports such descriptions, these modelsare so expressive that they include notions of composition that have no correspondence tophysical reality, and this unwanted expressive power complicates the models' semanticsconsiderably. One example is CSP [Hoa85, KSdR+88]. In CSP, each process P has analphabet of actions it can perform, and the parallel composition P jjQ of two processes Pand Q requires that any action a in the intersection of their alphabets must be performedsimultaneously by both if it is performed at all. In part because there is no semanticdistinction between input and output actions in CSP, there is no notion of any individualprocess determining the performance of an action, and hence there is (in general) nonotion of autonomy in the model. The parallel composition P jjQ of P and Q enables Qto keep P from performing any action a in the intersection of their alphabets simply byrefusing to perform a itself. Thinking of Q as P 's environment, this means that any actionthe environment can observe is an action the environment can synchronize with and block.This makes some problems almost too easy to solve. For example, consider the solution tothe Dining Philosopher's problem in [Hoa85]. Here the philosophers are described in termsof actions like picking up and setting down forks, and the philosophers are placed in anenvironment (the de�nitions of the forks) that can simply block a philosopher when it triesto pick up a fork. The philosophers have no autonomy over their actions, and deadlock canbe avoided by composing with any process whose de�nition is simply a description of thedesired behaviors (cf. [CM84]). Because of the powerful operators in CSP, specifying anacceptable solution to a problem can also require more than specifying the desired externalbehavior (or traces). In contrast, in the input-output automaton model, it is natural toaccept as a solution to a problem any system with the desired external behavior that canbe expressed in the model.Input-output automata can be viewed as a restriction of CSP and related models[Mil80, Yi90, MT90, GL90] to a simple submodel, with a simple semantics, that capturesthe notion of autonomy. A primary di�erence between the input-output automaton modeland these models is that the former makes a clear distinction between input and outputactions. In this model, each system component is modeled as an automaton with actionslabeling the state transitions. These actions are partitioned into input and output actions.This partition is used to state two restrictions that guarantee that system componentsare autonomous. First, automata are input-enabled , which means that any input action acan be performed in any state s (there is a transition from s labeled a). Second, two

3automata P and Q may be composed (essentially by identifying actions, as describedabove) only when the output actions of P and Q are disjoint. Consequently, P hascomplete control over its generation of output in the composition of P and Q: if a is anoutput action of P , then it must be an input action of Q (if it is an action of Q at all);and since Q is input-enabled, it is willing to accept a as input in any state. Early workinvolving continually enabled inputs appears in [LF81], and more recently in [Dil88].A second di�erence is that fairness plays an important role in the input-output automa-ton model. A system computation is fair if every system component is given the chanceto take a step in�nitely often. The de�nition of fairness together with the weak (relativeto CSP) composition operator result in a simple compositional model of fair concurrentcomputation. In this model automata generate fair behaviors, and when automata arecomposed, the fair behaviors of the composition are a composition of the fair behaviors ofthe components. De�nitions of fairness in the same spirit appear in [LF81, Fra86, Jon87].There are two natural approaches to extending the input-output automaton model toinclude timing information. The �rst is to record time and timing constraints directlyin the automaton states and transition relation. This approach is exempli�ed by thework of Shankar and Lam [SL87] (and also [HLP90]), in which time is modeled as acomponent of the system state, and predicates on the time control system executions.The second approach is to model time and timing constraints as external conditionsimposed on the executions of standard input-output automata. This approach is adoptedhere. A timed execution is essentially an ordered pair (e; t), where e is the execution of aninput-output automaton, and t is a function assigning times to the events occurring in e(cf. [AH90, Lam91]). A timed automaton is a pair (A;P) consisting of an input-outputautomaton A and a predicate P on the timed executions of A.Separating time from the local state makes it easy to de�ne a clean notion of automatoncomposition. If instead time is recorded in the local state, then|in the straightforwardcomposition of such automata|the times in the local states will bear little relation to oneanother. Some additional axioms or rules for automaton composition must be imposedto keep the times more or less synchronized. Furthermore, there is no longer one singlevariable in the state of the composition that records the current time, but rather a tuple ofvariables, and the complexity increases with additional composition. On the other hand,if time is externally assigned to events in a computation via a timing function t as is donehere, then there is a simple syntactic mechanism for distinguishing the time componentthat allows a simple de�nition of composition in which components are synchronized.After augmenting the input-output model to include a notion of time, a timing condi-tion called a boundmap is de�ned, essentially a bounded fairness condition that restrictsthe amount of time that may elapse between consecutive steps of a system component.1Both the fair and unfair computations of the untimed input-output model are naturalspecial cases of such boundmaps. One of the important results in this paper is thatour augmentation of the input-output automaton model to incorporate time is a com-positional model for timed computations. The fact that it is a compositional model forfair computation now follows as a special case. This modularity is one of the primaryadvantages of our work.The rest of this paper is organized as follows. In Section 2 we review the input-output1Lewis [Lew90] also assigns bounds to state transitions. His motivation is quite di�erent from ours,but we can generalize boundmaps slightly and capture his assignments.

4automaton model. In Section 3 we augment the model to include time, and in Section 4we de�ne the composition of timed automata. In Section 5 we de�ne a simple notation forreal-time constraints, and in Section 6 we de�ne boundmaps as a special case. Finally, inSection 7 we de�ne what it means for one timed automaton to solve a problem describedby another timed automaton. Due to space limitations, we have omitted the proofs ofour results. We have also omitted any signi�cant examples of how to use our framework,but examples do appear in [LA90, AL89]. A full version of this paper will contain bothproofs and examples.2 Input-Output AutomataAn input-output automaton A is de�ned by the following four components:� A set of states, states(A), (possibly an in�nite set) with a subset of start states,start(A).� A set of actions, acts(A), partitioned into sets of input, output and internal actions,in(A), out(A), and int(A), respectively. The output and internal actions are calledthe locally-controlled actions, and the input and output actions are called externalactions, denoted ext(A).� A transition relation steps(A) is a set of (state,action,state) triples, such that forany state s0 and input action �, there is a transition (s0; �; s) for some state s.� An equivalence relation part(A) partitioning the locally-controlled actions of A.We interpret each class of the partition as the set of locally-controlled actions ofseparate, autonomous components of the system being modeled by the automaton.An execution of A is a �nite or in�nite sequence s0�1s1::: of alternating states andactions such that s0 is a start state, (si�1; �i; si) is a transition of A for all i, and if e is�nite then e ends with a state. The schedule of an execution is the subsequence of actionsappearing in e. The behavior of a schedule or execution � is the subsequence of externalactions appearing in �. An action � is enabled in state s0 if there is a transition (s0; �; s)for some state s; otherwise � is disabled. Since every input action is enabled in everystate, automata are said to be input-enabled.An execution of a system is fair if each component is given a chance to take a stepin�nitely often. Of course, a component can't take a step when given the chance if none ofits actions are enabled. Formally, an execution e of automaton A is fair if for each class Cof part(A)|that is, for each system component|the following two conditions hold:� If e is �nite, then no action of C is enabled in the �nal state of e.� If e is in�nite, then either actions from C appear in�nitely often in e, or states inwhich no action of C is enabled appear in�nitely often in e.Automata can only be composed if their output actions are disjoint, and they do notshare any internal actions. This restriction, together with the input-enabling condition,preserves the autonomy of independent components within a composition. To capture

5this restriction we de�ne the action signature of an automaton A, denoted sig(A), to bethe triple (in(A); out(A); int(A)). In general, an action signature S is a triple consistingof three disjoint sets in(S), out(S), and int(S). The union of these sets is denoted byacts(S).The action signatures fSi : i 2 Ig are compatible if for all i; j 2 I out(Si)\out(Sj) = ;and int (Si) \ acts(Sj) = ;. The composition S = Qi2I Si of compatible action signaturesfSi : i 2 Ig is de�ned to be the action signature with in(S) = Si2I in(Si) � Si2I out(Si),out(S) = Si2I out(Si), and int(S) = Si2I int(Si).The composition A = Qi2I Ai of a set fAi : i 2 Ig of compatible automata (automatawith compatible action signatures) is de�ned to be the automaton with� states(A) = Qi2I states(Ai),� start(A) = Qi2I start(Ai), � sig(A) = Qi2I sig(Ai),� part(A) = Si2I part(Ai), and� steps(A) equal to the set of triples (faig ; �; fa0ig) such that for all i 2 I{ if � 2 acts(Ai) then (ai; �; a0i) 2 steps(Ai), and{ if � 62 acts(Ai) then ai = a0i.(The products states(A) and start(A) are standard Cartesian products.) Since the au-tomata Ai are input-enabled, so is their composition, and hence their composition is indeedan automaton. Notice that all output actions of an automaton Ai (some representing com-munication with other automata Aj) become output actions of the composition, and notinternal actions. The de�nition of an operation internalizing output actions is straightfor-ward. See [LT87, Tut87] for a more complete exposition of the model that includes suchextensions.3 Timed AutomataWe introduce time into the model by introducing function t assigning times ti to thestates si appearing in executions e = s0�1s1 : : :; actually, t maps the indices i to times ti.A timing t is a mapping from a nonempty (possibly in�nite) pre�x of 0; 1; 2; : : : to thenonnegative reals satisfying� t is nondecreasing: i � j implies t(i) � t(j)� t is unbounded: for every interval [t1; t2] of the real line, t(i) 2 [t1; t2] for at most�nitely many i.The length of an execution e is the number of actions (and hence state transitions) ap-pearing in e. The length of a timing t is k if t's domain is the �nite set f0; : : : ; kg, andin�nite if t's domain is the entire set of nonnegative integers.A timed execution of an automaton A is an (untimed) execution e of A together with atiming t of the same length; we denote this timed execution by et. In other words, a timedexecution is an execution together with a timing assigning times to states appearing in theexecution. Notice that a timing also induces an assignment of times to actions. Intuitively,

6since the action �i is the cause of the (instantaneous) transition from state si�1 to si, andsince the system entered the state si at time t(i), we can view the action �i|or, perhapsmore accurately, the completion of �i|as having occurred at time t(i). In fact, whent(0) = 0, it is convenient to represent the timed execution et by s0(�1; t1)s1(�2; t2)s2 : : : ;where ti = t(i) (see [AL89]).Timed schedules and behaviors of A are de�ned in a similar way. A timed sequence �tconsists of a sequence � of actions of A and a timing t of the same length, giving an initialtime t(0) and a time for each action in �. When t(0) = 0, it is convenient to denotethe timed sequence �t by (�1; t1)(�2; t2) : : : ; where � = �1�2 : : : and ti = t(i). A timedschedule of A is a timed sequence �t where � is a schedule of A, and a timed behavior of Ais a timed sequence �t where � is a behavior of A.A timing property P for an automaton A is any predicate on timed executions of A:given any timed execution et of A, the predicate P is either true or false of et. Forexample, a timing property could describe a desirable property that the timed executionsof an automaton should exhibit.A timed automaton is an ordered pair (A;P) consisting of an automaton A and atiming property P for A. Our intuition is that the automaton A describes the possi-ble computations of the system, and the property P describes how these computationsprogress with time.A timed execution of (A;P) is a timed execution et of A that satis�es P . We denotethe set of timed executions of (A;P) by timed-execs(A;P). Given a timed execution etof (A;P), the timed schedule obtained by deleting the states appearing in e is denotedby sched(et). For example, when t(0) = 0, if et = s0(�1; t1)s1(�2; t2) : : :, then sched(�t) =(�1; t1)(�2; t2) : : :. Similarly, given a timed schedule �t of (A;P), the timed behaviorobtained by deleting the internal actions of A appearing in � is denoted by beh(�t). Asa shorthand, we write beh(et) = beh(sched(et)). The set timed-scheds(A;P) of timedschedules of (A;P) is the set of all timed schedules sched(et) of all timed executions et of(A;P). Similarly, the set timed-behs(A;P) of timed behaviors of (A;P) is the set of alltimed behaviors beh(et) of all timed executions et of (A;P).4 Composition of Timed AutomataTimed automata can be composed to yield other timed automata. Composition has theproperty that the behavior of a composition is a composition of the behaviors of thecomponents. This compositionality is an important aspect of our model.Like untimed automata, the composition of timed automata is de�ned only for com-patible automata. Unlike untimed automata, however, composition is de�ned only for�nite collections of automata. This guarantees that timings in the resulting compositionare unbounded: if we try to compose an in�nite collection of automata (Ai; Pi) whereeach Pi requires that an action is performed at time 1, then an in�nite number of actionsare performed at time 1 in an execution of the composition, violating the requirementthat timings are unbounded. In this paper, compositions are assumed to be compositionsof �nite collections of compatible automata.To motivate the de�nition of timed composition, we note that every execution e ofan untimed composition A = QAi induces an execution ejAi of Ai: if e = s0�1s1 : : :,

7then ejAi is the result of deleting �jsj whenever �j is not an action of Ai and replacing theremaining global states sj with Ai's local state sjjAi in sj. Intuitively, ejAi is the sequenceof state transitions through which Ai moves during the execution e of A. Similarly,every timed execution et of A induces a timed execution etjAi of Ai: when t(0) = 0, ifet = s0(�1; t1)s1(�2; t2) : : :, then etjAi is the result of deleting (�j; tj)sj whenever �j is notan action of Ai and replacing the remaining sj with sjjAi. Given a timed sequence �t ofactions of A, the timed sequence �tjAi of actions of Ai is derived similarly.The composition Q(Ai; Pi) of a �nite collection of timed automata (Ai; Pi) is the timedautomaton (A;P) where� A = QAi is the composition of the Ai, and� P = QPi is the timing property for A that is true of a timed execution et i� Pi istrue of etjAi for every i.Another way to formulate the de�nition of QPi is to extend each local property Pi toa global property, and then to de�ne QPi to be the conjunction of the resulting globalproperties. More precisely, given a collection of timed automata (Ai; Pi), let A = QAiand de�ne P Ai to be the timing property for A de�ned as follows: a timed execution etof A satis�es P Ai i� etjAi satis�es Pi. We now have the following:Proposition 1: If (A;P) = Q(Ai; Pi), then P � VP Ai .It is interesting to explore the relationship between the global executions of Q(Ai; Pi)and the local executions of the (Ai; Pi). First of all, it is easy to see that every executionof Q(Ai; Pi) induces an execution of (Ai; Pi):Proposition 2: Let (A;P) = Q(Ai; Pi). If et is a timed execution of (A;P), then etjAiis a timed execution of (Ai; Pi) for every i.On the other hand, we can prove a kind of converse:Proposition 3: Let (A;P) = Q(Ai; Pi), let e be any sequence of alternating states andactions of A, and let t be any timing of the same length. If etjAi is a timed execution of(Ai; Pi) for every i, then et is a timed execution of (A;P).More generally, one might wonder when it is possible to take a collection of arbitrary timedexecutions etii of the (Ai; Pi) and \paste" them together to construct a timed execution etof the composition Q(Ai; Pi) such that etjAi = etii . In the case of untimed automata, ifthere is a total ordering � of the actions appearing in the ei such that �jAi = sched(ei)for every i, then there is an execution e of QAi such that � = sched(e) and ejAi = ei forevery i. In the case of timed automata, the existence of a global timing t consistent withthe local timings ti is also required:Proposition 4: Let (A;P) = Q(Ai; Pi), and suppose etii is a timed execution of (Ai; Pi)for every i. If there exists a timed sequence �t of actions of A such that �tjAi = sched(etii)for every i, then there exists a timed execution et of (A;P) such that �t = sched(et) andetjAi = etii for every i.

8Analogous results hold for schedules and behaviors:Proposition 5: If et is a timed execution of Q(Ai; Pi), then sched(et)jAi = sched(etjAi)and beh(et)jAi = beh(etjAi).Finally, we can use these results to prove the main result of this section: that our modelis a compositional model of timed behavior. In other words, the observable behavior ofa composition of timed automata is a composition of the observable behaviors of thecomponent timed automata. First, we must de�ne this composition of behaviors. Let(A;P) = Q(Ai; Pi), and de�ne Y timed-execs (Ai; Pi)to be the set of et where e is a sequence of alternating states and actions of A and t is atiming of the same length such that etjAi 2 timed-execs (Ai; Pi) for each i. The de�nitionsof Q timed-scheds(Ai; Pi) and Q timed-behs(Ai; Pi) are the obvious analogs. We can provethe following:Proposition 6: If (A;P) = Qi2I(Ai; Pi), then1. timed-execs (A;P) = Qi2I timed-execs(Ai; Pi),2. timed-scheds(A;P) = Qi2I timed-scheds(Ai; Pi), and3. timed-behs(A;P) = Qi2I timed-behs(Ai; Pi).5 Timing Properties: Response TimesThe idea of being \fair" to each component in a composition of automata comes uprepeatedly in the theory of input-output automata. Informally, we view each class C inthe partition of an automaton's locally-controlled actions as the locally-controlled actionsof a single component in the system being modeled by the automaton. Being fair to eachsystem component means being fair to each class of actions. This means each class isgiven an in�nite number of chances to perform an action. On each chance, either someaction of C is enabled and is performed, or no action of C is enabled and this class mustpass on its chance to perform an action. More than just giving each class C an in�nitenumber of chances to perform an action from C, we might require that the time betweenchances actually falls in some interval fl; ug. What we actually de�ne is a bound on theelapsed time from the moment an action is enabled to the time it is performed. Sincethis is really a special case of bounding response times, the time that elapses between twoevents, we �rst de�ne a simple notion for bounding response times, and return to boundedfairness in Section 6. This more general de�nition is useful in its own right when we arespecifying desired response times at a level of abstraction where the ultimate partitioningof the system into components is not yet apparent (or desired).To begin with an example, suppose one requires that the time elapsing between arequest for a resource and the satisfaction of that request not exceed time �. In order tobe able to respond to requests in a timely manner, the system must be given the chance

9(or time) to respond. For example, if a user is allowed to withdraw a request beforeit is ful�lled, then we might weaken our requirement to say that if a request remainsunful�lled for time �, then it will be ful�lled within that time (that is, a request cannotremain unful�lled for longer than time �). We want to be able to capture statements ofthe form \if condition X holds for enough time, then condition Y becomes true." Onthe other hand, other considerations may require or depend upon certain response timestaking more than a certain amount of time: \condition X must hold for enough timebefore condition Y becomes true." These considerations motivate us to formulate generalnotation for specifying upper and lower bounds on response time.In our case, the conditions X and Y of interest are that the system is in a certainstate or has performed a certain action. Let A be an automaton, let S be a subset of A'sstates and � be a subset of A's actions. We denote by (S;�) the event (or condition)corresponding to entering a state in S or performing an action in �. Given an executione = s0�1 : : :, we denote the �nite pre�x s0�1 : : : sk of e by e[k]. A �nite pre�x e[k] satis�es(S;�) i�� k = 0 and s0 2 S, or� k � 0 and either sk 2 S or �k 2 �.Intuitively, (S;�) is true at time k if either the state entered at time k is in S or theaction performed at time k (implying that k > 0) is in �.5.1 Upper Bounds on Response TimesLet A be an automaton, let S and S 0 be subsets of A's states, let � and �0 be subsets of A'sactions, and let u > 0 be a nonnegative real number. We say that a timed execution etof A satis�es the upper bound (S;�) �u; (S 0;�0);which we read as \(S;�) leads to (S 0;�0) in time at most u," i� for every i � 0,if e[i] satis�es (S;�)then, for some j > i with t(j) � t(i) + u,either e[j] satis�es (S 0;�0) or e[j] does not satisfy (S;�).If t is a strictly increasing function, meaning that successive states are assigned distincttimes, then this condition is equivalent to saying that if (S;�) is continuously true forthe next u time units, then (S 0;�0) becomes true within the next u time units.For notational convenience, we often omit reference to a set S or � when it is empty,and we denote a singleton set fxg by x. For example, we write S �u; �0 in place of(S;�) �u; (S 0;�0) when � and S 0 are empty. As another example, notice that if enabled (�)is the set of states where the action is � is enabled, then enabled (�) ��; � says that ifaction � is continuously enabled for the next � time units, then � is performed withintime �.In a similar manner, we say that et satis�es the strict upper bound(S;�) <u; (S 0;�0)

10just as above, except that we replace the condition t(j) � t(i) + u with t(j) < t(i) + u.Notice that when u = 1, this strict upper bound requires that (S;�) cannot be trueforever without (S 0;�0) becoming true, although there is no �nite bound on the delayuntil this event occurs. In contrast, we �nd it convenient to de�ne (S;�) �1; (S 0;�0)to be true for any S; S 0;� and �0. With this convention, these two conditions allow usto express as extreme cases the classes of fair and unfair executions of an automaton,respectively. Finally, as one would expect, increasing the upper bound u weakens theconditions (S;�) �u; (S 0;�0) and (S;�) <u; (S 0;�0).5.2 Lower Bounds on Response TimesConsider an execution e in which � is continuously enabled. In this case, the upper boundenabled (�) ��; � says that � will be performed at least once every � time units, and itseems that a lower bound enabled (�) ��; � ought to say that � will be performed at mostonce every � time units. Consider, however, an execution e in which � is intermittentlyenabled. In this case, the upper bound enabled (�) ��; � says that � cannot remain enabledfor more than � time units without being performed, and it seems that a lower boundenabled (�) ��; � ought to say that � must be enabled at least � time units before beingperformed. Combining these remarks, enabled (�) ��; � should mean that � must beenabled at least � time units between performances.A natural way of capturing this intuition is to say that a timed execution et of Asatis�es the lower bound (S;�) �l; (S 0;�0) i� for every j > 0,if e[j] satis�es (S 0;�0)then for some i < j with t(i) � t(j)� le[k] satis�es (S;�) for all k with i � k < j, ande[k] does not satisfy (S 0;�0) for any k with i < k < j.Consider once again the condition enabled (�) ��; �. Given an execution et with a strictlyincreasing timing t (meaning that each state is assigned a distinct time), this conditionsays that in order for � to be performed at time � , it must be enabled throughout thetime interval [� � �; �), and must not be performed in the interval (� � �; �). Notice, forexample, that it is perfectly acceptable for � to be performed at both times � � � and � ,as long as � is enabled throughout the intervening interval (and, in particular, in the stateat time � � � immediately following the �rst performance of �).While this de�nition is su�cient for our de�nition of bounded fairness in Section 6,it does have one weakness that it easy to repair: it says that (S;�) must hold for l timeunits before (S 0;�0) can hold, but suppose there are two, independently timed paths bywhich (S 0;�0) might become true. For example, consider an automaton with a singleoutput action response and two independent input actions, fast-request and slow-request ,that enable the response action. The automaton has three states, including an initialstate start . The input actions fast-request and slow-request take each state to the statesfast and slow , respectively, and the output action response takes both fast and slow tostart again. Intuitively, fast-request and slow-request are high- and low-priority requests,respectively, that response be performed: the delay between fast-request and response isto be at least 5 time units, while the delay between slow-request and response is to be at

11least 10 time units. We want to say that response may be performed only if the automatonhas been in the state fast for 5 time units or in the state slow for 10 time units, but thede�nition of a lower bound given above does not let us express this in a natural way. Thisis because it does not allow us to distinguish the performance of response via the statefast from the performance of response via the state slow .Such examples have led us to the following de�nition of a lower bound. Given anonnegative real number l, we say that a timed execution et of A satis�es the lower bound(S;�) �l; (S 0;�0);which we read as \(S;�) leads to (S 0;�0) in time at least l," i� for every j > 0,if e[j � 1] satis�es (S;�) and e[j] satis�es (S 0;�0)then for some i < j with t(i) � t(j)� le[k] satis�es (S;�) for all k with i � k < j, ande[k] does not satisfy (S 0;�0) for any k with i < k < j.This de�nition recognizes the fact that (S 0;�0) may become true via several computationalpaths, and says that if it becomes true via the path satisfying (S;�), then (S;�) musthave been satis�ed for the preceding l time units. Returning to the example above, noticethat this de�nition of a lower bound allows us to express the di�erent timing requirementswith the conditions fast �5; response and slow �10; response.Similarly, we say that et satis�es the strict lower bound(S;�) >l; (S 0;�0)just as above, except that we replace the condition t(i) � t(j)�l with t(i) < t(j)�l. Again,decreasing the lower bound l weakens the conditions (S;�) �l; (S 0;�0) and (S;�) >l;(S 0;�0).5.3 Combining Upper and Lower BoundsWe can combine the upper and lower bound conditions given above into a single conditionas follows. We de�ne the timing property(S;�) [l;u]; (S 0;�0)to be the conjunction of the timing properties (S;�) �l; (S 0;�) and (S;�) �u; (S 0;�);that is, a timed execution must satisfy both the upper and lower bounds. For example,the condition enabled (�) [l;u]; � says that � must be enabled at least l time units betweenperformances of �, and that � cannot remain enabled from longer that u time units with-out being performed. Notice, by the way, that since the conditions (S;�) �1; (S 0;�0)and (S;�) �0; (S 0;�0) are equivalent to true (that is, they are valid), the condition(S;�) �u; (S 0;�0) is equivalent to (S;�) [0;u]; (S 0;�0), and the condition (S;�) �l; (S 0;�0)is equivalent to (S;�) [l;1]; (S 0;�0). We note that, in an analogous way, we can de�nethe conditions (S;�) (l;u]; (S 0;�), (S;�) (l;u); (S 0;�), and (S;�) [l;u); (S 0;�). We use fl; ugto denote any one of these intervals when its open or closed nature is unimportant. Asexpected, enlarging the interval fl; ug weakens the the timing property.

12Given a collection of timing properties Pi for automata Ai, Proposition 1 says thatthe timing property P = QPi for A = QAi can be viewed as the conjunction ^P Ai oftiming properties for A, where each P Ai is the extension of the local property Pi for Ai toa global property for A. The following proposition shows how to perform this extensionfor the upper and lower bounds de�ned in this section.Proposition 7: Let (A;P) = Q(Ai; Pi). Let S and S 0 be subsets of Ai's states, and let �and �0 be subsets of Ai's actions. De�neSA = fs 2 states(A) : sjAi 2 Sg andS 0A = fs 2 states(A) : sjAi 2 S 0g :If Pi � (S;�) fl;ug; (S 0;�0), then P Ai � (SA;�) fl;ug; (S 0A;�0).6 Timing Properties: BoundmapsWith the notation just de�ned, it is now easy to capture our notion of bounded fairness,the notion that a class C is given an in�nite number of chances to perform an action, andthat the time between chances actually falls in some interval fl; ug. Given an automa-ton A, a boundmap b for A is a mapping that maps each class C of part(A) to an intervalb(C) = fl(C); u(C)g of the real line. Given an automaton A and a class C of part(A), wedenote by enabled (A;C) (or just enabled (C) when A is clear from context) the set of A'sstates in which some action of C is enabled. We often abuse notation and denote by bboth the boundmap b and the timing propertyPb def= ^C2part(A) enabled (C) b(C); C:We refer to (A; b) as a time-bounded automaton, a special case of a timed-automaton.Given that the de�nition of a boundmap is motivated by the de�nition of a fair execu-tion, it is not surprising that the fair executions of an automaton A can be characterizedas the timed executions of a timed automaton (A; b) with a fair boundmap b. The fairboundmap of A is the boundmap b de�ned by b(C) = [0;1) for all C 2 part(A). Noticethat if C is continuously enabled from some point of an execution, then this boundmaprequires the eventual performance of an action in C, since some action of C must beperformed before time 1.Proposition 8: Let A be an automaton, and let b be the fair boundmap for A. Givenany timed execution et of A, e is a fair execution of A i� et is a timed execution of (A; b).Similarly, we de�ne the unfair boundmap of A as the boundmap b de�ned by b(C) = [0;1]for all C 2 part(A); the following is immediate.Proposition 9: Let A be an automaton, and let b be the unfair boundmap for A. Givenany timed execution et of A, e is an execution of A i� et is a timed execution of (A; b).

13These results show that the classes of fair and unfair computations can be understood interms of extreme cases of boundmaps.There is a very simple relationship between the boundmap of a composition of timedautomata and the boundmaps of the individual component automata.Proposition 10: Let A = QAi. Suppose bi is a boundmap for Ai for each i, andsuppose b is a boundmap for A de�ned by b(C) = bi(C) if C 2 part(Ai). Then (A; b) =Q(Ai; bi).Given this result, we de�ne Q(Ai; bi) to be (A; b) where b is the boundmap de�ned asstated in this proposition. This result together with Proposition 6 shows that our modelis a compositional model of time-bounded fair computation. Again, we can view thecomposition Q(Ai; bi) in terms of extending local timing properties to global properties:Proposition 11: Suppose (A; b) = Q(Ai; bi). If PC � enabled (Ai; C) bi(C); C, then P AC �enabled (A;C) b(C); C.7 SolvabilityIn addition to describing implementations of concurrent systems, input-output automataare useful for expressing speci�cations of such systems [LT87]. Accordingly, given two(untimed) automata A and A0, we say that A solves A0 if they have the same externalactions|that is, in(A) = in(A0) and out(A) = out(A0)|and every fair behavior of Ais a fair behavior of A0. Intuitively, the fair behaviors of A are the behaviors that canbe witnessed by an external observer of A|someone who cannot see the inner workingsof A, its internal actions. Since every behavior of A is a behavior of A0, any correctnesscondition satis�ed by the behaviors of A0 is satis�ed by the behaviors of A as well. Inparticular, any problem \solved" by A0 is also \solved" by A.The de�nition of solvability has a natural extension to timed automata: given twotimed automata (A;P) and (A0; P 0), we say that (A;P) solves (A0; P 0) if they have thesame external actions and timed-behs(A;P) � timed-behs(A0; P 0): As with the untimedcase, solvability for timed automata has properties that support hierarchical and modularveri�cation techniques. For example, an immediate result of the de�nition is that \solves"is a transitive relation:Proposition 12: If (A;P) solves (A0; P 0) and (A0; P 0) solves (A00; P 00), then (A;P) solves(A00; P 00).One consequence of this result is that we can prove that an implementation (A;P)satis�es its speci�cation (A0; P 0) by constructing a sequence of intervening models (A;P) =(A0; P0); : : : ; (Ak; Pk) = (A0; P 0) and proving that (Ai; Pi) solves (Ai+1; Pi+1) for every i.This means that hierarchical proof strategies are possible in this model, where each (Ai; Pi)is a model of the system at increasingly higher levels of conceptual abstraction. Elsewhere[LA90], re�nement mappings have been used to construct this sort of hierarchical proofin this model.Notice that if P is in some sense a stronger timing property than P 0, then is shouldimmediately follow that (A;P) solves (A;P 0). Unfortunately, it is di�cult to give general

14syntactic conditions on timing properties P and P 0 that imply that P is stronger than P 0.In the case of boundmaps, however, such a characterization is quite simple. Given twoboundmaps b and b0 with the same domain (that is, b and b0 are de�ned on the same setsof classes C), we de�ne b � b0 if b(C) � b0(C) for all C. Intuitively b makes strongerrequirements than b0. It is easy to see that A with the stronger boundmap b solves A witha weaker boundmap b0:Proposition 13: For any automaton A, if b � b0 then (A; b) solves (A; b0):Finally, since|like the untimed input-output model|this model of timed computa-tion is a compositional model, one technique for proving that one composition of timedautomata solves another composition is to prove that each component of the �rst compo-sition solves the corresponding component of the second:Proposition 14: Suppose (A;P) = �i2I(Ai; Pi) and (A0; P 0) = �i2I(A0i; P 0i). If (Ai; Pi)solves (A0i; P 0i) for every i 2 I, then (A;P) solves (A0; P 0).8 ConclusionWe have presented a model for reasoning about time in concurrent systems. Our de-cision to base the model on the input-output automaton model was motivated by (inour judgment) the naturalness and utility of the model in the context of asynchronousconcurrent systems. The model has been used extensively to model concurrency controland recovery in transaction systems, resource allocation, concurrent data structures, net-work communication, and other problems (e.g., [LT89, LM88, LMWF88, Blo87, WLL88,LMF88, Her88]). It has been used to specify these problems, to describe and analyzealgorithmic solutions, and to prove lower bounds and impossibility results. The modelhas many natural properties (such as compositionality), and this work was motivatedby our desire to �nd an equally intuitive generalization to real-time concurrent systems.The simple de�nition of a timed execution results in a modular, compositional modelof timed concurrent computation; and in the de�nition of a boundmap we feel we havefound the natural generalization of both fair and unfair executions of the input-outputautomaton model. We note that our goal has been only to devise a natural semanticmodel of timed computation. We have not considered logics for expressing general timingproperties|although we feel the \leads to" notation does cover a lot of the interestingtiming constraints|nor have we considered proof systems for such logics. It appears,however, that our model is a suitable semantic model for most logics and proofs systemsappearing in the literature (such as [HLP90, AH90, ACD90]). However, simple prooftechniques for timed automata have already been investigated [LA90].References[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-timesystems. In Proceedings of the 5th Annual IEEE Symposium on Logic in ComputerScience, pages 414{425. IEEE, June 1990.

15[AH90] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expres-siveness. In Proceedings of the 5th Annual IEEE Symposium on Logic in ComputerScience, pages 390{401. IEEE, June 1990.[AL89] Hagit Attiya and Nancy Lynch. Time bounds for real-time process control in thepresence of timing uncertainty. Technical Memo MIT/LCS/TM-403, MIT Labora-tory for Computer Science, July 1989.[Blo87] Bard Bloom. Constructing two-writer atomic registers. In Proceedings of the 6thAnnual ACM Symposium on Principles of Distributed Computing, pages 249{259.ACM, August 1987.[CM84] K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACMTransactions on Programming Languages and Systems, 6(4):632{646, 1984.[Dil88] David L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent Circuits. PhD thesis, Department of Computer Science, Carnegie Mel-lon University, February 1988. Available as Technical Report CMU-CS-88-119.[Fra86] Nissim Francez. Fairness. Springer-Verlag, Berlin, 1986.[GL90] Richard Gerber and Insup Lee. CCSR: A calculus for communicating shared re-sources. In J. C. M. Baeten and J. W. Klop, editors, Lecture Notes in ComputerScience, volume 458, Proceedings of Concur '90, pages 263{277. Springer-Verlag,August 1990.[Her88] Maurice Herlihy. Impossibility and universality results for wait-free synchronization.In Proceedings of the 7th Annual ACM Symposium on Principles of DistributedComputing, pages 276{290. ACM, August 1988.[HLP90] Eyal Harel, Orna Lichtenstein, and Amir Pnueli. Explicit clock temporal logic.In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science,pages 401{413. IEEE, June 1990.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,Englewood Cli�s, New Jersey, 1985.[Jon87] Bengt Jonsson. Compositional Veri�cation of Distributed Systems. PhD thesis,Uppsala University, Uppsala, Sweden, 1987. Published by Direkt O�set, Nystr�om& Co AB, Uppsala.[KSdR+88] R. Koymans, R. K. Shyamasundar, W. P. de Roever, R. Gerth, and S. Arun-Kumar. Compositional semantics for real-time distributed computing. Informationand Computation, 79:210{256, 1988.[LA90] Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing properties.In Proceedings of the 9th Annual ACM Symposium on Principles of DistributedComputing, pages 265{280. ACM, August 1990.[Lam91] Leslie Lamport. A temporal logic of actions. Research Report 57, DEC SystemsResearch Center, January 1991.[Lew90] Harry R. Lewis. A logic of concrete time intervals. In Proceedings of the 5th AnnualIEEE Symposium on Logic in Computer Science, pages 380{389. IEEE, June 1990.Also available at Harvard Technical Report TR-07-90.

16[LF81] Nancy A. Lynch and Michael J. Fischer. On describing the behavior and implemen-tation of distributed systems. Theoretical Computer Science, 13(1):17{43, January1981.[LM88] Nancy A. Lynch and Michael Merritt. Introduction to the theory of nested transac-tions. Theoretical Computer Science, 62:123{185, 1988. Earlier versions appearedin Proceedings of the International Conference on Database Theory, 1986, and asMIT Technical Report MIT/LCS/TR-367.[LMF88] Nancy A. Lynch, Yishay Mansour, and Alan Fekete. Data link layer: Two impos-sibility results. In Proceedings of the 7th Annual ACM Symposium on Principles ofDistributed Computing, pages 149{170. ACM, August 1988. Also available as MITTechnical Report MIT/LCS/TM-355.[LMWF88] Nancy A. Lynch, Michael Merritt, William E. Weihl, and Alan Fekete. A theoryof atomic transactions. In Proceedings of the International Conference on DatabaseTheory, 1988. Also available as MIT Technical Memo MIT/LCS/TM-362.[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributedalgorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of Dis-tributed Computing, pages 137{151. ACM, August 1987. A full version is availableas MIT Technical Report MIT/LCS/TR{387.[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.CWI-Quarterly, 2(3), 1989. Also available as MIT Technical Memo MIT/LCS/TM-373.[Mil80] Robin Milner. A Calculus of Communicating Systems. Lecture Notes in ComputerScience 92. Springer-Verlag, Berlin, 1980.[MT90] Faron Moller and Chris Tofts. A temporal calculus of communicating systems. InJ. C. M. Baeten and J. W. Klop, editors, Lecture Notes in Computer Science, volume458, Proceedings of Concur '90, pages 401{415. Springer-Verlag, August 1990.[SL87] A. Udaya Shankar and Simon S. Lam. Time-dependent distributed systems: Provingsafety, liveness and real-time properties. Distributed Computing, pages 61{79, 1987.[Tut87] Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms. Master'sthesis, Massachusetts Institute of Technology, Laboratory for Computer Science,April 1987. Available as MIT Technical Report MIT/LCS/TR-387.[WLL88] Jennifer L. Welch, Leslie Lamport, and Nancy A. Lynch. A lattice-structured proofof a minimum spanning tree algorithm. In Proceedings of the 7th Annual ACMSymposium on Principles of Distributed Computing, pages 28{43. ACM, August1988.[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. In J. C. M. Baeten andJ. W. Klop, editors, Lecture Notes in Computer Science, volume 458, Proceedingsof Concur '90, pages 502{520. Springer-Verlag, August 1990.

