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Vortex Problems, Rotating Spiral Structures,and the Hannay-Berry PhasePaul K. Newton and Banavara ShashikanthDepartment of Aerospace EngineeringUniversity of Southern CaliforniaLos Angeles, CA 90089-1191, USAAbstractThis paper describes the occurence of phase anholonomies in the context of point vortexproblems for two-dimensional incompressible ows. After giving a brief description of anholo-nomic e�ects in other contexts, we focus attention on the restricted three-vortex problem and asimpler modi�ed problem where the `Hannay-Berry' phase can be computed using multi-scaleasymptotic methods. Our main emphasis in this paper is to show how the Hannay-Berry phasearises as the leading term in an asymptotic expansion as the result of a non-uniform limit process.We show how it arises when computing the long time growth rate of passive scalar interfaces asthey wrap around vortex cores in the presence of a slowly varying background �eld due to othervortices, and discuss the results in the context of `spiral-vortex' models for 2D turbulence.1 IntroductionAnholonomic e�ects arise in mechanical systems both on the classical as well as quantum levels.Simply put, anholonomy is the failure of a system to return to its �nal con�guration during a cyclicchange in the systems variables. As a simple example, stand upright with your right arm hangingdown, palm forward. Keeping your arm straight, move it up through 90 degrees in the plane ofyour body so that it is now parallel to the oor. Next, rotate it forward through 90 degrees sothat it points in front of you. Finally, let your arm drop back to your side. Your palm should nowbe facing your body, a 90 degree rotation from its initial con�guration, despite the fact that yourarm has completed one full cycle [12]. A similar anholonomy occurs when a cat is dropped froman upsidedown position and has to re-orient itself before coming in contact with the oor [12], andwhen a Foucault pendulum oscillates through a 24 hour period as long as it is not situated on theEquator or one of the Poles [5, 6].Phase anholonomies have become the focus of intensive research since the discovery of such ane�ect in quantum mechanics by M. Berry in 1984 [2, 3, 4]. Classical analogues were then discoveredby J. Hannay [10], and since that time, several review papers have been written and many newinsights have been gained [8, 12, 18]. Our purpose in this paper is to describe how such phaseanholonomies arise in vortex dynamics problems, and in particular how they play an important rolein determining the long time growth rates of passive scalar interfaces in two-dimensional turbulenceproblems.
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P.K. Newton et al. | Vortex Problems, Rotating Spiral Structures, and the Hannay-Berry Phase 2562 The Berry phase as a non-uniform limit processThe Hannay-Berry phase for the restricted 3 vortex problem was treated in detail in [15]. The basiccon�guration, shown in Fig. 1, has two co-rotating point vortices of equal strength a distance Dapart, with a tracer particle orbiting around one of the point vortices with coordinates (r; �) fromthe vortex center. In this problem, we are interested in the particle motion in the limit D ! 1.In these coordinates, the (normalized) particle equation is given by:_r = �1D sin(�� �) + 1D " sin(�� �)1� 2rD cos(�� �) + r2D2 # ; (1)_� = 1r2 + 1rD cos(�� �) + 1rD " rD � cos(�� �)1� 2rD cos(�� �) + r2D2 # (2)where � = 2tD2 and the vortex period (de�ned as the time it takes for the two point vortices tocomplete one period), T, is given by T = D2�. As is evident from these formulas, as D ! 1,the vortex period diverges like O(D2). The Hannay-Berry phase for this problem, denoted ��, isde�ned to be the di�erence between the perturbed (D <1) and the unperturbed (D =1) anglevariable at the end of one vortex period T, hence:�� = �D<1(T )� �D=1(T ): (3)For this paper, we will refer to the Hannay-Berry phase (H-B phase) as the leading term in theasymptotic expansion for ��, which we denote ��0:��0 � limD!1 [�D<1(T )� �D=1(T )] : (4)By using a multi-scale perturbation approach for large D, it was shown in [15] that ��0 for theparticle is given by �. In this paper we will describe in detail how this phase anholonomy arises, andwhat implications it has when estimating the long time growth rate of interfaces in two-dimensionalincompressible turbulent ows. We �rst show how the H-B phase arises as a non-uniform limitprocess in which an increasingly large number of vanishingly small terms accumulate to form a�nite quantity.In Fig. 2 we show the basic con�guration, focusing on the di�erence between the perturbed andunperturbed particle orbits. We write D = 1� and are interested in the limit � ! 0. As shown inFig. 2, ��(�) denotes the angle di�erence between the perturbed and unperturbed particle orbitson each particle cycle. The H-B phase is the total accumulated angle di�erence during one vortexperiod T � 1�2 in the limit � ! 0. If n(�) denotes the number of particle orbits during one vortexperiod, then clearly n!1 as �! 0, while ��! 0. The leading term in the asymptotic expansionfor the H-B phase is the product of the two quantities in the limit of vanishing �:��0 � lim�!0[(��)n] = �: (5)Viewed in this way as a limit process, it is clear that to get a �nite non-zero H-B phase requiresa delicate balance between the strength of the force imposed on the particle by the distant vortex,and the rate of rotation of the slowly varying background �eld. An important point to draw fromthis result is that the unperturbed problem (D = 1) is fundamentally di�erent from the limitingproblem D ! 1. If one is interested in predicting the particle position after long times (t � D2)for large D, the particle will end up approximately 180� out of phase from where it would be in theESAIM: Proceedings, Vol. 1, 1996, pp. 255{265



P.K. Newton et al. | Vortex Problems, Rotating Spiral Structures, and the Hannay-Berry Phase 257case D = 1. Furthermore, the larger D becomes, the more exact this 180� `phase anholonomy'becomes.It is interesting to point out that if the tracer particle in Fig. 1 is replaced by a point vortexof equal strength and circulation as the other two, the H-B phase is 23�. Deriving this result ismore involved than the corresponding result for the restricted three vortex problem since the vortexmotion is no longer circular.In preparation for the next section where we work out a detailed example, notice that for largeD, keeping only the leading terms in (1), (2) gives the approximate system:_r = rD2 sin(2(� � �)) +O( 1D3 ); (6)_� = 1r2 � 1D2 cos(2(� � �)) +O( 1D3 ): (7)3 A modi�ed problem with a Berry phaseA simpler problem than the restricted three vortex problem, but one that contains many of thesame features, including a non-trivial H-B phase is shown in Fig. 3. A particle with coordinates(r; �) rotates around a point vortex of strength � at the origin, with a uniform background ow ofstrength V1 rotating slowly through one cycle. Since the uniform ow a�ects both the particle andthe vortex in the same way, we impose the constraint that the vortex is �xed at the origin for anon-trivial e�ect of the background ow on the relative motion between particle and vortex. In therestricted three vortex problem such a constraint was unnecessary since the rotating backgroundow from the far away vortex is non-uniform. The equations for the particle in this ow�eld aregiven by: _r = V1 sin(�� �); (8)_� = �2�r2 � V1r cos(�� �): (9)To mimick the scaling for the restricted three vortex problem as shown in (6), (7), we take V1 = �2,� = 2� +�0, � = �2t, T = ��2 , � = 2�. Here, � is the `slow' time, T is the period of the backgroundow�eld and �0 is the initial orientation of the background ow. If �0 = 0, the uniform �eldinitially points downward, similar to the far�eld force due to the distant vortex in the restrictedthree vortex problem. It is worth pointing out that in the absence of the point vortex at the origin(� = 0), it is straightforward to show directly from the equations that :( _r)2 + ( _�r)2 = V 21: (10)This is a statement that the particle moves along a circular orbit, a result that is more familiarwhen written in cartesian coordinates.Our goal in this section is to derive an expression for the leading term of the Hannay-Berryphase for this problem by using a multi-scale perturbation method, as was done in [15]. Our mainresult can be summarized in the following:Theorem 1: For a particle with coordinates (r; �) starting at (R0; 0), governed by the system (8),(9) with V1 = �2, � = 2� + �0, and � = 2�, the Hannay-Berry phase is given by:��0 = � 2�R0 � cos(�0): (11)ESAIM: Proceedings, Vol. 1, 1996, pp. 255{265
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Notice that the sign of the H-B phase depends on the initial orientation of the background �eldrelative to the particle position. In particular, if the initial angle is �0 = (2n + 1)�2 , the leadingterm of the H-B phase vanishes. To compute the H-B phase for this problem, we expand in powersof �, noting that r and � are functions of both the fast time `t' and slow time `� 0:r(t; �) =P1j=0 �jrj(t; �); (12)�(t; �) =P1j=0 �j�j(t; �): (13)Accordingly, the ordinary time derivatives in (8), (9) are replaced with partial derivatives ddt !@@t + �2 @@� . The initial conditions r(0; 0) = R0 and �(0; 0) = 0 (which are independent of �) implythat: r0(0; 0) = R0; (14)�0(0; 0) = 0; (15)rj>0(0; 0) = 0; (16)�j>0(0; 0) = 0: (17)Our notation is that all `tilde' variables are purely functions of slow time � .To leading order, this gives the equations:O(1) : @r0@t = 0; (18)@�0@t = 1r20 : (19)Hence: r0 = ~r0(�); (20)�0 = tr20 + ~�0(�); (21)with initial condition ~�0(0) = 0 and ~r0(0) = R0. The expression for the H-B phase comes fromevaluating this term at the end of one period T:��0 = ~�0(T ): (22)To compute this we need to develop the expansion through O(�4). At next order we get:O(�) : @r1@t = 0; (23)@�1@t = �2r1r30 : (24)In order to prevent linear growth in time for �1, we must enforce the condition that r1 � 0. Thisthen allows us to conclude that �1 � ~�1(�) with initial data ~�1(0) = 0.At next order we get:O(�2) : @r2@t = �d~r0d� + sin((�� �0)); (25)@�2@t = �@�0@� � 2r2r30 � 1r0 cos((�� �0)): (26)ESAIM: Proceedings, Vol. 1, 1996, pp. 255{265



P.K. Newton et al. | Vortex Problems, Rotating Spiral Structures, and the Hannay-Berry Phase 259In order to prevent linear growth in time for r2, we enforce the condition d~r0d� = 0. This givesr0 = R0 from (14); hence �0 = tR20 + ~�0(�) and @�0@� = d~�0d� .Solving (25) for r2 gives r2 = R20 cos(� � �0) + ~r2(�), and therefore ~r2(0) = �R20 cos(�0).Proceeding to (26), it is clear after expanding all terms on the r.h.s. that to prevent linear growthin time for �2, we must enforce the conditiond~�0d� = �2� ~r2R30� : (27)This gives �2 = 3R0 sin(� � �0) + ~�2(�). The solution of (27) for the initial condition ~�0(0) = 0gives the H-B phase. To solve for ~r2, we can proceed directly to the O(�4) equation in r:@r4@t = �@r2@� � ~�212 sin(�� �0)� �2 cos(�� �0): (28)Expanding the r.h.s., it is easy to see that the only term that can cause growth in time for r4 isd~r2d� . Hence, we set d~r2d� = 0 which gives the result ~r2 = ~r2(0) = �R20 cos(�0). Substituting this in(27) and solving for ~�0 with the initial condition ~�0(0) = 0, we get:~�0(�) = � 2�R0� cos(�0) =  2�2tR0 ! cos(�0): (29)Since T = ��2 , the H-B phase, according to (22) is:��0 = ~�0(T ) = 2�R0 cos(�0): (30)4 Slowly rotating spiralsIn this section we make contact with some work on spiral vortex models for 2D turbulence. Startingwith the paper by Lundgren [11] and subsequently developed by Mo�at [14] and Gilbert [9], thefollowing point of view was advocated. 2D incompressible turbulence, in its simplest form, can beviewed as a collection of `vortex spirals' which arise from the merging of a strong vortex core with aweak vortex patch. The weak vortex patch can be treated, to a �rst approximation, as a passivelyadvected scalar �eld wrapping around the strong vortex core (see Fig. 1 from [9]). The resultis a dynamic ensemble of interacting vortex spirals with a characteristic vorticity distribution, asdiscussed in Gilbert [9]. The presence of such structures in careful experiments has been commentedon by Everson and Sreenivasan [7]. If one is interested in the `di�usion' of vorticity in the spiralregions, or in the mixing of passive scalars in these regions as discussed, for example in [1, 13, 16],the most relevant quantity to compute is the long time growth rate of the vorticity interface. Wefocus on that question in this section and show how this is intimately related to the H-B phase forthe restricted three vortex problem. Hence, we analyse in this section the wrapping of a passivescalar interface around a point vortex in a slowly varying background �eld.In Fig. 4 we show a sequence of snapshots of a scalar interface wrapping around a point vortexas time increases. The interface starts on a radial line segment along the x-axis, with initial lengthLu(0) = jA � Bj. If � is the interface parameter, then a particle at position � on the interface attime t = 0 has polar coordinates (�(�; t); �(�; t)) for t > 0 given by �(�; t) = �,�(�; t) = t�2 . We have
ESAIM: Proceedings, Vol. 1, 1996, pp. 255{265



P.K. Newton et al. | Vortex Problems, Rotating Spiral Structures, and the Hannay-Berry Phase 260normalized the vortex strength to unity. The interface length, as a function of time is given by:Lu(t) = ZABs�d�d��2 + ��d�d� �2d�; (31)= ZABq1 + 4t2��4d�: (32)From this, we can conclude that for short times, the interface grows like Lu(t) � �t2, while forlong times we get Lu(t) � �t.If a distant co-rotating vortex is placed a distance D away, as in the restricted three vortexproblem, the slowly varying background �eld will distort the interface as it wraps around the pointvortex, hence a�ect the long time growth rate. In one vortex period T � D2, the arclength willbe corrected by a �nite term which can be directly related to the H-B phase. In particular, weconsider an asymptotic expansion for the arclength, L, of the interface at the end of one vortexperiod T: L(T ) � L0(T ) +O( 1D ): (33)To compute L0, we identify the di�erence (LHB) between the perturbed (L) and unperturbed (Lu)arclengths from the following limit process:LHB � limD!1 [L(T )�Lu(T )] : (34)The main result, which we summarize here concerns a decomposition of the arclength into twodistinct parts:Theorem 2: During one vortex period T � D2, the leading term in the asymptotic expansion forthe arclength, L0, decomposes into two parts:L0 � Lu + LHB : (35)The �rst term, Lu, is given by the formula (32). This contribution is due to the wrapping of theinterface around the vortex center. The second term is given by:LHB = ��jA�Bj (36)and is directly related to the H-B phase for the restricted three vortex problem.While we don't prove the result here, several points should be emphasized:1. Requiring that the background ow be slowly varying is natural if one is interested in theinterfacial dynamics near a vortex core where the wrapping process is rapid compared to thedynamical time scale introduced by the other distant spirals.2. The leading term giving the interfacial growth is due to two distinct contributions: one fromthe wrapping of the interface around the central vortex (Lu), the other from the slowly varyingbackground �eld (LHB). For long times T � D2, the contribution due to the slowly rotatingbackground �eld accumulates to a �nite amount which can be directly related to the H-Bphase ��0: LHB � ���0 � L(0): (37)3. Note that the limit process D ! 1 is crucial to the result. The limiting case D = 1corresponds to an interface wrapping around an isolated point vortex whose interface growsaccording to (32), with no correction term LHB . ESAIM: Proceedings, Vol. 1, 1996, pp. 255{265
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Figure 1: Con�guration for restricted three vortex problem. Dark circles are equal strength vorticeswith clockwise circulation, light circle is a passive tracer particle. Force�eld on particle due todistant vortex is shown.

Figure 2: Comparison of angle variable for restricted three vortex problem. Dashed circle is theunperturbed (D =1) particle trajectory. Solid curve is the perturbed (D <1) particle trajectory.�� marks the angle di�erence between the perturbed and unperturbed particle trajectories duringone particle cycle.
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Figure 3: Con�guration for modi�ed problem in which a particle (light circle) rotates arounda point vortex (dark circle) with a slowly rotating uniform background ow�eld superimposed.When � = 0, the background ow points downward.

Figure 4: (a) Initial interface along horizontal axis from [�B;�A], [A;B], with point vortex atcenter.
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Figure 4: (b) Wrapping of interface around point vortex, t = 0:1.

Figure 4: (c) Wrapping of interface around point vortex, t = 0:5.
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