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Abstract

This paper describes the occurence of phase anholonomies in the context of point vortex
problems for two-dimensional incompressible flows. After giving a brief description of anholo-
nomic effects in other contexts, we focus attention on the restricted three-vortex problem and a
simpler modified problem where the ‘Hannay-Berry’ phase can be computed using multi-scale
asymptotic methods. Our main emphasis in this paper is to show how the Hannay-Berry phase
arises as the leading term in an asymptotic expansion as the result of a non-uniform limit process.
We show how it arises when computing the long time growth rate of passive scalar interfaces as
they wrap around vortex cores in the presence of a slowly varying background field due to other
vortices, and discuss the results in the context of ‘spiral-vortex’ models for 2D turbulence.

1 Introduction

Anholonomic effects arise in mechanical systems both on the classical as well as quantum levels.
Simply put, anholonomy is the failure of a system to return to its final configuration during a cyclic
change in the systems variables. As a simple example, stand upright with your right arm hanging
down, palm forward. Keeping your arm straight, move it up through 90 degrees in the plane of
your body so that it is now parallel to the floor. Next, rotate it forward through 90 degrees so
that it points in front of you. Finally, let your arm drop back to your side. Your palm should now
be facing your body, a 90 degree rotation from its initial configuration, despite the fact that your
arm has completed one full cycle [12]. A similar anholonomy occurs when a cat is dropped from
an upsidedown position and has to re-orient itself before coming in contact with the floor [12], and
when a Foucault pendulum oscillates through a 24 hour period as long as it is not situated on the
Equator or one of the Poles [5, 6].

Phase anholonomies have become the focus of intensive research since the discovery of such an
effect in quantum mechanics by M. Berry in 1984 [2, 3, 4]. Classical analogues were then discovered
by J. Hannay [10], and since that time, several review papers have been written and many new
insights have been gained [8, 12, 18]. Our purpose in this paper is to describe how such phase
anholonomies arise in vortex dynamics problems, and in particular how they play an important role
in determining the long time growth rates of passive scalar interfaces in two-dimensional turbulence
problems.
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2 The Berry phase as a non-uniform limit process

The Hannay-Berry phase for the restricted 3 vortex problem was treated in detail in [15]. The basic
configuration, shown in Fig. 1, has two co-rotating point vortices of equal strength a distance D
apart, with a tracer particle orbiting around one of the point vortices with coordinates (r,6) from
the vortex center. In this problem, we are interested in the particle motion in the limit D — oc.
In these coordinates, the (normalized) particle equation is given by:

. =1, 1 sin(¢ — 0)

= —sin(¢p — 6 — :

"mD" (¢ )+D 1—%cos(¢—9)+g—i 7 o
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where ¢ = % and the vortex period (defined as the time it takes for the two point vortices to

complete one period), T, is given by T = D?r. As is evident from these formulas, as D — oo,
the vortex period diverges like O(D?). The Hannay-Berry phase for this problem, denoted A#), is
defined to be the difference between the perturbed (D < oo) and the unperturbed (D = oo) angle
variable at the end of one vortex period T, hence:

A = 0pcoo(T) — Op—oo(T). (3)

For this paper, we will refer to the Hannay-Berry phase (H-B phase) as the leading term in the
asymptotic expansion for Af, which we denote Afy:

Aby = Op<oo(T) — O0p=cc(T)] . (4)

lim
D—o0
By using a multi-scale perturbation approach for large D, it was shown in [15] that Af, for the
particle is given by 7. In this paper we will describe in detail how this phase anholonomy arises, and
what implications it has when estimating the long time growth rate of interfaces in two-dimensional
incompressible turbulent flows. We first show how the H-B phase arises as a non-uniform limit
process in which an increasingly large number of vanishingly small terms accumulate to form a
finite quantity.

In Fig. 2 we show the basic configuration, focusing on the difference between the perturbed and
unperturbed particle orbits. We write D = % and are interested in the limit € — 0. As shown in
Fig. 2, Aa(e) denotes the angle difference between the perturbed and unperturbed particle orbits
on each particle cycle. The H-B phase is the total accumulated angle difference during one vortex
period T' ~ 6% in the limit e — 0. If n(e) denotes the number of particle orbits during one vortex
period, then clearly n — oo as € — 0, while Aa — 0. The leading term in the asymptotic expansion
for the H-B phase is the product of the two quantities in the limit of vanishing e:

Ay = lgr(l)[(Aa)n] = . (5)

Viewed in this way as a limit process, it is clear that to get a finite non-zero H-B phase requires
a delicate balance between the strength of the force imposed on the particle by the distant vortex,
and the rate of rotation of the slowly varying background field. An important point to draw from
this result is that the unperturbed problem (D = o0) is fundamentally different from the limiting
problem D — oo. If one is interested in predicting the particle position after long times (¢ ~ D?)
for large D, the particle will end up approximately 180° out of phase from where it would be in the
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case D = oo. Furthermore, the larger D becomes, the more exact this 180° ‘phase anholonomy’
becomes.

It is interesting to point out that if the tracer particle in Fig. 1 is replaced by a point vortex
of equal strength and circulation as the other two, the H-B phase is %71’. Deriving this result is
more involved than the corresponding result for the restricted three vortex problem since the vortex
motion is no longer circular.

In preparation for the next section where we work out a detailed example, notice that for large

D, keeping only the leading terms in (1), (2) gives the approximate system:

= L sin(2(o — 0)) + O(755). (6)
9‘:%—%(:08(2((;’)79))-1-0(%). (1)

3 A modified problem with a Berry phase

A simpler problem than the restricted three vortex problem, but one that contains many of the
same features, including a non-trivial H-B phase is shown in Fig. 3. A particle with coordinates
(r,0) rotates around a point vortex of strength I" at the origin, with a uniform background flow of
strength Voo rotating slowly through one cycle. Since the uniform flow affects both the particle and
the vortex in the same way, we impose the constraint that the vortex is fixed at the origin for a
non-trivial effect of the background flow on the relative motion between particle and vortex. In the
restricted three vortex problem such a constraint was unnecessary since the rotating background
flow from the far away vortex is non-uniform. The equations for the particle in this flowfield are

given by:
7 = Visin(¢ —0), (8)
: r Vo

To mimick the scaling for the restricted three vortex problem as shown in (6), (7), we take Vi, = €2,
b=2T+¢y, T =€, T = %, I'=2m. Here, 7 is the ‘slow’ time, T"is the period of the background
flowfield and ¢g is the initial orientation of the background flow. If ¢y = 0, the uniform field
initially points downward, similar to the farfield force due to the distant vortex in the restricted
three vortex problem. It is worth pointing out that in the absence of the point vortex at the origin
(' =0), it is straightforward to show directly from the equations that :

()2 + (Or)? = V2. (10)

This is a statement that the particle moves along a circular orbit, a result that is more familiar
when written in cartesian coordinates.

Our goal in this section is to derive an expression for the leading term of the Hannay-Berry
phase for this problem by using a multi-scale perturbation method, as was done in [15]. Our main
result can be summarized in the following:

Theorem 1: For a particle with coordinates (r, ) starting at (R, 0), governed by the system (8),
(9) with Vo = €2, ¢ = 27 + ¢, and I' = 27, the Hannay-Berry phase is given by:

Aby = {%} cos(¢y). (11)
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Notice that the sign of the H-B phase depends on the initial orientation of the background field
relative to the particle position. In particular, if the initial angle is ¢9 = (2n + 1)F, the leading
term of the H-B phase vanishes. To compute the H-B phase for this problem, we expand in powers
of €, noting that 7 and  are functions of both the fast time ‘t’ and slow time ‘7':

T(taT) = Z]Oi[] 6jrj(ta T)a (12)
0(t,7) =352 e0,(t, 7). (13)

Accordingly, the ordinary time derivatives in (8), (9) are replaced with partial derivatives % —

% + 62%. The initial conditions r(0,0) = Ry and 6(0,0) = 0 (which are independent of €) imply
that:

r0(0,0) = Ry, (14)
60(0,0) =0, (15)
rj>0(0,0) =0, (16)
6;~0(0,0) = 0. (17)
Our notation is that all ‘tilde’ variables are purely functions of slow time 7.
To leading order, this gives the equations:
87“0
ol): —— =0 18
(M3 = o, (18)
00, 1
= - = 19
ot rd (19)
Hence:
9O = 7:0(7'), (20)
t -
b = —5 +6(1), (21)
To

with initial condition 6y(0) = 0 and 7(0) = Ry. The expression for the H-B phase comes from
evaluating this term at the end of one period T:

Aby = 6o(T). (22)

To compute this we need to develop the expansion through O(e*). At next order we get:

0(6):% _— (23)
891 27“1

_ 24

ot s (24)

In order to prevent linear growth in time for #;, we must enforce the condition that ry = 0. This
then allows us to conclude that 6, = 6;(7) with initial data 6;(0) = 0.
At next order we get:

or dr .

O(): 2 = = +sin((¢—6n)). (25)
892 . 890 27“2 1
9 - or @ n cos((¢ — bp)). (26)
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In order to prevent linear growth in time for ro, we enforce the condition ‘fiLTO = 0. This gives
ro = Ry from (14); hence 6y = % + 0(7) and % = ‘fi—aj.
0
Solving (25) for ry gives r9 = R3cos(¢p — 0y) + 72(7), and therefore 79(0) = —R%cos(¢o).

Proceeding to (26), it is clear after expanding all terms on the r.h.s. that to prevent linear growth
in time for 65, we must enforce the condition

dfy 7
= _2(=]. 2
dr (RS) (27)

This gives 6, = 3Rg sin(¢p — 6y) + 05(7). The solution of (27) for the initial condition 6y(0) = 0
gives the H-B phase. To solve for 79, we can proceed directly to the O(e*) equation in r:

ory 0rg é%

E = —E — Esm(gb—@o) —02 COS(¢—00). (28)
Expanding the r.h.s., it is easy to see that the only term that can cause growth in time for r4 is
%. Hence, we set ‘f% = 0 which gives the result 7 = 7(0) = —R2 cos(¢p). Substituting this in

(27) and solving for #; with the initial condition ,(0) = 0, we get:

~ T €
fo(r) = (%0) cos() — (2R—f> cos(do). (20)

Since T' = %, the H-B phase, according to (22) is:

Ao = 60(T) = - cos(). (30)

4 Slowly rotating spirals

In this section we make contact with some work on spiral vortex models for 2D turbulence. Starting
with the paper by Lundgren [11] and subsequently developed by Moffat [14] and Gilbert [9], the
following point of view was advocated. 2D incompressible turbulence, in its simplest form, can be
viewed as a collection of ‘vortex spirals’ which arise from the merging of a strong vortex core with a
weak vortex patch. The weak vortex patch can be treated, to a first approximation, as a passively
advected scalar field wrapping around the strong vortex core (see Fig. 1 from [9]). The result
is a dynamic ensemble of interacting vortex spirals with a characteristic vorticity distribution, as
discussed in Gilbert [9]. The presence of such structures in careful experiments has been commented
on by Everson and Sreenivasan [7]. If one is interested in the ‘diffusion’ of vorticity in the spiral
regions, or in the mixing of passive scalars in these regions as discussed, for example in [1, 13, 16],
the most relevant quantity to compute is the long time growth rate of the vorticity interface. We
focus on that question in this section and show how this is intimately related to the H-B phase for
the restricted three vortex problem. Hence, we analyse in this section the wrapping of a passive
scalar interface around a point vortex in a slowly varying background field.

In Fig. 4 we show a sequence of snapshots of a scalar interface wrapping around a point vortex
as time increases. The interface starts on a radial line segment along the z-axis, with initial length
L£,(0) = |A— B|. If £ is the interface parameter, then a particle at position £ on the interface at
time ¢ = 0 has polar coordinates (p(&,t), p(&,t)) for t > 0 given by p(§,t) = £,¢6(€,t) = fiz We have
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normalized the vortex strength to unity. The interface length, as a function of time is given by:

L,(t) = /AB\/G—EY + (p%)Qd& (31)
_ /jmdg. (32)

From this, we can conclude that for short times, the interface grows like £, () ~ at?, while for
long times we get L, (t) ~ St.

If a distant co-rotating vortex is placed a distance D away, as in the restricted three vortex
problem, the slowly varying background field will distort the interface as it wraps around the point
vortex, hence affect the long time growth rate. In one vortex period T ~ D?, the arclength will
be corrected by a finite term which can be directly related to the H-B phase. In particular, we
consider an asymptotic expansion for the arclength, £, of the interface at the end of one vortex
period T:

1
L(T) ~ Lo(T) + O(5)- (33)
To compute Ly, we identify the difference (Lpp) between the perturbed (£) and unperturbed (L)
arclengths from the following limit process:
Lpp = lim [L(T) - L,(T)]. (34)
D—

o0

The main result, which we summarize here concerns a decomposition of the arclength into two
distinct parts:

Theorem 2: During one vortex period 7'~ D?, the leading term in the asymptotic expansion for
the arclength, £y, decomposes into two parts:

Lo=Ly+Lyp. (35)

The first term, L,, is given by the formula (32). This contribution is due to the wrapping of the
interface around the vortex center. The second term is given by:

Lup = —7|A— B| (36)

and is directly related to the H-B phase for the restricted three vortex problem.

While we don’t prove the result here, several points should be emphasized:

1. Requiring that the background flow be slowly varying is natural if one is interested in the
interfacial dynamics near a vortex core where the wrapping process is rapid compared to the
dynamical time scale introduced by the other distant spirals.

2. The leading term giving the interfacial growth is due to two distinct contributions: one from
the wrapping of the interface around the central vortex (£, ), the other from the slowly varying
background field (L g). For long times T ~ D?, the contribution due to the slowly rotating
background field accumulates to a finite amount which can be directly related to the H-B
phase Afy:

EHB = 7A9(] * L(O) (37)

3. Note that the limit process D — oo is crucial to the result. The limiting case D = oo
corresponds to an interface wrapping around an isolated point vortex whose interface grows
according to (32), with no correction term L p.
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5 Conclusions

Since the fundamental paper by Berry in 1984, ‘phase anholonomies’ have been found to play an
important role in a wide variety of physical phenomena. The ‘Berry phase’ (or ‘Hannay angle’) is
a special kind of anholonomy and as such has a purely geometric interpretation. As emphasized in
this paper, however, the Berry phase also has a nice analytical interpretation as the leading term
in a non-uniform asymptotic expansion. It plays an important role when analysing the long time
growth of passive scalar interfaces, of the type considered in spiral vortex models of 2D turbulence
[9]. We are currently applying these ideas to study the growth of interfaces in two dimensional shear
layers during the roll up process to gain a quantitative understanding of how the ‘vortex pairing’
stage of the shear layer evolution affects interfacial growth rates and hence the mixing process [17].
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Figure 1: Configuration for restricted three vortex problem. Dark circles are equal strength vortices
with clockwise circulation, light circle is a passive tracer particle. Forcefield on particle due to
distant vortex is shown.

Figure 2: Comparison of angle variable for restricted three vortex problem. Dashed circle is the
unperturbed (D = oo) particle trajectory. Solid curve is the perturbed (D < 0o) particle trajectory.
A« marks the angle difference between the perturbed and unperturbed particle trajectories during
one particle cycle.
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Figure 3: Configuration for modified problem in which a particle (light circle) rotates around
a point vortex (dark circle) with a slowly rotating uniform background flowfield superimposed.

When ¢ = 0, the background flow points downward.
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Figure 4: (a) Initial interface along horizontal axis from [—B, —A], [A, B], with point vortex at

center.
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Figure 4: (b) Wrapping of interface around point vortex, ¢ = 0.1.
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Figure 4: (c) Wrapping of interface around point vortex, ¢t = 0.5.
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