
Fast Hash Table Lookup Using Extended Bloom Filter:
An Aid to Network Processing

Haoyu Song Sarang Dharmapurikar Jonathan Turner John Lockwood
hs1@arl.wustl.edu sarang@arl.wustl.edu jst@arl.wustl.edu lockwood@arl.wustl.edu

Washington University in Saint Louis, Saint Louis, MO 63130, USA

ABSTRACT
Hash table is used as one of the fundamental modules in several net-
work processing algorithms and applications such as route lookup,
packet classification, per-flow state management and network mon-
itoring. These applications, which typically form components of
data-path in a high-speed router, must process and forward packets
with little or no buffer in order to maintain the wire-speed through-
out. A poorly designed hash table can critically affect the worst-
case throughput due to multiple memory accesses required for each
lookup. Hence, high throughput requirement in turn underscores
the need for a hash table having good and more predictable worst-
case lookup performance. While most of the existing hash table
based packet processing algorithms rely on the assumption that
hash table lookup needs constant time, very little discussion is pro-
vided on the underlying engineering considerations to achieve this
performance.

We present a novel hash table data structure and lookup algo-
rithm which improves the performance of a naive hash table by pro-
viding better bounds on the hash collisions and memory accesses
per search. Our algorithm extends the multiple-hashing Bloom Fil-
ter data structure to support exact matches. We contrive our hash ta-
ble architecture by coupling our algorithm with the latest advances
in embedded memory technology. Through theoretical analysis and
simulations we show that our algorithm is significantly faster for
practical purposes than the naive hash table using the same amount
of memory, hence it can support better throughput for router appli-
cations based on hash tables.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Algorithms, Design, Performance

Keywords
Hash Table, Forwarding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

1. INTRODUCTION
A hash table is one of the most attractive choices for quick

lookups which requires O(1) average memory accesses per lookup.
Indeed, due to its versatile applicability in network packet pro-
cessing, some of the modern network processors provide a built-in
hashing unit [17]. A survey of some recent research literature on
network packet processing reveals that hash tables are prevalent in
many applications including per-flow state management, IP lookup
and packet classification. These modules are typically components
in the data-path of a high-speed router. Hence, they must be able
to process packets at line speed which makes it imperative for the
underlying hash tables to deliver a good lookup performance.

1.1 Hash Tables For Packet Processing
Following is a short discussion on how various algorithms and

applications use hash tables and why their lookup performance is
important.

Maintaining Per-flow Context: One of the most important ap-
plications of hash tables in network processing is in the context of
maintaining connection records or per-flow states. Per-flow state is
useful in providing QoS to flows, measurements, monitoring and
payload analysis in Intrusion Detection Systems (IDS).

For instance, IDS such as Bro [21] and Snort [2] maintain a
hash table of connection records for TCP connections. A record
is created and accessed by computing a hash over the 5-tuple of
the TCP/IP header. This record may contain the necessary con-
nection state which is updated upon the arrival of each packet on
that connection. Efforts are under way to implement such IDS in
hardware for line speed packet processing [23][12]. In these im-
plementations, connection records are maintained in DRAM. Sim-
ilarly, hardware based network monitoring systems such as Net-
Flow [1] or Adaptive NetFlow [13] also maintain a hash table of
connection records in DRAM.

IP Route Lookup: Efficient hash tables are important for some
routing lookup algorithms too. Particular algorithms of our interest
are Longest Prefix Matching (LPM) using Binary Search on Prefix
Lengths [28] and Bloom filters [11].

In [28], prefixes are grouped according to their lengths and stored
in a set of hash tables. A binary search on these tables is performed
to find the matching prefixes of the destination IP address. Each
search step probes a corresponding hash table to find a match. By
storing extra information along with the member prefixes in hash
tables, a match in a given table implies that the longest matching
prefix is at least as long as the size of prefixes in the table, whereas
a failure to match implies the longest matching prefix is shorter.
In the worst case, if there are W different possible prefix lengths,
the search requires to query the hash table logW times. For IPv4
lookup, this means we need to perform lookups in five hash tables.
Even with the controlled prefix expansion technique [25] we need
multiple hash table lookups depending on the resulting number of

unique prefix lengths. This algorithm critically demands better hash
tables to preserve the performance gained by binary search.

In [11], the authors present a hardware based LPM algorithm for
IP lookup. The technique improves the performance of a regular
hash table using Bloom filters. Just like the scheme in [28], in this
algorithm too prefixes are grouped by length. Each group is pro-
grammed in a Bloom filter. All the prefixes are kept in a hash table.
Bloom filters are maintained in a high-bandwidth and small on-chip
memory while the hash table resides in the slow and high volume
off-chip memory. Before a search is initiated in the off-chip table,
the on-chip Bloom filter is probed to check if the item exists in
the table. If the Bloom filter does not show a match for the item,
with the exception of a very few false positives, the accesses to the
slower off-chip memory are avoided. However, the architecture and
efficiency of the off-chip hash table has not been discussed and it
is assumed that the lookup takes a single memory access. Without,
an efficient hash table this scheme can lose out on the performance
gain due to Bloom filters.

The BART scheme [20] also uses hash tables for routing table
lookup. It constructs simple hash functions by picking a few bits in
the IP address. To bound the collisions in a hash bucket, it needs a
thorough search on all possible hash functions to find a perfect one.
This takes enormous time or even a dedicated hardware only for the
hash function selection.

Packet Classification: Hash table is also used for some packet
classification algorithms. Fundamentally, many packet classifica-
tion algorithms first perform a lookup on a single header field and
leverage the results to narrow down the search to a smaller subset of
packet classifiers [18, 4, 19, 15]. Since a lookup on the individual
fields can also be performed using one of the hash table based al-
gorithms mentioned above, improving the hash table performance
also benefits packet classification algorithms.

The tuple space search algorithm [24] groups the rules into a set
of “tuples” according to their prefix lengths specified for different
fields. Each group is then stored in a hash table. The packet clas-
sification queries perform exact match operations on each of the
hash tables corresponding to all possible tuples, given the rule set.
The algorithm analysis was only focused on the number of distinct
tuples, however, the hash table lookup performance also directly
affect the classification throughput.

Exact flow matching is an important subproblem of general
packet classification problem, where the lookup performs an ex-
act match on the packet 5-tuple header fields. In [26], exact fil-
ters are used for reserved bandwidth flows and multicast in high
performance routers as an auxiliary component to general packet
classification. The search technique described in [26] employs a
hash lookup with chaining to resolve collisions. A hash key based
on low-order bits of the source and destination address is used to
probe an on-chip hash table containing “valid” bits. If the appropri-
ate bit for the packet being processed is set, the hash key is used to
index a table in off-chip Static Random Access Memory (SRAM).
Off-chip table items are chained together if multiple filters hash to
the same bucket. The hash table performance directly impacts the
system overall throughput. However, due to the use of simple hash
function, a highly skewed rule set can make the hash table build
long linked lists.

The above mentioned applications clearly emphasize a strong
need to engineer good hash tables which achieve faster lookup
speeds with better worst-case performance in practice, to help a
wide range of applications.

1.2 Related Work
A hash table lookup involves hash computation followed by

memory accesses. While memory accesses due to collisions can
be moderately reduced by using sophisticated cryptographic hash

functions such as MD5 or SHA-1, these are difficult to compute
quickly. In the context of high-speed packet processing devices,
even with a specialized hardware, such hash functions can take sev-
eral clock cycles to produce the output. For instance, some of the
existing hardware implementations of the hash cores consume more
than 64 clock cycles [16], which exceeds the budget of minimum
packet time. Moreover, the performance of such hash functions is
no better than the theoretical performance with the assumption of
uniform random hashing.

Another avenue to improve the hash table performance would be
to devise a perfect hash function based on the items to be hashed.
While this would deliver the best performance, searching for a suit-
able hash function can be a slow process and needs to be repeated
whenever the set of items undergoes changes. Moreover, when
a new hash function is computed, all the existing entries in the
table need to be re-hashed for correct search. This can impede
the normal operations on the hash table making it impractical in
high-speed processors. Some applications instead settle on using
a “semi-perfect” hash function which can tolerate a predetermined
collision bound. However, even searching for such a hash function
can require time in the order of minutes [25, 20].

Multiple hash functions are known to perform better than single
hash functions [6]. When we have multiple hash tables each with
different hash function, the items colliding in one table are hashed
into other tables. Each table has smaller size and all hash functions
can be computed in parallel. Another multi-hashing algorithm, d-
random scheme, uses only one hash table but d hash functions [3].
Each item is hashed by d independent hash functions, and the item
is stored into the least loaded bucket. A search needs to examine d
buckets but the bucket’s average load is greatly reduced. A simple
variation of d-random, which is called d-left scheme is proposed
to improve IP lookups [7], which generalizes the 2-left scheme
in [27]. In this scheme, the buckets are partitioned into d sections,
each time a new item needs to be inserted, it is inserted into the least
loaded bucket (left-most in case of a tie). Simulation and analysis
show the performance is better than d-random. In essence, these
ideas are close to our fast hash table algorithm. However, the major
difference in these schemes and our scheme is that we avoid look-
ing up the items in all the buckets pointed to by the multiple hash
functions. In our algorithm we always lookup the item in just one
bucket. The multiple hash functions in our hash table are used to
lookup a counting Bloom filter instead of multiple buckets in the
off-chip memory. This helps us avoid the use of multiple off-chip
memory chips and saves on the number of pins to interface these
chips.

Bloom filter [5] can be considered as another multi-hashing
scheme, which uses only a binary predicative and thus can only tell
a match with some false positive. Counting Bloom Filter [14] ex-
tends the Bloom filter by replacing each bit with a counter to enable
items deletion. To perform an exact match, some schemes simply
attach another naive hash table [11, 10]. Our scheme exploits a
subtle yet important observation that in [11], the hash functions of
Bloom filter mechanism are decoupled from the hash function used
for off-chip hash table lookup. Hence, the on-chip Bloom filter
does not reveal much information about the item of interest except
its presence or absence in the off-chip hash table. Thus the lookup
performance is still unpredictable. Instead, our fast hash table algo-
rithm fully utilizes the information gained from an extended Bloom
filter to optimize the exact match lookup.

1.3 Scope for Improvement
From a theoretical perspective, although hash tables are among

the most extensively studied data structures with almost saturated
improvements, from an engineering perspective designing a good
hash table can still be a challenging task with potential for sev-

eral improvements. The main engineering aspect that differentiates
our hash table design from the rest is the innovative use of the ad-
vanced embedded memory technology in hardware. Today it is pos-
sible to integrate a few mega bits of Static Random Access Memory
(SRAM) with multiple access ports into a very small silicon. More-
over, multiple such embedded memory cores can be incorporated in
the same VLSI chip. For instance, most of the modern Field Pro-
grammable Gate Array (FPGA) devices contain multiple on-chip
embedded SRAM with two read/write ports. Some of the high-end
FPGAs such as Xilinx Virtex II Pro contain 512 memory blocks
each with 18K bits [29]. We exploit the high lookup capacity of-
fered by such memory blocks to design an efficient hash table.

At the same time it is important to note that embedded mem-
ory on its own is not sufficient to build a fast hash table when we
need to maintain a large number of items having significant size.
For instance, we can not squeeze 100,000 TCP connection records
each of 32 bytes into a hash table built with only 5Mbits of on-chip
memory. Thus, we must resort to using the commodity memory
such SDRAM to store the items in the hash table. Since, DRAM is
inherently slow, use of commodity memory makes it imperative to
reduce the off-chip memory access resulting either from collision
or due to unsuccessful searches for efficient processing. This leads
us to the question: Can we make use of the small but high band-
width on-chip memory to improve the lookup performance of an
off-chip hash table? The answer to this question forms the basis of
our algorithm.

We use the well-known data structure Bloom filter [5], and ex-
tends it to support exact match and reduce the time required to per-
form this exact match. We use a small amount of on-chip multi-port
memories to realize a counting-Bloom-filter-like data structure such
that it not only answers the membership query on the search items
but also helps us reduce the search time in the off-chip table.

The rest of the paper is organized as follows. Section 2 illustrates
our algorithms and architecture of fast hash table. In Section 3, we
provide a detailed mathematical analysis of the proposed hash table
algorithm. We also provide comparisons on the average search time
and the expected collision list length of the naive hash table and our
fast hash table, theoretically and experimentally, in Section 3 and 4.
Finally, Section 5 concludes the paper.

2. DATA STRUCTURES AND ALGO-
RITHM

For the purpose of clarity, we develop our algorithm and hash
table architecture incrementally starting from a naive hash table
(NHT).

We consider the hash table algorithm in which the collisions are
resolved by chaining since it has better performance than open ad-
dressing schemes and it is one of the most popular methods [9].

wz

y

3X

12X

8Xx

y

z

x

w

Figure 1: A Naive Hash Table

An NHT consists of an array of m buckets with each bucket
pointing to the list of items hashed into it. We denote by X the

set of items to be inserted in the table. Further, let X i be the list of
items hashed to bucket i and Xi

j the jth item in this list. Thus,

Xi = {Xi
1, X

i
2, X

i
3, ..., X

i
ai
}

X =
L
⋃

i=1

Xi

where ai is the total number of items in the bucket i and L is the
total number of lists present in the table. In the Figure 1, X3

1 = z,
X3

2 = w, a3 = 2 and L = 3.
The insertion, search and deletion algorithms are straight-

forward:

InsertItemNHT (x)
1. Xh(x) = Xh(x) ∪ x

SearchItemNHT (x)
1. if (x ∈ Xh(x)) return true
2. else return false

DeleteItemNHT (x)
1. Xh(x) = Xh(x) − x

where h() is the hash function based on uniform random hashing.

2.1 Basic Fast Hash Table
We now present our Fast Hash Table (FHT) algorithm. First we

present the basic form of our algorithm which we call Basic Fast
Hash Table (BFHT) and then we improve upon it.

We begin with the description of Bloom filter which is at the core
of our algorithms. A Bloom filter is a hash-based data structure to
store a set of items compactly. It computes k hash functions on each
item, each of which returns an address of a bit in a bitmap of length
m. All the k bits chosen by the hash values in the bitmap are set to
‘1’. By doing this, the filter essentially programs the bitmap with a
signature of the item. By repeating the same procedure for all input
items, Bloom filter can be programmed to contain the summary of
all the items. This filter can be queried to check if a given item is
programmed in it. The query procedure is similar—the same k hash
functions are calculated over the input and the corresponding k bits
in the bitmap are probed. If all the bits are set then the item is said
to be present, otherwise it is absent. However, since the bit-patterns
of multiple items can overlap within the bitmap, Bloom filter can
give false-positive result to a membership query.

For the ensuing discussion, we will use a variant of a Bloom filter
called Counting Bloom Filter [14] in which each bit of the filter is
replaced by a counter. Upon the insertion of an item, each counter
indexed by the corresponding hash value is incremented. Due to its
structure, a counter in this filter essentially gives us the number of
items hashed in it. We will show how this information can be used
effectively to minimize the search time in the table.

We maintain an array C of m counters where each counter
Ci is associated with bucket i of the hash table. We compute k
hash functions h1(), ..., hk() over an input item and increment the
corresponding k counters indexed by these hash values. Then, we
store the item in the lists associated with each of the k buckets.
Thus, a single item is stored k times in the off-chip memory. The
following algorithm describes the insertion of an item in the table.

InsertItemBFHT (x)
1. for (i = 1 to k)
2. if (hi(x) 6= hj(x) ∀j < i)
3. Chi(x) + +

4. Xhi(x) = Xhi(x) ∪ x

Note that if more than one hash functions map to the same ad-
dress then we increment the counter only once and store just one
copy of the item in that bucket. To check if the hash values conflict,
we keep all the previously computed hash values for that item in
registers and compare the new hash value against all of them (line
2).

The insertion procedure is illustrated in the Figure 2. In this fig-
ure, four different items, x, y, z and w are shown to have been in-
serted, sequentially. Thus, each of the items is replicated in k = 3
different buckets and the counter value associated with the bucket
reflects the number of items in it.

y w

y

z

w

z

w

1X

3X

6X

8X

11X

4X

9X

y

z

x

w

3

2

0

2

1

1

1

0

0

2

0

0

x

x

y

x

z

Figure 2: Basic Fast Hash Table (BFHT). The data structure after
inserting x, y, z and w

Search procedure is similar to the insertion procedure: given an
item x to be searched, we compute k hash values and read the cor-
responding counters. When all the counters are non-zero, the filter
indicates the presence of input item in the table. Only after this
step, we proceed to verify it in the off-chip table by comparing it
with each item in the list of items associated with one of the buck-
ets. Indeed, if the counters are kept in the fast on-chip memory
such that all of the k random counters associated with the item can
be checked in parallel then in almost all cases we avoid an off-chip
access if the table does not contain the given item. Given the recent
advances in the embedded memory technologies, it is conceivable
to implement these counters in a high speed on-chip memory.

Secondly, the choice of the list to be inspected is critical since
the list traversal time depends on the length of the list. Hence, we
choose the list associated with the counter with smallest value to
reduce off-chip memory accesses. The speedup of our algorithm
comes from the fact that it can choose the smallest list to search
where as an NHT does not have any choice but to trace only one
list which can potentially have several items in it.

As will be shown later, in most of the cases, for a carefully chosen
value of the number of buckets, the minimum value counter has a
value of 1 requiring just a single memory access to the off-chip
memory. In our example shown in Figure 2, if item y is queried, we
need to access only the list X11, rather than X3 or X6 which are
longer than X11 .

When multiple counters indexed by the input item have the same
minimum value then somehow the tie must be broken. We break
this tie by simply picking the minimum value counter with the
smallest index. For example, in Figure 2, item x has two bucket
counters set to 2, which is also the smallest value. In this case, we
always access the bucket X1.

The following pseudo-code summarizes the search algorithm.

SearchItemBFHT (x)
1. Cmin = min{Ch1(x), ...,Chk(x)}

2. if (Cmin == 0)
3. return false
4. else

5. i = SmallestIndexOf(Cmin)
6. if (x ∈ Xi) return true
7. else return false

Finally, if the input item is not present in the item list then clearly
it is a false positive match indicated by the counting Bloom filter.

With the data structure above, deletion of an item is easy. We
simply decrement the counters associated with the item and delete
all the copies from the corresponding lists.

DeleteItemBFHT (x)
1. for (i = 1 to k)
2. if (hi(x) 6= hj(x) ∀j < i)
3. Chi(x) −−

4. Xhi(x) = Xhi(x) − x

2.1.1 Pruned Fast Hash Table (PFHT)
In BFHT, we need to maintain up to k copies of each item which

requires k times more memory compared to NHT. However, it can
be observed that in a BFHT only one copy of each item — the copy
associated with the minimum counter value — is accessed when
the table is probed. The remaining (k − 1) copies of the item are
never accessed. This observation offers us the first opportunity for
significant memory optimization: all the other copies of an item
except the one that is accessed during the search can now be deleted.
Thus, after this pruning procedure, we have exactly one copy of the
item which reduces the memory requirement to the same as that of
the NHT. We call the resulting hash table a Pruned Fast Hash Table
(PFHT).

The following pseudo-code summarizes the pruning algorithm.

PruneSet(X)
1. for (each x ∈ X)
2. Cmin = min{Ch1(x), ..., Chk(x)}

3. i = SmallestIndexOf(Cmin)
4. for (l = 1 to k)
5. if (hl(x) 6= i) Xhl(x) = Xhl(x) − x

The pruning procedure is illustrated in Figure 3(A). It is impor-
tant to note that during the Pruning procedure, the counter values
are not changed. Hence, after pruning is completed, the counter
value no longer reflects the number of items actually present in the
list and is usually greater than that. However, for a given item, the
bucket with the smallest counter value always contains this item.
Another property of pruning is that it is independent of the sequence
in which the items are pruned since it depends just on the counter
values, which are not altered. Hence, pruning in sequence x-y-z-w
will yield the same result as pruning it in z-y-x-w.

A limitation of the pruning procedure is that now the incremen-
tal updates to the table are hard to perform. Since counter values
no longer reflect the number of items in the list, if counters are
incremented or decremented for any new insertion or deletion re-
spectively then it can disturb the counter values corresponding to
the existing items in the bucket which in turn will result in an in-
correct search. For example, in Figure 3(A), the item y maps to
the lists {X3, X6, X11} with counter values {3, 2, 1} respectively.
If a new item, say v, is inserted which also happens to share the
bucket 11 then the counter will be incremented to 2. Hence, the
minimum counter value bucket with smallest index associated with
y is no longer the 11 but now it is 6 which does not contain y at
all. Therefore, a search on y will result in an incorrect result. With
this limitation, for any new insertion and deletion the table must
be reconstructed from scratch which can be make this algorithm
impractical for variable item sets.

w

z

y

z

x

w

1X

11X

4X
3

2

0

2

1

1

1

0

0

2

0

0

y

x

z

y

z

x

w

11X

4X

x

w

6X

9X

3

2

0

3

1

1

1

0

0

2

0

0

y

(A) (B)

Figure 3: Illustration of Pruned Fast Hash Table (PFHT) (A) The data structure after execution of pruning (B) List-balancing. Items x and w are
re-adjusted into different buckets by incrementing counter 1.

We now describe a version of InsertItem and DeleteItem algo-
rithms which can be performed incrementally. The basic idea used
in these functions is to maintain the invariant that out of the k buck-
ets indexed by an item, it should always be placed in a bucket with
smallest counter value. In case of a tie, it should be placed in the
one with smallest index. If this invariant is maintained at every
point then the resulting hash table configuration will always be the
same irrespective of the order in which items are inserted.

In order to insert an item, we first increment the corresponding
k counters. If there are any items already present in those buckets
then their corresponding smallest counter might be altered. How-
ever, the counter increments do not affect all other items. Hence,
each of these items must be re-inserted in the table. In other words,
for inserting one item, we need to reconsider all and only the items
in those k buckets.

The following pseudo-code describes the insertion algorithm.

InsertItemPFHT (x)
1. Y = x

2. for (i = 1 to k)
3. if (hi(x) 6= hj(x) ∀j < i)
4. Y = Y

⋃

Xhi(x)

5. Xhi(x) = φ

6. Chi(x) + +

7. for (each y ∈ Y)
8. Cmin = min{Ch1(y), ...,Chk(y)}

9. i= SmallestIndexOf(Cmin)
10. Xi = Xi ∪ y

In the pseudo-code above, Y denotes the list of items to be con-
sidered for insertion. It is first initialized to x since that is definitely
the item we want to insert (line 1). Then for each bucket x maps
to, if the bucket was not already considered (line 3), we increment
the counter (line 6), collect the list of items associated with it (line
4) since now all of them must be reconsidered and also delete the
lists form the bucket (line 5). Finally, all the collected items are re-
inserted (lines 8-10). It is important to note that we do not need to
increment the counters while re-inserting them since the items were
already inserted earlier. Here we just change the bucket in which
they go.

Since the data structure has n items stored in m buckets, the
average number of items per bucket is n/m. Hence the total num-
ber of items read from buckets is nk/m requiring as many mem-
ory accesses. Finally 1 + nk/m items are inserted in the table
which again requires as many memory accesses. Hence the inser-
tion procedure has a complexity of the order O(1 + 2nk/m) oper-
ations totally. Moreover, for an optimal Bloom filter configuration,

k = mln2/n. Hence, the overall memory accesses required for
insertion are 1 + 2ln2 ≈ 2.44.

Unfortunately, incremental deletion is not as trivial as insertion.
When we delete an item we need to decrement the correspond-
ing counters. This might cause these counters to be eligible as
the smallest counter for some items which hashed to them. How-
ever, now that we keep just one copy of each item we can not tell
which items hash to a given bucket if the item is not in that bucket.
This can be told with the help of only pre-pruning data structure
i.e. BFHT in which an item is inserted in all the k buckets and
hence we know which items hash to a given bucket. Hence in order
to perform an incremental deletion, we must maintain an off-line
BFHT like the one shown in Figure 2. Such a data structure can be
maintained in router software which is responsible for updates to
the table.

In order to differentiate between the off-line BFHT and on-line
PFHT we denote the off-line lists by χ and the corresponding
counter by ζ. Thus, χi denotes the list of items associated with
bucket i, χi

j the jth item in χi and ζi the corresponding counter.
The following pseudo-code describes the deletion algorithm.

DeleteItemPFHT (x)
1. Y = φ

2. for (i = 1 to k)
3. if (hi(x) 6= hj(x) ∀j < i)
4. ζhi(x) −−

5. χhi(x) = χhi(x) − x

6. Y = Y
⋃

χhi(x)

7. Chi(x) −−

8. Xhi(x) = φ

9. for (each y ∈ Y)
10. Cmin = min{Ch1(y), ...,Chk(y)}

11. i= SmallestIndexOf(Cmin)
12. Xi = Xi ∪ y

When we want to delete an item, we first perform deletion op-
eration on off-line data structure using DeleteItemBFHT algorithm
(line 2-5). Then we collect all the items in all the affected buck-
ets (buckets whose counters are decremented) of BFHT for re-
insertion. At the same time, we delete the list of items associated
with each bucket from the PFHT since each of them now must be
reinserted (line 7-8). Finally, for each item in the list of collected
items, we re-insert it (line 9-12) just as we did in InsertItemPFHT .
Notice the resemblance between the lines 6-12 of DeleteItemPFHT

with lines 4-10 of InsertItemPFHT . The only difference is that in
DeleteItemPFHT , we collect the items to be re-inserted from the
BFHT and we decrement the counter instead of incrementing it.

Before we derive the expressions for the complexity of
DeleteItem algorithm, we notice that we have two types of opera-
tions involved: on the BFHT and on the PFHT. We derive the com-
plexity for only the PFHT operations since the BFHT operations
can be performed in the background without impeding the normal
operations on PFHT. With this consideration, we note that the num-
ber of items per non-empty bucket in BFHT is 2nk/m since only
half the buckets in the optimal configuration are non-empty (see
Section 3). Since we collect the items from k buckets, we have
totally 2nk2/m items to be re-adjusted in the loop of line 9. For
readjustment, we need to read as well as write each item. Hence the
overall complexity of the deletion operation is O(4nk2/m). With
optimal configuration of the table it boils down to 4kln2 ≈ 2.8k.

2.1.2 Optimizations
After the pruning procedure, more than one items can still reside

in one bucket. We show a heuristic balancing scheme to further
balance the bucket load by manipulating the counters and a few
items. The reason that a bucket contains more than one items is
because this bucket is the first least loaded bucket indicated by the
counter values for the involved items that are also stored in this
bucket. Based on this observation, if we artificially increment this
counter, all the involved items will be forced to reconsider their
destination buckets to maintain the correctness of the algorithm.
There is hope that by rearranging these items, each of them can
be put into an actually empty bucket. The feasibility is based on
two facts: first, analysis and simulations show that for an optimal
configuration of Bloom filter, there are very few collisions and even
fewer collisions involving more than 2 items. Each items has k
possible destination buckets and in most case the collided bucket
is the only one they share. The sparsity of the table provides a
good opportunity to resolve the collision by simply giving them
second choice. Secondly, this process does not affect any other
items, we need to only pay attention to the involved items in the
collided bucket.

However, incrementing the counter and rearranging the items
may potentially create other collisions. So we need to be careful
to use this heuristics. Before we increment a counter, we first test
the consequence. We perform this scheme only if this action does
not result in any other collision. The algorithm scans the collided
buckets for several rounds and terminates if no more progress can
be made or the involved counters are saturated. We will show that
this heuristics is quite effective and in our simulations all collisions
are resolved and each non-empty bucket contains exactly one item.
Figure 3(B) illustrates this list balancing optimization. By simply
incrementing the counter in bucket X1 and re-inserting the involved
items x and w, we resolve the collision and now each non-empty
bucket contains exactly one item.

2.1.3 Shared-node Fast Hash Table (SFHT)
In the previous section, we saw that in order to perform incre-

mental updates, we need an off-line BFHT. However, with the as-
sumption that the updates are relatively infrequent compared to the
query procedure, we can afford to maintain such a data structure
in control software which will perform updates on the internal data
structure (which is slow) and later update the pruned data structure
accordingly. However, some applications involve time critical up-
dates which must be performed as quickly as possible. An example
is the TCP/IP connection context table where connections get set
up and broken frequently and the time for table query per packet is
comparable to time for addition/deletion of connection records [12].

We present an alternative scheme which allows easy incremental
updates at the cost of a little more memory than the required for
PFHT but significantly less than that of BFHT. The basic idea is
to allow the multiple instances of the items to share the same item

node using pointers. We call the resulting hash table as Shared-node
Fast Hash Table (SFHT). The lookup performance of the resulting
scheme is the same as that of the BFHT but slightly worse than the
PFHT. Moreover, with the reduced memory requirement, this data
structure can be kept on-line.

The new algorithm can be illustrated with the help of Figure 4.
We start with an empty table and insert items one by one. When

the first item, x is inserted we just create a node for the item and
instead of inserting it separately in each of the lists corresponding
to the hash buckets, we simply make the buckets point to the item.
This clearly results in a great deal of memory savings. When we in-
sert the next item y, we create the node and make the empty buckets
point to the item directly. However, two of the three buckets already
have a pointer pointing to the earlier item, x. Hence we make the
item x point to y using the next pointer. Note that the counters are
incremented at each insertion. More importantly, the counter values
may not reflect the length of the linked list associated with a bucket.
For instance, the first bucket has a value of 1 but there are two items,
x and y in the linked list associated with this bucket. Nevertheless,
it is guaranteed that we will find a given item in a bucket associ-
ated with that item by inspecting the number of items equal to the
associated counter value. For instance, when we wish to locate x
in the first bucket, it is guaranteed that we need to inspect only one
item in the list although there are two items in it. The reason that
we have more items in the linked list than indicated by the counter
value is because multiple linked lists can get merged as in the case
of x and y.

The insertion of item z is straightforward. However, an interest-
ing situation occurs when we insert w. Notice that w is inserted
in 1st, 3rd and 9th bucket. We create a node for w, append it
to the linked lists corresponding to the buckets and increment the
counters. For 3rd and 9th bucket, w can be located exactly within
the number of items indicated by the corresponding counter value.
However, for the first bucket this is not true: while the counter in-
dicates two items, we need to inspect three in order to locate w.
This inconsistency will go away if instead of appending the item we
prepend it to the list having the property of counter value smaller
than the number of items in the list. Thus, if we want to insert w
in the first bucket and we find that the number of items in the list
is two but the counter value is one, we prepend w to the list. This
will need replication of the item node. Once prepended, the consis-
tency is maintained. Both the items in the first list can be located by
inspecting at the most two items as indicated by the counter value.

The item node replication causes the memory requirement to be
slightly more than what we need in NHT or PFHT where each item
is stored just once. However, the overall memory requirement is
significantly lower than the BFHT.

The following pseudo-code describes the algorithm.

InsertItemSFHT (x)
1. for (i = 1 to k)
2. if (hi(x) 6= hj(x) ∀j < i)
3. if (Chi(x) == 0)

4. Append(x, Xhi(x))
5. else
6. l← 0

7. while (l 6= Chi(x))
8. l++
9. read X

hi(x)
l

10. if (Xhi(x)
l+1 6= NULL) Prepend(x, Xhi(x))

11. else Append(x, Xhi(x))
12. Chi(x)++

In this pseudo-code, l is used as a counter to track the number

x
y

z

x
y

x x

z

w

2

2

0

1

0

1

0

0

0

0

0

0

2

2

0

1

1

1

1

0

0

1

0

0

(A) (B) (C) (D)

1

1

0

1

0

0

0

0

0

0

0

0

x

y

z

3

2

0

2

1

1

1

0

0

2

0

0

y

w

w

Figure 4: Illustration of Shared-node Fast Hash Table (SFHT)

of items searched in the list. We search up to Chi(x) items in the
list. If the list does not end after Chi(x) items (line 10) then we
prepend the new item to the list otherwise we append it. Note that
prepending and appending simply involves scanning the list for at
the most Chi(x) items. Hence the cost of insertion depends on the
counter value and not on the actual linked list length. In SFHT, we
have nk items stored in m buckets giving us an average counter
value nk/m. We walk through nk/m items of each of the k lists
and finally append or prepend the new item. Hence the complexity
of the insertion is of the order O(nk2/m + k). Moreover, for an
optimal counting Bloom filter, k = mln2/n (see Section 3). Hence
the memory accesses for deletion are proportional to k.

The extra memory requirement due to node replication is hard to
compute but typically small. We use simulation results to validate
our claim. Our simulation results presented in Section 3.4 show that
the memory consumption is typically 1 to 3 times that of NHT (or
PFHT). This, however, is significantly smaller than that of BFHT.

The deletion algorithm on a SFHT is similar to the insertion
algorithm. The pseudo-code is as shown below. We delete an item
from all the lists by tracing each list. However, since the same item
node is shared among multiple lists, after deleting a copy we might
not find that item again by tracing another list which was sharing
it. In this case we do not trace the list till the end. We just need to
consider the number of items equal to the counter value. If the list
ends before that then we simply start with the next list (line 4).

DeleteItemSFHT (x)
1. for (i = 1 to k)
2. if (hi(x) 6= hj(x) ∀j < i)
3. l← 1
4. while (l 6= Chi(x) AND X

hi(x)
l 6= NULL)

5. if (Xhi(x)
l == x)

6. Xhi(x) = Xhi(x) − x
7. break
8. l++
9. Chi(x) −−

3. ANALYSIS
We analyze and compare the FHT algorithm with the NHT al-

gorithm in terms of the expected lookup time and lookup time tail
probability to demonstrate the merit of our algorithm. We assume
that NHT and all the versions of FHT have the same number of
buckets, m. As we have seen, given same number of items, PFHT
should consume exactly the same amount of off-chip memory as
NHT and SFHT consumes slightly more memory due to the item
replication. Therefore the only extra cost of our algorithm is the
use of the on-chip memory to store the bucket counters.

The lookup performance of PFHT is difficult to analyze prob-
abilistically. Hence we analyze the performance of our algorithm
before pruning, i.e. we will use algorithm SearchItemBFHT for the
purpose of analysis. It is important to note that the post-pruning

data structure will always have less number of items in each bucket
than the pre-pruning data structure. Hence the lookup time on
PFHT will always be shorter than the BFHT or equal. This will
be evident later when we discuss our simulation results. We also
note that the SFHT has same lookup performance as BFHT.

3.1 Expected Linked List Length
For an NHT search when the linked list is not empty, let Y be the

length of searched bucket. We have:

Pr{Y = j|Y > 0} =
Pr{Y = j, Y > 0}

Pr{Y > 0}
(1)

=

(

n
j

)

(1/m)j (1 − 1/m)n−j

1− (1 − 1/m)n
(2)

Now we analyze the distribution of the linked list lengths of FHT.
It should be recalled that in order to store n items in the table, the
number of actual insertions being performed are nk (or slightly less
than that if same item could be hashed into same bucket by different
hash functions), each of which is independent of each other. Under
the assumption of simple uniform hashing, we can derive the aver-
age length of the list in any bucket.

With nk insertions in total, the probability that a bucket received
exactly i insertions can be expressed as:

fi =

(

nk
i

)(

1

m

)i (

1 −
1

m

)(nk−i)

(3)

The question we try to answer now is: when the Bloom filter
reports a match for a given query1(i.e. all the k′ counters > 0,
where k′ is the number of unique buckets for an item calculated
by k hash functions. We know that 1 ≤ k′ ≤ k), what is the
probability that the smallest value of the counter is j?

Let X denote the value of the smallest counter value among k′

counter values corresponding to a query item when all the counters
are non-zero. Hence,

Pr{X = s} =
k
∑

j=1

Pr{k′ = j} × Pr{X = s|k′ = j} (4)

Let d(j, r) be the probability that the first r hashes of an item pro-
duce exactly j distinct values. To derive d(j, r), we know if the first
r−1 hashes of an item have already produced j distinct values, the
rth hash has to produce one of the j values with probability j/m.
Otherwise, the first r − 1 hashes of an item must have already pro-
duced j −1 distinct values and the rth hash should produce a value
which is different from the j − 1 values. The probability of this is
(m − (j − 1))/m. Hence,
1Note that this might be a false positive

d(j, r) =
j

m
d(j, r − 1) +

m − j + 1

m
d(j − 1, r − 1) (5)

with the boundary conditions d(j > r, r) = 0, d(0, 0) = 1,
d(0, r > 0) = 0. So, based on the fact that Pr(k′ = j) = d(j, k),
now we can write

Pr{X = s} =
k
∑

j=1

d(j, k) × Pr{X = s|k′ = j} (6)

Now, let
q(r, s, j) = Pr{smallest counter value in any r of the j buckets is

s}
p(i, j) = Pr{a counter value in a set of j non-empty buckets is i}
Since there is at least one item in any non-empty bucket, j non-

empty buckets contain at least j items. We consider the probability
to allocate the i − 1 out of the rest nk − j items in one of the j
buckets to make the bucket has exactly i items. Thus,

p(i, j) =

(

nk − j
i − 1

)

(1/m)(i−1) (1 − 1/m)((nk−j)−(i−1))

(7)
With these definitions, we can write

q(r, s, j) =
r
∑

i=1

(

r
i

)

p(s, j)i ×

(

1 −
s
∑

h=1

p(h, j)

)r−i

(8)

This is because in r buckets we can have i buckets (1 ≤ i ≤ r)
with counter value s while all other r − i buckets have counter
values greater than s. q(r, s, j) is simply sum of the probability for
each choice. The boundary conditions are q(1, s, j) = p(s, j).

Putting things together we get:

Pr{X = s} =
k
∑

j=1

d(j, k) × q(j, s, j) (9)

Based on Eq. 9, Figure 5 shows the linked list length comparisons
of FHT and NHT. The figure tells us once we do need to search a
non-empty linked list, what is the length distribution of these linked
lists. In next section we use simulations to show the pruning and
balancing effects which will improve the performance significantly.

It can be seen that given a probability of the inspected linked list
length being within a bound, the bound on NHT is always larger
than the bound on the FHT. For instance, with a probability of 10−3,
the NHT have about 3 items in a list where as FHT have only 2,
thus improving the performance of NHT by a factor of 1.5. The
improvement of the bound keeps getting better for smaller proba-
bilities.

For the NHT, the expected number of buckets that the attached
linked list exceeds a give length j is expressed as:

E(# of buckets with length > j) = m × B(n, 1/m, > j)
(10)

Where B(n, 1/m, > j) is the the probability that a binomial
random variable (or the load of a bucket) is greater than j:

B(n, 1/m, > j) = 1 −

j
∑

i=0

(

n
i

)

(1/m)i(1 − 1/m)n−i (11)

For NHT, if the expected number of buckets with linked list
length j is i, we can equivalently say that the expected number of

��� ��� ���

��� ��� ��	

��� ��� ��

��� ��� ���

��� ��� ���

��� ��� ��

��� ��� ���

��� �������

�
 � �

�

�
��
�
�
�
��
	
�

��

�
�
��

�
��
�

�
	
��
�
�
�
�	
��
�

�����

�����

Figure 5: Probability distribution of searched linked list length: n =

10, 000, m = 128K. k = 10 for FHT.

items for which the bucket linked list lengths are j is i × j. So the
expected number of items for which the bucket linked list length
> j for an NHT can be expressed as:

E(# of items for which bucket length > j) =
n
∑

i=j

(i + 1)(E(# of buckets with length > i)−

E(# of buckets with length > (i + 1)) =

m
n
∑

i=j

[(i + 1)×

(B(n, 1/m, > i)− B(n, 1/m, > (i + 1)))] (12)

Now we derive the expected number of items in an FHT for
which all buckets have more than j items (before pruning and bal-
ancing). We use an approximate expression for this:

E(# of items for which all buckets length > j) =

n×B((n − 1)× k, 1/m, > (j − 1))k (13)

The idea behind this is that if we consider a single item that
hashes to k distinct buckets and a particular bucket for that item,
the number of additional items that map to the same bucket is given
by the binomial distribution with (n − 1) × k trials. We can ap-
proximate the probability that all buckets for that item have > j
by raising this probability to the k-th power. This is not quite pre-
cise, since the probabilities for the sizes of the different buckets are
not strictly independent. However, the true probability is slightly
smaller than what we get by multiplying probabilities, so this gives
us a conservative estimate. On the other hand, the expression is only
approximate, since it assumes that all n items are mapped by the k
hash functions to k distinct buckets. It’s likely that for a small num-
ber of items, this will not be true, but we show through simulations
that this does not have a significant impact on the results.

Figure 6 shows the expected number comparisons of FHT and
NHT. This expected number tells us the number of items that are in
link lists with at least j nodes.

The results show a definite advantage for the FHT even before the
pruning and balancing optimizations. We can interpret that there
is only two items in a billion for which the smallest bucket has
more than 3 entries. For the NHT, there is about two items in ten
thousands for which the bucket has more than 5 entries. Also in
this configuration, only a few tens of items need more than 1 node

������

������

������

�����	

������

���
 ��

���
 ��

���
 �	

���
 ��

� 	 � � � �
�

�
�
�
�
�
��
�
	

��
�
�
	

�
�	
�
�
��
�
	

�
�
�
�
�
��
�
�	
�
�
�
�
	�
	�
	�
�
��
��
�

�
 �

�
 �

Figure 6: Expected number of items for which the searched bucket
contains > j items. n = 10, 000, m = 128K. k = 10 for FHT.

access to query in FHT, but near 1000 items need more than 1 node
access to query in NHT.

3.2 Effect of the Number of Hash Functions
We know that for an ordinary Bloom filter, the optimal number

of hash functions k is related to the number of buckets m and the
number of items n by the following relation [14]

k =
m

n
ln2 (14)

Now we justify analytically why the same number of hash func-
tions is also optimal for the FHT’s lookup performance. From
Equation 13, we know the expected number of items for which each
bucket has more than j items. It is desirable to have at least one
bucket with just one item in it. Hence we wish to minimize the
probability of all the buckets corresponding to an item having more
than one item. This translates into minimizing the following with
respect to k.

B((n − 1)k, 1/m, > 0)k =

(

1 −

(

1 −
1

m

)(n−1)k
)k

(15)

This expression is the same as the expression for the false posi-
tive probability of the ordinary Bloom filter containing (n−1) items
in m buckets [14]. Hence the optimal number of hash functions for
the counting Bloom filters is given by

k =
m

n − 1
ln2 ≈

m

n
ln2 (16)

for a large number of items. Therefore, the optimal configuration
of the ordinary Bloom filter for minimizing the false positive prob-
ability is the same as optimal configuration of FHT for reducing
the item access time. Figure 7 shows the performance of FHT for
different optimal configurations. For a fixed number of items n, we
vary k and always ensure that m is optimally allocated for FHT.
For each configuration we use the same number of resulting buck-
ets for the NHT. The performance is compared for FHT and NHT.
We can make two observations from the figure. First, the perfor-
mance is always better if we have more buckets per item (i.e. larger
m/n). Secondly, the performance of FHT is always significantly
better than the NHT. This can be observed by comparing the curves
H(1,3) and H(2,3), H(1,6) and H(4,6) and so on.

We also plot the performance when we use less number of hash
functions than the optimal, and fix m and n. This is shown in Fig-
ure 8. The optimal number of hash functions for the configuration

������

������

������

�����	

�����

������

���� ��

���� ��

���� �

���� �	

�
 	 � � � �
�

�
�
�
�
�
��
�
	

��
�
�
	

�
�	
�
�
��
�
	

�
�
�
�
�
��
�
�
	�
�
�
�
	�
	�
	�
�
��
��
�

 � �� 	 �

 � �� ��

 �
 � 	 �

 � �� �
 �

 � � � ��
 � � � �
 �

Figure 7: The effect of optimal configuration of hash table. H(i, j)

indicates i = k and j = m/n. When i = 1, it implies an NHT.

used is 10. Although the performance degrades as we use less than
10 hash functions, it is still significantly better than the NHT (k = 1
curve). An advantage of having a smaller number of hash functions
is that the incremental update cost is reduced. Moreover, the asso-
ciated hardware cost is also reduced.

�����

���� �

���� �

���� 	

���� �

�����

���
 �

 �

 �

�

� � � � � � 	

�

�
�
�
��
��
	

��
�

�
�
�
��
�
��
�
�
�
�
��

��
�
�
�
�
�

�
��
��
�
�

��

�����

�����

� ���
	�� 	�	�	

 ���
�����

�����

�����

�����
	

Figure 8: The effect of non-optimal configuration of FHT. k = 1 cor-
responds to the NHT.

3.3 Average Access Time
Load factor of a hash table is defined as the average length of

lists in the table [9]. For an NHT, the load factor α can be given as:

α = n/m (17)

Let T1, T s
1 and T u

1 denote the time for an average, successful
and unsuccessful search respectively (ignoring the hash computa-
tion time). For an NHT, the following can be shown [9]:

T s
1 = 1 + α/2 − 1/2m (18)

T u
1 = α (19)

In order to evaluate the average search time, we need to intro-
duce another parameter ps which denotes the probability of a true
positive, i.e., the frequency of searches which are successful. Sim-
ilarly, pu = 1 − ps denotes the frequency of issuing unsuccessful
searches.

With these notations, the average search time can be expressed
as:

T1 = psT
s
1 + puT u

1

= ps

(

1 +
n − 1

2m

)

+ (1 − ps)
n

m
(20)

For the FHT, let Ep be the expected length of linked list in the
FHT for a member item and Ef be the expected length of linked
list in the FHT for a false positive match. Ep can be derived form
Equation (12) and Ef can be derived from Equation (9). So the
average search time T2 is:

T2 = psEp + pufEf (21)

= psEp + (1 − ps)

(

1

2

)(m/n)ln2

Ef (22)

We compare our algorithm with NHT scheme by using same set
of configurations. Figure 9 shows the expected search time in terms
of the number of off-chip memory accesses for the three schemes
under different successful search rate.

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 s
ea

rc
h

tim
e

(m
em

or
y

ac
ce

ss
es

)

Successful search probability (Ps)

NHT
FHT

Figure 9: Expected search time for the NHT and FHT as a function of
successful-search rate. m = 128K, n = 10, 000. k = 10 for FHT

We see that the lower the successful search rate, the better the
performance of our algorithm is. Note that this estimation is conser-
vative for our algorithm. We do not take into account the potential
benefit of some optimizations such as pruning and balancing.

3.4 Memory Usage
There are three distinct blocks in the FHT architecture which

consume memory. The first is the on-chip counting Bloom filter.
Second is the hash table buckets and the third being the actual item
memory. In the analysis so far, we have always considered the same
number of buckets for both the FHT and NHT. The NHT does not
require on-chip memory though the FHT needs a small amount of
it. Finally, while the NHT needs memory for exactly n items, the
different versions of the FHT need different amount of memory de-
pending on how many times an item is replicated. The BFHT needs
to store each item k times hence needs a space of nk, and PFHT
keeps exactly one node for each item hence the storage is same as
the NHT. The SFHT trades off the memory for better incremental
update support. We computed the memory requirement for SFHT
using simulations with m = 128K, n = 10, 000 and k = 10.
Figure 10 shows the memory consumption of all the three schemes.
The results show that for the chosen configuration, the SFHT uses
1 to 3 times more memory than NHT or PFHT, which is much less
than the BFHT memory requirement.

We now elaborate on the memory usage for on-chip counters.
The memory consumption for counter array depends on the num-
ber of counters and the width of each counter. While the number
of counters is decided by Equation 14, counter width depends on
how many items can get hashed to a counter. While in the worst
case all the nk items can land up in the same bucket, this is highly
improbable. Hence we calculate how many items can get hashed

������

� �����

� �����

� �����

� �����

	 ����

� � ��� � ��� � ��� � ��� 	 ����

��������	��
������

�
�
�
�
�
��
�
	�
�
�

�
�

� �
 � � � � � � � � �

� �
 �

� �
 �

Figure 10: Item memory usage of different schemes. m = 128K,
n = 10, 000 and k = 10.

in a bucket on an average and choose a counter width to support
it. For any counter that overflows by chance, we make a special
arrangement for it. We simply keep the counter on the chip and at-
tach the index of the counter in a small Content Addressable Mem-
ory (CAM) with just a few entries. When we want to address a
counter, we check to see if it is one of the overflown counters and
access it from the special hardware. Otherwise the normal opera-
tions proceed. Given the optimal configuration of counting Bloom
filters (i.e. mln2/n = k) and m = 128K, we can show that the
probability of a counter being > 8 to be 1.4e-6 which is minuscule
for our purpose. In other words, one in a million counters can over-
flow when we have only 128K counters. Hence we can comfortably
choose the counter width of three bits and this consumes less than
400K bits of on-chip memories.

4. SIMULATIONS
We simulate the FHT lookup algorithm using different configu-

rations and compare the performance with NHT under the condi-
tion that each scheme has the same number of buckets. Firstly, we
need to choose a set of “good” hash functions. We will show in
this section, even with a set of simple hash functions our algorithm
demonstrates an appealing lookup performance that is much better
than NHT. In the optimal case, our algorithm’s successful lookup
time is exactly 1 and the average unsuccessful lookup time equals
to the false positive rate of the Bloom filter.

A class of universal hash functions described in [8] are suitable
for hardware implementation [22]. For any member item X with
b-bits representation as

X = 〈x1, x2, x3, . . . , xb〉

the ith hash function over X , hi(x) is calculated as:

hi(X) = (di1 ×x1)⊕ (di2 ×x2)⊕ (di3 ×x3)⊕ . . .⊕ (dib ×xb)

where ‘×’ is a bitwise AND operator and ‘⊕’ is a bitwise XOR
operator. dij is a predetermined random number in the range
[0 . . . m − 1]. For NHT simulation, one of such hash functions
is used.

We simulate the tail distribution of the expected number of items
in a non-empty bucket which needs to be searched. The simulation
ran 1,000,000 times with different seeds. In Table 1, we list both
analysis results and simulation results.

From the table we can see that our analysis of the FHT and NHT
are quite precise. The simulation results are very close to the ana-
lytical results and validate the correctness of our approximate anal-
ysis. More importantly, the FHT has already demonstrated advan-
tages over the NHT. After the pruning and balancing, the improved

j Fast Hash Table Naive Hash Table
Analysis Simulation Analysis Simulation

basic pruning balancing
1 19.8 18.8 5.60 × 10−2 0 740.32 734.45
2 3.60 × 10−4 4.30 × 10−4 0 0 28.10 27.66
3 2.21 × 10−10 0 0 0 0.72 0.70
4 1.00 × 10−17 0 0 0 1.37 × 10−2 1.31 × 10−2

5 5.64 × 10−26 0 0 0 2.10 × 10−4 1.63 × 10−4

6 5.55 × 10−35 0 0 0 2.29 × 10−6 7 × 10−6

Table 1: Expected # of items for which all buckets have > j entries. In the table, n = 10, 000 and m = 128K. k = 10 for FHT

results are indeed good: each non-empty bucket contains exactly
one items. This means in the worst case, only one off-chip memory
access is needed.

5. CONCLUSION
Hash tables are extensively used in several packet processing ap-

plications such as IP route lookup, packet classification, per-flow
state management and network monitoring. Since these applica-
tions are often used as components in the data-path of a high-speed
router, they can potentially create a performance bottleneck if the
underlying hash table is poorly designed. In the worst case, back-
to-back packets can access an item in the most loaded bucket of the
hash table leading to several sequential memory accesses.

Among the conventional avenues to improve the hash table per-
formance, using sophisticated cryptographic hash functions such as
MD5 does not help since they are too computationally intensive
to be computed in a minimum packet-time budget; devising a per-
fect hash function by preprocessing keys does not work for dynamic
data sets and real-time processing; and multiple-hashing techniques
to reduce collisions demand multiple parallel memory banks (re-
quiring more pins and more power). Hence, engineering a resource
efficient and high-performance hash table is indeed a challenging
task.

In this paper we have presented a novel hash table data structure
and algorithm which outperforms the conventional hash table algo-
rithms by providing better bounds on hash collisions and the mem-
ory access per lookup. Our hash table algorithm extends the multi-
hashing technique, Bloom filter, to support exact match. However,
unlike the conventional multi-hashing schemes, it requires only one
external memory for lookup. By using a small amount of multi-port
on-chip memory we show how the accesses to the off-chip memory,
either due to collision or due to unsuccessful searches, can be re-
duced significantly. Through theoretical analysis and simulations
we show that our hash table is significantly faster than the con-
ventional hash table. Thus, our Fast Hash Table can be used as a
module to aid several networking applications.

6. REFERENCES
[1] Cisco netflow. http://www.cisco.com/warp/public/732/Tech/netflow.
[2] Snort - The Open Source Network Intrusion Detection System.

http://www.snort.org.
[3] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. In

Proceedings of 26th ACM Symposium on the Theory of Computing,
1994.

[4] Florin Baboescu and George Varghese. Scalable packet classification.
In ACM Sigcomm, San Diego, CA, August 2001.

[5] Burton Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13, July 1970.

[6] A. Broder and A. Karlin. Multilevel adaptive hashing. In Proceedings
of 1st ACM-SIAM Symposium on Discrete Algorithm, 1990.

[7] Andrei Broder and Michael Mitzenmacher. Using multiple hash
functions to improve IP lookups. In Proceedings of IEEE INFOCOM,
2001.

[8] L. Carter and M. Wegman. Universal classes of hashing functions.
Journal of Computer and System Sciences, 18(2):143–154, 1979.

[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. Prentice Hall, 1 edition, 1990.

[10] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and
John W. Lockwood. Deep packet inspection using parallel Bloom
filters. In IEEE Symposium on High Performance Interconnects
(HotI), Stanford, CA, August 2003.

[11] Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor.
Longest prefix matching using Bloom filters. In ACM Sigcomm,
August 2003.

[12] Sarang Dharmapurikar and Vern Paxson. Robust tcp stream
reassembly in the presence of adversaries. In USENIX Security
Symposium, August 2005.

[13] Cristian Estan, Ken Keys, David Moore, and George Varghese.
Building a better netflow. In ACM Sigcomm, August 2004.

[14] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking, 8, March 2000.

[15] Anja Feldmann and S. Muthukrishnan. Tradeoffs for packet
classification. In Proceedings of IEEE INFOCOM, 2000.

[16] HDL Design House. HCR MD5: MD5 crypto core family,
December, 2002.

[17] Intel Corporation. Intel IXP2800 Network Processor. Datasheet,
2002.

[18] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet
forwarding using efficient multi-dimensional range matching. In
ACM Sigcomm, September 1998.

[19] J. Lunteren and T. Engbersen. Fast and Scalable Packet Classification.
IEEE Journal on Selected Areas in Communications, 21, May 2003.

[20] Jan Van Lunteren. Searching very large routing tables in wide
embedded memory. In Proceedings of IEEE Globecom, November
2001.

[21] Vern Paxson. Bro: A system for detecting network intruders in real
time. Computer Networks, December 1999.

[22] M.V. Ramakrishna, E. Fu, and E. Bahcekapili. A performance study
of hashing functions for hardware applications. In Proc. of Int. Conf.
on Computing and Information, pages 1621–1636, 1994.

[23] David V. Schuehler, James Moscola, and John W. Lockwood.
Architecture for a hardware-based TCP/IP content scanning system.
In IEEE Symposium on High Performance Interconnects (HotI),
Stanford, CA, August 2003.

[24] V. Srinivasan, Subhash Suri, and George Varghese. Packet
classification using tuple space search. In SIGCOMM, pages
135–146, 1999.

[25] V. Srinivasan and G. Varghese. Fast Address Lookup using Controlled
Prefix Expansion. ACM Transactions on Computer Systems, 1999.

[26] David Taylor, Alex Chandra, Yuhua Chen, Sarang Dharmapurikar,
John Lockwood, Wenjing Tang, and Jonathan Turner. System-on-chip
packet processor for an experimental network services platform. In
Proceedings of IEEE Globecom, 2003.

[27] B. Vocking. How asymmetry helps load balancing. In Proceedings of
40th IEEE Symposium on Foundations of Computer Science, 1999.

[28] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high
speed IP routing lookups. In Proceedings of ACM SIGCOMM, 1997.

[29] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet, November, 2004.

