International Journal of Computational Geometry & Applications
© World Scientific Publishing Company

TOWARDS WEB-BASED COMPUTING

KIYOKO F. AOKI*

Department of Electrical and Computer Engineering, Northwestern University
Evanston, Illinois 60208, U.S.A.

and

D.T. Lee
Institute of Information Science, Academia Sinica, Nankang,
Taipei, Taiwan,
dtlee Qiis. sinica.edu.tw

Received 12 March 1998
Revised 25 September 1999
Communicated by J-D. Boissonnat

ABSTRACT

In a problem solving environment for geometric computing, a graphical user inter-
face, or GUI, for visualization has become an essential component for geometric software
development. In this paper we describe a visualization system, called GeoJAVA, which
consists of a GUI and a geometric visualization library that enables the user or algorithm
designer to (1) execute and visualize an existing algorithm in the library or (2) develop
new code over the Internet. The library consists of geometric code written in C/C++.
The GUI is written using the Java programming language. Taking advantage of the
socket classes and system-independent application programming interfaces (API’s) pro-
vided with the Java language, GeoJAVA offers a platform independent environment for
distributed geometric computing that combines Java and C/C++. Users may remotely
join a “channel” or discussion group in a location transparent manner to do collabora-
tive research. The visualization of an algorithm, a C/C++ program located locally or
remotely and controlled by a “floor manager,” can be viewed by all the members in the
channel through a visualization sheet called GeoJAVASheet. A chat box is also provided
to enable dialogue among the members. Furthermore, this system not only allows visu-
alization of pre-compiled geometric code, but also serves as a web-based programming
environment where the user may submit a geometric code, compile it with the libraries
provided by the system, and visualize it directly over the web sharing it with other users
immediately.

Keywords: geometric computation, visualization tool, distributed system, Java program-
ming language.

*Current address: Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan,
kiyokoQieee.org.

1. Introduction

With the advancement of computer and communication technologies, commu-
nication via e-mail and over the World Wide Web has become commonplace in our
daily activities. In the computing world, collaboration via the Internet has recently
gained popularity. The notion of a “collaboratory” is introduced in a report on
“Distributed, Collaboratory Experiment Environment,”® which refers to an inte-
grated, tool-oriented computing and communication system that supports scientific
collaboration. In other words, it is a computing system that allows remote parties
to gain access to scientific resources such as expensive and physically large equip-
ment that would otherwise not be accessible. As in any other scientific computing
disciplines, the area of geometric computing would find such a collaborative system
beneficial because of the large size of the libraries used to implement geometric al-
gorithms. The effort required to download and install these libraries are oftentimes
not worthwhile, especially when the user only needs them for a single program or
algorithm that he/she would like to execute or implement.

The idea of a collaboratory is also to enable remote users with expertise in
specific areas of a scientific field to collaborate with one another, viewing the data
that is pertinent to each user’s specialty in order to solve a particular problem.
For computational geometers or practitioners dealing with geometric data, most
everyone is interested in the execution and analysis of geometric algorithms, so a
collaboratory for geometric computing would provide remote users in a group with
the facilities to view the execution of an algorithm implemented by any member in
the group, and to give feedback to one another regarding the algorithm.

In order to implement such a collaboratory, distributed visualization of algo-
rithms, or, at a bare minimum, remote execution of algorithms, needs to be sup-
ported. Any user connected to a network should be able to have access to the collab-
oratory, and immediately begin collaborating with other users currently connected
to the collaboratory. This implies that such a collaboratory must be independent of
the users’ platform. To implement a collaboratory from scratch that meets the re-
quirement is by no means straightforward, especially when visualization or graphics
output is involved, for which all sorts of display devices have to be supported. How-
ever, since Internet and web browsers on the World Wide Web are readily accessible
by many researchers on the network, building a collaboratory on the web seems to
be a plausible solution. The Java programing language developed by Sun Microsys-
tems, which is considered platform-independent, is a natural choice of language to
use to implement such a collaboratory. In addition, major C/C++ libraries have
been developed that provide comprehensive object classes and algorithms of which
researchers can take advantage. Taking into consideration the usefulness of Java
and the prevailing use of C/C++, the combination of both programming languages
resulted in the development of the GeoJAVA system, a web-based interactive vi-
sualization system that provides (1) a Java-based GUI (graphical user interface)
called GeoJAVASheet, (2) a Java-based “chat” box for dialogue, (3) a C/C++ li-
brary of geometric algorithms called GeoLIB, (4) a compilation tool allowing users
to implement user-defined algorithms using the GeoLIB library, and (5) broadcast

visualization of geometric algorithms.

There are many potential applications of this system, among which are “dis-
tance” learning and collaborative research on geometric computing. For example, a
“classroom” can be formed by a group in which the teacher of a geometric code, say
“A.” initially has control of the “floor.” That is, A is the user interacting directly
with the code, and the rest of the users in the group become students. Each stu-
dent in the group can then watch the execution of the same code, say a Delaunay
triangulation program, that A has executed. Each student will be able to see the
same set of points that A is sending to the program as input and the animated
execution of the triangulation program on each of their browsers. If students have
questions or comments, they may type them in the chat box, and may also receive
control of the “floor” upon release by A to input their own set of input points that
is broadcast to the rest of the group.

In doing collaborative research, the current problem in the development of a new
algorithm is in explaining what the actual execution looks like to remote parties. Up
to now, researchers have been using e-mail or transferring files of their algorithms,
describing verbally what each step of the execution is on a “frame by frame” basis.
The GeoJAVA system provides a solution to this problem. For instance, a group
may consist of several researchers located at different sites. One of the researchers,
say “B,” may have developed a new algorithm to solve a specific problem for which
she would like advice from the others. So upon receiving control of the floor, B
may execute her algorithm to present to the others. Any of the other researchers
may then receive the floor to give advice or make improvements on the algorithm.
The changes to the code may be made by B, the code recompiled, and immediately
re-executed for the others to see. Dialogue is enabled by means of a chat box.

Through these examples, one can see the benefits of visualization; the phrase,
“a picture is worth more than a thousand words” indeed rings true. However, not
only can the GeoJAVA system visualize static data, but it can also serve as an
interactive visualization system, which is provided by the “dynamic re-execution”
feature of the system. During dynamic re-execution, users may manipulate the
visualized data and simultaneously see the change in the algorithm’s output. This
feature applies to programs that are in the library or are user-defined, and runs
on top of a distributed environment, which makes the GeoJAVA system a powerful
tool with a variety of utilities.

Returning to the first example, then, after the Delaunay triangulation has been
executed, user A may demonstrate how the triangulation changes when a specific
point is moved to a different location by simply selecting a point and moving it across
the sheet. The GeoJAVA system automatically handles the dynamic re-execution
and updating of the changing results of the algorithm on all of the sheets in the
group.

As technology advances and becomes more readily available, it would be pos-
sible to incorporate audio and video communication to the system for a greater
“collaboratory” feel. Although currently not supported, this addition can be incor-
porated easily due to the modularity of each component of the system. At the time

of this writing, Sun Microsystems is developing the Java Media Framework, which
will allow developers to incorporate streaming audio and video into Java applets
and applications. This API will provide the necessary functionality to incorporate
audio and video communication to the system.

The next section gives a review of other projects related to the GeoJAVA system,
followed by sections containing user-level and system-level descriptions of the design
of the system and a sample session to illustrate how a user may use it. For these
sections, the reader is expected to be fairly literate in Java and/or C/C++ program-
ming and to have an understanding of networking terminology such as sockets and
TCP/UDP. A brief description of this terminology is provided in the Appendices.
The final section discusses our plans for future work.

2. Related Work

As is evident from the “Computational Geometry Interactive Software” page,
many geometric algorithm visualization tools” have been implemented, and the
“Complete Collection of Algorithm Animations” gives a comprehensive list of geo-

“write-once-

metric algorithms written in Java.® These applets demonstrate Java’s
run-everywhere” concept.” Once a user implements her Java applet that demon-
strates an algorithm, any user with a Java-enabled browser can execute it. The

following is a listing of a few notable Java applets from these lists.

GeomNet at the Center for Geometric Computing, Johns Hopkins University

(http://www.cgc.cs.jhu.edu/geomNet /).

GeomNet is a system for performing distributed geometric computing over
the Internet. It provides a list of GeomNet supported algorithms from which
a single user can choose an algorithm to execute. Geometric computing is
distributed in that the algorithms are available for anyone on the Internet who
would like to see the execution of an algorithm. However, it is not implemented
for groups of users to simultaneously see the execution of a single algorithm.
One of the components of GeomNet is Mocha? at the Center for Geometric
Computing at Brown University.© Mocha is a Java applet that communicates
with an “algorithm server” which allows users to select geometric algorithms
for which they can provide input.

VoroGlide by Christian Icking, Rolf Klein, Peter Kollner, and Lihong Ma
(http://wwwpi6.fernuni-hagen.de/java/anja/index.html.en).
VoroGlide is an applet that smoothly maintains the convex hull, Voronoi dia-
gram and Delaunay triangulation of the user’s input while points are added or
moved. It illustrates incremental construction of the Delaunay triangulation
and includes a recorded demo.

“See http://www.cs.duke.edu/~jeffe/compgeom/demos.html.
bSee http://www.cs.hope.edu/~alganim/ccaa/geometric.html.
“See http://loki.cs.brown.edu:8080/pages/Mocha.html.

ModeMap by David Watson
(http://www.iinet.com.au/~watson/modemap.html).
ModeMap is an applet that draws Voronoi diagrams, Delaunay triangulations,
natural neighbor circles and radial density contours on a sphere. This is a
single 3D applet whose only purpose is to illustrate the relationship between
these geometric concepts on a sphere. It also allows for moving of points.

The Geometry Applet by David Joyce
(http://alephO.clarku.edu/~djoyce/java/Geometry /Geometry.html).
The Geometry Applet illustrates Euclid’s Elements. It lets users set up sim-
ple geometric objects in 3D as well as constraints through the use of Java
parameters, and then displays the effects as objects are moved.

Alpha-shape Demo from NCSA (requires VRML)
(http://fiaker.ncsa.uiuc.edu/alpha/demo.html).
This alpha-shape demo is an online Alvis demo that serves as a web-based
interface to Alvis software. It is used to clarify concepts of Alpha Shapes and
Alpha Ranks. Three data sets are available.?

Although these applets are successful in demonstrating various computational
geometry algorithms, if a researcher, say, wanted to test and develop her own algo-
rithm, she would not be able to make any practical use of these applets, let alone
demonstrate the same execution of her algorithm simultaneously on remote parties’
machines. This lack of interactivity and customizability motivates the development
of the GeoJAVA system.

Other Java-based collaborative systems also worth noting are Tango,? Promondia,
and NCSA’s Habanero. Tango is a Java-based system that allows remote users to
collaborate over the Web. Users with applications that they would like to make
distributed may incorporate Tango’s API into their code, which would allow their

6

application to communicate to a central server that handles the “distribution” of
the application. It provides nice multimedia features and is geared towards medi-
cal and scientific research. Promondia is a system that provides a framework for
real-time group communication. Its focus is on group-conferencing using a shared
whiteboard, video, and chat system. Habanero® is a framework for sharing Java
objects with colleagues over the Internet. It is similar to Tango where single-user ap-
plications are transformed into multi-user, shared applications using their provided
APIL

Finally, a Java-based implementation of Collaborative Active Textbooks
(JCAT) on algorithms was developed by Digital Equipment Corporation.? This
system, which takes advantage of a new feature in Java version 1.1 called Re-
mote Method Invocation (RMI) technology, allows applets on different machines
to communicate with each other, with the views of an algorithm located on dif-
ferent machines. Although JCAT runs on all Java-enabled browsers, at the time

dSee http://fiaker.ncsa.uiuc.edu/alpha/reference.html for references regarding Alpha
Shapes/Ranks.
€http://www.ncsa.uiuc.edu/SDG/Software/Habanero/

of this writing, only HotJava 1.0 can support the collaborative features because it
requires JDK 1.1. The algorithms that are visualized are written in Java and are
based on BALSA’s notion of interesting events to communicate the operations of
the algorithm to the views,?> and “group communication” is implemented by having
each “student” specify the name of the “teacher’s” machine where the algorithm is
running.

The focus of Tango is different from that of the GeoJAVA system in that it is
geared towards medical and scientific researchers. It is very useful in an environment
where collaboration is needed from different people with completely different spe-
cialties. For example, a consultation for a certain surgical procedure may require
the expertise of a neurologist, cardiovascular specialist and a physical therapist,
where all three need different views of the same data. Technically speaking, the
full-fledged Tango requires the installation of a plug-in for the browser and only
works with Netscape 3.0+, whereas the GeoJAVA system is “Java pure,” and so
any browser can be used to access it.

Promondia’s focus is also different in that it attempts to give users a founda-
tion for real-time communication using Java, as opposed to having any distributed
application-based purpose. Their focus is on satisfying the increasing demand for
other network services, such as real-time data feeds, group communication and
teleconferencing.”

Habanero uses Java applications as opposed to applets, which means it is not
necessarily web-based. Its components need to be downloaded, and only Java com-
ponents can be used for collaboration. Thus, Habanero has a limited scope.

Although all three of these applications provide distributed collaboration, none
of them can allow users to compile their own code remotely. In order to use the
APIs provided, the user must download the libraries and compile their code locally.

The differences between JCAT and the GeoJAVA system include location inde-
pendence and remote compilation. While GeoJAVA system users may access the
system through a single page and form a group using a single channel name, JCAT
requires channels to be formed by forcing “students” to specify the hostname of
the “teacher’s” machine. This requires knowledge of who the floor manager is be-
forehand. That is, only the teacher has control of the algorithm, and the students
may not request control of the floor. Since no remote compilation is available, users
are forced to use Java and specifically write their code for distributed visualization
and compile it locally, whereas users on the GeoJAVA system can use any existing
C/C++ code and not be concerned with which parts of their code is distributed.
In addition, they are provided with remote compilation facilities, so they need not
download any libraries whatsoever.

The GeoJAVA system is based on GeoMAMOS,? part of which are GeoSheet!'°
and GeoManager,! which provide distributed visualization of geometric algorithms
over a UNIX-based network. GeoSheet is the 2D GUI for GeoMAMOS, serving

FRefer to http://www6.nttlabs.com/papers/PAPER100/PAPER100-java.html for an online

version of their paper.
9See http://www.ece,nwu.edu/ theory/geomamos.html

as the interface with which users interact to communicate with their algorithms.
GeoManager provides the dynamic re-execution of algorithms by allowing users to
execute their program, then modify the original input data and simultaneously see
the changes in the algorithm’s output. A drawback of GeoMAMOS is that it was
written in C/C++ for the X-Windows environment running Unix, so users who
do not have access to such machines installed with the GeoMAMOS software are
not able to make use of the visualization tool. In view of the above, a system-
independent version has been implemented in the form of the GeoJAVA system.
Note that the GeoJAVA system has also been augmented with additional tools that
make it more of a web-based programming environment as opposed to a visualization
tool.

The following section will describe the design of the GeoJAVA system, which
allows visualization of users’ algorithms written in C/C++ in a distributed fashion.
Groups, or channels, are formed by simply specifying a common channel name when
entering the system, and the distributed visualization process can begin immediately
upon execution of a program by the floor manager.

3. Design Description

The GeoJAVA system consists of six major components: (1) MultiServer, (2)
ChannelGuide, (3) GeoJAVASheet, (4) GeoLIB, (5) Chat box, and (6) a compilation
tool. The design of each of these components will be described next.

3.1. MultiServer

MultiServer is a Java application adapted from the Free Internet Conferencing
Tools (FICT) web page at http://www.sneaker.org/fict/. Slight modifications were
incorporated for it to provide the services for the collaboration management of the
GeoJAVA system. Originally the FICT version of MultiServer managed chat boxes
and channels. We have adapted it so that it keeps track of the floor queue using the
Connection and Vulture classes and provides the dynamic re-execution of geometric
algorithms in the library. The Vulture class has been slightly modified, as described
later, and the Connection class has been augmented to handle a variety of data
messages. The following sub-sections describe the MultiServer, Connection, and
Vulture classes in more detail.

MultiServer MultiServer is a Java program running on the web server which
creates the server thread and establishes the socket at the port number specified
by the DEFAULT _PORT global constant. It listens on this socket for connections
from users, and, when a new connection is made, a new Connection object is created
and appended to MultiServer’s queue of connections. A new Vulture object is also
created initially, which ensures that all of the connections are valid. Note that
because all new users connect through MultiServer, groups of users need not be
concerned with the actual location of a “server” host. Thus, location transparency
is supported.

MultiServer handles the floor control for each group by maintaining a FIFO

queue. When a new group is created, the floor queue for this group is empty. The
first user to press the “Floor Request” button is added to the queue and becomes
the “floor manager.” Other users in the group who press this button thereafter are
appended to the queue. When the floor manager presses the “Floor Release” button
(or exits the system), he/she is then removed from the queue, and the successive
user in the queue becomes the floor manager for the group.

Finally, MultiServer also functions as the “GeoManager” of the system by dy-
namically re-executing the algorithm when requested. That is, after the initial
execution of an algorithm, MultiServer provides the functionality to allow the user
to modify the original data input and immediately see the change in the output. So
as the user is moving the location of, say, a point that was used as input to the algo-
rithm, the display will be updated with the output of the algorithm corresponding
to the modified input. This allows for “true animation” and easier debugging of
algorithms for the developer. Furthermore, when users join a channel in the middle
of the execution of an algorithm, MultiServer allows these users to “catch up” on
the algorithm execution.

Connection The Connection object is responsible for acting as the interface
between its corresponding GeoJAVASheet, chat box, or user program and Multi-
Server. It receives messages from their interface objects and processes them appro-
priately. GeoJAVASheets go through MultiServer to broadcast messages to every
GeoJAVASheet in its group or to send messages to their user program. Messages
from chat boxes are broadcast directly to the chat boxes of every member of its
group, and the user program’s messages are sent to the GeoJAVASheets in its
channel. Messages from GeoJAVASheets requesting for or releasing the floor are
forwarded to MultiServer with their corresponding channel, hostname and TCP
port number.

Vulture The Vulture class is a simple thread that informs MultiServer when a
connection has been closed or lost and cleans up the lists. Whenever possible, the
Connection object will notify the Vulture thread when a connection is closed. But
even if the Connection objects never notify the Vulture, this method wakes up every
five seconds and checks all connections, in case a Connection unexpectedly crashes
before it is able to send a “close” message. One minor addition made to this class
is that if the Vulture notices that a GeoJAVASheet has crashed while holding the
floor, then it notifies the next GeoJAVASheet in the floor queue that it has been
granted the floor.

3.2. ChannelGuide

ChannelGuide is an applet that ensures that multiple users do not enter the
system with the same username. This is the applet that the user first sees when
entering the GeoJAVA system. ChannelGuide takes the user and channel names
requested by the user, communicates with MultiServer to check the current user
lists for duplicates, and responds with the appropriate information, either allowing
the user to start up GeoJAVASheet or prompting for a different user name. The
ChannelGuide applet running on an X-Windows system is shown in Figure 1.

[Charnel Guide

Channels test = Users on Selected Channel

quest
ter Channel on which te Connect: Enter your Uusernarme:
Itesﬁ guestd

Enter |

| Java Applet Window

Fig. 1. ChannelGuide Applet.

ChannelGuide functions by first communicating with MultiServer, requesting
the lists of channels and users currently on the system. Once these lists are received,
it processes them to display. If a used username is entered, then a message is
displayed indicating that the entered name is invalid. Otherwise, the ChannelGuide
window disappears, and a GeoJAVASheet and chat box are initiated with the user’s
user and channel name.

3.3. GeoJAVASheet

The GeoJAVASheet applet is actually a frame that contains (1) a panel onto
which users may input graphical objects such as points, line segments, triangles,
rectangles, polygons, polylines, circles, arcs, and (un)weighted and (un)directed
graphs, (2) a row of buttons on top: Return (for communication with the user’s
application program), Undo (undo the previous action), Delete (a specific object on
the panel), Modify (an object’s component), Move (an entire object), Delete All,
Quit, Toggle Grid (reference lines), (3) a choice box on the left to select an object
to input onto the panel, (4) a “floor” button under the choice box (this will be
explained later), and (5) a row of property selectors on the bottom, such as line
widths, line colors, font styles, font sizes, line styles, and fill styles. Figure 2 shows
a GeoJAVASheet running on a Microsoft Windows machine.

GeoJAVASheet is simply a GUI that responds to (1) messages received from Mul-
tiServer, and (2) the user’s actions such as hitting the Return button or requesting
control of the floor. Internally, GeoJAVASheet maintains lists of the various geo-
metric objects. Any time a new object is drawn on the panel, a new instance of
that object is appended to the list to which its type corresponds. Users may modify
or delete objects on the sheet using one of the buttons on the top row.

&%EeuJA‘UASheet 1.0: Northwestern University Electrical and Computer Engineering Depa... =] B3

HOST = gecmaros; PORAT = 3809 Aetun | Unda | Delets(OFF) | MadiOFF) | MovelOFF) | Delete 2 |

% Taggle Giid |

L«
s

Mo datatype.
228 Y 198 & B

Feguest Floo |

“fou do not have the floor.

| ﬂ
Line ittibutes; [Black ¥ [T~ Tewdwibues: [Couier] [12 7] LineSter [Sold =]

Fil Sl [More ¥

i [Unsigred Java Applet window

Fig. 2. GeoJAVASheet Applet.

Geometric objects can also be displayed (and consequently added to the lists)
based on messages received from the user program. These messages are in a specific
format to determine the action to take, the data object being referenced, and the
object’s coordinates and properties. For example, if the user’s program wants to
display a red point of radius ten pixels at location (25, 30), then the message
would look like: (IPC_WRITE, GEOPOINT, 25, 30, 10, RED). Once the message
is received, it is parsed, added to GeoJAVASheet’s appropriate internal list of data
structures, and displayed on the panel. Please refer to Section 4 for more details.

The user program receives data for geometric objects by sending a request mes-
sage and then waiting for a message containing the data for that object. Geo-
JAVASheet sends a message to its corresponding user program when the user presses
the Return button, indicating that an object has been entered and is ready to be
sent to the user program. When the user program has explictly requested an object
for input, and the user hits the Return button, then the last object appended to
the panel corresponding to that displayed in the choice box (which has been up-
dated with the object requested from the user program) will be stored in a message
to be sent to MultiServer. The user program’s ID is stored in GeoJAVASheet’s
Connection object, so once MultiServer receives this message, it forwards it to the
appropriate user program.

As will be illustrated in the example in Section 5, the user program is able to
control the geometric characteristics of the display, such as color, fill style, and line
widths. However, this does not prevent the user interacting with the algorithm

10

from modifying these display properties as well. Anytime before, during or after
the execution, the user is free to adjust any of these properties to his/her liking.
This is a feature of the modularity of the system, where the user interface is not
tied to the user program, or vice versa.

There is an additional feature in the application version of GeoJAVASheet where
the data on the sheet may be saved to and opened from files. Two additional “Open
File” and “Save” buttons provide this option. The data is stored in XFig format,!®
just as in GeoMAMOS, so that these same files can be read in by GeoSheet and
XFig, but other formats will be supported in future versions. Figure 3 is an instance
of the GeoJAVASheet application running under Microsoft Windows.

[E3GeoT AV ASheer 1.0: Northwestern University Electricat and Computer Engincering Departmen: [H[=1FE1

HOST = geomamos: PORT = 1620 Return | Undo | Delete{OFF) | Modity(DFF) | Move(0FF) | Delste All | Quit | Toggle Grid |
Open File | Save |
[Foygon 4
X 4 ¥: 326 Z:
(1] Request Floor
You do not have the floor.
=i
i »
Line Attributes: IBIaCk 'l I 'l Text Attiibutes: | Courier - 2 'I Line Style: ISDIid 'l Fill Style:
INone -

Fig. 3. GeoJAVASheet Application.

3.4. GeoLIB Geometric Library

The GeoLIB library in the current version consists of two parts: the LEDA!!:12
and GeoLLEDA libraries.'® Both libraries are written in C/C++. An advantage of
this is that users who have already developed algorithms written in C/C++ may
continue to use their algorithms without re-writing their code, and “new” users need
not download a Java compiler if they do not already have one. In the future, we
plan on incorporating the Computational Geometry Algorithms Library (CGATL)'®
into GeoLIB to be able to provide an even more comprehensive library for users.

LEDA The GeoLIB library is based on the basic geometric classes and member
functions of the Library of Efficient Datatypes (LEDA) library (currently version

11

3.7)'314 It provides the foundation of GeoLIB by supplying the base classes for all
of the geometric objects used in the system.

GeoLEDA The visualization portion of the GeoLIB library is contained in the
GeoLEDA library. GeoLEDA consists of geometric objects that (1) inherit from
the objects in the LEDA library and (2) contain visualization member functions as
well as interprocess communication (IPC) functions that provide the basic socket
infrastructure for communication between the components of the GeoJAVA system.
It also contains functions that implement basic geometric algorithms. This library
was originally developed and used by the GeoMAMOS system. However, since Ge-
oMAMOS uses UDP, all of the TPC functions have been modified for TCP for the
GeoJAVA system, due to the reasons explained in the Appendices. This is advan-
tageous in that although initializations are slower, communication while connected
is faster and more reliable. Next, we briefly describe the main functions from the
GeoLIB library that the programs use in order to visualize algorithms.

IPCServiceSetup(), IPCServiceSetup(char* host, int portnum) This
function sets up the initial TCP connection between the user program and Geo-
JAVASheet. It can have no arguments, in which case the user will be prompted
for the host and port number at the command line, or it can take the host and
port number for an input and output GeoJAVASheet that has the floor. It then
creates a socket connection via which the user program communicates with its Con-
nection object, which acts as an interface to MultiServer. Any messages sent to
the Connection object (or MultiServer) can be forwarded to the appropriate Geo-
JAVASheet since the Connection object stores the GeoJAVASheet ID to and from
which it should send and receive input data. The user program must begin with
the IPCServiceSetup() function before any visualization functions are called.

Graphic_Read and Graphic_Write (initiated from user program)

The Graphic_Read and Graphic_Write visualization functions are member functions,
or methods, implemented in every geometric object class and are issued from the
user program.

Graphic_Read will cause GeoJAVASheet to return to the program the last object
inputted onto the sheet. The process is as follows: (1) Graphic_Read is requested
from the user program (GeoJAVASheet sets its choice box to the requested object
type), (2) user inputs the object onto the sheet, (3) user presses the “Return” button
located at the top of GeoJAVASheet, which (4) sends the data for the object to
MultiServer, which in turn forwards it to the user program.

Note that the choice box setting on GeoJAVASheet is set automatically when
GeoJAVASheet receives the Graphic_LRead message. So the user is not expected
to modify the choice box setting during a Graphic_Read. If for some reason the
user decided to explicitly change the geometric object to input on a Graphic_Read,
the GeoJAVASheet would display a message indicating that an invalid operation is
being attempted when the user clicks on the sheet and no objects will be added.

If the user wished to implement and incorporate more complex objects, how-
ever, checks for the validity of the specific characteristics of the object should be
performed at the library level. For example, if a user would like to use a recti-

12

linear polygon, he/she can create a class that inherits from the polygon class and
have the Graphic_Read method ensure that the polygon it receives indeed consists
of only horizontal and vertical edges. This can be done by either re-requesting a
Graphic_Read or modifying the received data to make it valid. The same idea ap-
plies to other complex classes such as planar maps, which can inherit from graphs.
Although GeoJAVASheet may not provide a choice box for these complex classes,
by inheriting from the classes that are provided and using their Graphic routines,
any complex class can be supported by the system.

In Graphic_Write, the “opposite” action is performed. The user program sends
object data to GeoJAVASheet (through MultiServer), and GeoJAVASheet displays
the object. The process is as follows: (1) Graphic_Write command is sent to Geo-
JAVASheet with the object’s data, (2) the object is added to the corresponding list
of geometric objects, and (3) GeoJAVASheet displays the object.

Because of the comprehensiveness of GeoL.IB, the user is able to implement
practically any geometric class and use any of the functions provided by the LEDA
library. Therefore, a user may develop geometric algorithms that can perform any
geometric computation without concern for implementing the display of intermedi-
ate or final results in their code.

3.5. Chat Box

The Chat Box is another applet adopted from the Free Internet Conferencing
Tools web page and is a simple GUI consisting of a text field in which to enter
text and a textbox in which all messages from users within the same channel are
displayed. It maintains a PrintStream object that handles the displaying of all of
the messages, a DatalnputStream that receives the messages, and a Socket class
with which the connection to MultiServer is made.

A list of the users currently in their channel has been additionally implemented
to allow users to send private messages to individual members on the channel. A
user may select a specific username on the userlist in order to send messages to users
privately, or messages may be broadcast to everyone on the channel by selecting
the asterisk (*), also on the list. Figure 4 is an instance of the Chat Box running
under X-Windows.

3.6. Compilation Tool

The compilation tool allows user-defined programs written in C/C++ to be
compiled and executed directly on the GeoJAVA server. It is a series of common
gateway interface (CGI) forms that upload the code, create a corresponding Makefile
for it, compile it, and, if the compilation is successful, execute it with the user’s
corresponding host and port number. Unsuccessful compilations will result in a
page listing the compilation errors so that the user may debug their own code and
restart the process with the corrections.

With this tool, users no longer need to worry about obtaining the appropriate
libraries for their system, installing, and compiling them. Of course, security pre-

13

[#] Chat hox— zuest2

Send a message: |I

Connecting to server..done, Ay
quest? enters the conversation,

Lest
Uzers on Selected Channel

| Java Applet Window

Fig. 4. Chat Box Applet.

cautions must be taken in order to ensure that the user’s program does not contain
any malicious code. It is possible for users to include system code which may corrupt
the system. Therefore extra checks during the compilation stage of the tool ensure
that such malicious code is not used. A combination of linking with a reduced C
library and relocating the executable to a directory on the server that limits the
permissions of the program can provide the necessary security. Also, records of
those who have been using the compilation tool keep track of the users and their
actions, while still maintaining a certain level of privacy.

The following illustrations demonstrate the steps in the compilation process.
Figure 5 is the first page, where the source code is uploaded from the user’s local
disk to the server. The user may specify a note for their code, which is normally the
name of the algorithm. The source code may consist of multiple files, so multiple
fields are provided. Currently, there is a limit of five source code files.

Another restriction is that the source code must be written in native C++,
as the libraries that they are compiled with are C/C++ libraries. In the future,
however, the quickly growing popularity of Java may make the integration of Java
libraries useful to those who prefer Java to C++.

Upon completion of the upload, the contents are displayed to ensure that the
correct file(s) has(have) been uploaded completely, along with the user’s notes, as
in Figure 6. A link for a script that performs the actual compilation is also given.

The compilation will then take place, after which the output of the compilation
will be displayed. If it is unsuccessful, a page such as in Figure 7 will be displayed,
allowing the user to see the compilation errors. In this case, a link back to the first
file upload page is given, but the user may also use the Back button on their browser
to return to the first page. In addition, a link for an online manual is available in
case the user would like to consult documentation on the usage of the functions
in the GeoLIB library. If the compilation is successful, a form for the host and
port number will be given as in Figure 8. The compilation produces an executable
located on the web server. Thus, when the user enters the host and port number
for their GeoJAVASheet and clicks the Submit button, the CGI script will invoke a

14

File Upload Form - Netscape

File Edit WView Go Communicator Help

e 2 A A = £ S & @
Back Forward Reload Home Search Guide Frint Security Stop
§ Bookmarks £ LDCﬁtiDniIhttp:,-"fgeomamosfcgl—blnfauth.pl Vl

File Upload Form

This page allows you to upload a file. Note that the script will limit the size of the
file to around 500k (so that the server doesn't get swamped with data).

Please fill in the file-upload form below
File(s) to upload: | ___ Browse... |

[Browse...
[Browse...
[Browse...
| Browse...
Notes about the file: |
Pross |t0 upload the file!
,@| Document: Done 5 | v

Fig. 5. Code upload page.

process on the algorithm executable and the output will be displayed on the specified
GeoJAVASheet (and other GeoJAVASheets on the same channel). In this way, the
executable is transferrable between any DOS- or Windows-based machine and is
not necessarily “linked” to the GUI. So users may execute their algorithm from
a DOS- or Windows-based machine, but collaboration and visualization may take
place system-independently. Since the current web server is Windows-based, the
executable returned is a Windows executable, but certainly a UNIX-based GeoJAVA
system can be developed, thus offering UNIX-based executables to be compiled as
well.

Once the execution of the program completes, the script will display any mes-
sages that were output during execution. So run-time errors can be checked at
this point. The program can be run any number of times by simply re-submitting
the form. At this point, the user may submit their code to add to the Algorithm
Browser, which is shown in Figure 9. The Algorithm Browser lists the available
algorithms for execution. Anyone with the floor may bring up this page and sample
any of the algorithms provided.

15

ile lipload Results - Netscape

e Edit Yiew Lo Comrrunicator Help

KT, B 5 7 " i o] g
X & A 4t =2 £ F & @& N
Back Fomesid Relosd Home Szsrch Guide Primt Seeurty Sies
" Baoknares & Loiﬁwnﬂhﬂp:,’fgeom:\masp’c.gl-s1I,-"fL,p ol ~|
= L : .

I»

File Upload Results

You've uploaded a file. Your notes on the file were:

vizibility algorithm

Proceed to the compile page to begin compilation.

The file has been spooled to disk as: fmp/geo-.65-1
The file's reported name on the client machine is: c:ldenme\iopvisit st wisib.c
The fil¢'s reported Content-type (possibly none) was: applications-uninown-confent-type-c_auto_file

The contents of tmp/een-165-1 are as follows:

//#include <gecLEDA/gso_polygon. hi -
#include <stdic.h>

#includs <stdlik.h>

#include <ztrirg.h>

#include <geoIPC/port.h>

#include <geoLEDA/geo_plans. h>

#include <yevLEDASgeo_polyygon. hi-

#include <genLEDASgec polyalg. b

int next color()

{

statzc int ic=0;
int «:

switch (1<) {
zase U: ¢=BLUE; oreak:
zage 1l: o~CREEN; kroal
zage 2: C=CYAN; »oZreak;
zase 3: c=RED; break;
zase 4: c=MAGENTA; break:
default: brealk;

}

l1c=(2ctl)%5:

& [Decument Dare

Fig. 6. Intermediate page.

4. System Design

This section will highlight the conceptual aspects of the GeoJAVA system.

4.1. Architectural Design

Combining the components described in the previous section, the result is a
complete system as illustrated in Figure 10.

The figure is an instance of the system where User 1 and User 2 are on the
same channel. User 1 has the floor and is executing an algorithm. The dotted
area containing MultiServer is the Java application that runs on the web server
at a specified TCP port. When a new user enters, a new Connection instance is
created for the user’s GeoJAVASheet, chat box, and possibly user program. Note
that the Connection objects are clients that MultiServer instantiates when the users

16

Compilation Page - Netscape

File Edit ¥iew Go Communicator Help

4 » A &4 2 £ S & @
Back Forward Reload Home Search Guide Print Security Stop

¥ Bookmarks £ Lacatian: hip:/ /gecmamnos/ci-shl/genmake pl |

Compilation Page

compiling. ..

geo-zZ52-1.c¢c

geo—-252-1.c: In function “int main(int, char **)T:
geo—-252-1.c:34: "P' undeclared {(first use this function)
geo—-252-1.c:34: {(Each undeclared identifier is reported only once
geo—-252-1.c:34: for each function it appears in.)

You will need to correct your source file and try again from here.

An Online Manual ig also available.

@| |D0cument: Done

Fig. 7. Compilation output with error messages.

enter the system, and these Connection objects communicate to their counterpart
applets through a TCP socket. This architecture is an expansion of the Annoy-
ingChat/MultiServer applets on the FICT web page.

Currently, users on multiple channels all connect to MultiServer in the same
way, on one port. However, it is apparent that MultiServer may eventually become
a bottleneck. Therefore, as more channels are added to the system, we can make
the system more scalable by having MultiServer spawn sub-MultiServers that each
manage, say, a subset of channels.

The internal data structures used to efficiently manage the various Connection
objects are fairly simple. The original architecture only needed to handle chat boxes,
so there is one global vector of Connection objects, to which new Connections are
appended whenever a new connection is requested. Additionally, three other data
structures have been implemented to manage (1) the floor, (2) GeoJAVASheets,
and (3) user programs.

Since each Connection object serves as an interface to MultiServer, it is instan-
tiated as a “generic class” that only receives messages until it knows what type
of object it is interfacing. Once it is informed of whether it is interfacing a Geo-
JAVASheet, chat box, or user program, it stores different information. For example,
user programs would need to store the GeoJAVASheet ID to which it communicates,
and GeoJAVASheets need to store the user program’s ID that it is visualizing. In-

17

tion Page - Netscape

http:// geomamos cgi-shlf genmake. pl

Compilation Page

compiling. . .
geo-165-1.c

WOW LINEING
COMEILATION SUCCEZZFUL!L

To execute your algorithm,
bring up GeoJAVASheet, enter the host and port number below,

and click the Submit button to execute.

Enter host name i

Enter port number: ’

Fig. 8. Compilation output.

18

Welcome to GeoJAVASheet - Netscape

GeoJAVA Algorithm Browser

Enter host name : | ||

Enter port number: | ||

Select an algorithm:
© Constrained Delaunay Triangulation
' Triangulation and 3-coloring

© Vigibility Algorithm

Press - to run the algorithm.

Fig. 9. Algorithm Browser.

19

GeoJAVASheet

,,,,,,,, Chat Box

User 1

GeoJAVASheet

Chat Box

User 2

Fig. 10. GeoJAVA System Architecture.

20

stead of creating a different class for each of the GeoJAVASheets, chat boxes and
user programs, one Connection class was used because at the point of the initial
connection, MultiServer would not be able to determine which object to instanti-
ate. So the Connection object is instantiated, which determines for itself the type
of object it is interfacing.

Note the Vulture object is repeatedly checking the global queue of Connections
in the case that a Connection “dies” unexpectedly. So it was more convenient to
create lists of Connections in the GeoJAVASheet and user program data structures
as opposed to creating lists of say, usernames. The Vulture object also updates the
floor queue when it finds that a GeoJAVASheet has unexpectedly died and grants
the floor to the next GeoJAVASheet in the queue.

As for the dynamic re-execution of algorithms, one requirement is that the al-
gorithm to re-execute must be defined in the library. Obviously, user’s programs
cannot be dynamically re-executed, as this would cause problems when, for example,
intermediate results are being displayed and the program is being called repeatedly.
That is, if some program uses many Graphic_Writes to display the intermediate
results of its algorithm and takes say ten seconds to complete, and this program
is being re-executed every five seconds, the results would be quite unsatisfactory.
Users who wish to incorporate their algorithms for dynamic re-execution will have to
follow a specific format before being compiled into the library. This format consists
of simply creating an overloaded function that takes as input an array of pointers to
generic objects for the input (called GeoObjects) and to return an array of pointers
to GeoObjects. The user’s program to dynamically re-execute would thus call this
function and pass in an array of pointers to its input objects after reading them in
with Graphic_Read and store the output in a similar data structure. Further details
of this format is beyond the scope of this paper.

Let us take as an example an algorithm which we would like to add to the library
so that it can be dynamically re-executed. The algorithm is a Delaunay triangula-
tion that takes as input a set of points and outputs a graph, the triangulation. The
user would write the algorithm as a function that takes one argument, a pointlist,
and returns a graph. Then this function would be overloaded so that another func-
tion of the same name is written, but it takes as input a GeoObject list and returns
a GeoObject. The overloaded function only needs to store the GeoObjects passed
in as a pointlist, call the original function, take the triangulated graph result, cast
it as a GeoObject and return it. Once these two functions are incorporated into
GeoLIB, any user can call the Delaunay triangulation in their code and dynami-
cally re-execute it. After a user calls the function and presses the Modify button
to update the original input points, MultiServer will repeatedly pass the updated
pointlist to the overloaded function so that it can re-run the triangulation on the
new list and return the updated triangulation in a graph to be re-displayed.

This process of re-execution is made possible by Java’s Java Native Interface
(JNT). Albeit this technology is provided in Java version 1.1, it is only used by Mul-
tiServer, which is running as a Java application on the web server and thus has no
effect on clients’ web browsers and still upholds GeoJAVASheet’s “Java pure”-ness.

21

“Re-executable algorithms” are provided by a shared library to which MultiServer

previously. When a user’s program that calls a re-executable algorithm runs, Mul-
tiServer “registers” the algorithm by accessing the corresponding algorithm name
in the library. When the user program completes and a user (with the floor) selects
the “Modify” button, GeoJAVASheet will repeatedly send the updated input object
data to MultiServer, which calls the algorithm with the updated data and returns
the updated output object data to the GeoJAVASheets in the channel. As long as
the Modify button is turned on, this process repeats itself continuously. The floor
can be transferred to other users who can also modify the data in the same way
and watch the algorithm re-execute.

4.2. Conceptual Design

Conceptually, the GeoJAVA system can be viewed as consisting of two major
parts, the GUI and the underlying “brains” of the system. The GUI consists of
GeoJAVASheet, chat box, and the browser, while the “brains” correspond to Ge-
oLIB and the low-level communication implementation such as that provided by
MultiServer. However, as will be described later, the user need not use the GUI in
order to run their application.

The advantage of this GeoJAVA system design is that this modularity allows
the GUI to be system independent, and the user never needs to worry about how
to implement the display of their algorithm. They only need be concerned with
the computations involved. Other systems tend to incorporate these two modules
together (i.e. Mocha, written in Java, and LEDA). However, in these cases, users
who wish to share their geometric results with others would be required to write
code that explicitly broadcasts the visualization of the program to remote hosts.

This system was originally designed as a tool for users to more easily implement
geometric algorithms. However, once a user has completed his/her implementation,
they may still use their program apart from the tool as a “stand-alone” applica-
tion, using files or standard I/O to obtain input and interact with the user. This is
made possible by a check that is performed in the Graphic_Read and Graphic_Write
methods which tests for a valid socket connection before sending or receiving data.
If this test fails (i.e., the program is running “stand-alone”), then instead of the
normal Graphic_Read or Graphic_Write operation, the method will invoke a read
or write from/to file(s) or standard I/O. In the case of using file(s), IPCServiceSetup
just needs to be replaced by FileSetup call, which opens two globally defined files
for input and output, respectively. (The user is responsible for formatting his/her
input files in the format specified for each object as is described in the GeoSheet
Manual). Each data type class also contains F_Read(char*) and F_Write(char*)
methods which read from and write to the filename supplied to the functions, al-
lowing users to save their objects in distinct files. For standard I/O, no setup
procedure needs to be followed; the user will be prompted for input during the
Graphic_Reads and output will be displayed on standard out. Thus, these methods
give users the option to run their programs separately from the GUIL

22

5. Example

The user’s program is written in C++ and has only a few simple “rules” for its
structure to follow in order to work with the GeoJAVA system. These rules consist
of including the appropriate include files and calling IPCServiceSetup(...) at
the beginning of the program. Then the code may make calls to Graphic_Read ()
and Graphic Write() for the geometric objects used. Details of these functions are
given in Section 3.4.

The following is an excerpt of a geometric algorithm that computes the visibility
polygon from a point interior to a given simple polygon; both the simple polygon
and the source point are entered by the user from the GeoJavaSheet. VISIBILITY
is a function, based on the algorithm by Lee® that takes as input a simple polygon
and a point and produces as output the visibility polygon. More details of this
implementation can be found in Aoki.!

// Header files

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <geoIPC/port.h>
#include <geoLEDA/geo_plane.h>
#include <geoLEDA/geo_polygon.h>
#include <geoLEDA/geo_polyalg.h>
#include <LEDA/graph.h>

int main(int argc, char* argv[])
{
// defined in geo_polygon.h
geopolygon P, *final;

// defined in geo_plane.h
GeoPoint ptl;

// defined in graph.h
node v;

// intialize the geopolygon
final = new geopolygon();

if (arge>1)

IPCServiceSetup(argv([1], atoi(argv[2]));
else

IPCServiceSetup();

// defined in port.h
// set £ill style to 0 = no fill
SetOutSheetFillStyle(0);

// also in port.h
GeoPause("Please enter a simple polygon");

// Graphic_Read method from geopolygon class
P.Graphic_Read();

23

GeoPause("Please enter an interior point");

// Graphic_Read method from GeoPoint class
ptl.Graphic_Read();

// VISIBILITY defined in geo_polyalg.h

// takes as arguments a reference to a geopolygon and
// a GeoPoint, and returns a geopolygon

xfinal = VISIBILITY(&P, ptl);

// set the output color to blue
SetOutSheetColor (BLUE);

GeoPause("Ready to see the visibility polygon?");

// Graphic_Write method from geopolygon class

// since final was defined as a pointer to a geopolygon,
// the -> must be used instead of . to call its

// Graphic_Write method

final->Graphic_Write();

When a C/C++ program is executed with arguments, these arguments are
stored in the argc and argv variables, where argc is an integer indicating the number
of arguments (including the program name) and argv is an array of strings, each
string storing the argument(s) passed to the program. For example, say the program
name is “visib” and its arguments are the host and port number, “geo” and “1234.”
Then argc would equal 3 and the array argv would contain { “visib”, “geo”, “1234”}.
Since IPCServiceSetup() is overloaded as IPCServiceSetup(char* host, int
port), the second argument to IPCServiceSetup() must be converted to an inte-
ger, which is done using atoi().

In this example, before the call to IPCServiceSetup(), the program checks its
arguments and assumes that if arguments exist, they are the host and port number
for the GeoJAVASheet to which it should communicate. This format should be
followed, especially if the user wishes to execute their program off the web server,
which will execute the program with the host and port number as arguments.

Figure 11 displays the ChannelGuide when user Frank enters the system. User
Kiyoko is already on channel “channell,” and Frank is about to join her. At that
time, Figure 12 is what Kiyoko sees on her machine. But when she sees Frank join
the channel, she can send him messages, as in Figure 13, which is what Frank sees
in his chat window.

When Kiyoko runs her algorithm (notice that she does indeed have the floor),
both Kiyoko and Frank will see the same display on their sheets. The reader may
follow the program along with the following series of figures. First, in Figure 14,
Kiyoko and Frank see the request to enter a polygon, brought up because of the
call to GeoPause(...) in the program.

Next, after Kiyoko has entered a polygon and hit the Return button, she and
Frank both get a view as in Figure 15, requesting a point. Notice the polygon
displayed on the sheet. As soon as Kiyoko hits the Return button, the polygon is
displayed on all of the other users’ GeoJAVASheets on the channel. In this case,

24

.

]

Fig. 11. ChannelGuide

25

HOST =gecmamos, FOST = 1151 'F{elurn'l Unuul I:J'elz-ztr-.-(OFl—‘,I MoLilTy(G'FFJ Mwe(OFFyl DaleleAIIl Quitl

Toggle Gind |

Mo datatvpe :_l ji

x 7B R

Yiou have e flaor.

Lo

Line Atribites: IHIack 'sf”1 leE!)dAt‘uribuies: I_Cmuner "'} 1??1 Line Style: ISnlirj vI Fill Styler
INDne ‘*l

| Send @ message

{Connecting to server..done.
kiyoko enters the conversatian.

Fig. 12. Kiyoko’s View

26

:'j Chat box- Frank

Sond a messages |

Connecting to server..done.
Frank enters the conwersation.
kivoko says, "Hi, Frank!"

ol

o Comer 8 S
e

Fig. 14. Enter a polygon request.

27

GeoJAVASheet 1.0: Northwestern University Electrical and Computer Engineering D... !E

}:\elurnl Unda | Delete(0FF) | Modify(OFF) | Mave(OFF) | Delete ll| cuit

Toggle Grid |

o] i

Flease enter an interior point :I

p
4 »

gl [Java AppletWindow

N ;
Line Attributes: IB\ack 'l 1 'l Text Attributes: Courier 'l 12 = | Line Style: ISDIid 'l Fill Style:
INDI’]E Vl

=8| [Java Applet\Window

Fig. 15. Enter a point request.

only Frank sees the polygon entered.

Figure 16 displays the change in the GeoJAVAPause window to prepare the user
for the output, and Figure 17 is the final output to the program.

Figure 18 displays another example of three GeoJAVASheets and three chat
boxes connected to the same channel while running on three different hosts.

6. Conclusion and Future Work

The GeoJAVA system provides a comprehensive set of tools with which any user
on the World Wide Web can learn and implement concepts of computational geom-
etry as well as collaborate with remote users on algorithm design. This is provided
in a distributed and location transparent manner. System independence and mod-
ular implementation also make the system scalable, and the dynamic re-execution
of geometric algorithms and the online compilation tool are unique features that
make the GeoJAVA system useful for computational geometers and students.

Using this GeoJAVA system as a stepping stone, many other valuable systems
may be developed. For example, Sun Microsystems has recently announced its
3D API. A great contribution to computational geometry can be made with the
implementation of a GeoJAVA system that visualizes 3D geometric algorithms.

Furthermore, a Java version may be developed of the GeoLIB library, which may
eliminate the need for a large C/C++ library (since Java already provides classes

28

o =[5 5] Comer 9 o]

=3 Pl

Fig. 16. Ready request.

GeoJAVASheet 1.0: Northwestern University Electrical and Computer Engineering D... l_l_l_

_Retun | Undo | Delets(OFF) | Mocity(OFF) | Move(0FF) | Delstet| out|

EE -
el

[]

e =[5 = Coer 3 B

= —;

Fig. 17. Final program output.

29

[GealfWAShest 1,0: Northwestern University Electrical and Coflg®l GeoJAVAShest 1.0: Morthwestern University Electricsl and Cofl)
HOST = ala% PORT = 2082 Return| Undo| DeletelOFF)| ModifyioFr)] HOST =cad2; PORT 3836 Return| Undo| DelstsfOffl| Medif/OFF]
MevelOFF| Delete All| Cwit| Togale Grid| MovelOFF)| Delete Al Quit] Toggle Grid

=i Polygon -~
X 280 v & Z
o Reguest Floor

You do not have the floor,

Folyaon =

®oO1BE W 14 Z;

a Reguest Floor

wou de not have the fleer,

T I P | [=== B
Ling'Attributes: glack i| 1 | TestAttributes: courer = Line Attributes: Black 1 Text Attributes: “Courier ek
12'4| Line Style: salid J‘ Fill Styler Wone 4‘ 12-4‘ Line Style: solid 4‘ Fill Stelel Wone 4|
- 74g Un b I Win Tl lnsigned Javs Applst Window.
3 g lnsigred Java Applet Windaw “a) P Window

B8] GeoJAVAShest 1,07 Horthwestern University Electrical and Compuber Enginserine DENEE Chat box B

HOST = geod: PORT = 16821 Return| Undo| DeletetOFR| MaodifylOFR] MovelOFR| Delete All
quit| Tosgle Grid

Send a message: Ij

Connecting te server.done.
alfred enters the conversation.
tom enters the conversation,
benjamin enters the conversation.

=[] Chat hax 4
E Send a message:
_; Connecting to server.. dene,

S|tom enters the conversation.
benjamin enters the conversation.

- Polygon —

BERC - R B -
2] _FIoor’RaiBa;a]

“ou have the floor,

|5 ——— [Chat box

Ling Attributes: glack | 1 || TextAtwibutes: courier i e | tine style: - Send a message: |[

- Connecting to server.. done.
Solid Jl Fill Style: None “|benjamin enters the conversation.

L]

[

i a0j Unsigned Jaua Applet Window

| g Uneianed Java fpplet Window

Fig. 18. GeoJAVA System Demo.

for basic geometric objects) and provide another option for those who do not know
or do not wish to implement their algorithms in C/C++. This would also offer
users a wider range of programming languages, especially since the trend seems to
indicate that Java will continue to gain popularity.

In the current version of GeoJAVASheet, the JDK version 1.0.2 has been used
since JDK 1.1 has yet to be implemented in most of the browsers in use today. How-
ever, once its stability and popularity have become the norm, we plan on upgrading
GeoJAVASheet to at least JDK 1.1.

The compilation system can also be expanded to networks of computers that
are accessible locally to the user in addition to over the Internet. Users will be
able to compile their C/C++ and/or Java programs from their local computers,
using libraries located remotely. Consequently, computers that are not necessarily
connected directly to the Internet, but to a local area network (LAN) from which
an network connection is available through another computer, will still be able to
visualize their programs and collaborate with other users. In this way, the user’s
working space can be augmented even more.

The GeoJAVA system exemplifies a fresh approach to web-based programming.
Incorporating native C/C++ programs to a system-independent interface using
Java allows existing programs to be used in combination with the latest technology.
In addition to the transparent support for distributed visualization, the on-line
compilation facilities provided are features unique only to the GeoJAVA system.
Compared to Java’s RMI technology in version 1.1, where remote objects are di-
rectly accessed within the confines of the Java environment, the GeoJAVA system

30

is refreshing in that it expands the tools available to the user by incorporating an
already popular programming language. Our approach can potentially allow any
program written in any language to communicate with our system because of the
use of sockets. The simple communication protocol is all that needs to be observed.
The GeoLIB library can certainly be compiled on other platforms to develop pro-
grams in other environments, but still communicate with the GeoJAVA system. No
other system can provide such functionality.

Another goal is that this system can serve as a foundation on top of which a
problem solving environment for other fields of scientific research and development
can be built. For example, chemical or mechanical engineers could possibly use this
tool to dialogue and collaborate on ideas for which geometric objects may be useful.

Ultimately, our desire is to enable users to take full advantage of the newest
technology while not disallowing the use of existing tools that are adequate and
in use today. With the fast-paced growth of technology, we hope to assist users
by providing the most useful and worthwhile of technological developments and
empowering people to advance in their respective fields through the use of our
system.

Acknowledgements

We would like to thank the following people for their help in the initial im-
plementation of GeoJAVASheet: Mehmet Sayal, Lisa Singh, Takashi Yoshikawa.
We would also like to acknowledge Benjamin McLean for his implementation of
ChannelGuide and file I/O on the application version of GeoJAVASheet and Steve
Loranz and Matt Firlik for their help with the compilation tool. Furthermore, the
anonymous referee’s comments on an earlier version of this paper were very helpful
in improving its presentation.

Funding was provided in part by the Office of Naval Research under the Grants
No. N00014-95-1-1007 and No. N00014-97-1-0514, the National Science Founda-
tion under the Grant No. CCR-9731638, and the National Science Council under
the Grant No. NSC 88-2219-E-001. A preliminary result was presented at the
“Workshop on Geometric Software,” held in INRIA, Sophia-Antipolis, France in
June 1997.

References

1. K. Aoki, “The Prototyping of GeoManager: A Geometric Algorithm Manipulation
System,” Master’s Thesis, Dept. EE/CS, Northwestern University, December, 1995.

2. J. E. Baker, I. F. Cruz, L. D. Lejter, G. Liotta, and R. Tamassia, “Mocha,”
http://loki.cs.brown.edu:8080/papers/MochaFS html.

3. L. Beca, G. Cheng, G. C. Fox, T. Jurga, K. Olszewski, M. Podgorny, P. Sokolowski,
K. Walczak, “Web Technologies for Collaborative Visualization and Simulation,”
NPAC Technical Report SCCS-786, Syracuse University, NPAC, Syracuse, NY, sub-
mitted January 6, 1997.

4. M. H. Brown, M. A. Najork, R. Raisamo, “A Java-Based Implementation of Collab-
orative Active Textbooks,” in Proc. 1997 IEEE Symposium on Visual Languages,

31

(IEEE Computer Society, September 1997) pp. 372 379.
5. M. H. Brown, R. Sedgewick, “A System for Algorithm Animation,” Computer
Graphics 18(3) (July 1984) 177-186.

6. U. Gall, F. J. Hauck, “Promondia: A Java-Based Framework for Real-Time Group
Communication in the Web,” Proc. Sizth International World Wide Web Confer-
ence, 1996.

7. J. Gosling, B. Joy and G. Steele, The Java Language Specification (Addison-Wesley
Developers Press, Sunsoft Java Series, 1996).

8. W. E. Johnston and S. Sachs, “Distributed, Collaboratory Experiment Environ-
ments (DCEE) Program: Overview and Final Report,” Lawrence Berkeley National
Laboratory, February, 1997.

9. D. T. Lee, “Visibility of a Simple Polygon,” Computer Vision Graphics and Image
Processing 22 (1983) 207 221.

10. D. T. Lee, C. F. Shen and S. M. Sheu, “GeoSheet: A Distributed Visualization Tool
for Geometric Algorithms,” Int’l J. Computational Geometry € Applications 8,2
(April 1998) pp. 119-155.

11. S. Niher, “LEDA - A Library of Efficient Data Types and Algorithms,” Max-
Planck-institut fiir informatik. Technical Report A 04/89, Universitiat des Saarlan-
des, Saarbriicken, 1989. http://www.mpi-sb.mpg.de/LEDA /leda.html.

12. K. Mehlhorn, S. Niher, “LEDA: a platform for combinatorial and geometric com-
puting,” Communications of the ACM 38,1 (Jan. 1995) 96-102.

13. S. Niher, “The LEDA3.0 User Manual,” technischer Bericht A, Fachbereich Infor-
matik, Universitat des Saarlandes, Saarbriicken, 1992.

14. K. Mehlhorn, S. Naher, M. Seel, C. Uhrig, “The LEDA User Manual - Ver-
sion 3.7, Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany.
http://www.mpi-sb.mpg.de/LEDA/MANUAL/MANUAL html.

15. M. H. Overmars, “Designing the Computational Geometry Algorithms Library
CGAL,” in Proc. Workshop on Applied Computational Geometry, (Philadelphia,
Pennsylvania, May 27-28, 1996) pp. 113-119.

16. B. V. Smith, The Xfig User Manual, 1993.

Appendix A: Terminology

The following lists definitions of terminology used that should be familiar to the
reader, taken from the Free On-Line Dictionary of Computing
(http://wombat.doc.ic.ac.uk/foldoc/index.html).

class The prototype for an object in an object-oriented language; analogous to a
derived type in a procedural language. The structure of a class is determined
by the class variables which represent the state of an object of that class and
the behaviour is given by a set of methods associated with the class.

datagram A self-contained, independent entity of data carrying sufficient informa-
tion to be routed from the source to the destination computer without reliance
on earlier exchanges between this source and destination computer and the
transporting network.

LAN (or local area network) A data communications network which is geo-

32

graphically limited (typically to a 1 km radius) allowing easy interconnec-
tion of terminals, microprocessors and computers within adjacent buildings.
Ethernet and FDDI are examplse of standard LANs.

object In object-oriented programming, a unique instance of a data structure de-
fined according to the template provided by its class. Each object has its own
values for the variables belonging to its class and can respond to the messages
(methods) defined by its class.

packet The unit of data sent across a network.

socket The Berkeley Unix mechanism for creating a virtual connection between
processes. Sockets can be of two types, stream (bi-directional) or datagram
(fixed length destination-addressed messages). The socket library function
socket() creates a communication endpoint or socket and returns a file de-
scriptor with which to access that socket. The socket has associated with it
a socket address, consisting of a port number and the local host’s network
address.

stream An abstraction referring to any flow of data from a source (or sender,
producer) to a single sink (or receiver, consumer). A stream usually flows
through a channel of some kind, as opposed to packets which may be addressed
and routed independently, possibly to multiple recipients. Streams usually
require some mechanism for establishing a channel or a “connection” between
the sender and receiver.

TCP (or Transmission Control Protocol) The most common transport layer
protocol used on Ethernet and the Internet. TCP is nearly always seen in
the combination TCP/IP (TCP over IP). It adds reliable communication,
flow-control, multiplexing and connection-oriented communication. It pro-
vides full-duplex, process-to-process connections. It is connection-oriented
and stream-oriented, as opposed to User Datagram Protocol.

UDP (or User Datagram Protocol) Internet standard network layer, trans-
port layer, and session layer protocols which provide simple but unreliable
datagram services. UDP adds a checksum and additional process-to-process
addressing information. UDP is a connectionless protocol which, like TCP; is
layered on top of IP. UDP neither guarantees delivery nor does it require a
connection. As a result it is lightweight and efficient, but all error processing
and retransmission must be taken care of by the application program.

Appendix B: Java Programming Language

The Java programming language by Sun Microsystems provides two major fea-
tures that make it very applicable to distributed geometric computing. They are
sockets and GUI objects. By simply declaring a new ServerSocket() data object in
a server application, client applications can begin communicating to it by using a

33

Socket() class, declared similarly, without worrying about the type of system on
which the applet or application may be running. GUI objects such as buttons,
canvases and panels can also be created easily with predefined classes provided by
the Java library.

Both datagram (User Datagram Protocol or UDP) and stream-based (Trans-
mission Control Protocol, or TCP) sockets are provided in the Java application
programming interface (API). However, security issues prevent applets from way-
wardly creating sockets on users’ machines; sockets can only be created on the host
that provided the applet. Therefore, if a Java application is running on the server,
another applet cannot create a socket on the remote host to even connect back to the
server application. Datagram sockets require such a configuration. Although Java
applications (as opposed to applets), would work without a problem, that would
defeat the purpose of allowing users to easily access the system without having to
download the application itself. Stream-based sockets, however, can be used in an
applet where the TCP socket is created on the server and the applet communicates
directly to that port. Therefore, using TCP sockets, applets can be easily created
that provide distributed geometric computing.

In addition to the language limitations, TCP is favorable because of its stability,
especially in large networks. UDP packets are not “acknowledged” by the recipient,
so the farther the distance between the sender and receiver, the more prone the
packet is to get lost. This often results in the user’s algorithm “hanging” during
execution, without any means of recovering itself. The user is unfortunately forced
to kill the execution of the algorithm in this case. Adding error checking packets
for acknowledgements would most likely only increase the number of lost packets
over the network. We create a GeoLIB library that supports TCP messaging. Since
setup and disconnect packets are not used for each message sent (it is only required
upon connection/disconnection to/from the system), the packet sizes are smaller,
and TCP’s reliability prevents the transmission speed from getting degraded as
much, compared to the UDP transmission protocol.

34

