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This specification describes JAPE — a Java Annotation Patterns
Engine. JAPE provides finite state transduction over annotations
based on regular expressions. JAPE is a version of CPSL — Common
Pattern Specification Language'.

JAPE is available as part of GATE [Cun00, CBTW00, CMB*00,
CBPWO00].

LA good description of the original version of this language is in Doug Appelt’s TextPro
manual: http://www.ai.sri.com/ appelt/TextProDoug was a great help to us in
implementing JAPE. Thanks Doug!
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A JAPE grammar consists of a set of phases, each of which con-
sists of a set of pattern/action rules. The phases run sequentially
and constitute a cascade of finite state transducers over annota-
tions. The left-hand-side (LHS) of the rules consist of an annotation
pattern that may contain regular expression operators (e.g. *, 7,
+). The right-hand-side (RHS) consists of annotation manipulation
statements. Annotations matched on the LHS of a rule may be re-
ferred to on the RHS by means of labels that are attached to pattern
elements.

Section 1 gives a formal definition of the JAPE grammar, and some
examples of its use. Section 2 describes JAPE’s relation to CPSL.
The next 3 sections describe the algorithms used, label binding, and
the classes used. Section 6 gives an example of the implementation;
section 7 explains the compilation process; and finally section 8
describes the action and use of the JAPE grammar from a top-level
point of view.

1 Grammar of JAPE

JAPE is similar to CPSL, with a few exceptions. Figure 1 gives a
BNF (Backus-Naur Format) description of the grammar.

An example rule LHS:

Rule: KiloAmount
( ({Token.kind == "containsDigitAndComma"}) :number
{Token.string == "kilograms"} ):whole

A basic constraint specification appears between curly braces, and
gives a conjunction of annotation/attribute/value specifiers which
have to match at a particular point in the annotation graph. A
complex constraint specification appears within round brackets, and
may be bound to a label with the “:” operator; the label then be-
comes available in the RHS for access to the annotations matched by
the complex constraint. Complex constraints can also have Kleene
operators (*, +, 7) applied to them. A sequence of constraints
represents a sequential conjunction; disjunction is represented by
separating constraints with “|”.

Converted to the format accepted by the JavaCC LL parser gener-
ator, the most significant fragment of the CPSL grammar (as de-



1 GRAMMAR OF JAPE 3

scribed by Appelt, based on an original specification from a TIP-
STER working group chaired by Boyan Onyshkevych) goes like this:

constraintGroup -->
(patternElement)+ ("|" (patternElement)+ )*

patternElement -->
"{" constraint ("," constraint)*x "}"
| "(" constraintGroup ")" (kleeneOp)? (binding)?

Here the first line of patternElement is a basic constraint, the sec-
ond a complex one.
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MultiPhaseTransducer ::=
( <multiphase> <ident> )7
( ( SinglePhaseTransducer )+ | ( <phases> ( <ident> )+ ) )
<EOF>
SinglePhaseTransducer ::=
<phase> <ident>
( <input> ( <ident> )* )7
( <option> ( <ident> <assign> <ident> )* )7
( ( Rule ) | MacroDef )*
Rule ::=
<rule> <ident> ( <priority> <integer> )7
LeftHandSide "-->" RightHandSide
MacroDef ::=
<macro> <ident> ( PatternElement | Action )
LeftHandSide ::=
ConstraintGroup
ConstraintGroup ::=
( PatternElement )+ ( <bar> ( PatternElement )+ )*
PatternElement ::=
( <ident> | BasicPatternElement | ComplexPatternElement )
BasicPatternElement ::=
( ( <leftBrace> Constraint ( <comma> Constraint )* <rightBrace> )
| ( <string> ) )
ComplexPatternElement ::=
<leftBracket> ConstraintGroup <rightBracket>
( <kleeneOp> )7
( <colon> ( <ident> | <integer> ) )7
Constraint ::=
( <pling> )7 <ident> ( <period> <ident> <equals> AttrVal )7
AttrVal ::=
( <string> | <ident> | <integer> | <floatingPoint> | <bool> )
RightHandSide ::=
Action ( <comma> Action )#*
Action ::=
( NamedJavaBlock | AnonymousJavaBlock |
AssignmentExpression | <ident> )
NamedJavaBlock ::=
<colon> <ident> <leftBrace> ConsumeBlock
AnonymousJavaBlock ::=
<leftBrace> ConsumeBlock
AssignmentExpression ::=
( <colon> | <colonplus> ) <ident> <period> <ident>
<assign>
<leftBrace> (
<ident> <assign>
( AttrVal | ( <colon> <ident> <period> <ident> <period> <ident> ) )
( <comma> )7
)* <rightBrace>
ConsumeBlock ::=
Java code

Figure 1: BNF of JAPE’s grammar
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An example of a complete rule:

Rule: NumbersAndUnit

( ( {Token.kind == "number"} )+:numbers {Token.kind == "unit"} )
-
:numbers.Name = { rule = "NumbersAndUnit" }

This says ‘match sequences of numbers followed by a unit; create
a Name annotation across the span of the numbers, and attribute
rule with value NumbersAndUnit’.

2 Relation to CPSL

We differ from the CPSL spec in various ways:

1. No pre- or post-fix context is allowed on the LHS.
No function calls on the LHS.
No string shorthand on the LHS.

Ll T

We have two rule application algorithms (one like TextPro, one
like Brill/Mitre). See section ?7.

5. Expressions relating to labels unbound on the LHS are not
evaluated on the RHS. (In TextPro they evaluate to “false”.)
See the binding scheme description in section 4.

6. JAPE allows arbitrary Java code on the RHS.

7. JAPE has a different macro syntax, and allows macros for both

the RHS and LHS.

8. JAPE grammars are compiled and stored as serialised Java
objects.

Apart from this, it is a full implementation of CPSL, and the formal
power of the languages is the same (except that a JAPE RHS can
delete annotations, which straight CPSL cannot). The rule LHS
is a regular language over annotations; the rule RHS can perform
arbitrary transformations on annotations, but the RHS is only fired
after the LHS been evaluated, and the effects of a rule application
can only be referenced after the phase in which it occurs, so the
recognition power is no more than regular.
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3 Algorithms for JAPE Rule Application

JAPE rules are applied in one of two ways:

e in Brill-style, where each rule is applied at every point in the
document at which it matches;

o in Appelt-style, where only the longest matching rule is applied
at any point where more than one might apply.

In the Appelt case, the rule set for a phase may be considered as a
single disjunctive expression (and an efficient implementation would
construct a single automaton to recognise the whole rule set). To
solve this problem, we need to employ two algorithms:

e one that takes as input a CPSL representation and builds a
machine capable of recognizing the situations that match the
rules and makes the bindings that occur each time a rule is
applied. This machine is a Finite State Machine (FSM), some-
what similar to a lexical analyser (a deterministic finite state
automaton).

e another one that uses the FSM built by the above algorithm
and traverses the annotation graph in order to find the situa-
tions that the FSM can recognise.

3.1 The first algorithm

The first step that needs to be taken in order to create the FSM
is to read the CPSL description from the external file(s). This is
already done in the old version of Jape.

The second step is to build a nondeterministic FSM from the java
objects resulted from the parsing process. This FSM will have one
initial state and a set of final states, each of them being associated
to one rule (this way we know what RHS we have to execute in
case of a match). The nondeterministic FSM will also have empty
transitions (arcs labeled with nil). In order to build this FSM we
will need to implement a version of the algorithm used to convert
regular expressions in NFAs.

Finally, this nondeterministic FSM will have to be converted to a
deterministic one. The deterministic FSM will have more states (in
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the worst case s! (where s is the number of states in the nondeter-
ministic one); this case is very improbable) but will be more efficient
because it will not have to backtrack.

Let NFSM be the nondeterministic FSM and DFSM the deter-

ministic one.

R1 ©f--{ RHS 1

<>

7Po R o [mer]

<>

o R o) [Fed]

\O Initial state <> Empty transition @ Final state

Figure 2: A nondeterministic FSM

The issues that have to be addressed are:

The NFSM will basically be a big OR. This means that it will have
an initial state from which empty transitions will lead to the sub-
FSMs associated to each rule (see Fig.2). When the NFSM is con-
verted to a DFSM the initial state will be the set containing all
the initial states of the FSMs associated to each rule. From that
state we will have to compute the possible transitions. For this,
the classical algorithm requires us to check for each possible input
symbol what is the set of reachable states. The problem is that our
input symbols are actually sets of restrictions. This is similar to an
automaton that has an infinite set of input symbols (although any
given set of rules describes a finite set of constraints). This is not so
bad, the real problem is that we have to check if there are transitions
that have the same restrictions. I think we can safely consider that
there aren’t any two transitions with the same set of restrictions.
This is safe because if this assumption is wrong, the result will be a
state that has two transitions starting from it, transitions that con-
sume the same symbol. This is not a problem because we have to
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check all outgoing transitions anyway; we will only check the same
transition twice.

This leads me to the next issue. Imagine the next part of the tran-
sition graph of a FSM:

12N

u ,u Sets of restrictions
/A Common part

1-3N

Figure 3: Example of transitions

The restrictions associated to a transition are depicted as graphical
figures (the two coloured squares). Now imagine that the two sets
of restrictions have a common part (the yellow triangle).

Let us assume that at one moment the current node in the FSM
graph (for one of the active FSM instances) is state 1. We get
from the annotation graph the set of annotations starting from the
associated current node in the annotation graph and try to advance
in the FSM transition graph. In order to do this we will have to
find a subset of annotations that match the restrictions for moving
to state 2 or state 3. In a classical algorithm what we would do is to
try to match the annotations against the restrictions “1-2” (this will
return a boolean value and a set of bindings) and then we will try
the matching against the restrictions “1-3” this means that we will
try to match the restrictions in the common part twice. Because
of the probable structure of the FSM transition graph there will be
a lot of transitions starting from the same node which means that
may be a lot of conditions checked more than one times.

What can we do to improve this?

We need a way to combine all the restrictions associated to all out-
going arcs of a state (see Fig. 4).

One way to do the (combined) matching is to pre-process the DFSM
and to convert all transitions to matchers (as in Fig.4). This could
be done using the following algorithm:

e Input: A DFSM;
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l:<a ,a,..a >
I<a’,a’, ...A">
l:<a ,a ,..a >
1-2
ﬂ Matcher
........ > (:)—
N-A+N s
1_3u l:<a ,a,...a >
I'<a’,a’, ...A’ >
li<a ,a ,..a >

Figure 4: A combined matching process

e Output: A DFSM with compound restrictions checks.
o for each state s of the DFSM

1. collect all the restrictions in the labels of the outgoings arcs
from s (in the DFSM transition graph)

Note: these restrictions are either of form “Type == t;”
or of form “Type == t; && Attr; == Value;

2. Group all these restrictions by type and branch and cre-
ate compound restrictions of form “[Type == ¢; && Attrq
== Value; && Attry == Valuey, && ... && Atir, ==
Value,]”

The grouping has to be done with care so it doesn’t mix
restrictions from different branches, creating unnecessary
restrictive queries. These restrictions will be sent to the
annotation graph which will do the matching for us. Note
that we can only reuse previous queries if the restrictions
are identical on two branches. 2

3. Create the data structures necessary for linking the bind-
ings to the results of the queries.(see Fig 5)

When this machine will be used for the actual matching the three
queries will be run and the results will be stored in sets of annota-
tions (S1..53 in the picture) and...

e For each pair of annotations from (A;, As) s.t. Ay in 51 & As
in 52
2By this we mean restrictions referring to the same type of annotations. If for branches

1-2 and 1-3 the restrictions for the type T} are the same, the query for type 77 will be run
only once. Each of the two branches can also have restrictions for other types of annotations.
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L=<S,S>

(T.V=A,T.A=V})L1

!

D— S=T.V=A}

(T.V=A,T.A=V}L2

5

L=<§,S8S>

Figure 5: Building a compound matcher

a new DFSM instance will be created;
this instance will move to state 2;
A1, Agj will be bound to [

the corresponding node in the annotation graph will be-

come max(A; endNode(), As.endNode()).

- =

e Similarly, for each pair of annotations from (A;, As) s.t. Ay in

Sl & A3 iH 53

1. a new DFSM instance will be created;

2. this instance will move to state 3;
3. Ay, Asj will be bound to L,

4. the corresponding node in the annotation graph will be-

come max(Aj.endNode(), As.endNode()).

While building the compound matcher it is possible to detect queries
that depend one from another (e.g. if the expected results of a
query are a subset of the results from another query). This kind
of situations can be marked so when the queries are actually run
some operations can be avoided (e.g. if the less restrictive search
returned no results than the more restrictive one can be skipped, or
if a search returns an AnnotationSet (an object that can be queried)
than the more restrictive query can be.

3.2 Algorithm 2

Consider the following figure:
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N,

1
° * oJ o
Node Annotation description Annotation
(type & features)

Figure 6: An annotation graph

Basically, the algorithm has to traverse this graph starting from the
leftmost node to the rightmost one. Each path found is a sequence
of possible matches.

Because more than one annotation (all starting at the same point)
can be matched at one step, a path is not viewed as a classical
path in a graph, but a sequence of steps, each step being a set of
annotations that start in the same node.

e.g. a path in the graph above can be: [1].[2,4].[7,8].[10];

Note that the next step continues from the rightmost node reached
by the annotations in the current step.

The matchings are made by a Finite State Machine that resembles
an clasical lexical analyser (aka. scanner). The main difference to a
scanner is that there are no input symbols; the transition from one
state to another is based on matching a set of objects (annotations)
against a set of restrictions (the constraint group in the LHS of a

CPSL rule).

The algorithm can be the following:

1. startNode = the leftmost node

2. create a first instance of the FSM and add it to the list of active
instances;

3. for this FSM instance set current node as the leftmost node;

4. while(startNode != last node) do
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1 while (not over) do
1 for each F'i active instance of the FSM do

1 if this instance is in a final state then save a clone
of it in the set of accepting FSMs (instances of the
FSM that have reached a final state);

2 read all the annotations starting from the current
node;

3 select all sets of annotation that can be used to ad-
vance one step in the transition graph of the FSM;

4 for each such set create a new instance of the FSM,
put it in the active list and make it consume the
corresponding set of annotations, making any nec-
essary bindings in the process (this new instance
will advance in the annotation graph to the right-
most node that is an end of a matched annotation );

5 discard Fj;
2 end for;
3 if the set of active instances of FSM is empty * then
over = true;
end while;
2 if the set of accepting FSMs is not empty

1 from all accepting FSMs select ** the one that matched
the longest path:if there are more than one for the same
path length select the one with highest priority:;

2 execute the action associated to the final state of the
selected FSM instance;

3 startNode = selectedFSMInstance.getLastNode.getNextNode();

3 else //the matching failed — start over from the next node
// startNode = startNode.getNextNode();

5. end while;

*: the set of active FSM instances can decrease when an active
instance cannot continue (there is no set of annotations starting
from its current node that can be matched). In this case it will be
removed from the set.

**:.4f we do Brill style matching we have to process each of the
accepting instances.

The above algorithm is rendered from a semantic point of view.
Here are some ideas regarding the actual implementation:
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o There is no need to actually create new instances of the FSM.
What has to be saved is just the current state of the FSM
instance. In this particular case state means:

— a position in FSM transition graph;
— a position in the annotation graph (the current node);

— the set of bindings made during matching annotations from
the start node until the current node.

e The most sensitive problem is the method used for matching,
but this belongs to the other algorithm.

4 Label Binding Scheme

In TextPro a “:” label binds to the last matched annotation in its
scope. A “+:”7 label binds to all the annotations matched in the
scope. In JAPE there is no “+:” label (though there is a “:4” — see
below), due to the ambiguity with Kleene 4. In CPSL a constraint
group can be both labelled and have a Kleene operator. How can
Kleene + followed by label : be distinguished from label +: 7 E.g.
given (....)+:1label arethe constraints within the brackets having
Kleene + applied to them and being labelled, or is it a +: label?

Appelt’s answer is that +: is always a label; to get the other inter-
pretation use ((...)+):. This may be difficult for rule developers to
remember; JAPE disallows the “+:” label, and makes all matched
annotations available from every label.

JAPE adds a “:47 label operator, which means that all the spans of
any annotations matched are assigned to new annotations created on
the RHS relative to that label. (With ordinary “:” labels, only the
span of the outermost corners of the annotations matched is used.)
(This operator disappears in GATE version 2, with the elimination
of multi-span annotations.)

Another problem regards RHS interpretation of unbound labels. If
we have something like

(
( {Word.string

|
( {Word.string

)

"thing"} ):1

"otherthing"} ):2
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on the LHS, and references to :1 and :2 on the RHS, only one of
these will actually be bound to anything when the rule is fired. The
expression containing the other should be ignored. In TextPro, an
assignment on the RHS that references an unbound label is eval-
uated to the value “false”. In JAPE, RHS expressions involving
unbound operators are not evaluated.

5 Classes

The main external interfaces to JAPE are the classes gate. jape.Batch
and gate.jape.Compiler. The CPSL Parser is implemented by
ParseCpsl.jj, which is input to JavaCC (and JJDoc to produce
grammar documentation) and finally Java itself. (There are lots
of other classes produced along the way by the compiler-compiler
tools:

ASCII CharStream. java JJTParseCpslState.java Node.java ParseCpsl. java
ParseCpslConstants. java ParseCpslTokenManager. java ParseCpslTreeConstants. java
ParseException. java SimpleNode. java TestJape.java Token.java
TokenMgrError. java

These live in the parser subpackage, in the gate/jape/parser di-
rectory.

Each grammar results in an object of class Transducer, which has
a set of Rule.

Constants are held in the interface JapeConstants. The test harness
is in TestJape.

6 Implementation

6.1 A Walk-Through

The pattern application algorithm (which is either like Doug’s, or
like Brill’s), makes a top-level call to something like

boolean matches(int position, Document doc,
MutableInteger newPosition)
throws PostionOutOfRange
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which is a method on each Rule. This is in turn deferred to the
rule’s LeftHandSide, and thence to the ConstraintGroup which
each LeftHandSide contains. The ConstraintGroup iterates over
its set of PatternElementConjunctions; when one succeeds, the
matches call returns true; if none succeed, it returns false. The
Rules also have

void transduce(Document doc) throws LhsNotMatched

methods, which may be called after a successful match, and result in
the application of the RightHandSide of the Rule to the document.

PatternElements also implement the matches method. Whenever

it succeeds, the annotations which were consumed during the match

are available from that element, as are a composite span set, and a

single span that covers the whole set. In general these will only be

accessed via a bindingName, which is associated with ComplexPatternElements.

The LeftHandSide maintains a mapping of bindingNames to ComplexPatternElements
(which are accessed by array reference in Rule RightHandSides).

Although PatternElements give access to an annotation set, these
are only built when they are asked for (caching ensures that they are
only built once) to avoid storing annotations against every matched
element. When asked for, the construction process is an itera-
tive traversal of the elements contained within the element being
asked for the annotations. This traversal always bottoms out into
BasicPatternElements, which are the only ones that need to store
annotations all the time.

In aRightHandSide application, then, a call to the LeftHandSide’s
binding environment will yield a ComplexPatternElement repre-
senting the bound object, from which annotations and spans can be
retrieved as needed.

6.2 Example RHS code

Let’s imagine we are writing an RHS for a rule which binds a set
of annotations representing simple numbers to the label :numbers.
We want to create a new annotation spanning all the ones matched,
whose value is an Integer representing the sum of the individual
numbers.

The RHS consists of a comma-separated list of blocks, which are
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either anonymous or labelled. (We also allow the CPSL-style short-
hand notation as implemented in TextPro. This is more limiting
than code, though, e.g. I don’t know how you could do the sum-
ming operation below in CPSL.) Anonymous blocks will be evalu-
ated within the same scope, which encloses that of all named blocks,
and all blocks are evaluated in order, so declarations can be made
in anonymous blocks and then referenced in subsequent blocks. La-
belled blocks will only be evaluated when they were bound during
LHS matching. The symbol doc is always scoped to the Document
which the Transducer this rule belongs to is processing. For exam-
ple:

// match a sequence of integers, and store their sum
Rule: NumberSum

( {Token.kind == "otherNum"} )+ :numberList
-

:numberList{
// the running total
int theSum = 0;

// loop round all the annotations the LHS consumed
for(int i = 0; i<numberListAnnots.length(); i++) {

// get the number string for this annot
String numberString = doc.spanStrings(numberListAnnots.nth(i));

// parse the number string and add to running total
try {
theSum += Integer.parselnt(numberString);
} catch(NumberFormatException e) {
// ignore badly-formatted numbers
by

} // for each number annot

doc.addAnnotation(
"number",
numberListAnnots.getLeftmostStart(),
numberListAnnots.getRightmostEnd (),
”S'llm” s
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new Integer (theSum)
)

} // :numberList

This stuff then gets converted into code (that is used to form the
class we create for RHSs) looking like this:

package japeactionclasses;

import gate.*; import java.lo.*; import gate.jape.*;
import gate.util.*; import gate.creole.*;

public class Test2NumberSumActionClass
implements java.io.Serializable, RhsAction {

public void doit(Document doc, LeftHandSide lhs) {
AnnotationSet numberlListAnnots

=1
if (numberListAnnots.size() '= 0) {
int theSum = 0;

hs.getBoundAnnots("numberList");

for(int i = 0; i<numberListAnnots.length(); i++) {
String numberString = doc.spanStrings(numberListAnnots.nth(i));

try {
theSum += Integer.parselnt(numberString) ;
} catch(NumberFormatException e) { }

b

doc.addAnnotation(
"number",
numberListAnnots.getLeftmostStart (),
numberListAnnots.getRightmostEnd(),
"sum",
new Integer(theSum)
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7 Compilation

JAPE uses a compiler that translates CPSL grammars to Java ob-
jects that target the GATE API (and a regular expression library).
It uses a compiler-compiler (JavaCC) to construct the parser for
CPSL. Because CPSL is a transducer based on a regular language
(in effect an FST) it deploys similar techniques to those used in
the lexical analysers of parser generators (e.g. lex, flex, JavaCC
tokenisation rules).

In other words, the JAPE compiler is a compiler generated with the
help of a compiler-compiler which uses back-end code similar to that
used in compiler-compilers.

8 JAPE in action

In the previous sections, we have described how the JAPE grammar
is constructed, i.e. what goes on behind the scenes. We now turn
to the “visible” parts of the system, and describe how it is used in
real life for Named Entity recognition. The JAPE grammar requires
information from two main sources: a tokeniser and gazetteer. In
the next two sections, we explain how these are developed and used,
and how information is passed between components.

8.1 Tokeniser

The tokeniser splits the text into very simple tokens such as num-
bers, punctuation and words of different types. For example, we
might distinguish between words in uppercase and lowercase, and
between certain types of punctuation. Although the tokeniser is ca-
pable of much deeper analysis than this, the aim is to limit its work
to maximise efficiency, and enable greater flexibility by placing the
burden on the grammar rules, which are more adaptable.

A rule has a left hand side (LHS) and a right hand side (RHS). The
LHS is a regular expression which has to be matched on the input;
the RHS describes the annotations to be added to the Annotation-
Set. The LHS is separated from the RHS by '>’. The following

operators can be used on the LHS:
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(or)

(0 or more occurrences)
(0 or 1 occurrences)

(1 or more occurrences)

+ N % —

The RHS uses ’;” as a separator, and has the following format:

{LHS} > {Annotation typel};{attributel}={valuel};...;{attribute

n}t={value n}

Details about the primitive constructs available are given in the to-

keniser file (Default Tokeniser.Rules)

The following tokeniser rule is for a word beginning with a single
capital letter:

"UPPERCASE_LETTER" "LOWERCASE_LETTER"* >
Token;orth=upperInitial;kind=word;

It states that the sequence must begin with an uppercase letter,
followed by zero or more lowercase letters. This sequence will then
be annotated as type “Token”. The attribute “orth” (orthography)
has the value “upperlnitial”; the attribute “kind” has the value
“word”.

8.2 Gazetteer

The gazetteer lists used are plain text files, with one entry per line.
Each list represents a set of names, such as names of cities, organi-
sations, days of the week, etc.

Below is a small section of the list for units of currency:

Ecu

European Currency Units
FFr

Fr

German mark

German marks

New Taiwan dollar

New Taiwan dollars
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NT dollar
NT dollars

An index file (lists.def) is used to access these lists; for each list,
a major type is specified and, optionally, a minor type 2. In the
example below, the first column refers to the list name, the second
column to the major type, and the third to the minor type. These
lists are compiled into finite state machines. Any text tokens that
are matched by these machines will be annotated with features spec-
ifying the major and minor types. Grammar rules then specify the
types to be identified in particular circumstances.

currency_prefix.lst:currency_unit:pre_amount
currency_unit.lst:currency_unit:post_amount
date.lst:date:specific

day.lst:date:day

So, for example, if a specific day needs to be identified, the minor
type “day” should be specified in the grammar, in order to match
only information about specific days; if any kind of date needs to
be identified,the major type “date” should be specified, to enable
tokens annotated with any information about dates to be identi-
fied. More information about this can be found in the section on
grammars.

8.3 Grammar

The rules are separated into two parts, separated by “—>”. The
LHS performs pattern-matching; the RHS describes the annotation
to be assigned. On the LHS, the pattern is described in terms of the
annotations already assigned by the tokeniser and gazetteer. There
are 3 main ways in which the pattern can be specified:

e specify a string of text, e.g. {Token.string == “of”}

e specify the attributes (and values) of a token (or any other
annotation), e.g. {Token.kind == number}

e specify an annotation type from the gazetteer, e.g. {Lookup.minorType
== month}

3it is also possible to include a language in the same way, where lists for different languages
are used, though MUSE is only concerned with monolingual recognition
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Macros can also be used in the LHS of rules. This means that
instead of expressing the information in the rule, it is specified in
a macro, which can then be called in the rule. The reason for this
is simply to avoid having to repeat the same information in several
rules. Macros can themselves be used inside other macros.

The same operators can be used as for the tokeniser rules, i.e.

+ N % —

The pattern description is followed by a label for the annotation.
Usually this label would be the same as the attribute value which
will be assigned to it, although since the label is only local to the
rule, this is for reasons of convenience rather than necessity. It is
also possible to have more than one pattern and corresponding label,
provided that the pattern is enclosed in a set of round brackets.

The RHS of the rule contains information about the annotation.
Information about the annotation is transferred from the LHS of the
rule using the label just described, and annotated with the entity
type (which follows it). Finally, attributes and their corresponding
values are added to the annotation.

In the simple example below, the pattern described will be awarded
an annotation of type “Enamex” (because it is an entity name). This
annotation will have the attribute “kind”, with value “location”,
and the attribute “rule”, with value “Gazlocation”. (The purpose
of the “rule” attribute is simply to ease the process of manual rule
validation).

Rule: GazLocation
(
{Lookup.majorType == location}
)
:location -->
:location.Enamex = {kind="location", rule=GazLocation}

Grammar rules can essentially be of two types. The first type of
rule involves no gazetteer lookup, but can be defined using a small
set of possible formats. In general, these are fairly straightforward
and offer little potential for ambiguity.
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The second type of rules rely more heavily on the gazetteer lists,
and cover a much wider range of possibilities. This not only means
that many rules may be needed to describe all situations, but that
there is a much greater potential for ambiguity. This leads to the
necessity for rule ordering and prioritisation, as will be discussed
below.

For example, a single rule is sufficient to identify an IP address,
because there is only one basic format - a series of numbers, each
set connected by a dot. The rule for this is given below®:

Rule: IPAddress

(
{Token.kind == number}
{Token.string == "."}
{Token.kind == number}
{Token.string == "."}
{Token.kind == number}
{Token.string == "."}
{Token.kind == number}

)

:ipAddress -->
:ipAddress.Address = {kind = "ipAddress"}

To identify a date or time, there are many possible variations, and
so many rules are needed. For example, the same date information
can appear in the following formats (amongst others):

Wed, 10/7/00

Wed, 10/July/00

Wed, 10 July, 2000
Wed 10th of July, 2000
Wed. July 10th, 2000
Wed 10 July 2000

Different types of date can also be expressed. For example, the
following would also be classified as date entities:

the late ’80s
Monday

4We might be more specific and state the possible lengths of the number, but within the
confines of this project we currently have no need to, because there is no ambiguity with
anything else
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St. Andrew’s Day

99 BC

mid-November
1980-81

from March to April

This also means there is a much greater potential for ambiguity.
For example, many of the months of the year can also be girls’
Christian names (e.g. May, June). This means that contextual
information may be needed to disambiguate them, or we may have
to guess which is more likely, based on frequency. For example,
while “Friday” could be a person’s name (as in “Man Friday”), it is
much more likely to be a day of the week.

8.3.1 Use of Context

Context can be dealt with in the grammar rules in the following
way. The pattern to be annotated is always enclosed by a set of
round brackets. If preceding context is to be included in the rule,
this is placed before this set of brackets. This context is described
in exactly the same way as the pattern to be matched. If context
following the pattern needs to be included, it is placed after the
label given to the annotation. Context is used where a pattern
should only be recognised if it occurs in a certain situation, but the
context itself does not form part of the pattern to be annotated.

For example, the following rule for Time (assuming an appropriate
macro for “year”) would mean that a year would only be recognised
if it occurs preceded by the words “in” or “by”:

Rule: YearContextl

({Token.string == "in"}|
{Token.string == "by"}
)

(YEAR)

:date -->

:date.Timex = {kind = '"date", rule = "YearContextl'}

Similarly, the following rule (assuming an appropriate macro for
“email”) would mean that an email address would only be recognised
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if it occurred inside angled brackets (which would not themselves
form part of the entity):

Rule: Emailaddressl

({Token.string == ‘‘<’’})
(
(EMAIL)
)
:email
({Token.string == “‘>’’})
-
:email .Address= {kind = "email", rule = "Emailaddressi"}

8.3.2 Use of Priority

Each grammar has 2 possible control styles: “Brill” and “Appelt”.
This is specified at the beginning of the grammar. The Brill style
means that when more than one rule matches the same region of the
document, they are all fired. The result of this is that a segment
of text could be allocated more than one entity type, and that no
proiority ordering is necessary.

With the Appelt style, only one rule can be fired for the same region
of text, according to a set of priority rules. Priority operates in the
following way.

1. From all the rules that match a region of the document starting
at some point X, the one which matches the longest region is

fired.

2. If more than one rule matches the same region, the one with
the highest priority is fired

3. If there is more than one rule with the same priority, the one
defined earlier in the grammar is fired.

An optional priority declaration is associated with each rule, which
should be a positive integer. The higher the number, the greater the
priority. By default (if the priority declaration is missing) all rules
have the priority -1 (i.e. the lowest priority).

For example, the following two rules for location could potentially
match the same text.
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Rule: Locationl
Priority: 25

(
({Lookup.majorType == loc_key, Lookup.minorType == pre}
{SpaceToken})?
{Lookup.majorType == location}
({SpaceToken}
{Lookup.majorType == loc_key, Lookup.minorType == post})?
)
:locName -->
:locName.Location = {kind = "location'", rule = '"Locationl'}
Rule: GazLocation
Priority: 20
(
({Lookup.majorType == location}):location
)
--> :location.Name = {kind = "location'", rule=GazLocation}

Assume we have the text “China sea”, that “China” is defined in
the gazetteer as “location”, and that sea is defined as a “loc_key”
of type “post”. In this case, rule Locationl would apply, because it
matches a longer region of text starting at the same point (“China
sea”, as opposed to just “China”). Now assume we just have the text
“China”. In this case, both rules could be fired, but the priority for
Locationl is highest, so it will take precedence. In this case, since
both rules produce the same annotation, so it is not so important
which rule is fired, but this is not always the case.

One important point of which to be aware is that prioritisation
only operates within a single grammar. Although we could make
priority global by having all the rules in a single grammar, this is
not ideal due to other considerations. Instead, we currently combine
all the rules for each entity type in a single grammar. An index file
(main.jape) is used to define which grammars should be used, and

in which order they should be fired.
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8.4 Putting it all together: walkthrough example

Let us take an example of the whole 3-stage procedure. Suppose we
wish to recognise the phrase “800,000 US dollars” as an entity of
type “Number”, with the feature “money”.

First of all, we give an example of a grammar rule (and correspond-
ing macros) for money, which would recognise this type of pattern.

Macro: MILLION_BILLION
({Token.string == "m"}|
{Token.string == "million"}|
{Token.string == "b"}|
{Token.string == "billion"}

)

Macro: AMOUNT_NUMBER

({Token.kind == number}

(({Token.string == ","}|
{Token.string == "."})

{Token.kind == number})*

((SpaceToken.kind == space)?
(MILLION_BILLION)?)

)

Rule: Moneyl
// e.g. 30 pounds

(
(AMOUNT _NUMBER)
(SpaceToken.kind == space)?
({Lookup.majorType == currency_unit})

)

:money -->

:money.Number = {kind = "money", rule = "Moneyl"}

8.5 Step 1 - Tokenisation

The tokeniser separates this phrase into the following tokens. In
general, a word is comprised of any number of letters of either case,
including a hyphen, but nothing else; a number is composed of any
sequence of digits; punctuation is recognised individually (each char-
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acter is a separate token), and any number of consecutive spaces
and/or control characters are recognised as a single spacetoken.

Token, string
Token, string =

“‘800’’, kind = number, length = 3
“¢,?’, kind = punctuation, length = 1

Token, string = ‘000’’, kind = number, length = 3

SpaceToken, string = ‘° ’’, kind = space, length = 1

Token, string = ‘‘US’’, kind = word, length = 2, orth = allCaps
SpaceToken, string = ‘° ’’, kind = space, length = 1

Token, string = ‘‘dollars’’, kind = word, length = 7, orth = lowercase

8.6 Step 2 - List Lookup

The gazetteer lists are then searched to find all occurrences of match-
ing words in the text. It finds the following match for the string “US
dollars”:

Lookup, minorType = post_amount, majorType = currency_unit

8.7 Step 3 - Grammar Rules

The grammar rule for money is then invoked. the rule Moneyl
recognises the entire string “800,000 US dollars” as a Number entity
of type Money:

Number, kind = money, rule = Moneyl
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