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Abstract

Automatic speech recognition of real-live broadcast news (BN) data (Hub-4) has become a challenging research

topic in recent years. This paper summarizes our key efforts to build a large vocabulary continuous speech recognition

system for the heterogenous BN task without inducing undesired complexity and computational resources. These key

efforts included:

• automatic segmentation of the audio signal into speech utterances;

• efficient one-pass trigram decoding using look-ahead techniques;

• optimal log-linear interpolation of a variety of acoustic and language models using discriminative model combina-

tion (DMC);

• handling short-range and weak longer-range correlations in natural speech and language by the use of phrases and of

distance-language models;

• improving the acoustic modeling by a robust feature extraction, channel normalization, adaptation techniques as

well as automatic script selection and verification.

The starting point of the system development was the Philips 64k-NAB word-internal triphone trigram system. On the

speaker-independent but microphone-dependent NAB-task (transcription of read newspaper texts) we obtained a word

error rate of about 10%. Now, at the conclusion of the system development, we have arrived at Philips at an DMC-

interpolated phrase-based crossword-pentaphone 4-gram system. This system transcribes BN data with an overall word

error rate of about 17%. � 2002 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Die automatische Spracherkennung von aktuellen Nachrichtensendungen (‘‘Hub-4’’ Aufgabe, Broadcast-News

Aufgabe) ist in den vergangenen Jahren zu einem wichtigen Forschungsthema geworden. Diese Publikation faßt die

Schwerpunkte unserer Arbeit beim Aufbau eines Systems zur Erkennung kontinuierlicher Sprache mit großem Voka-

bular f€uur die heterogene Broadcast-News-Aufgabe zusammen, wobei wir versucht haben, die Komplexit€aat und den

Rechenaufwand des Systems so gering wie m€ooglich zu halten. Unter anderem haben wir uns auf folgende Ziele fokussiert:

• Automatische Segmentierung des Audio-Signals in sprachliche €AAußerungen;

• Effiziente einstufige Trigramm-Suche mit Look-Ahead-Techniken;
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• Optimale log-lineare Interpolation einer Anzahl von akustischen Modellen und Sprachmodellen mit Hilfe der Dis-

kriminativen Modellkombination (DMC);

• Behandlung von Kurzzeit- und schwachen Langzeitkorrelationen in nat€uurlicher Sprache durch den Einsatz von Phra-

sen und von Abstands-Sprachmodellen;

• Verbesserung der akustischen Modellierung durch eine robuste Merkmalsextraktion, Kanalnormierung, Adaptions-

techniken, wie auch durch automatische Skriptselektion und Skriptverifikation.

Der Startpunkt unserer Systementwicklung war das Philips 64k-NAB wortinterne Triphon-Trigramm-System. Auf der

sprecherunabh€aangigen aber mikrophonabh€aangigen NAB-Aufgabe (Transkription von vorgelesenen Zeitungstexten)

erreichten wir eine Wortfehlerrate von ca. 10%. Die Entwicklungsarbeit wurde mit dem Aufbau eines DMC-interpo-

lierten phrasenbasierten wort€uubergreifenden Pentaphon-Viergramm-Systems abgeschlossen. Dieses System transkri-

biert Nachrichtensendungen mit einer Gesamtfehlerrate von ca. 17%. � 2002 Elsevier Science B.V. All rights reserved.

R�eesum�ee

La transcription automatique d’�eemissions parl�eees d’informations radio-t�eel�eevis�eees (tâache d�eesign�eee par ‘‘Hub-4’’) a �eet�ee
l’objet d’intenses travaux de recherche ces derni�eeres ann�eees. Ce papier pr�eesente les lignes principales de nos efforts

d’�eelaboration d’un syst�eeme de reconnaissance de parole continue qui soit �aa mêeme de traiter le signal h�eet�eerog�eene pro-

venant d’�eemissions d’information sans entrâııner une trop grande complexit�ee ou le recours �aa des ressources de calculs

excessives. L’essentiel de nos efforts a port�ee sur les points suivants:

• La segmentation automatique du signal audio en une suite de passages parl�ees;

• Le d�eecodage rapide en une passe int�eegrant un mod�eele de trigrammes avec une technique d’anticipation;

• L’interpolation log-lin�eeaire optimale d’une vari�eet�ee de mod�eeles acoustiques et grammaticaux au moyen d’une techni-

que de combinaison discriminative de mod�eeles (DMC);

• La prise en compte de corr�eelations linguistiques �aa court terme et, plus faiblement, �aa long terme au moyen de grou-

pements de mots (phrases) et de mod�eeles de languages dits ‘‘�aa distance’’;

• L’am�eelioration de la mod�eelisation acoustique �aa l’aide d’une extraction robuste du contenu du signal combin�eee �aa la

normalisation des canaux, l’adaptation des mod�eeles phon�eetiques ainsi que la s�eelection et la v�eerification des scripts du

corpus d’entrâiinement.

Notre point de d�eepart fut le syst�eeme Philips ‘‘NAB-64k’’ fond�ee sur l’emploi de triphones intra-mots et de mod�eeles de

trigrammes. Pour la tâache ‘‘NAB’’ impliquant la transcription d’articles lus �aa l’aide d’un microphone connu, ce syst�eeme

ind�eependant du locuteur atteint un taux d’erreur moyen de 10% au niveau du mot. Au terme de ce travail, nous avons

d�eevelopp�ee un syst�eeme qui combine par DMC des mod�eeles phon�eetique intra-mots et inter-mots, des pentaphones, des

groupements de mots ainsi que des mod�eeles de langage jusqu’�aa l’ordre 4. Ce syst�eeme produit une transcription

d’�eemissions parl�eees d’information avec un taux d’erreur global d’environ 17%. � 2002 Elsevier Science B.V. All rights

reserved.
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Language-model look-ahead; Discriminative model combination; Log-linear interpolation; Distance language models; Phrases; Vocal

tract normalization; Script verification

1. Introduction

Past speech recognition research has focused
mainly on the decoding of high quality speech in
quiet environments. Recently, however, the focus
has shifted to speech found in the ‘‘real world’’.
One of the data sources of real-world speech are
audio recordings from radio and television broad-
cast news (BN). As compared to previous work
involving automatic speech recognition, the BN

task imposes the following additional research
problems:
• Unknown sentence boundaries.
• Diverse and rapidly changing acoustic environ-

ment. Typical degradations of the speech signal
are introduced by background music, noise, in-
terfering speakers as well as by changes between
studio and telephone channels. Furthermore, re-
gional dialects or accents of non-native speakers
have to be considered.
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• Real-life speaking styles (spontaneous speech) as
well as unknown speaker turns. Speaking styles
range from carefully read speech to free and
spontaneous conversation.

• Natural language. Difficulties arise from unpre-
dictable changes of topics of the BN as well as
from spontaneous reactions in free conversations.

This paper summarizes our approach in dealing
with these challenges and describes the system we
developed between 1997 and 1998.

2. Overview

The system architecture of the Philips/RWTH
Hub-4 system is plotted in Fig. 1. The system
consists of three decoding stages: segmentation,
one-pass trigram decoding and discriminative
model combination (DMC). The task of the seg-
mentation stage is to handle the problem of un-
known sentence boundaries. It transforms the
continuous BN audio stream in a sequence of
spoken utterances (segments), which are simi-
lar to sentences. Identification of acoustic channel
bandwidth, gender and speaker cluster is provided.
Given this set of spoken utterances a one-pass
trigram decoding is performed, aiming at compact
lattices with a high linguistic coverage. The lattices
are rescored using all available acoustic and lan-
guage models (we used 7 models). A weighted
combination of the model scores is used as the
decision criterion for the final transcription. The
individual weights of the models are optimized

with respect to the word error rate (WER) during
the training stage. In the following three sections,
we describe in more detail the three stages of the
recognition process:
• segmentation of the audio stream;
• one-pass trigram decoding for adaptation and

lattice generation;
• integration of multiple acoustic and language

models by DMC.
We continue with two further sections on building
the acoustic and language models needed for one-
pass decoding and for DMC.

A couple of results presented here, were pro-
duced at the Aachen university of technology
(RWTH). They are labeled in this paper with
‘‘RWTH’’.

3. Automatic segmentation into ‘‘sentences’’

In most transcription tasks boundaries of the
utterances are known, and the background ac-
coustic conditions of the utterances are fixed.
Further information may also be available such
as gender or channel information. Using the given
information, models can easily be adapted to the
conditions at hand. A BN transcription system
may receive, for example, a complete 3 h input
stream. In this stream, one encounters, for exam-
ple, telephone speech, speech in noisy ‘‘real life’’
surroundings, spontaneous speech (as opposed to
planned, or read speech) and non-speech (such as
music, traffic noise, etc.). Different adapted models
should be used in transcribing speech in these
different conditions, and thus it is important to
be able to divide the stream into segments. These
segments, each contain just one speaker, speaking
in uniform background conditions. Some infor-
mation such as gender and channel information
for each segment may also be useful in the de-
coding. Non-speech segments should be discarded.
Finally, creation of homogeneous clusters of seg-
ments is important to adapt to specific speakers
and background conditions. Two systems of seg-
mentation are discussed in the following sections:
(1) a two-pass system, consisting of a non-speech
decoder and a BIC-based speaker turn detector
and (2) a one-pass phoneme decoder.Fig. 1. Architecture of the Hub-4 system.
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3.1. Removal of non-speech

Segments containing only noise, when decoded,
lead to spurious transcriptions. Such spurious
transcriptions can usually be removed later using
simple confidence measure techniques. It is, how-
ever, useful and more efficient, to remove such
non-speech segments before decoding. In doing
this, it is important not to remove true speech, as
then this speech will never be decoded, resulting
in unrecoverable errors.

Non-speech decoder: Different Gaussian mixture
models (GMM) of speech and non-speech were
used to decode the input signal. This approach has
been used before (Jin et al., 1997; Hain et al., 1998).
The Philips implementation is described in (Harris
et al., 1999). We chose to construct models of speech,
speech + background music, non-speech noise, mu-
sic and of pause. Sixty minutes of each of speech,
speech with music, and music was used for training.
Short passages of noise and silence in the above
was used to train these models. In total, around
1000 Gaussian densities were used. The five HMM
models were trained using standard MFCC features.
Normalization and transformation techniques, as
applied in the frontend of the speech recognizer
(see Section 7.1), were excluded from the feature
extraction. They would normalize away the differ-
ence between the different classes and would make
the speech–non-speech separation more difficult.

Recognitions were done using the above trained
models and penalties for moving between models
were applied in order to smooth the recognition.

Phoneme decoder: An alternative to the previ-
ous scheme, is to carry out a Viterbi decoding
using regular phoneme models and a phoneme
bigram model.This decoding method was used to
generate the segmentation, as well as to detect the
non-speech passages. Here, the HMM model set
consisted of both male and female phonemes and
one noise HMM model was used to model all non-

speech. Segmentation was achieved by creating
segments with male–female or speech–non-speech
transitions as segment boundaries, and long non-
speech passages were discarded.

Comparison for the removal of non-speech: There
are two types of classification errors possible.
Firstly, non-speech can be classified as speech.
Resulting segments with mostly non-speech can
be discarded later as they are decoded with a bad
score. Other short non-speech passages may re-
main between spoken words (pauses). To evaluate
the segmenter performance, we counted the amount
of non-speech in the hand-made official NIST
segmentation and computed the additional amount
of non-speech left by the automatic segmenter. Sec-
ondly, speech can be classified as non-speech and
discarded. The discarded words cannot be recog-
nized, resulting in deletions – an unrecoverable
error. Another error that can occur is that parts of
words are lost due to misplaced non-speech pas-
sage boundaries. A word may be cut at such a
boundary, resulting in part of the word lost. These
error figures are given in Table 1. We found that
the non-speech decoder was better at removing
non-speech than the phoneme decoder, resulting in
a solid starting point for the subsequent segmen-
tation.

3.2. Segmentation and classification

Segmentation algorithms were used to deter-
mine positions of speaker and background change,
and thus segment boundaries. The segmentation
generated from the phoneme decoder, described
in Section 3.1, was compared to the segmentation
obtained by the BIC-approach (Chen and Gopala-
krishnan, 1998; Harris et al., 1999). Given a
passage of BN data, the BIC method is able to find
the most likely position of speaker or background
condition change as BIC actually looks for posi-
tions where the signal characteristics change. It

Table 1

Misclassification of speech and non-speech on Hub-4’97 evaluation set

Non-speech detector Speech misclassified as noise (%) Additional amount of non-speech (%) Words cut (%)

Phoneme decoder 0.35 4.81 0.049

Non-speech decoder 0.26 0.29 0.055
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also gives a criterion to determine whether the
change at this point is significant.

Comparison of segmentations: One can judge the
quality of a segmentation by the speaker (cluster)
purity of its segments. The speaker (cluster) purity
is the percentage of time that the main speaker of a
particular segment (cluster) is speaking in that
segment (cluster). These values for the two differ-
ent segmentation are given in Table 2. The purity
of the segments generated by the two methods is
comparable. But the average BIC segment length
is much greater than that in the phoneme decoder
segmentation. Further, the BIC algorithm pro-
duces fewer word cuts than the phoneme decoder.

Classification: We classified each segment as
being either male or female and as being either
telephone or non-telephone. Using this informa-
tion improved the subsequent clustering of the
segments and could also be used in the decoding
later. A segment was deemed to be a telephone
segment if most of the signal energy was in the 300–
3500 Hz range and non-telephone otherwise. To
determine the gender of a segment, monophone
male and female phoneme decoding runs were
carried out.

3.3. Clustering

As mentioned previously, the aim of the clu-
sterer is to group together ‘‘similar’’ segments. The

distance between two segments is based on the
Kullback–Leibler distance (KL2), first used in this
context in (Siegler et al., 1997). This measures how
‘‘different’’ the segments are acoustically. Seg-
ments that are close together in time are more
likely to come from the same speaker as ones that
are greatly temporarily separated. For each seg-
ment S we estimate a single Gaussian probability
density Gð~xxÞ, which describes the acoustic obser-
vations ~xx of segment S in a compact way. Now,
let S1; S2 be two segments and let G1;G2 be the
corresponding Gaussians. Let DT ðS1; S2Þ be the
temporal distance of both segments in terms of
acoustic frames. The distance used for the clus-
tering is

dðS1; S2Þ ¼ KL2ðG1;G2Þ þ b � DT ðS1; S2Þ: ð1Þ

The segments resulting from the BIC segmentation
were clustered using a nearest-neighbor algorithm:
at each stage, the two closest clusters (according to
d) were merged together. For a contrast, the seg-
ments from phoneme decoder segmentation were
clustered using a greedy criterion. At each stage, a
segment was chosen, and clustered together with
the first segment found within a certain distance
(measured according to d) of it. We measured the
effectiveness of the clustering algorithm by the
cluster purity. The results of this are given in Table
3. It is advantageous to perform clustering after
gender classification of the individual segments.

Table 2

Segment boundary detection on Hub-4’97 evaluation set

Segmenter Segment purity Average segment length Words cut (%)

Phoneme decoder 97.6 7.33 0.241

BIC 97.7 18.86 0.067

Official 100 15.87 0

Table 3

Cluster purity, framewise gender accuracy and word error rate (WER) on the Hub-4’97 evaluation set

System Cluster purity Gender accuracy WER (%)

no adaptation

WER (%)

after adaptation

Phoneme decoder + greedy clustering 73.6 97.49 23.7 22.6

BIC + nearest neighbor clustering (clustering

after gender classification)

89.2 97.87 23.4 21.0

BIC + nearest neighbor clustering (clustering

before gender classification)

89.1 96.02 23.4 21.3

Official 100 100 21.8 20.0
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This improves the cluster purity and the framewise
gender accuracy (see Table 3).

3.4. Effect on speaker normalization and adaptation

A gender-dependent one-pass trigram decoding
with word internal triphones was carried out to
show the influence of the segment/cluster purity on
the recognition performance. A first recognition
was done without adaption and, subsequently, a
recognition using vocal tract normalization (VTN)
and MLLR adapted models (Section 7.1). We see
that a high cluster purity (given in Table 3) is an
important factor in maximizing gains from adap-
tation techniques. Adaptation brought a 10.3%
improvement in the BIC system, compared to a
4.6% improvement in the phoneme decoder system.
Adaptation using the official (hand-made) cluster-
ing and segmentation reduced the error from 21.8%
to 20.0% (an 8.3% relative improvement). The
baseline error rate before adaption using the official
segmentation was, however, lower. We also saw
the importance of optimal gender classification.

3.5. Summary

Two automatic segmentation approaches – (1) a
phoneme decoder and (2) a GMM–BIC segmen-
ter – were compared. The GMM–BIC segmenter
provides better results (Harris et al., 1999). The
loss of word accuracy by automatic segmentation
compared to manual segmentation is about 5%
relative.

4. Efficient one-pass trigram decoding

Like most other Hub-4 systems, a 64k word
trigram recognition coupled with the use of tri-
phone models is applied in the early decoding
stages to the speech utterances, obtained from
the segmenter (Section 3). Longer linguistic and
acoustic contexts can also be handled, though, in
later stages when the search is restricted to a word
lattice (Section 5). The prime decoding task thus
consists in performing a first ‘‘robust’’ search that
fulfills the requirements of a trigram language
model and produces both the best sentence hy-

pothesis for the sake of acoustic adaptation as well
as a word lattice. This lattice should include the
most likely alternatives for further rescoring with
more complex knowledge sources in the DMC
stage (see Section 5).

4.1. Representation and organization of the search
space

The one-pass decoder is still based on a time-
synchronous left-to-right beam search technique
with a prefix tree structure of the lexicon (Ney
et al., 1992). It proceeds by integrating the knowl-
edge sources in a ‘‘breadth first’’ search strategy,
similar to the decoder described in (Odell et al.,
1994). Let NW be the size of the vocabulary de-
noted as W. In the framework of large vocabulary
m-gram decoding, the search proceeds in a four-
dimensional space, the coordinates representing,
respectively, the time index, the language model
node, the phoneme arc and the acoustic HMM
state. The last two coordinates specify the position
in the actual word model with respect to the lexical
tree organization while the second axis determines
the predecessor word history as taken into account
by the language model. In a time-synchronous de-
coder, the time index is the independent variable
and, based on the principle of dynamic program-
ming, the whole search process is formulated as a
recurrence from t � 1 to the ‘‘current’’ time t. The
active parts of the search space that are explored
during decoding are thus described in terms of the
last three coordinates with the time index being
implicit. In the present implementation, partial
hypotheses expanded by the decoder are recorded
in lists organized in a three-level hierarchy, namely,
language model nodes, phoneme arcs and HMM
states (Ney et al., 1992). This means that all active
paths that share the same predecessor word history
are grouped together and are further expanded
according to the lexical tree structure until they
reach a next word ending. This algorithmic orga-
nization has been sometimes referred to as using
word-conditioned copies of the lexical tree. How-
ever, this is just a mental view, the lexical tree
structure being stored only once and for all. Only
the dynamic programming quantities (score, back-
pointer, arc index, etc.) that are relevant to the still
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active paths are recorded separately. The propa-
gation of the search is controlled by a standard
beam pruning strategy and peaks in terms of a large
number of active states are handled by the so-called
histogram pruning method (Steinbiss et al., 1994).
This technique provides a very efficient way of
selecting the top-N most promising paths, making
it possible to work with lists of fixed size of OðNÞ.

4.2. m-gram Language-model constraints

The generalization to longer-span m-gram lan-
guage models (m > 2) simply follows from a proper
definition of the language nodes which depend on
their m � 1 predecessor word history, and from the
use of a hash table to insure the efficiency of the
recombination stage (Ortmanns et al., 1996b,
1997). Indeed, the use of a probabilistic m-gram
language model has two well-known implications:
1. The search network is fully branched at the

word level, each word being possibly followed
by any other.

2. Word probabilities depend on their m � 1 pre-
decessors:

P ðWnjWn�1;Wn�2; . . . ;W0Þ
¼ P ðWnjWn�1; . . . ;Wn�mþ1Þ:

The dynamic programming principle requires to
keep track of the individual m � 1 word histories
until the optimization step can take place at the
next word ending. This leads to the definition of
language model nodes for recombination that are
made dependent on the last m � 1 words. When
using within-word acoustic models, each node is
further connected to the whole set of words in the
lexicon. This actually means re-entering the lexical
prefix tree structure at its root. As an example,
when decoding with a trigram language model and
within-word phonetic models there is a total of
ðNW � NW Þ word pair nodes, each one linked to the
whole lexicon. In contrast with bigram decoding
where the NW nodes can be directly associated to
word end indices and stored in a static array, the
extension to longer span language models asks
for another solution owing to the huge number of
possible language model nodes. For a 64k trigram,
this number is actually close to 4.1 billion! Since

only a very small fraction of all possible language
model nodes are activated simultaneously in the
course of the search process, hashing appears to be
the ideally suited technique. Our solution consisted
of associating each active node with a bijective
index from which standard hashing provides an
entry to the recombination table. For a trigram
node fu; vg, the hash key is defined as

Hðu; vÞ ¼ MW � u þ v; u; v > 0; MW > NW ;

ð2Þ

and is subjected to a modulo operation for pro-
viding a first entry in the table. The bijective
character of the hash key allows to easily retrieve
the language model history by successive modulo
and division operations. This method is fairly
general in its principle (apart from secondary
range problems) and has been successfully applied
so far up to a 4-gram language model using a hash
table of moderate size, typically, a few ten thou-
sand entries for a 64k vocabulary (Aubert, 1999).
This last reference also explains the generalization
of the present m-gram decoding algorithm for
cross-word phonetic models.

4.3. Look-ahead of language model probabilities

A well-known problem when using a prefix tree
is that word identities are only known at the tree
leaves. Postponing the use of the language model
probabilities up to this point is disadvantageous
since (1) the language model predictive capabilities
are delayed and (2) the accumulated scores incur
clear discontinuities at word-ends, both factors
affecting the pruning efficacy. The solution consists
in distributing the language model scores across
the lexical tree by factorizing the word probabili-
ties such that they can be applied incrementally at
each phone arc, a process we have called ‘‘smear-
ing’’ (Steinbiss et al., 1994). Smearing the exact
m-gram scores appears computationally expensive
due to the dependency on the m � 1 predecessors.
Therefore in (Aubert et al., 1994) a simplified ap-
proach has been followed by smearing the unigram
scores that can be easily pre-processed and stored
(Steinbiss et al., 1994). The topic of making early
use of language model constraints has also been
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addressed in several other systems (Odell, 1995;
Alleva et al., 1996). In this decoder, bigram scores
are smeared over the lexical tree following the
method in (Ortmanns et al., 1996a). This involves a
compact tree configuration and a look-ahead cache
in conjunction with a fast access to the language
model probabilities such that any needed partial
bigram scores can be made available on demand.
More precisely, language model look-ahead prun-
ing is achieved by anticipating the language prob-
abilities as a function of the nodes of the lexical
tree, each node being associated to the maximum
language model probability over all words that can
be reached from that particular node. The concept
of anticipating the language probabilities for each
node of the lexical tree is illustrated in Fig. 2. Using
the bigram conditional probability pðwjvÞ, the an-
ticipated language probability pvðsÞ for state s and
predecessor word v is defined as

pvðsÞ :¼ max
w2WðsÞ

pðwjvÞ; ð3Þ

where WðsÞ is the set of words that can be reached
from the tree state s. Strictly speaking, we should
use the tree nodes (or arcs) rather than the states
of the hidden Markov models that are associated
with each arc. However, each initial state of a
phoneme arc can be identified with its associated
tree node. The anticipated language model prob-
abilities are combined with the scores of the state
hypothesis ðt; s; vÞ during the search process and
thus enhance the beam pruning efficacy since more

state hypotheses can be discarded. The entries of
the table pvðsÞ have to be computed on demand and
are cached in a look-up table designed to keep a
maximum number of look-ahead trees typically
comprised between 500 and 1000. In addition, the
anticipated language probabilities are only com-
puted for the first four arc generations of the lex-
ical tree. Informal experiments have shown that
there is no significant advantage for considering
more generations. More details can be found in
(Ortmanns et al., 1996a). As the experiments show,
when bigram scores are smeared instead of uni-
gram scores, the number of states that have to be
expanded is significantly reduced and less search
errors occur (see Table 4), although this is done at
the expense of a significant memory overhead.

4.4. Trigram decoding experiments on the Eval’97
test set

A number of trigram decoding experiments
were carried out to evaluate the benefit of the new
search algorithms. These experiments were run on
the so-called partitioned evaluation set of Nov’97,
using the correct segmentation provided by NIST.
This represented 2.9 h of recordings pre-processed
as a set of 657 segments with a total of 32,832
spoken words including hesitations. The acous-
tic modeling was provided by gender-dependent
mixture densities of within-word triphones trained
on 96 h of BN data (see Section 7.3, BN-96 h

Fig. 2. Anticipated probabilities for language model look-ahead.

116 P. Beyerlein et al. / Speech Communication 37 (2002) 109–131



corpus) without any further acoustic adaptation.
The first contrastive test concerned the compari-
son of one-pass trigram decoding with the former
two-pass strategy. Note, however, that the re-
ported experiments were all run with the new de-
coder including bigram look-ahead pruning. The
bigram decoder used in the Hub-4’97 evaluation
was slower by a factor of at least two. The word
lattice produced with the bigram decoding was
generated with conservative pruning beams, in-
suring a large density. The bigram lattice achieves
a graph error rate of about 7%. As can be seen
from Table 5, compared to the two-pass strategy
the one-pass trigram decoding achieved a slightly
lower error rate while being about 10% slower in
terms of the overall decoding time (117 time units

versus 107). Although not significant, the slight
gain in accuracy observed in the one-pass results
might be attributed to (1) the word-pair approxi-
mation made in the lattice rescoring stage (Aubert
and Ney, 1995) and (2) a reduced number of
search errors when applying the trigram from the
beginning. The second contrast compared a one-
pass trigram decoding for two different setups with
a vocabulary of 20k and 64k words, respectively.
The main factor concerned the influence of the
out-of-vocabulary (OOV) words on the error rate
together with the relative increase of the search
cost when the lexicon is increased by a factor of
3, from 24,780 to 72,965 entries. As can be seen in
Table 6, the 64k setup provided about 10% relative
error reduction with respect to the 20k setup, the

Table 4

Bigram versus unigram language model look-ahead in one-pass 64k trigram decoding using the RWTH Hub-4 system on the Hub-4’97

PE evaluation set

Speech quality Look-ahead States Arcs Trees WER (%) Decoding time

A: all focus conditions Unigram 33,675 9528 63 24.4 100 (ref.)

58,429 16,627 115 24.2 135

243,555 70,896 215 23.4 254

Bigram 26,770 7464 64 24.0 94

34,367 9516 71 23.8 110

68,207 18,075 89 23.6 132

B: only F0 condition Unigram 25595 7216 44 15.5 100 (ref.)

53,960 15,194 87 15.2 142

206,241 59,992 155 14.7 256

Bigram 18,929 5275 42 15.2 90

25,880 7143 48 15.1 108

40,414 10,792 55 14.9 118

Table 5

One-pass versus two-pass 64k trigram decoding on Hub-4’97 PE evaluation set

2G Decoding 3G Rescoring 3G 1-Pass decoding

Word error rate (%) 24.2 21.7 21.1

2G! 3G Improvement Reference )10.5% )12.8%

2P! 1P Improvement – Reference )2.6%

Relative decoding time 100 7 117

Table 6

One-pass trigram decoding for 20k and 64k Vocabulary on Hub-4’97 PE evaluation set

3G 1-Pass decoding 20k Setup 64k Setup Difference

Out-of-vocabulary rate 2.4% 0.6% )1.8% Absolute

Word error rate (%) 23.6 21.1 )10.6% Relative

Relative decoding time 100 125 +25% Relative
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decoding cost being increased by one-quarter. It is
interesting to note that the absolute reduction of
the error rate (2.5%) represented about 1.4 times
the reduction of OOV words. Note also that the
increase of the 64k decoding costs was partly due
to the larger language model. The third contrastive
experiment concerned the language model look-
ahead pruning technique when the bigram proba-
bilities are smeared instead of just the unigram
ones. When using bigram instead of unigram
probabilities, the look-ahead memory costs are
dramatically increased since the unigram proba-
bilities do not depend on word history and can
simply be stored in a static array. As the experi-
ments show, however, unigram look-ahead is sig-
nificantly outperformed by bigram look-ahead in
terms of number of active states that have to be
expanded for obtaining the same accuracy. With
respect to the former experiments, the results
presented in Table 4 have been obtained with a
smaller set of acoustic models which explains the
higher error rates (24% versus 21%).

Part A of Table 4 shows that the error rate
averaged over all focus-conditions does not vary
dramatically from one experiment to the other.
Nevertheless, for reaching a desired error rate the
figures indicate that bigram look-ahead is able to
reduce the number of hypotheses by an average
factor of two or more with respect to unigram
look-ahead. Looking at the specific conditions, it
appears that bigram look-ahead does not perform
equally well for each ‘‘focus’’. Part B of Table 4
relates only to the F0 condition, i.e. clean and
planned broadcast speech representing 42% of all
Nov’97 data. Here the benefit of bigram look-
ahead with respect to unigram look-ahead appears
clearer in terms of number of active hypotheses
after pruning. This corresponds to our results
obtained on the NAB’94 read speech corpus
(Ortmanns et al., 1996a). On the other hand, when
looking at more difficult conditions, for example
F3 (speech in the presence of background music)
or F4 (speech under degraded acoustical condi-
tions), bigram look-ahead does not seem to have
any real advantage over unigram look-ahead. This
might be an indication that the language model
constraints are not powerful enough for these
difficult decoding conditions.

4.5. Summary

Summarizing the results of the experiments that
have been reported above, three main conclusions
can be drawn concerning the ‘‘prime’’ trigram
decoding stage when applied to the transcription
of BN data:
1. One-pass trigram decoding compares favorably

with a two-pass strategy, the overall computa-
tional costs – including memory and CPU time
– being only moderately increased.

2. Due to the prefix tree organization of the lexi-
con, decoding costs show a relatively slow in-
crease when the vocabulary is enlarged from
20k to 64k.

3. Compared with unigram look-ahead, bigram
look-ahead is able to reduce significantly the
search cost for most focus conditions, even
though the additional memory costs cannot be
neglected.

5. Discriminative model combination

During the course of an evaluation, state-of-
the-art speech recognition systems use multiple
acoustic and language model sets with increasing
complexity to obtain the best of all possible WERs.
Applying a multi-pass decoding strategy is typi-
cally the way to incorporate multiple model sets
into the decoder. The Hub-4 sites used five or more
decoding passes in their evaluation systems. In a
multi-pass decoding setup various model sets are
applied in a predefined order for successive im-
provement of the decoder output. This order is
typically optimized on development data. Philips
used this approach for the 1997 Hub-4 evaluation,
where the recognition started with word-internal
tripone bigram decoding. Next it was extended in
five passes on a lattice to a VTN/MLLR adapted
crossword triphone trigram decoding, a process
that is described in (Beyerlein et al., 1998).

A simpler and still optimal alternative to a
sophisticated multiple-pass decoding strategy is
DMC (Beyerlein, 1997), which integrates all ob-
tainable models into one decoding pass. Thus we
acquire a decoder containing information com-
bined directly from all model sets.
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The goal of DMC is to optimally integrate all
given (acoustic and language) models into one log-
linear posterior probability distribution. Assuming
we are given M different acoustic and language
models, which are identified by numbers j ¼ 1; . . . ;
M . From model j we can compute the posterior
probability pjðkjxÞ, pjðk0jxÞ of hypothesized classes
k, k0 given an observation x. The models are now
log-linearly combined into a distribution of the
exponential family

pKðkjxÞ ¼ exp

(
� log ZKðxÞ þ

XM

j¼1

kj log pjðkjxÞ
)
:

ð4Þ

The coefficients K ¼ ðk1; . . . ; kMÞT
can be inter-

preted as weights of the models j within the model
combination (4). The value ZKðxÞ is a normaliza-
tion constant. As opposed to the maximum en-
tropy approach, which leads to a distribution of
the same functional form, the coefficients K are
optimized with respect to the WER of the discri-
minant function (5),

log
pKðkjxÞ
pKðk0jxÞ

¼
XM

j¼1

kj log
pjðkjxÞ
pjðk0jxÞ

: ð5Þ

DMC will optimize the so-called language weight
(or language model factor), if only one acoustic and
one language model are combined. Now, since the
weight kj of the model j within the combination
depends on its ability to provide information for
correct classification, DMC allows for the opti-
mal integration of any set of models into one de-
coder.

We are given a set of sentences n ¼ 1; . . . ;N for
DMC training. For every training sentence we
observe xn (spoken utterance) and we know the
correct class assignment kn (spoken word se-
quence). We can define the set of rival classes k 6¼
kn using a preliminary decoding (if appropriate),
and the number of word errors of the rival class k
can be computed with the help of the Levenstein
distance Lðkn; kÞ. The model combination should
then minimize the word error count EðKÞ,

EðKÞ ¼
XN

n¼1

L kn; arg max
k 6¼kn

log
pKðkjxnÞ
pKðknjxnÞ

� �� �
; ð6Þ

on representative training data to assure optimal-
ity on an independent test set. As this optimization
criterion is not differentiable, we approximate it by
a smoothed word error count,

EMWEðKÞ ¼
XN

n¼1

X
k 6¼kn

Lðk; knÞSðk; n;KÞ; ð7Þ

where Sðk; n;KÞ is a smoothed indicator function.
If the classifier (5) will select hypothesis k, Sðk; n;KÞ
should be close to one, and if the classifier (5) will
reject hypothesis k, it should be close to zero. A
possible indicator function with these properties is

Sðk; n;KÞ ¼ pKðkjxnÞgP
k0 pKðk0jxnÞg

; ð8Þ

where g is a suitable constant. A similar indica-
tor function was already used in (Ney, 1995) to
smooth the output of a classifier. An iterative
gradient descent scheme is obtained from the
optimization of EMWEðKÞ with respect to K. The
following second degree function is another pos-
sible indicator function with similar properties:

Sðk; n;KÞ ¼
gþB
AþB

� �2

; �B < g < A;

0; g > A;
0; g < �B;

8><
>: ð9Þ

with

g ¼ log
pKðkjxnÞ
pKðknjxnÞ

;

which gives a closed form matrix solution for K,
where a is a Lagrangian multiplier,

ða;KTÞT ¼ BQ�1P ; ð10Þ

with

Q0;0 ¼ 0; Q0;j ¼ 1; Qi;0 ¼
1

2
ðA þ BÞ2;

Qi;j

¼
XN

n¼1

X
k 6¼kn

Lðk; knÞ log
piðknjxnÞ
piðkjxnÞ


 �
log

pjðknjxnÞ
pjðkjxnÞ


 �
;

P0 ¼
1

B
;

Pi ¼
XN

n¼1

X
k 6¼kn

Lðk; knÞ log
piðknjxnÞ
piðkjxnÞ


 �

ði; j ¼ 1; . . . ;MÞ:
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The form of the second degree function is deter-
mined by the values A;B and by the set of hy-
potheses used for the training. Both indicator
functions result in similar and reasonable DMC
coefficients kj. The fact that the smoothed word
error count (7) equals the empirical word error
count (6) if g in (8) approaches infinity or if A;B
in (9) approach zero explains this result.

Hub-4 development data were used to carry out
the training of the DMC coefficients. The lattices,
obtained by a one-pass trigram decoding (see
Section 4), were expanded and rescored using the
following phrase-based acoustic and language
models (Sections 6 and 7): wordinternal triphones
(ww); VTN/MLLR adapted wordinternal tri-
phones (wwad); VTN/MLLR adapted cross-word
triphones (xwad); VTN/MLLR adapted wordin-
ternal pentaphones (5wwad); unigram, bigram,
trigram, d1 bigram (tgset); unigram, bigram, tri-
gram, d1 bigram, d2 Bigram (fgset). The obtained
scores were interpolated using DMC resulting in
the final system output. Table 7 gives an overview
over several decodings. During a first decoding
iteration a system, capturing a phrase-based cross-
word pentaphone context and a trigram language
model context was built (wwad + xwad + 5wwad +
tgset). Compared to the baseline error rate of
20.7%, this system shows a WER of 18.9%. The
adaptation of the acoustic and language models
was repeated based on the output of the wwad +
xwad + 5wwad + tgset system in a second decoding
iteration (�). By adding the d2-bigram language
model to the combined set of models, the system
was extended to a 4-gram context. It should be
noted that the weights of the log-linear language
model interpolation described in Section 6 are
similar to the weights obtained from DMC! The

wwad + xwad + 5wwad + fgset� system exhibited a
word error rate of 17.9% on the Hub-4’97 evalu-
ation data.

When compared to the simple voting at the
level of the recognized word sequence as is done
with ROVER (Fiscus, 1997), the log-linear inter-
polation (LLI) of context-dependent acoustic and
distance-language models via DMC shows to be
more powerful (Beyerlein et al., 1999). The basic
difference between ROVER and DMC is that
DMC provides a consistent framework for dis-
criminative training and decoding of multi-model
combinations. In addition DMC interpolates the
model scores on lattices before decoding the out-
put word sequence, whereas ROVER combines the
decoder output of multiple systems. The use of
confidence measures to weight the ROVER com-
bination does not change the conceptual difference
of both approaches, since confidence measures
could be applied as additional models in the DMC
framework. Table 8 shows an experimental com-
parism of both approaches. For the tests the NIST
SCTK-1.2 ROVER software was used.

5.1. Summary

For the integration of multiple model sets into a
decoder, two methods may be applied, multi-pass
decoding (including ROVER) and DMC. DMC is
the preferred method, since it is a simple device for
combining any available model sets into one de-
coding pass, while at the same time directly opti-
mizing the WER of the classifier on training data.

The following two sections describe the acoustic
and language models, which were applied in the
one-pass trigram decoding and in the final DMC-
pass.

6. Building phrase-based distance language models

Natural language created by humans is corre-
lated. Using a particular word not only influences
the word immediately following, but up to the next
1000 words (Peters and Klakow, 1999). Thus these
correlations have to be captured in the best way
possible to reduce the resources needed and to
minimize the number of parameters. In the course

Table 7

Word error rates (%) for the LLI of acoustic and language

models using DMC on the Hub-4’97 evaluation data, abbre-

viations are explained in Section 5

Models # of models WER (%)

xwad + tg (baseline) 2 20.7

wwad + xwad + tg 3 20.2

wwad + xwad + 5wwad + tg 4 19.5

wwad + xwad + 5wwad + tgset 7 18.9

wwad + xwad + 5wwad + fgset� 8 17.9
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of the past few years, new methods have been
developed for Hub-4 serving this purpose: the
use of phrases, consisting of several consecutive
strongly correlated words model short-range de-
pendencies; and log-linear interpolation (LLI) of
distance language models which allows for an ef-
ficient description of long-range effects. Those two
methods will be described in the following two
sections.

Modeling strong short-range correlations by
using phrases: Over a short-range natural language
is strongly correlated, a fact observed as an im-
provement when going from a unigram to a bi-
gram. There are also bigrams, however, that do
not contain any information and that do not
contribute to the improvement. The desired solu-
tion should selectively increase the language model
context. Varigrams (Kneser, 1996) were con-
structed for this purpose although these also have
a drawback in that search algorithms must use a
finite, well-defined context. A simple but efficient
solution to this problem is the use of phrases
(Klakow, 1997). They are made up of important
pairs of words, like in_the, of_the or
a_lot_of. The main idea is to select candidate
pairs of words based on the frequency of the pairs.
Those pairs, however, may overlap (like a lot

and lot of) and hence cannot be joined to one
phrase on the training corpus simultaneously.
Therefore, the list of candidate pairs is sorted by
frequency. We then start from the top of the list by
selecting all other pairs that may cause ambiguities
and remove those from the list (meaning that a
lot is kept while lot of is removed). Now, the
training corpus is processed and all pairs in the
remaining list are joined to longer units (now,
a_lot is a proper entry of the vocabulary). The
second essential part of the algorithm is to check
whether phrases have still a sufficiently high fre-

quency. If not, those phrases are broken apart into
the constituents. The whole procedure is iterated
until there are no more candidates for the join or
split operation. During iteration, longer and
longer phrases are built (the second iteration gen-
erates a_lot_of from a_lot of). By choosing
frequency bounds for selecting candidate pairs and
for splitting, the total number of phrases can be
determined. The BN training corpus consists of
140 million words of transcribed BN and the test
set is taken from the 1996 development data. The
vocabulary size is 64k words and 330 phrases are
constructed. Perplexities are shown in Table 9. The
improvement for bigrams is 8.4% and for trigrams
4.1%.

Modeling weak correlations by LLI: Maximum
entropy language models are known to work well
with triggers and other long-range dependencies in
natural language (Rosenfeld, 1994). However, they
suffer from a severe deficiency: they need large
amounts of CPU-time in training. This can be
circumvented as is done by Darroch and Ratcliff
(1972) on generalized iterative scaling (GIS). It
turns out, that the first iteration step of GIS can
be carried out manually and a closed form solution
is obtained,

pKðwjhÞ ¼
1

ZKðhÞ
Y

i

piðwjhÞki ; ð11Þ

where piðwjhÞ correspond to the marginal distribu-
tions used as constraints of the maximum entropy

Table 8

Comparison of ROVER and DMC on the Hub-4’97 evaluation data, abbreviations are explained in Section 5

Models DMC (# of models) ROVER (# of systems)

wwad + tg 21.6 (1 + 1) )(1 � 1)

xwad + tg 20.7 (1 + 1) )(1 � 1)

wwad + xwad + tg 20.2 (2 + 1) 22.5 (2 � 1¼ 2)

wwad + xwad + 5wwad + tg 19.5 (3 + 1) 19.9 (3 � 1¼ 3)

wwad + xwad + 5wwad + tgset 18.9 (3 + 4) 20.2 (3 � 4¼ 12)

Table 9

Language model perplexities on Hub-4’97 evaluation set

Unigram Bigram Trigram

64k Words 1026.4 257.1 180.0

+330 Phrases 841.2 235.4 172.7
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models (Klakow, 1998). The ki are free parameters
weighing the different constraint equations. The ki

can be optimized on a separate cross-validation
corpus as already known from linear interpola-
tion. For Hub-4, distance bigram models were
used as constraints. Various distance patterns have
been investigated with the results being presented
in Table 10. Here, for example a d1-bigram (dis-
tance-1-bigram) model is in fact a 3-gram language
model pðwjv; uÞ, where the dependency on v is
neglected, pðwjv; uÞ ¼ pðwj�; uÞ.

In contrast, we also present the linear interpo-
lation of the same components. It is obvious that
linear interpolation is always outperformed by
LLI. Moreover LLI of a trigram, a bigram, a d1-
bigram and a d2-bigram (a model having effec-
tively a 4-gram context because of the d2-bigram)
is better than the 4-gram at much lower memory
consumption. It is also observed that following
this pattern 7-grams can be built with a small ad-
ditional decrease in perplexity. The distance-
bigrams used above were pure word models, which
can be further improved by using class-language
models trained on distance-classes (see Table 11).

6.1. Summary

Phrases combine neighboring words to one unit
improving the performance of a language model by
selectively increasing the context length similarly to
varigrams but at much lower cost. Log-linear in-
terpolation is most efficient when used to combine
distance-bigrams with other models. It allows
building effective 4-gram models (i.e. which do not
use explicit 4-gram information) which outperform
backing-off (BO) 4-grams in terms of memory
requirements and perplexity. This result fits well
in the idea of combining the various distance-lan-
guage models and a set of acoustic models into one
decoder during the DMC-pass (Section 5). The per-
formance gain by the use of the distance language
models is summarized in Table 7 in Section 5.

Note, that the difference between DMC and the
described log-linear language model interpolation
is given (1) by the training criterion of the model
combination (likelihood versus WER) and (2) by
the scope of the model combination. DMC allows
for the integration of language model and acoustic
model information (which is described in the fol-
lowing section).

7. Building robust phrase-based acoustic models

7.1. Feature extraction, normalization and speaker
adaptation

Mel-frequency cepstral coefficients (MFCC)
(Davis and Mermelstein, 1980) are probably the
most popular features for speech recognition.
Nevertheless, there is still active research in supe-
rior speech representations for speech recognition.
A lot of effort is devoted to exploiting physiolog-
ical and psychoacoustic findings about human
perception. As an example, Hermansky (1990) has
extended linear prediction analysis to percep-
tual linear prediction (PLP) by introducing con-
cepts from psychophysics. Recently people have
introduced similar psychophysical concepts into
the well-known mel-frequency cepstral analysis of
speech (Woodland et al., 1997) and devised a
variant of MFCC called MF-PLP (see Fig. 3). We
experimented with variations of MFCC and MF-

Table 10

Comparison of ordinary backing-off (BO) models, of linear

interpolation (Lin) and LLI on Hub-4’97 evaluation set, the

shortcuts are explained in Section 6

Model Perplexity

BO bigram (¼ d0) 216

BO trigram 150

BO 4-gram 144

Lin d0 + d1 204

LLI d0 + d1 175

Lin Tri + d0 + d1 + d2 146

LLI Tri + d0 + d1 + d2 136

Lin Tri + d0 + � � �+ d5 146

LLI Tri + d0 + � � �+ d5 130

Table 11

Perplexities for the LLI of distance bigram models (use of

classes) on Hub-4’97 evaluation set

Model Perplexity

d2 Bigram BN 739

d2 Bigram BN, classes 661

LLI Tri + d0 + d1 + d2 BN 136

LLI Tri + d0 + d1 + d2 BN, classes 118
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PLP on the Hub-4 data. Of those, the most prom-
ising setup was what we called ‘‘LPC-smoothed
MFCC’’, where only the LPC smoothing of the
mel-warped spectrum is added to the MFCC
analysis. This configuration is similar to what
BBN used in their Hub-4 system (Kubala, 1998).
Table 12 presents trigram recognition results for
the three cepstral parameterizations described
above on the Hub-4 Eval’97 test set (partitioned
evaluation). As can be seen, neither MF-PLP nor
LPC-smoothed MFCC was able to consistently

outperform the MFCC feature set. Since this holds
also after acoustic adaptation, standard MFCC
signal analysis was used for all further investiga-
tions. Note, however, that we were able to improve
upon MFCC by feature set combinations (Haeb-
Umbach and Loog, 1999) both at the acoustic
likelihood level by DMC (Beyerlein, 1997, see
Section 5) and at the recognized word level by
ROVER (Fiscus, 1997).

Channel normalization: aims at improving the
insensitivity of the feature vector to distortions. It

Fig. 3. Feature extractions.
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is well known that a constant, though unknown
channel transfer function affects the mean of the
cepstral features. Further, it has been observed
that additive-noise results, among other effects, in
a mean shift and reduction of the variance of the
distributions of the cepstral coefficients (Openshaw
and Mason, 1994). These observations motivate
the use of cepstral mean and variance normaliza-
tion. The mean and variance normalized feature
ykðtÞ is computed as follows:

ykðtÞ ¼
xkðtÞ � �xxkðtÞ

r̂rkðtÞ
; k ¼ 1; . . . ;K; ð12Þ

where k is the cepstral index, K being the number
of (static) features. �xxkðtÞ is an estimate of the mean
and r̂rkðtÞ is an estimate of the standard deviation
of the input cepstral feature xkðtÞ. Both mean and
variance are computed over a block of frames, in
our case over one segment, as delivered by the

segmenter (Section 3). This operation is carried
out on all static cepstral coefficients. On the Hub-
4’96 development data, we observed on average a
performance improvement of about 3% relative
due to variance normalization, see Table 13.

Vocal tract normalization: performs a speaker
normalization in the signal space by, typically lin-
early, warping the frequency axis by a speaker-
specific warping factor. The intention is that after
normalization the influence of differences in the
vocal tract length across speakers on the computed
feature vectors are removed to a great extent. Vocal
tract normalization can be carried out in training
and in recognition, and it can be used in a gender-
dependent (GD) and in a gender-independent (GI)
setup. Table 14 shows results on the Hub-4’96 de-
velopment data for some test scenarios. Compared
to our results on the Wallstreet Journal database
(Welling et al., 1998), the error rate reduction due

Table 13

Effect of variance normalization on word error rates in % on Hub-4’96 development set (male speakers only)

Focus condition

Variance normalization Overall F0 F1 F2 F3 F4 F5 FX

No 38.6 17.5 38.2 46.0 39.4 33.6 37.8 65.8

Yes 37.3 18.4 36.5 44.4 35.9 31.8 36.3 64.3

Gender-dependent setup, 30 h training data, within-word models, bigram language model.

Table 14

Word error rates in % on Hub-4’96 development set (male speakers only) for different VTN scenarios

VTN in Focus condition

Setup Training Recognition Overall F0 F1 F2 F3 F4 F5 FX

GD No No 36.2 16.9 36.6 43.4 32.6 30.0 37.0 61.1

GD No Yes 35.5 16.8 35.8 40.7 31.7 29.7 36.5 63.0

GI No No 36.5 17.1 36.5 45.1 33.7 29.3 36.6 61.2

GI Yes Yes 35.3 16.4 35.3 42.4 30.5 29.7 34.1 62.4

Gender-dependent setup, 30 h training data, within-word triphone models, bigram language model.

Table 12

Word error rates in % for MFCC, MF-PLP and LPC-smoothed MFCC feature vectors on Hub-4’97 evaluation set

Focus condition

Cepstral parameterization Overall F0 F1 F2 F3 F4 F5 FX

MFCC 21.6 13.1 20.1 32.2 30.9 25.6 23.9 37.2

MF-PLP 22.1 13.4 21.3 31.4 32.5 26.0 27.1 38.1

LPC-smoothed MFCC 21.9 13.4 20.5 31.9 31.4 25.2 25.6 38.8

Gender-dependent setup, BN-96 h training corpus, within-word triphone models, trigram language model.
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to VTN was considerably smaller, e.g. 3.3%, when
using VTN in training and recognition in a GI
setup, as opposed to 11% on WSJ. For the warping
factor selection in recognition we adopted the
scheme proposed in (Lee and Rose, 1996), which
requires a preliminary transcription of the utter-
ance to be recognized. This fits nicely with our
decoding strategy, which is two-pass anyway due
to the MLLR speaker adaptation.

MLLR unsupervised adaptation: of the mean
vectors is applied to clusters of segments using the
Least Mean Squares approximation (Thelen et al.,
1997). The regression classes are based on pho-
netic knowledge and are dynamically defined using
a tree organization. The amount of adaptation
speech determines both the number of active re-
gression classes and the structure of the MLLR
transformation matrices. Table 15 highlights the
WERs of the first and second decoding pass. It can
be seen that the joint effect of VTN and MLLR
sums up to a reduction of the WER by 10.3%
relative from 23.4% to 21.0% on the Hub-4
Eval’97 test data.

7.2. Review of the training strategy

Speech recorded from radio or television
broadcasts exhibits large variations with respect
to the quality of the microphone or channel, the
characteristics of the speaker, and the condition of
the background. The data range from high-quality
studio recordings of experienced announcers to
very noisy interviews with stressed analysts at the
NYSE. Thus the so-called focus-conditions (F-
conditions) were introduced by the Hub-4-Society
(see Table 16). Accordingly, training and test data
were labeled with respect to these focus conditions.
In the Hub-4 ’96 evaluation most of the sites used

F-condition specific models. BBN decided to train
just a single model set for all F-conditions
(Schwartz et al., 1997). This simplified the system
enormously and rendered condition classification
obsolete, while at the same time maintaining good
recognition accuracy.

We decided to similarly direct our research ef-
forts by not only using a single model set but also
using channel-independent models to further sim-
plify the process. Here we relied on the normal-
ization and adaptation techniques described in
Section 7.1. The goal was to obtain a compact
system architecture. During the 1996 Hub-4 eval-
uation no preference for one of the applied train-
ing strategies could be found:
• training on Wall Street Journal data followed by

supervised adaptation on Hub-4, possibly even
on each focus condition specifically;

• training focus-specific models on the Hub-4 data
or

• training one general model set for all F-condi-
tions.

We revisited this question and investigated several
alternatives. Specifically, we compared the fol-
lowing scenarios:
1. Training on the WSJ0 + 1, SI-284 training data

and subsequent supervised adaptation on each
of the Hub-4 focus conditions specifically. We

Table 15

Word error rates in % on Hub-4’97 evaluation set before and after VTN and MLLR adaptation

Focus condition

Overall F0 F1 F2 F3 F4 F5 FX

No adaptation 23.4 14.0 21.4 33.7 32.5 27.1 24.7 45.8

+ VTN + MLLR adaptation 21.0 12.8 19.8 29.2 31.4 24.7 21.2 39.1

Gender-dependent setup, BN-96 h training corpus, within-word triphone models, trigram language model.

Table 16

Hub-4 focus conditions

F0 Clean planned speech, e.g. tv-news

F1 Clean spontaneous speech, e.g. tv-discussions

F2 F0 + F1 over telephone, e.g. telephone interview

F3 F0 + background music, e.g. start of tv-news

F4 F0 + background noise, e.g. applause

F5 F0 + non-native dialect, e.g. british english

FX Any other combination of difficulties
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assumed, that we know the focus conditions of
the test data.

2. Training of a separate model set on each of the
Hub-4 focus conditions. Here we assumed
again that we know the focus conditions of
the test data.

3. Training of one model set on all available Hub-
4 data. A selection of a proper focus condition
is obsolete.

Note that for each scenario we trained separate
model sets for male and female speakers (GD
setup). The test results reported in Table 17 fa-
vored the focus-independent scenario. The clear
advantage of training a single model set on all
Hub-4 data, as is evident from Table 17, can be
explained by the limited amount of acoustic train-
ing data for each of the F-conditions.

The optimization of the training procedure
implies in addition a review of the acoustic train-
ing data, which is done in the following section.

7.3. Corpus selection and verification

For the acoustic models of the 1997 Philips
Hub-4 system, (Beyerlein et al., 1998), a subset of
46 out of the 76 h of speech data released by LDC
in 1996/97 was used (BN-46 h corpus). It was de-
rived by manually verifying the complete training
corpus. All erroneous speech segments were dis-
carded and only a few obvious errors were cor-
rected. We found two types of errors in the BN
training corpus:
• incorrect transcriptions, i.e. wrongly transcribed

or missing words and incorrect segment bound-
aries and

• false begin or end times of speech segments.
To detect these errors automatically we applied a
forced Viterbi alignment with GI low resolution

acoustic models (2000 tied states, 60k densities)
trained on the manually cleaned Hub-4 training
data. Each training utterance (segment) was clas-
sified according to the following criteria:
1. optimal path reaches the terminal HMM state;
2. size of the search space required for the align-

ment (beam width);
3. acoustic score of the whole segment, normal-

ized by the number of time frames;
4. normalized acoustic word scores;
5. duration of each word in the segment and
6. segment boundary found by joining adjacent

segments followed by a forced alignment.
We applied the criteria to the 1996/97 Hub-4
training corpus (15 389 segments, 76 h).

Measure 1 detected major errors like whole
missing sentences or incorrect segment boundaries.
As shown in the histogram (Fig. 4) a significant
amount of segments was corrupted by this type of
transcription error.

Table 17

Word error rates in % on Hub-4’96 PE development set (male speakers only) for different training scenarios

Focus condition

Training scenario Overall F0 F1 F2 F3 F4 F5 FX

1 41.9 18.7 41.8 50.2 43.9 38.0 40.8 67.6

2 42.4 18.4 43.1 49.7 42.7 35.7 47.4 69.6

3 38.6 17.5 38.2 46.0 39.4 33.6 37.8 65.8

Bigram language model, gender-dependent setup, within-word triphone models, no adaptation in recognition.

Fig. 4. Histogram over differences between the terminal HMM

state in the forced alignment and the terminal state according to

the training transcription.
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Measures 2 and 3 were dependent on speaker
and channel and were of little use in detecting
transcription errors.

Criterion 4 correctly indicated not only miss-
ing or wrongly transcribed single words, but also
utterances with strong background noise or over-
lapping speech. An example for the score distribu-
tion is given in Fig. 5 for the word ‘‘PRESIDENT’’.
Large deviations from the average scores were
often caused by transcription errors.

Measure 5 gave only small evidence of tran-
scription errors as the duration of words is basi-
cally speaker and context dependent.

Finally, the across-segment criterion 6 indicated
wrong segment boundaries as well as major tran-
scription errors similar to quality measure 1. Fig. 6
shows the histogram over all boundary differences.

35% of the corpus (5429 segments, 27 h) was
tagged as possibly erroneous. 72% of these seg-
ments were tagged according to criterion 4. Cri-
teria 6 and 1 supplied 13% and 7% of the tagged
segments, respectively. 8% of the segments were
tagged according to two or all three criteria. The
tagged segments were manually verified and cor-
rected afterwards. 75% of the tagged segments
actually contained wrong transcriptions or seg-
ment boundaries. A detailed analysis can be found
in (Pitz and Molau, 1999). After correction, 75 h of
training material was available (BN-75 h corpus).

The effect of improved training data was tested
with acoustic models obtained from three different
corpora:

• the complete 1996/97 Hub-4 training corpus
which amounts to about 76 h of speech data;

• the manually checked BN-46 h corpus, in which
all incorrect segments were rejected and only a
few obvious errors were corrected, and

• the BN-75 h corpus, where an overall of 27 h of
erroneous segments were automatically detected
and manually corrected thereafter.

All recognition tests were carried out with a one-
pass trigram decoder based on word-internal tri-
phones. A closer analysis of the recognition results
in Table 18 revealed that the extensive manual cor-
rection effort gave improvements for planned clean
speech (F0 condition) only. The WER remained
almost constant in the other focus conditions.

For the 1998 evaluation, an additional 73 h set
of acoustic training data was released by LDC. In
that year, the training corpus of the Philips-
RWTH Hub-4 speech recognition system con-
sisted of an 96 h subset (BN-96 h corpus)
remaining after automatic verification and manual
correction of the full 148 h corpus (BN-148 h).
Both, the BN-96 h models and the BN-148 h
models, performed very similar.

7.4. Context-dependent acoustic modeling

Phrases, defined as frequently occurring word
sequences included into the vocabulary as a sin-
gle word (see Section 6), are a simple means of

Fig. 5. Histogram over normalized acoustic word scores for the

word ‘‘PRESIDENT’’.
Fig. 6. Histogram over time differences between the segment

boundaries of adjacent segments. Displayed are critical positive

time differences at the begin of segments and negative at their

ends.
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modeling long-span acoustic and language con-
text. The pronunciation dictionary was augmented
with the 330 most frequent phrases found in the
BN training data. The 10 most frequent phrases
found in the BN training data are: in_the,
of_the, on_the, to_the, and_the, you_know,
for_the, to_be, I_think, that_the. We
modeled typical variations in speaking style and
coarticulation of the phrases by adding pronun-
ciation variants to the pronunciation dictionary.

In our final Hub-4 system we trained GD
models on 96 h of the acoustic BN training data
(see Section 7.3, BN-96 h corpus). The emission
densities are modeled by mixtures of Laplacian
densities Li with a single, globally pooled deviation
vector ~vv,

pð~xxÞ ¼
XI

i¼1

wiLið~xxÞ; 06wi 6 1;
XI

i¼1

wi ¼ 1;

Lið~xxÞ ¼
1

2D
QD

d¼1 vd

exp

(
�
XD

d¼1

jxd � li;d j
vd

)
:

ð13Þ

The performance of a similar Gaussian mixture
density system was close to that of the Laplacian

mixture density system. We also applied decision
tree clustering (adapted to Laplacian densities
(Beyerlein et al., 1997)) for a robust within-word
triphone, crossword triphone and pentaphone
modeling. Table 19 contains more detailed infor-
mation about the size of the acoustic models in our
final system. The listed word-internal triphone
models were applied in the one-pass trigram rec-
ognition, whereas all context-dependent model sets
were employed in the DMC-pass.

7.5. Summary

We compared the MFC-front-end with MF-
PLP and LPC-smoothed MFCC and found that
MFCC performed best. Variance normalization
improves the robustness of the system and the
overall WER. The same holds for VTN and
MLLR. Using VTN the GD and the GI systems
showed a similar performance.

The review of the training strategy showed, that
F-condition independent training gives the best
result.

The manual transcriptions of the BN training
corpora contained a number of errors affecting
both individual word and segment boundaries. We

Table 18

Word error rates in % on Hub-4’96 evaluation set, obtained with the RWTH system for the Hub-4 task using different training corpora

Condition 46 h 76 h 75 h

F0 25.7 25.1 24.6

F1 32.4 32.2 32.2

F2 41.2 41.1 40.1

F3 33.0 36.6 35.2

F4 39.2 39.9 39.3

F5 34.3 31.1 32.5

FX 59.0 54.9 54.9

Overall 35.1 34.3 34.0

Table 19

Size of acoustic models trained on the BN-96 h training corpus

Model # Clusters # Densities

Word-internal triphones, male 9300 402k

Word-internal triphones, female 7800 291k

Crossword triphones, male 10,700 487k

Crossword triphones, female 8600 343k

Word-internal pentaphones, male 10,500 459k

Word-internal pentaphones, female 8200 296k
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developed a method to automatically detect these
errors based on a forced alignment on the training
data, thus reducing the manual work. Our efforts
to obtain better acoustic models by improving the
training corpus had limited success only. When
manually correcting transcription errors, the
models will be cleaner resulting in better perfor-
mance on planned clean speech (F0 condition).
The recognition accuracy, however, under difficult
conditions (i.e. in the presence of noise, back-
ground music, or limited bandwidth) remains
almost unaffected.

8. Conclusions

A brief summary of our findings is listed below:
� Segmenter: Two automatic segmentation ap-

proaches were investigated for the automatic seg-
mentation of the continuous BN audio stream: (1)
a phoneme decoder and (2) a GMM–BIC seg-
menter. The GMM–BIC segmenter provides better
results. The loss of word accuracy by automatic
segmentation compared to manual segmentation
is about 5% relative.

� One-pass decoder: One-pass trigram decoding
compares favorably with a two-pass strategy, the
overall computational costs – including memory
and CPU time – being only moderately increased.
Due to the prefix tree organization of the lexicon,
decoding costs show a relatively slow increase
when the vocabulary is enlarged from 20k to 64k.
Compared with unigram look-ahead, bigram look-
ahead is able to reduce significantly the search cost
for most focus conditions, even though the addi-
tional memory costs cannot be neglected.

� Discriminative model combination (DMC):
For the integration of multiple model sets into a
decoder, two methods may be applied, multi-pass
decoding (including ROVER) and DMC. DMC is
the preferred method, since it is a simple device for
combining any available model sets into one de-
coding pass, while at the same time directly opti-
mizing the WER of the classifier on training data.
We could easily extend our system to a crossword
pentaphone context by a discriminative optimiza-
tion of the log-linear interpolation (LLI) of the
required acoustic models.

� Language model: Phrases improve the per-
formance of a language model by selectively in-
creasing the context length similarly to varigrams
but at much lower cost. Log-linear interpolation
is most efficient when used to combine distance-
bigrams with other models. It allows building effec-
tive 4-gram models (i.e. which do not use explicit
4-gram information) which outperform BO 4-
grams in terms of memory requirements and per-
plexity.

This result fits well in the idea of combining
the various distance-language models and a set
of acoustic models into one decoder during the
DMC-pass.

� Acoustic model: We built a phrase-based
crossword pentaphone Laplacian mixture density
system. A focus condition independent training
gave the best result. We compared the MFC-front-
end with MF-PLP and LPC-smoothed MFCC
and found that MFCC performed best. Variance
normalization, VTN and MLLR improve the ro-
bustness of the system. The manual transcriptions
of the BN training corpora contained a number of
errors affecting both individual word and segment
boundaries. We developed a method to automat-
ically detect these errors. Our efforts to obtain
better acoustic models by improving the training
corpus had limited success only.

Summary of symbols

Symbols Explanation
pKðwjhÞ probability of word w given history h and

parameter K
ZKðhÞ normalization term
pi probability model i
ki weight of model i in a model combination
NW size of the vocabulary denoted as W
Wj word j in word history
Pðwju; vÞ probability of word w given predecessor

words u; v
Hðu; vÞ hash index for word pair u; v
MW hash constant
pvðsÞ anticipated language model probability

for state s and predecessor word v
pKðkjxÞ posterior probability of class k given

background information x
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EðKÞ word error count
xn spoken utterance, training sample n
kn correct word sequence corresponding to xn

Sðk; n;KÞ indicator function
Lðk; knÞ Levenshtein distance, word error count
g smoothing constant
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