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1 GRAMMAR OF JAPE 2A JAPE grammar consists of a set of phases, each of which con-sists of a set of pattern/action rules. The phases run sequentiallyand constitute a cascade of �nite state transducers over annota-tions. The left-hand-side (LHS) of the rules consist of an annotationpattern that may contain regular expression operators (e.g. *, ?,+). The right-hand-side (RHS) consists of annotation manipulationstatements. Annotations matched on the LHS of a rule may be re-ferred to on the RHS by means of labels that are attached to patternelements.Section 1 gives a formal de�nition of the JAPE grammar, and someexamples of its use. Section 2 describes JAPE's relation to CPSL.The next 3 sections describe the algorithms used, label binding, andthe classes used. Section 6 gives an example of the implementation;section 7 explains the compilation process; and �nally section 8describes the action and use of the JAPE grammar from a top-levelpoint of view.1 Grammar of JAPEJAPE is similar to CPSL, with a few exceptions. Figure 1 gives aBNF (Backus-Naur Format) description of the grammar.An example rule LHS:Rule: KiloAmount( ({Token.kind == "containsDigitAndComma"}):number{Token.string == "kilograms"} ):wholeA basic constraint speci�cation appears between curly braces, andgives a conjunction of annotation/attribute/value speci�ers whichhave to match at a particular point in the annotation graph. Acomplex constraint speci�cation appears within round brackets, andmay be bound to a label with the \:" operator; the label then be-comes available in the RHS for access to the annotations matched bythe complex constraint. Complex constraints can also have Kleeneoperators (*, +, ?) applied to them. A sequence of constraintsrepresents a sequential conjunction; disjunction is represented byseparating constraints with \|".Converted to the format accepted by the JavaCC LL parser gener-ator, the most signi�cant fragment of the CPSL grammar (as de-



1 GRAMMAR OF JAPE 3scribed by Appelt, based on an original speci�cation from a TIP-STER working group chaired by Boyan Onyshkevych) goes like this:constraintGroup -->(patternElement)+ ("|" (patternElement)+ )*patternElement -->"{" constraint ("," constraint)* "}"| "(" constraintGroup ")" (kleeneOp)? (binding)?Here the �rst line of patternElement is a basic constraint, the sec-ond a complex one.



1 GRAMMAR OF JAPE 4MultiPhaseTransducer ::=( <multiphase> <ident> )?( ( SinglePhaseTransducer )+ | ( <phases> ( <ident> )+ ) )<EOF>SinglePhaseTransducer ::=<phase> <ident>( <input> ( <ident> )* )?( <option> ( <ident> <assign> <ident> )* )?( ( Rule ) | MacroDef )*Rule ::=<rule> <ident> ( <priority> <integer> )?LeftHandSide "-->" RightHandSideMacroDef ::=<macro> <ident> ( PatternElement | Action )LeftHandSide ::=ConstraintGroupConstraintGroup ::=( PatternElement )+ ( <bar> ( PatternElement )+ )*PatternElement ::=( <ident> | BasicPatternElement | ComplexPatternElement )BasicPatternElement ::=( ( <leftBrace> Constraint ( <comma> Constraint )* <rightBrace> )| ( <string> ) )ComplexPatternElement ::=<leftBracket> ConstraintGroup <rightBracket>( <kleeneOp> )?( <colon> ( <ident> | <integer> ) )?Constraint ::=( <pling> )? <ident> ( <period> <ident> <equals> AttrVal )?AttrVal ::=( <string> | <ident> | <integer> | <floatingPoint> | <bool> )RightHandSide ::=Action ( <comma> Action )*Action ::=( NamedJavaBlock | AnonymousJavaBlock |AssignmentExpression | <ident> )NamedJavaBlock ::=<colon> <ident> <leftBrace> ConsumeBlockAnonymousJavaBlock ::=<leftBrace> ConsumeBlockAssignmentExpression ::=( <colon> | <colonplus> ) <ident> <period> <ident><assign><leftBrace> (<ident> <assign>( AttrVal | ( <colon> <ident> <period> <ident> <period> <ident> ) )( <comma> )?)* <rightBrace>ConsumeBlock ::=Java code Figure 1: BNF of JAPE's grammar



2 RELATION TO CPSL 5An example of a complete rule:Rule: NumbersAndUnit( ( {Token.kind == "number"} )+:numbers {Token.kind == "unit"} )-->:numbers.Name = { rule = "NumbersAndUnit" }This says `match sequences of numbers followed by a unit; createa Name annotation across the span of the numbers, and attributerule with value NumbersAndUnit'.2 Relation to CPSLWe di�er from the CPSL spec in various ways:1. No pre- or post-�x context is allowed on the LHS.2. No function calls on the LHS.3. No string shorthand on the LHS.4. We have two rule application algorithms (one like TextPro, onelike Brill/Mitre). See section ??.5. Expressions relating to labels unbound on the LHS are notevaluated on the RHS. (In TextPro they evaluate to \false".)See the binding scheme description in section 4.6. JAPE allows arbitrary Java code on the RHS.7. JAPE has a di�erent macro syntax, and allows macros for boththe RHS and LHS.8. JAPE grammars are compiled and stored as serialised Javaobjects.Apart from this, it is a full implementation of CPSL, and the formalpower of the languages is the same (except that a JAPE RHS candelete annotations, which straight CPSL cannot). The rule LHSis a regular language over annotations; the rule RHS can performarbitrary transformations on annotations, but the RHS is only �redafter the LHS been evaluated, and the e�ects of a rule applicationcan only be referenced after the phase in which it occurs, so therecognition power is no more than regular.



3 ALGORITHMS FOR JAPE RULE APPLICATION 63 Algorithms for JAPE Rule ApplicationJAPE rules are applied in one of two ways:� in Brill-style, where each rule is applied at every point in thedocument at which it matches;� in Appelt-style, where only the longest matching rule is appliedat any point where more than one might apply.In the Appelt case, the rule set for a phase may be considered as asingle disjunctive expression (and an e�cient implementation wouldconstruct a single automaton to recognise the whole rule set). Tosolve this problem, we need to employ two algorithms:� one that takes as input a CPSL representation and builds amachine capable of recognizing the situations that match therules and makes the bindings that occur each time a rule isapplied. This machine is a Finite State Machine (FSM), some-what similar to a lexical analyser (a deterministic �nite stateautomaton).� another one that uses the FSM built by the above algorithmand traverses the annotation graph in order to �nd the situa-tions that the FSM can recognise.3.1 The �rst algorithmThe �rst step that needs to be taken in order to create the FSMis to read the CPSL description from the external �le(s). This isalready done in the old version of Jape.The second step is to build a nondeterministic FSM from the javaobjects resulted from the parsing process. This FSM will have oneinitial state and a set of �nal states, each of them being associatedto one rule (this way we know what RHS we have to execute incase of a match). The nondeterministic FSM will also have emptytransitions (arcs labeled with nil). In order to build this FSM wewill need to implement a version of the algorithm used to convertregular expressions in NFAs.Finally, this nondeterministic FSM will have to be converted to adeterministic one. The deterministic FSM will have more states (in



3 ALGORITHMS FOR JAPE RULE APPLICATION 7the worst case s! (where s is the number of states in the nondeter-ministic one); this case is very improbable) but will be more e�cientbecause it will not have to backtrack.Let NFSM be the nondeterministic FSM and DFSM the deter-ministic one.
Figure 2: A nondeterministic FSMThe issues that have to be addressed are:The NFSM will basically be a big OR. This means that it will havean initial state from which empty transitions will lead to the sub-FSMs associated to each rule (see Fig.2). When the NFSM is con-verted to a DFSM the initial state will be the set containing allthe initial states of the FSMs associated to each rule. From thatstate we will have to compute the possible transitions. For this,the classical algorithm requires us to check for each possible inputsymbol what is the set of reachable states. The problem is that ourinput symbols are actually sets of restrictions. This is similar to anautomaton that has an in�nite set of input symbols (although anygiven set of rules describes a �nite set of constraints). This is not sobad, the real problem is that we have to check if there are transitionsthat have the same restrictions. I think we can safely consider thatthere aren't any two transitions with the same set of restrictions.This is safe because if this assumption is wrong, the result will be astate that has two transitions starting from it, transitions that con-sume the same symbol. This is not a problem because we have to



3 ALGORITHMS FOR JAPE RULE APPLICATION 8check all outgoing transitions anyway; we will only check the sametransition twice.This leads me to the next issue. Imagine the next part of the tran-sition graph of a FSM:
Figure 3: Example of transitionsThe restrictions associated to a transition are depicted as graphical�gures (the two coloured squares). Now imagine that the two setsof restrictions have a common part (the yellow triangle).Let us assume that at one moment the current node in the FSMgraph (for one of the active FSM instances) is state 1. We getfrom the annotation graph the set of annotations starting from theassociated current node in the annotation graph and try to advancein the FSM transition graph. In order to do this we will have to�nd a subset of annotations that match the restrictions for movingto state 2 or state 3. In a classical algorithm what we would do is totry to match the annotations against the restrictions \1-2" (this willreturn a boolean value and a set of bindings) and then we will trythe matching against the restrictions \1-3" this means that we willtry to match the restrictions in the common part twice. Becauseof the probable structure of the FSM transition graph there will bea lot of transitions starting from the same node which means thatmay be a lot of conditions checked more than one times.What can we do to improve this?We need a way to combine all the restrictions associated to all out-going arcs of a state (see Fig. 4).One way to do the (combined) matching is to pre-process the DFSMand to convert all transitions to matchers (as in Fig.4). This couldbe done using the following algorithm:� Input: A DFSM;



3 ALGORITHMS FOR JAPE RULE APPLICATION 9
Figure 4: A combined matching process� Output: A DFSM with compound restrictions checks.� for each state s of the DFSM1. collect all the restrictions in the labels of the outgoings arcsfrom s (in the DFSM transition graph)Note: these restrictions are either of form \Type == t1"or of form \Type == t1 && Attri == V aluei2. Group all these restrictions by type and branch and cre-ate compound restrictions of form \[Type == t1 && Attr1== V alue1 && Attr2 == V alue2 && ... && Attrn ==V aluen]"The grouping has to be done with care so it doesn't mixrestrictions from di�erent branches, creating unnecessaryrestrictive queries. These restrictions will be sent to theannotation graph which will do the matching for us. Notethat we can only reuse previous queries if the restrictionsare identical on two branches. 23. Create the data structures necessary for linking the bind-ings to the results of the queries.(see Fig 5)When this machine will be used for the actual matching the threequeries will be run and the results will be stored in sets of annota-tions (S1..S3 in the picture) and...� For each pair of annotations from (A1, A2) s.t. A1 in S1 & A2in S22By this we mean restrictions referring to the same type of annotations. If for branches1-2 and 1-3 the restrictions for the type T1 are the same, the query for type T1 will be runonly once. Each of the two branches can also have restrictions for other types of annotations.



3 ALGORITHMS FOR JAPE RULE APPLICATION 10
Figure 5: Building a compound matcher1. a new DFSM instance will be created;2. this instance will move to state 2;3. <A1, A2> will be bound to L14. the corresponding node in the annotation graph will be-come max(A1 endNode(), A2.endNode()).� Similarly, for each pair of annotations from (A1, A3) s.t. A1 inS1 & A3 in S31. a new DFSM instance will be created;2. this instance will move to state 3;3. <A1, A3> will be bound to L24. the corresponding node in the annotation graph will be-come max(A1.endNode(), A3.endNode()).While building the compound matcher it is possible to detect queriesthat depend one from another (e.g. if the expected results of aquery are a subset of the results from another query). This kindof situations can be marked so when the queries are actually runsome operations can be avoided (e.g. if the less restrictive searchreturned no results than the more restrictive one can be skipped, orif a search returns an AnnotationSet (an object that can be queried)than the more restrictive query can be.3.2 Algorithm 2Consider the following �gure:



3 ALGORITHMS FOR JAPE RULE APPLICATION 11
Figure 6: An annotation graphBasically, the algorithm has to traverse this graph starting from theleftmost node to the rightmost one. Each path found is a sequenceof possible matches.Because more than one annotation (all starting at the same point)can be matched at one step, a path is not viewed as a classicalpath in a graph, but a sequence of steps, each step being a set ofannotations that start in the same node.e.g. a path in the graph above can be: [1].[2,4].[7,8].[10];Note that the next step continues from the rightmost node reachedby the annotations in the current step.The matchings are made by a Finite State Machine that resemblesan clasical lexical analyser (aka. scanner). The main di�erence to ascanner is that there are no input symbols; the transition from onestate to another is based on matching a set of objects (annotations)against a set of restrictions (the constraint group in the LHS of aCPSL rule).The algorithm can be the following:1. startNode = the leftmost node2. create a �rst instance of the FSM and add it to the list of activeinstances;3. for this FSM instance set current node as the leftmost node;4. while(startNode != last node) do



3 ALGORITHMS FOR JAPE RULE APPLICATION 121 while (not over) do1 for each Fi active instance of the FSM do1 if this instance is in a �nal state then save a cloneof it in the set of accepting FSMs (instances of theFSM that have reached a �nal state);2 read all the annotations starting from the currentnode;3 select all sets of annotation that can be used to ad-vance one step in the transition graph of the FSM;4 for each such set create a new instance of the FSM,put it in the active list and make it consume thecorresponding set of annotations, making any nec-essary bindings in the process (this new instancewill advance in the annotation graph to the right-most node that is an end of a matched annotation);5 discard Fi;2 end for;3 if the set of active instances of FSM is empty � thenover = true;end while;2 if the set of accepting FSMs is not empty1 from all accepting FSMs select �� the one that matchedthe longest path;if there are more than one for the samepath length select the one with highest priority;2 execute the action associated to the �nal state of theselected FSM instance;3 startNode = selectedFSMInstance.getLastNode.getNextNode();3 else //the matching failed! start over from the next node// startNode = startNode.getNextNode();5. end while;*: the set of active FSM instances can decrease when an activeinstance cannot continue (there is no set of annotations startingfrom its current node that can be matched). In this case it will beremoved from the set.**: if we do Brill style matching we have to process each of theaccepting instances.The above algorithm is rendered from a semantic point of view.Here are some ideas regarding the actual implementation:



4 LABEL BINDING SCHEME 13� There is no need to actually create new instances of the FSM.What has to be saved is just the current state of the FSMinstance. In this particular case state means:{ a position in FSM transition graph;{ a position in the annotation graph (the current node);{ the set of bindings made during matching annotations fromthe start node until the current node.� The most sensitive problem is the method used for matching,but this belongs to the other algorithm.4 Label Binding SchemeIn TextPro a \:" label binds to the last matched annotation in itsscope. A \+:" label binds to all the annotations matched in thescope. In JAPE there is no \+:" label (though there is a \:+" { seebelow), due to the ambiguity with Kleene +. In CPSL a constraintgroup can be both labelled and have a Kleene operator. How canKleene + followed by label : be distinguished from label +: ? E.g.given (....)+:label are the constraints within the brackets havingKleene + applied to them and being labelled, or is it a +: label?Appelt's answer is that +: is always a label; to get the other inter-pretation use ((...)+):. This may be di�cult for rule developers toremember; JAPE disallows the \+:" label, and makes all matchedannotations available from every label.JAPE adds a \:+" label operator, which means that all the spans ofany annotations matched are assigned to new annotations created onthe RHS relative to that label. (With ordinary \:" labels, only thespan of the outermost corners of the annotations matched is used.)(This operator disappears in GATE version 2, with the eliminationof multi-span annotations.)Another problem regards RHS interpretation of unbound labels. Ifwe have something like( ( {Word.string == "thing"} ):1|( {Word.string == "otherthing"} ):2)



5 CLASSES 14on the LHS, and references to :1 and :2 on the RHS, only one ofthese will actually be bound to anything when the rule is �red. Theexpression containing the other should be ignored. In TextPro, anassignment on the RHS that references an unbound label is eval-uated to the value \false". In JAPE, RHS expressions involvingunbound operators are not evaluated.5 ClassesThe main external interfaces to JAPE are the classes gate.jape.Batchand gate.jape.Compiler. The CPSL Parser is implemented byParseCpsl.jj, which is input to JavaCC (and JJDoc to producegrammar documentation) and �nally Java itself. (There are lotsof other classes produced along the way by the compiler-compilertools:ASCII CharStream.java JJTParseCpslState.java Node.java ParseCpsl.javaParseCpslConstants.java ParseCpslTokenManager.java ParseCpslTreeConstants.javaParseException.java SimpleNode.java TestJape.java Token.javaTokenMgrError.javaThese live in the parser subpackage, in the gate/jape/parser di-rectory.Each grammar results in an object of class Transducer, which hasa set of Rule.Constants are held in the interface JapeConstants. The test harnessis in TestJape.6 Implementation6.1 A Walk-ThroughThe pattern application algorithm (which is either like Doug's, orlike Brill's), makes a top-level call to something likeboolean matches(int position, Document doc,MutableInteger newPosition)throws PostionOutOfRange



6 IMPLEMENTATION 15which is a method on each Rule. This is in turn deferred to therule's LeftHandSide, and thence to the ConstraintGroup whicheach LeftHandSide contains. The ConstraintGroup iterates overits set of PatternElementConjunctions; when one succeeds, thematches call returns true; if none succeed, it returns false. TheRules also havevoid transduce(Document doc) throws LhsNotMatchedmethods, which may be called after a successful match, and result inthe application of the RightHandSide of the Rule to the document.PatternElements also implement the matches method. Wheneverit succeeds, the annotations which were consumed during the matchare available from that element, as are a composite span set, and asingle span that covers the whole set. In general these will only beaccessed via a bindingName, which is associated with ComplexPatternElements.The LeftHandSidemaintains a mapping of bindingNames to ComplexPatternElements(which are accessed by array reference in Rule RightHandSides).Although PatternElements give access to an annotation set, theseare only built when they are asked for (caching ensures that they areonly built once) to avoid storing annotations against every matchedelement. When asked for, the construction process is an itera-tive traversal of the elements contained within the element beingasked for the annotations. This traversal always bottoms out intoBasicPatternElements, which are the only ones that need to storeannotations all the time.In a RightHandSide application, then, a call to the LeftHandSide'sbinding environment will yield a ComplexPatternElement repre-senting the bound object, from which annotations and spans can beretrieved as needed.6.2 Example RHS codeLet's imagine we are writing an RHS for a rule which binds a setof annotations representing simple numbers to the label :numbers.We want to create a new annotation spanning all the ones matched,whose value is an Integer representing the sum of the individualnumbers.The RHS consists of a comma-separated list of blocks, which are



6 IMPLEMENTATION 16either anonymous or labelled. (We also allow the CPSL-style short-hand notation as implemented in TextPro. This is more limitingthan code, though, e.g. I don't know how you could do the sum-ming operation below in CPSL.) Anonymous blocks will be evalu-ated within the same scope, which encloses that of all named blocks,and all blocks are evaluated in order, so declarations can be madein anonymous blocks and then referenced in subsequent blocks. La-belled blocks will only be evaluated when they were bound duringLHS matching. The symbol doc is always scoped to the Documentwhich the Transducer this rule belongs to is processing. For exam-ple:// match a sequence of integers, and store their sumRule: NumberSum( {Token.kind == "otherNum"} )+ :numberList-->:numberList{// the running totalint theSum = 0;// loop round all the annotations the LHS consumedfor(int i = 0; i<numberListAnnots.length(); i++) {// get the number string for this annotString numberString = doc.spanStrings(numberListAnnots.nth(i));// parse the number string and add to running totaltry {theSum += Integer.parseInt(numberString);} catch(NumberFormatException e) {// ignore badly-formatted numbers}} // for each number annotdoc.addAnnotation("number",numberListAnnots.getLeftmostStart(),numberListAnnots.getRightmostEnd(),"sum",



6 IMPLEMENTATION 17new Integer(theSum));} // :numberListThis stu� then gets converted into code (that is used to form theclass we create for RHSs) looking like this:package japeactionclasses;import gate.*; import java.io.*; import gate.jape.*;import gate.util.*; import gate.creole.*;public class Test2NumberSumActionClassimplements java.io.Serializable, RhsAction {public void doit(Document doc, LeftHandSide lhs) {AnnotationSet numberListAnnots = lhs.getBoundAnnots("numberList");if(numberListAnnots.size() != 0) {int theSum = 0;for(int i = 0; i<numberListAnnots.length(); i++) {String numberString = doc.spanStrings(numberListAnnots.nth(i));try {theSum += Integer.parseInt(numberString);} catch(NumberFormatException e) { }}doc.addAnnotation("number",numberListAnnots.getLeftmostStart(),numberListAnnots.getRightmostEnd(),"sum",new Integer(theSum));}}}



7 COMPILATION 187 CompilationJAPE uses a compiler that translates CPSL grammars to Java ob-jects that target the GATE API (and a regular expression library).It uses a compiler-compiler (JavaCC) to construct the parser forCPSL. Because CPSL is a transducer based on a regular language(in e�ect an FST) it deploys similar techniques to those used inthe lexical analysers of parser generators (e.g. lex, ex, JavaCCtokenisation rules).In other words, the JAPE compiler is a compiler generated with thehelp of a compiler-compiler which uses back-end code similar to thatused in compiler-compilers.8 JAPE in actionIn the previous sections, we have described how the JAPE grammaris constructed, i.e. what goes on behind the scenes. We now turnto the \visible" parts of the system, and describe how it is used inreal life for Named Entity recognition. The JAPE grammar requiresinformation from two main sources: a tokeniser and gazetteer. Inthe next two sections, we explain how these are developed and used,and how information is passed between components.8.1 TokeniserThe tokeniser splits the text into very simple tokens such as num-bers, punctuation and words of di�erent types. For example, wemight distinguish between words in uppercase and lowercase, andbetween certain types of punctuation. Although the tokeniser is ca-pable of much deeper analysis than this, the aim is to limit its workto maximise e�ciency, and enable greater exibility by placing theburden on the grammar rules, which are more adaptable.A rule has a left hand side (LHS) and a right hand side (RHS). TheLHS is a regular expression which has to be matched on the input;the RHS describes the annotations to be added to the Annotation-Set. The LHS is separated from the RHS by '>'. The followingoperators can be used on the LHS:



8 JAPE IN ACTION 19| (or)* (0 or more occurrences)? (0 or 1 occurrences)+ (1 or more occurrences)The RHS uses ';' as a separator, and has the following format:{LHS} > {Annotation type};{attribute1}={value1};...;{attributen}={value n}Details about the primitive constructs available are given in the to-keniser �le (DefaultTokeniser.Rules).The following tokeniser rule is for a word beginning with a singlecapital letter:"UPPERCASE_LETTER" "LOWERCASE_LETTER"* >Token;orth=upperInitial;kind=word;It states that the sequence must begin with an uppercase letter,followed by zero or more lowercase letters. This sequence will thenbe annotated as type \Token". The attribute \orth" (orthography)has the value \upperInitial"; the attribute \kind" has the value\word".8.2 GazetteerThe gazetteer lists used are plain text �les, with one entry per line.Each list represents a set of names, such as names of cities, organi-sations, days of the week, etc.Below is a small section of the list for units of currency:EcuEuropean Currency UnitsFFrFrGerman markGerman marksNew Taiwan dollarNew Taiwan dollars



8 JAPE IN ACTION 20NT dollarNT dollarsAn index �le (lists.def) is used to access these lists; for each list,a major type is speci�ed and, optionally, a minor type 3. In theexample below, the �rst column refers to the list name, the secondcolumn to the major type, and the third to the minor type. Theselists are compiled into �nite state machines. Any text tokens thatare matched by these machines will be annotated with features spec-ifying the major and minor types. Grammar rules then specify thetypes to be identi�ed in particular circumstances.currency_prefix.lst:currency_unit:pre_amountcurrency_unit.lst:currency_unit:post_amountdate.lst:date:specificday.lst:date:daySo, for example, if a speci�c day needs to be identi�ed, the minortype \day" should be speci�ed in the grammar, in order to matchonly information about speci�c days; if any kind of date needs tobe identi�ed,the major type \date" should be speci�ed, to enabletokens annotated with any information about dates to be identi-�ed. More information about this can be found in the section ongrammars.8.3 GrammarThe rules are separated into two parts, separated by \{>". TheLHS performs pattern-matching; the RHS describes the annotationto be assigned. On the LHS, the pattern is described in terms of theannotations already assigned by the tokeniser and gazetteer. Thereare 3 main ways in which the pattern can be speci�ed:� specify a string of text, e.g. fToken.string == \of"g� specify the attributes (and values) of a token (or any otherannotation), e.g. fToken.kind == numberg� specify an annotation type from the gazetteer, e.g. fLookup.minorType== monthg3it is also possible to include a language in the same way, where lists for di�erent languagesare used, though MUSE is only concerned with monolingual recognition



8 JAPE IN ACTION 21Macros can also be used in the LHS of rules. This means thatinstead of expressing the information in the rule, it is speci�ed ina macro, which can then be called in the rule. The reason for thisis simply to avoid having to repeat the same information in severalrules. Macros can themselves be used inside other macros.The same operators can be used as for the tokeniser rules, i.e.|*?+The pattern description is followed by a label for the annotation.Usually this label would be the same as the attribute value whichwill be assigned to it, although since the label is only local to therule, this is for reasons of convenience rather than necessity. It isalso possible to have more than one pattern and corresponding label,provided that the pattern is enclosed in a set of round brackets.The RHS of the rule contains information about the annotation.Information about the annotation is transferred from the LHS of therule using the label just described, and annotated with the entitytype (which follows it). Finally, attributes and their correspondingvalues are added to the annotation.In the simple example below, the pattern described will be awardedan annotation of type \Enamex" (because it is an entity name). Thisannotation will have the attribute \kind", with value \location",and the attribute \rule", with value \GazLocation". (The purposeof the \rule" attribute is simply to ease the process of manual rulevalidation).Rule: GazLocation({Lookup.majorType == location}):location -->:location.Enamex = {kind="location", rule=GazLocation}Grammar rules can essentially be of two types. The �rst type ofrule involves no gazetteer lookup, but can be de�ned using a smallset of possible formats. In general, these are fairly straightforwardand o�er little potential for ambiguity.



8 JAPE IN ACTION 22The second type of rules rely more heavily on the gazetteer lists,and cover a much wider range of possibilities. This not only meansthat many rules may be needed to describe all situations, but thatthere is a much greater potential for ambiguity. This leads to thenecessity for rule ordering and prioritisation, as will be discussedbelow.For example, a single rule is su�cient to identify an IP address,because there is only one basic format - a series of numbers, eachset connected by a dot. The rule for this is given below4:Rule: IPAddress({Token.kind == number}{Token.string == "."}{Token.kind == number}{Token.string == "."}{Token.kind == number}{Token.string == "."}{Token.kind == number}):ipAddress -->:ipAddress.Address = {kind = "ipAddress"}To identify a date or time, there are many possible variations, andso many rules are needed. For example, the same date informationcan appear in the following formats (amongst others):Wed, 10/7/00Wed, 10/July/00Wed, 10 July, 2000Wed 10th of July, 2000Wed. July 10th, 2000Wed 10 July 2000Di�erent types of date can also be expressed. For example, thefollowing would also be classi�ed as date entities:the late '80sMonday4We might be more speci�c and state the possible lengths of the number, but within thecon�nes of this project we currently have no need to, because there is no ambiguity withanything else



8 JAPE IN ACTION 23St. Andrew's Day99 BCmid-November1980-81from March to AprilThis also means there is a much greater potential for ambiguity.For example, many of the months of the year can also be girls'Christian names (e.g. May, June). This means that contextualinformation may be needed to disambiguate them, or we may haveto guess which is more likely, based on frequency. For example,while \Friday" could be a person's name (as in \Man Friday"), it ismuch more likely to be a day of the week.8.3.1 Use of ContextContext can be dealt with in the grammar rules in the followingway. The pattern to be annotated is always enclosed by a set ofround brackets. If preceding context is to be included in the rule,this is placed before this set of brackets. This context is describedin exactly the same way as the pattern to be matched. If contextfollowing the pattern needs to be included, it is placed after thelabel given to the annotation. Context is used where a patternshould only be recognised if it occurs in a certain situation, but thecontext itself does not form part of the pattern to be annotated.For example, the following rule for Time (assuming an appropriatemacro for \year") would mean that a year would only be recognisedif it occurs preceded by the words \in" or \by":Rule: YearContext1({Token.string == "in"}|{Token.string == "by"})(YEAR):date -->:date.Timex = {kind = "date", rule = "YearContext1"}Similarly, the following rule (assuming an appropriate macro for\email") would mean that an email address would only be recognised



8 JAPE IN ACTION 24if it occurred inside angled brackets (which would not themselvesform part of the entity):Rule: Emailaddress1({Token.string == ``<''})((EMAIL)):email({Token.string == ``>''})-->:email.Address= {kind = "email", rule = "Emailaddress1"}8.3.2 Use of PriorityEach grammar has 2 possible control styles: \Brill" and \Appelt".This is speci�ed at the beginning of the grammar. The Brill stylemeans that when more than one rule matches the same region of thedocument, they are all �red. The result of this is that a segmentof text could be allocated more than one entity type, and that noproiority ordering is necessary.With the Appelt style, only one rule can be �red for the same regionof text, according to a set of priority rules. Priority operates in thefollowing way.1. From all the rules that match a region of the document startingat some point X, the one which matches the longest region is�red.2. If more than one rule matches the same region, the one withthe highest priority is �red3. If there is more than one rule with the same priority, the onede�ned earlier in the grammar is �red.An optional priority declaration is associated with each rule, whichshould be a positive integer. The higher the number, the greater thepriority. By default (if the priority declaration is missing) all ruleshave the priority -1 (i.e. the lowest priority).For example, the following two rules for location could potentiallymatch the same text.



8 JAPE IN ACTION 25Rule: Location1Priority: 25(({Lookup.majorType == loc_key, Lookup.minorType == pre}{SpaceToken})?{Lookup.majorType == location}({SpaceToken}{Lookup.majorType == loc_key, Lookup.minorType == post})?):locName -->:locName.Location = {kind = "location", rule = "Location1"}Rule: GazLocationPriority: 20(({Lookup.majorType == location}):location)--> :location.Name = {kind = "location", rule=GazLocation}Assume we have the text \China sea", that \China" is de�ned inthe gazetteer as \location", and that sea is de�ned as a \loc key"of type \post". In this case, rule Location1 would apply, because itmatches a longer region of text starting at the same point (\Chinasea", as opposed to just \China"). Now assume we just have the text\China". In this case, both rules could be �red, but the priority forLocation1 is highest, so it will take precedence. In this case, sinceboth rules produce the same annotation, so it is not so importantwhich rule is �red, but this is not always the case.One important point of which to be aware is that prioritisationonly operates within a single grammar. Although we could makepriority global by having all the rules in a single grammar, this isnot ideal due to other considerations. Instead, we currently combineall the rules for each entity type in a single grammar. An index �le(main.jape) is used to de�ne which grammars should be used, andin which order they should be �red.



8 JAPE IN ACTION 268.4 Putting it all together: walkthrough exampleLet us take an example of the whole 3-stage procedure. Suppose wewish to recognise the phrase \800,000 US dollars" as an entity oftype \Number", with the feature \money".First of all, we give an example of a grammar rule (and correspond-ing macros) for money, which would recognise this type of pattern.Macro: MILLION_BILLION({Token.string == "m"}|{Token.string == "million"}|{Token.string == "b"}|{Token.string == "billion"})Macro: AMOUNT_NUMBER({Token.kind == number}(({Token.string == ","}|{Token.string == "."}){Token.kind == number})*((SpaceToken.kind == space)?(MILLION_BILLION)?))Rule: Money1// e.g. 30 pounds( (AMOUNT_NUMBER)(SpaceToken.kind == space)?({Lookup.majorType == currency_unit})):money -->:money.Number = {kind = "money", rule = "Money1"}8.5 Step 1 - TokenisationThe tokeniser separates this phrase into the following tokens. Ingeneral, a word is comprised of any number of letters of either case,including a hyphen, but nothing else; a number is composed of anysequence of digits; punctuation is recognised individually (each char-
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