HUMAN-COMPUTER INTERACTION, 2001, Volume 16, pp. 39-86
Copyright © 2001, Lawrence Erlbaum Associates, Inc.

Automated Eye-Movement
Protocol Analysis

Dario D. Salvucci and John R. Anderson
Carnegie Mellon University

ABSTRACT

This article describes and evaluates a class of methods for performing auto-
mated analysis of eye-movement protocols. Although eye movements have be-
come increasingly popular as a tool for investigating user behavior, they can be
extremely difficult and tedious to analyze. In this article we propose an ap-
proach to automating eye-movement protocol analysis by means of tracing—re-
lating observed eye movements to the sequential predictions of a process
model. We present three tracing methods that provide fast and robust analysis
and alleviate the equipment noise and individual variability prevalentin typical
eye-movement protocols. We also describe three applications of the tracing
methods that demonstrate how the methods facilitate the use of eye movements
in the study of user behavior and the inference of user intentions.

1. INTRODUCTION

In the study of human-computer interaction (HCI) and cognition in general,
protocol analysis is a widely popular and successful method of inferring how hu-

Dario Salvucci is a computer scientist with an interest in inferring intentions
from actions; he is currently a Research Associate at Cambridge Basic Research
and will soon be an Assistant Professor of Math and Computer Science at
Drexel University. John Anderson is a psychologist with interests in computa-
tional modeling and cognitive architectures, particularly in the ACT-R frame-
work; he is a Professor of Psychology at Carnegie Mellon University.

40 SALVUCCI AND ANDERSON

CONTENTS

1. INTRODUCTION
1.1. Eye Movements as Protocols
1.2. Tracing Eye-Movement Protocols
2. BACKGROUND: EYE MOVEMENTS AND PROTOCOL ANALYSIS
2.1. Eye Movements
Saccadic Eye Movements
Eye Movements as Data
Eye-Movement Data Analysis
2.2. Protocol Analysis and Tracing
Methodological Foundations
Automated and Semiautomated Analysis
3. TRACING EYE-MOVEMENT PROTOCOLS
3.1. Tracing Setup
3.2. Tracing Methods
Target Tracing
Fixation Tracing
Point Tracing
3.3. Issues
3.4. Summary
4. CASE STUDIES
4.1. Equation Solving
Experiment
Protocol Analysis
Classifying Strategies
4.2. Reading
Experiment
Protocol Analysis
Comparing Models
Cleaning Data
4.3. Eye Typing
Experiment
Protocol Analysis
Inferring Intent Online
Facilitating User Input
4.4. Summary
5. GENERAL DISCUSSION
5.1. Tracing in HCI Research
5.2. Method Comparison and Recommendations

mans reason and solve problems. Protocols—sequences of actions recorded dur-
ing the execution of some task—help researchers determine the cognitive
strategies involved in performing a task. Most protocol studies to date have em-
phasized either verbal protocols (e.g., Newell & Simon, 1972; Peck & John, 1992;

EYE-MOVEMENT ANALYSIS 41

Ritter & Larkin, 1994) or protocols of manual actions such as mouse clicks and
key presses (e.g., Card, Moran, & Newell, 1983). However, due to improved
eye-tracking equipment and better understanding of how to exploit it, eye-move-
ment protocols have enjoyed burgeoning attention as a tool for studying HCI and
human behavior in general. For instance, researchers have studied eye move-
ments to understand user behavior in basic interface tasks (Aaltonen, Hyrskykari,
& Riihd, 1998; Byrne, Anderson, Douglass, & Matessa, 1999), to reveal how users
encode and process information (Lohse & Johnson, 1996), and to infer user intent
in real-time interfaces (Goldberg & Schryver, 1995; Jacob, 1991, 1995). However,
with notable exceptions (e.g., Goldberg & Kotval, 1998), there has been very little
work on specifying an explicit formal methodology for rigorous analysis of
eye-movement protocols.

In this article we introduce a class of methods that automate the analysis of
eye-movement protocols. The methods analyze eye movements by using a
powerful form of protocol analysis called ¢racing—relating observed protocols
to the sequential predictions of a process model (Anderson, Corbett,
Koedinger, & Pelletier, 1995; Ohlsson, 1990; Ritter & Larkin, 1994). A num-
ber of researchers have developed tracing techniques to understand and
model user behavior (Card et al., 1983; Ritter & Larkin, 1994), to parse proto-
col data into more manageable forms (Bhaskar & Simon, 1977; Garlick &
VanLehn, 1987; Smith, Smith, & Kuptsas, 1993; Waterman & Newell, 1971),
and to infer user intent and knowledge state in a real-time interface (Anderson
etal., 1995; Frederiksen & White, 1990). Although their techniques work very
well for basic user actions (e.g., mouse clicks, key presses) and reasonably well
for verbal protocols, they cannot handle the noise and variability in typical
eye-movement data. The proposed methods alleviate this noise and variabil-
ity to provide efficient and robust analysis of eye-movement protocols.

To demonstrate the uses and benefits of the tracing methods, this article de-
scribes case studies of the tracing methods to three application domains: equa-
tion solving, reading, and gaze-based interfaces. The equation-solving study
evaluates the tracing methods in a domain with a limited number of visual en-
coding strategies, comparing their interpretations to those of expert human
coders. The reading study evaluates the tracing methods in a domain with
more complex encoding strategies, using the methods to compare two existing
models of reading and to facilitate aggregate analysis of reading data. The
gaze-based interface study emphasizes real-time interpretation of user intent
to develop more efficient and user-friendly interfaces. Although these case
studies certainly do not cover the range of all possible uses for the tracing
methods, they nicely illustrate their most important uses both for offline analy-
sis of user actions, to facilitate understanding and modeling of user behavior,
and for online inference of user intentions, to facilitate design and implemen-
tation of intelligent user interfaces.

42 SALVUCCI AND ANDERSON

1.1. Eye Movements as Protocols

Eye movements provide a wealth of information regarding how people ac-
quire and process information. Eye movements are especially convenient be-
cause data can be collected at a fine temporal grain size and users need little
instruction and training to produce informative data. Unfortunately,
eye-movement protocols are very time-consuming and tedious to analyze for
at least three reasons. First, like verbal protocols, several trials of even a simple
task can generate enormous sets of eye-movement data, all of which must be
coded into some more manageable form for analysis. Second, eye-movement
protocols typically include a great deal of equipment noise due to common
calibration errors and difficulties that arise with current eye trackers. Third,
evenif we had highly accurate eye trackers, eye-movement analysis still would
be challenging because of the high degree of individual variability in people’s
visual scanning strategies. For large eye-movement data sets with hundreds or
thousands of protocols, it is simply impossible for humans to interpret the data
consistently, accurately, and in a reasonable amount of time.

We can illustrate these issues with two sample eye-movement protocols. Fig-
ure la shows a sample screen and protocol taken from an equation-solving task
(detailed later) that might arise in an intelligent tutoring system. In the task, stu-
dents solved equations of the form ax/B = A4/b by computing the result x =
(4/a)(B/b). For instance, the equation in Figure 1a, 5x/9=235/3, can be solved as
x = (35/5)(9/3) = 21. The eye-movement protocol in the figure comprises the
student’s alternating fixations (long pauses over informative items) and saccades
(rapid movements between fixations). Each point in the protocol represents the
student’s point of gaze as sampled by an eye tracker; fixation points are drawn
larger than saccade points, and earlier points are drawn darker than later points.
In this protocol, Fixation 2 appears midway between the two leftmost numbers
5 and 9. Interpreting this off-target fixation can be problematic: A naive inter-
pretation that simply maps fixations to the nearest target might interpret Fixa-
tion 2 as the encoding of 5 or 9, or perhaps x or /. However, if we take the entire
protocol into account along with our knowledge of the task, we note that each of
the three numbers besides 5 has a fixation directly over it and that students do
not encode the x or the operators after solving many such problems (as is the
case here). Using these observations, we conclude that the most likely interpre-
tation of the protocol maps Fixation 2 to an encoding of the number 5. In this
case, the off-target fixation can be attributed primarily to individual variability
as either an overshoot of the target or possibly an intentional parafoveal encod-
ing. (Equipment bias is a less likely possibility, because the other fixations ap-
pear directly over their targets.) This protocol illustrates how naive analyses
sometimes can be inadequate and how we may need to use various types of in-
formation to form sensible interpretations.

EYE-MOVEMENT ANALYSIS 43

Figure 1. Sample protocols from (a) the equation-solving task and (b) the eye-typing
task.

g = Iy

a B 14] b result
@ o] 5

e I . =

Figure 1b shows another sample protocol taken from an “eye-typing”
gaze-based interface (again detailed later) in which users type words by look-
ing at letters on an on-screen keypad. The figure includes the keypad portion
of the screen along with a user’s eye movements when typing the word square.
The user first fixated the word to type (not shown) and then fixated the letters §
(Fixations 4 and 5) and Q (Fixation 6). After undershooting the next target with
two fixations near 7T (Fixations 7 and 8), the user fixated U/and A (Fixations 9
and 10). Finally, after an incidental fixation near E (Fixation 11), the user fi-
nally fixated Rand E (Fixations 12 and 13). This protocol nicely illustrates how
variability can cause confusion in interpretation: It includes incidental fixa-
tions (e.g., 7, 8, and 11) that could be included as extraneous letters and
off-center fixations that occur over the boundaries of keys (e.g., 4, 5, and 10)
that could cause ambiguous interpretations. As was the case for the equa-
tion-solving example, we see that simple approaches to data analysis cannot
adequately handle the complexity of typical eye-movement protocols.

1.2. Tracing Eye-Movement Protocols

In this article we explore a new class of methods that analyze eye move-
ments by using a rigorous form of protocol analysis called tracing. Tracing is
the process of mapping observed action protocols to the sequential predic-
tions of a cognitive process model. Tracing begins with a cognitive process
model capable of predicting sequences of eye movements performed during a

44 SALVUCCI AND ANDERSON

task. This process model may be implemented in a number of ways, such as a
production system (e.g., Anderson & Lebiere, 1998; Just & Carpenter, 1992;
Kieras & Meyer, 1997; Laird, Newell, & Rosenbloom, 1987) or a cognitive
grammar (e.g., . B. Smith et al., 1993). For example, consider a process model
for the equation-solving task described earlier (solving equations of the form
ax/B= A/b) with the following two strategies:

* Encode g, encode B, encode 4, compute A/a, encode b, compute B/b,
compute X.

* Encode g, encode 4, compute A/a, encode B, encode b, compute B/b,
compute Xx.

The first strategy encodes the four problem values from left to right, per-
forming the three necessary computations as soon as possible. The second
strategy encodes the values in pairs and from left to right and computes in-
termediate values as soon as possible.

Given such a process model, tracing maps an eye-movement protocol to
the best fitting process model strategy. Figure 2 shows the mapping of a sam-
ple protocol to the preceding process model. (Note that the mapping, as in
this case, may be partial rather than complete.) The arrows in the figure rep-
resent the trace, or interpretation, of the protocol—that is, the mapping be-
tween predicted fixations and their corresponding observed fixations in the
protocol. In this case, the protocol best matches the second strategy that en-
codes values in pairs, and thus the trace shows the mapping from predicted to
observed fixations in this strategy. Note that the mapping includes only pre-
dicted fixations (Fixations 3-6, 8); unpredicted fixations (Fixations 2 and 7)
and actions that do not correspond to observed fixations (e.g., computations)
are not mapped. As the example illustrates, tracing takes advantage of both
global and local information in forming interpretations of protocols. Local
information, namely the location and velocity of each data point, helps sepa-
rate fixations and saccades and pinpoint the locations of each fixation.
Global information, namely the sequence of fixations, helps sort out the as-
signment of fixations to their intended targets.

In this article, we describe three methods for tracing eye-movement proto-
cols. The first method, target tracing, assigns fixations to targets and employs a
sequence-matching algorithm to trace the target sequence. The other two
methods, fixation tracing and point tracing, trace protocols by using hidden
Markov models (HMMs)—powerful statistical models that have been applied
successfully in fields such as speech and handwriting recognition. As we dem-
onstrate in the application studies, these tracing methods interpret eye move-
ments as accurately as human experts in significantly less time.

EYE-MOVEMENT ANALYSIS 45

Figure 2. Sample protocol, process model strategy, and trace from the equation-solv-
ing task.

1 1 1

o L L1
ks L

7 'ﬁ = . /0l id2

encode a
encode 4
compute A/a
encode B
encode b
compute B/b
: compute x
=---p encode result

2. BACKGROUND: EYE MOVEMENTS AND
PROTOCOL ANALYSIS

Before delving into the details of our approach, we first provide an exposi-
tion of relevant work in two important related areas: eye movements and pro-
tocol analysis. Work in eye movements has provided a foundation for
understanding the physical characteristics of visual-motor control and algo-
rithms for analyzing eye-movement data. Work in protocol analysis and trac-
ing has explored techniques for mapping observed data to predicted actions.
We now give an overview of these areas and describe how the work relates to
our proposed approach.

2.1. Eye Movements

The wealth of eye-movement studies in past decades has provided solid evi-
dence that eye movements can reveal a great deal about underlying cognitive
processes (Just & Carpenter, 1984; Rayner, 1995). Researchers have used
eye-movement data successfully in a variety of contexts, including menu se-
lection (Aaltonen et al., 1998; Byrne et al., 1999), reading (Just & Carpenter,
1980, 1984; McConkie & Rayner, 1976; O’Regan, 1981; Rayner & Morris,
1990), gaze-based interfaces (Hutchinson, White, Martin, Reichert, & Frey,
1989; Jacob, 1991, 1995; Salvucci, 1999a; Salvucci & Anderson, 2000; Stampe
& Reingold, 1995; Zhai, Morimoto, & Thde, 1999), marketing (Goldberg, Zak,
& Probart, 1999; Lohse, 1997), driving (McDowell & Rockwell, 1978), image
scanning (Noton & Stark, 1971), air-traffic control (Lee & Anderson, 2001),

46 SALVUCCI AND ANDERSON

television viewing (Flagg, 1978), mathematics (Hegarty, Mayer, & Green,
1992; Suppes, 1990), analogy (Salvucci & Anderson, 2001), and mental rota-
tion (Carpenter & Just, 1978). Although some have expressed pessimism over
relating eye movements and mental processes (e.g., Harris, Hainline,
Abramov, Lemerise, & Camenzuli, 1988; Viviani, 1990), these numerous
studies undeniably have made significant contributions to their fields through
the study of eye movements.

Saccadic Eye Movements

Research in the low-level physical characteristics of eye movements is es-
sential to understanding and analyzing eye-movement data. This article fo-
cuses on saccadic eye movements, the most common and best understood
type of eye movement. Saccadic eye movements consist of two alternating
events: fixations, where the eye locks on a target while the perceptual sys-
tems encodes the image and saccades, where the eye moves rapidly to the
next location to fixate. Fixation durations range from approximately 100
msec to more than 1 sec, depending on the difficulty of the given task, and the
distribution of fixation durations over particular domains is approximately
exponential (Harris et al., 1988; Suppes, Cohen, Laddaga, Anliker, & Floyd,
1983). Saccades are (primarily) ballistic eye movements during which no in-
formation can be encoded (Kowler, 1990). Each saccade requires approxi-
mately 30 msec for 5° of visual angle and 2 msec longer for each additional
degree (Fuchs, 1971). Refer to Fuchs and Kowler for detailed overviews of
saccadic eye movements.

Eye Movements as Data

Eye movements can be recorded by using a wide variety of methods (see,
e.g., Wolfe & Eichmann, 1997; Young & Sheena, 1975) and are extremely in-
formative as a data source for analysis of human cognition. Perhaps the most
important reason for their usefulness is that eye movements indicate, gener-
ally speaking, the focus of visual attention. Although visual attention can move
independently from eye-gaze location, attention always precedes eye move-
ments: Attention shifts to the location of the next fixation before the eye exe-
cutes a saccade to that location (Hoffman, 1998). Thus, at the very least, eye
movements provide clues to where the visual attention focuses at approxi-
mately the same time. Just and Carpenter (1984) even posited an “eye-mind”
assumption whereby processing occurs while information is fixated and the
fixation continues until processing is completed. Although this claim has been
debated (Viviani, 1990), the link between eye movements and visual attention

EYE-MOVEMENT ANALYSIS 47

is clearly strong and provides researchers with a convenient window into a
person’s thought processes.

Another reason for the popularity of eye movements as data is the fine tem-
poral grain size that they represent. Today’s eye trackers can typically sample
eye movements at arate of 50 to 1000 Hz, or once every 1 to 20 msec. This fine
grain size allows researchers to analyze human behavior at a level of detail un-
achievable with more common types of data. This push toward lower levels of
detail has arisen in the broader research community; for instance, the ACT-R
theory of cognition, which typically modeled actions at the 1-sec grain size not
long ago (Anderson, 1993), now typically models actions at the 50-msec level
(Anderson & Lebiere, 1998). Deeper understanding of cognition requires data
that elucidate behavior at deeper levels, making eye movements an excellent
choice as a behavioral data source.

The usefulness of eye movement data is further bolstered by the fact that
eye-movement data collection (i.e., eye tracking) is mostly nonintrusive and
typically does not have significant effects on observed behavior. Eye-move-
ment studies with both tracking and nontracking conditions for the same task
have shown no significant differences in performance between conditions
(e.g., Salvucci, Anderson, & Douglass, 2000). In addition, eye-movement data
collection generally requires no training or coaching. These benefits, in con-
junction with fine temporal grain size, allow researchers to collect data easily
even for tasks with short trials of a few seconds or less.

Eye-Movement Data Analysis

Considering the vast amount of research using eye movements to study
behavior, relatively little research has examined formal methods of
eye-movement data analysis; most of the eye-movement literature describes
analysis methods informally and with few details. However, some research
has investigated formal analysis methods and has demonstrated how the
choice of methods can drastically impact subsequent data analysis (Karsh &
Breitenbach, 1983). Of this research, the vast majority focuses on the prob-
lem of reducing raw eye-movement data to sequences of fixations and sac-
cades (Cabiati, Pastormerlo, Schmid, & Zambarbieri, 1983; Erkelens &
Vogels, 1995; Karsh & Breitenbach, 1983; Sen & Megaw, 1984; Stark & Ellis,
1981; Tole & Young, 1981; Widdel, 1984). There have been relatively few at-
tempts to generate more sophisticated interpretations of eye movements,
such as for the purposes of strategy classification (e.g., Crosby & Wesley,
1991) or gaze-based interfaces (e.g., Edwards, 1998; Goldberg & Schryver,
1995). In this article we extend this line of work to a general approach relat-
ing eye movements and cognitive processes by tracing eye-movement proto-
cols with process models.

48 SALVUCCI AND ANDERSON

2.2. Protocol Analysis and Tracing

Tracing, a rigorous form of sequential protocol analysis, has become in-
creasingly popular in various fields and under various appellations. Cognitive
scientists have employed trace-based protocol analysis to develop and refine
process models (Ritter & Larkin, 1994). Researchers in HCI have employed
tracing, especially sequence comparison techniques, to study the fits of user
models (Card et al., 1983). Builders of intelligent tutoring systems have used
model tracing (Anderson et al., 1995) or tracking (Frederiksen & White, 1990)
to determine the user’s solution path through a student model of the domain.
This section reviews work related to tracing, including more general work in
protocol analysis and sequential data analysis.

Methodological Foundations

Newell and Simon (1972) provided arguably the most influential early con-
tribution to the methodological foundations of tracing. Their work formalized
the notion of the problem space and illustrated how subject protocols could
help determine a participant’s particular solution path through the space.
Their work also demonstrated how one can test process models by mapping
his or her predictions directly onto the observable actions of human partici-
pants. In the context of tasks involving cryptarithmetic and logic problems,
Newell and Simon aligned think-aloud protocols with the predictions of
task-specific production system models. To a lesser extent, they also discuss
eye-movement data in relation with model predictions (as cited in Winikoff,
1967), sometimes to the level of tens of milliseconds. Such detailed analyses
have set the tone for this article and have demonstrated the potential benefits
of low-level analysis for larger sets of protocol data. Of course, there is a trade-
off between the level of detail in the analysis employed and the amount of data
on which the analysis is employed, as Newell and Simon stated:

Our investigations of human problem solving alternate between two strate-
gies. One is to examine the behavior of an individual problem solving attempt
in as much detail as possible. The aim is to determine whether the information
processing theory really describes the fine structure of behavior. ... The other
strategy is to ask more broadly whether the theory fits the facts from a substan-
tial range of situations, trading off breadth for depth. (p. 310)

This article is an attempt to push the envelope in both “breadth” and
“depth,” allowing for the examination of larger and more complex proto-
cols at lower levels of analysis.

Another major step in the evolution of tracing came in the development of
process models of HCI. Card et al. (1983) created a modeling system called

EYE-MOVEMENT ANALYSIS 49

GOMS to facilitate understanding of user behavior at a fine-grained level. In
one application to manuscript editing, they traced user actions with GOMS
model predictions at the level of individual typing and general reading events.
Using these traces, the authors evaluated various models by computing a per-
centage match between predicted and observed sequences with a se-
quence-distance metric. Their work stressed the need to use quantitative
measures of a trace’s goodness of fit along with traditional qualitative analyses.
The tracing methods in this article also provide such quantitative metrics and,
in fact, use a similar sequence-distance metric for one of the methods.

Although Newell and Simon (1972) and Card et al. (1983) emphasized the
substantive aspects of their work in their particular domains, Ohlsson (1990)
helped to highlight the significant methodological contributions of their work.
Ohlsson formalized the methodology, which he called trace analysis, as a
three-step process:

1. Construct the participant’s problem space.

2. Identify the participant’s solution path by using the sequential infor-
mation in the protocol.

3. Hypothesize the participant’s strategy by inventing problem-solving
heuristics that can reproduce the participant’s solution path.

Ohlsson’s application of the methodology to the domain of spatial reason-
ing nicely illustrates how trace analysis facilitates both exploratory and confir-
matory analysis in prototyping and evaluating process models.

Ritter (1992) and Ritter and Larkin (1994) examined tracing at length and
specified a methodology, trace-based analysis, for testing process models’ pre-
dictions through comparison with verbal and nonverbal protocols. Their for-
mulation of trace-based protocol analysis, reminiscent of Ohlsson’s (1990)
trace analysis, comprised the following steps:

1. Using a process model, generate a sequence of predicted actions.

2. Compare the model predictions to empirical data by forming a map-
ping between the predicted action sequence and the observed action
sequence.

3. Analyze the fit of the model to the data to see where the model can be
improved.

4. Refine the model and iterate.

Using their Soar/MT system, Ritter and Larkin (1994) successfully devel-
oped a process model for users of a computer interface. Their article mentions
eye movements only in passing, characterizing them as “overt task actions”
that can be handled by the system but without explaining in detail how this

50 SALVUCCI AND ANDERSON

mightbe achieved. One significant difference between their work and this arti-
cle arises in the predictions of the cognitive model: Soar/MT requires that the
model’s sequence of predicted actions be deterministic, whereas the tracing
methods in this article allow for nondeterministic action traces. In general,
however, Ritter and Larkin’s work is quite applicable in the context of eye
movements and maps out a good methodology for developing cognitive mod-
els of visual processing.

Automated and Semiautomated Analysis

Because of the tedious nature of tracing protocols, several researchers have
attempted to automate the process. For instance, Waterman and Newell
(1971, 1973) developed two systems for the automated analysis of verbal re-
ports. Their first system, Protocol Analysis System I (PAS-I), mapped partici-
pants’ verbal protocols onto a problem behavior graph, which describes the
trajectory of a participant’s solution through a problem space (Waterman &
Newell, 1971). This system ran without user input and was specifically coded
for interpreting protocols in the cryptarithmetic task. The second system,
PAS-II, generalized the analysis to any task and allowed the user to interac-
tively take part in the analysis: The user “can provide answers to subproblems
the system is unable to solve, correct processing errors, and even maintain
control over the processing sequence” (Waterman & Newell, 1973). In a simi-
lar effort, Bhaskar and Simon’s (1977) Semi-Automated Protocol Analysis sys-
tem provided interactive analysis in the domain of thermodynamics.

Although these systems represented a significant attempt at automating
protocol analysis, the systems, as the authors themselves admit, constituted
only one component task of the larger picture of protocol analysis. A truly au-
tomated verbal protocol analysis would allow that we transform language in-
put directly to an interpretation, which would require, among other things, a
complete process theory of the generation of verbal reports. Even with impor-
tant contributions in that area (e.g., Ericsson & Simon, 1980, 1984), such a the-
ory remains out of reach. Fortunately with regard to eye movements, we know
a great deal about how the cognitive and visual systems send commands to the
eye and how the eye executes these commands. This crucial difference be-
tween verbal and eye-movement data makes eye movements, in this sense at
least, more amenable to automated analysis.

In another attempt to automate tracing, Smith et al. (1993) employed cogni-
tive grammars to represent cognitive strategies and parse verbal, keystroke,
video, and action protocols. Using a cognitive theory of writing, they imple-
mented three types of cognitive grammars for an expository writing task, all of
which could successfully parse subject protocols into a parse tree of higher or-
der cognitive actions, symbolizing the model’s interpretation of the observed

EYE-MOVEMENT ANALYSIS 51

behavior. Although parsing subject protocols is an intriguing method of proto-
col analysis and has been effective in the writing domain, its applicability to
eye-movement data seems dubious for one primary reason: The parsing must
be complete and exact, with no allowance for deviations from the predicted
model sequences. The authors claim that to show the validity of some gram-
mar, “the grammar should successfully parse any protocol produced” (p. 139)
in a given task. Although we can strive to achieve this ideal, real data, espe-
cially eye-movement data, seem simply too noisy for such a strict interpreta-
tion. The process of tracing eye-movement protocols must incorporate robust
methods that tolerate noise and unexpected or unpredicted actions.

Several other researchers have investigated automated and semiautomated
techniques that do not implement tracing per se but do highlight common
goals of the previously discussed work and this article. Fisher (1991) con-
structed the Protocol Analyst’s Workbench (PAW) for exploratory data analy-
sis of arbitrary sequential protocol data. PAW provides flexible methods for
data encoding, hypothesis testing, and data analysis, with an emphasis on cy-
cle-based analyses such as the determination of so-called Fisher cycles. San-
derson etal.’s (1994) MacSHAPA system allows for similar types of sequential
protocol analysis, including sequence comparisons, Fisher cycles, Markov
transition statistics, and lag sequential analysis. Lallement (1998) used decision
trees to classify data from an air-traffic controller task, showing that such ma-
chine learning techniques can provide automated analysis that is more consis-
tent and faster than analysis by hand.

3. TRACING EYE-MOVEMENT PROTOCOLS

This section introduces three automated methods for tracing eye-move-
ment protocols. The first method, target tracing, is an extension of an existing
tracing method for generic-action protocols (Card et al., 1983; Ritter & Larkin,
1994) as applied to eye movements. Target tracing transforms eye movements
to generic actions and maps observed to predicted action sequences by using a
dynamic-programming, sequence-matching algorithm. The second and third
methods, fixation tracing and point tracing, trace eye movements by using
hidden Markov models. These methods employ probabilistic models to deter-
mine the optimal interpretation for a protocol with a given model. Fixation
tracing and point tracing are designed specifically for eye-movement proto-
cols and thus generate more accurate interpretations than the generic-action
algorithm in target tracing. Together, the three tracing methods as described
here represent a significant extension of previous work (Salvucci & Anderson,
1998) and bring together numerous aspects of work in eye movements and
protocol analysis outlined in the previous section.

52 SALVUCCI AND ANDERSON

Interpretation of eye-movement protocols encompasses a wide range of
potential methods and issues. To restrict the scope of this work to a manage-
able subset, we make one important assumption in this article: The visual
screen for which eye-movement data are collected is relatively static during
particular subtasks. We should stress that this assumption does not preclude
application of the methodology to dynamic environments; tasks in these dy-
namic environments often can be broken into subtasks with relatively static
displays, even though displays between subtasks may be quite different.

3.1. Tracing Setup

The tracing methods require the specification of two components: a set of
target areas that designate relevant regions of interest, and a process model
that generates sequences of predicted actions. Target areas, or “regions of in-
terest,” indicate relevant units of information that people are likely to encode.
For simplicity, we assume that targets areas can be specified as rectangular re-
gions that enclose the visual space in which the target may be encoded; rectan-
gular regions nicely approximate common visual objects such as text, icons,
and menus. In addition, because this article is restricted to primarily static task
screens, we can assume that the target areas remain fixed throughout a single
trial (i.e., the range of one run of the process model).

The process model provides tracing with a specification of the set of possi-
ble predicted action sequences. For the purposes of this article, the process
model is a regular grammar (Sudkamp, 1988) that can generate all possible se-
quences of fixations on targets. The regular grammar comprises a set of rules
of the form subgoal - {fixation} * {subgoal}. The first subgoal represents a
subgoal that must be achieved through some sequence of fixations. When the
rule executes, or fires, this subgoal produces zero, one, or more fixations on
various target areas and optionally specifies a new subgoal to achieve. When
multiple rules appear for the same subgoal, the grammar specifies the proba-
bility with which each rule fires.

Let us consider a sample process model for the equation-solving domain
discussed earlier. Assume that students solve equations by using one of four
strategies, shown as sequences of visual, cognitive, and typing actions in Figure
3. The first two strategies represent two methods of solving the problem: one
in which the values are encoded left to right, and one in which the values are
encoded in pairs. The second two strategies are identical to the first two except
that they do not encode (check) the result after typing. Each strategy has a par-
ticular probability of occurring based on a .60 probability of reading left to
right and .40 of reading in pairs, and a .75 probability of checking the result
and .25 of not checking. Note that we set these probabilities arbitrarily for illus-
tration; in real applications, we generally set them to uniform probabilities

EYE-MOVEMENT ANALYSIS 53

Figure 3. Sample equation-solving strategies.

Number Strategy Probability

1 encode a, encode B, encode 4, encode b, .60 x .75
compute A/a, compute B/b, compute X, type
x, encode result

2 encode a, encode 4, encode B, encode b, 40 x .75
compute A/a, compute B/b, compute X, type
x, encode result

3 encode a, encode B, encode 4, encode b, .60 x .25
compute A/a, compute B/b, compute X, type x
4 encode a, encode A, encode B, encode b, 40 x .25

compute A/a, compute B/b, compute X, type x

(i.e., all rules are equally likely) unless we have evidence to the contrary, which
may arise from exploratory analysis or task requirements (as we see later in the
case studies).

We can represent the strategies in Figure 3 as the model grammar shown in
Figure 4. This model grammar contains two subgoals: compute-result and
type-result. The compute-result subgoal can be executed in one of two
ways, represented by the first two rules. The first rule, which executes with
probability .60, encodes the values left to right; the second rule, with probabil-
ity .40, encodes the values in pairs. Both rules then execute the type-result
subgoal. The type-result subgoal either generates a fixation on the result by
using the third rule with probability .75 or generates no fixation by using the
fourth rule with probability .25. In either case, execution completes due to the
absence of a right-hand subgoal for both type-result rules.

3.2. Tracing Methods

The following proposed tracing methods require three inputs: a process
model grammar, a set of target areas as described previously, and an
eye-movement protocol comprising a sequence of <x,)> point-of-regard loca-
tions collected by an eye tracker. The tracing methods generate two outputs:
the trace (i.e., the mapping from the protocol to the sequential predictions of
the process model) and a mismatch score (i.e., a goodness-of-fit value that de-
scribes how well the protocol fits the model).

Target Tracing

Target tracing is a two-stage process that extends an existing tracing algo-
rithm to eye-movement protocols. Card et al. (1983), Ritter (1992), and Ritter

54 SALVUCCI AND ANDERSON

Figure 4. Process model grammar for the model strategies in Figure 3.

Number Rule Probability
1 compute-result ~ a B A b type-result .60
2 compute-result — a 4 B b type-result 40
3 type-result — result .75
4 type-result - 25

and Larkin (1994) developed tracing algorithms for generic actions based on a
common sequence-matching algorithm (Kruskal, 1983). Their algorithms find
the optimal match between two sequences that minimizes the string-edit dis-
tance between the sequences—that is, the number of insertions, deletions, and
substitutions needed to transform one sequence to the other. This tracing
method, which they applied to user actions and verbal protocols, showed that
tracing by sequence matching is highly efficient and generates accurate and
useful interpretations for data analysis. When combined with target identifica-
tion, sequence matching can generate the same useful interpretations for
eye-movement data.

Fixation Identification and Assignment. The first stage of target trac-
ing transforms a raw eye-movement protocol to a sequence of intended tar-
gets by means of fixation identification and assignment. First, fixation
identification separates fixation points from saccade points in the raw pro-
tocol and produces a sequence of fixation locations. For this process, target
tracing uses a straightforward velocity-based algorithm described in previ-
ous work (Salvucci & Anderson, 1998). Next, fixation assignment takes the
resulting fixations and maps each fixation to its intended target; that is, it
matches each fixation with the visual target assumed to be encoded during
that fixation. For this process, target tracing simply assigns each fixation to
the nearest target; for example, the protocol in Figure 2 would produce the
target sequence [B a A B b B resuli]. This method of fixation assignment im-
plicitly assumes that each fixation is intended to encode the visual target
nearest to it. In doing so, it converts fixations to generic actions as required
by the sequence-matching algorithm: A fixation near a target becomes the
action of encoding the information in that target.

Tracing. The second stage of target tracing matches the observed tar-
get sequence resulting from the first stage to a predicted sequence of targets
generated by the process model. Target matching first generates all possible
target sequences from the process model grammar; for instance, for the
grammar in Figure 4, it generates the sequences [a B A b result], [a A B b re-

EYE-MOVEMENT ANALYSIS 55

sult], [a BAb],and [a A Bb]. Next, it uses the sequence-matching algorithm to
determine the best match between the observed target sequence and each
predicted target sequence generated from the model. The sequence-match-
ing algorithm compares the observed and predicted sequences with respect
to a sequence-distance metric: the number of insertions, deletions, and sub-
stitutions needed to transform one sequence to the other (Kruskal, 1983).
The predicted sequence with the smallest sequence distance from the ob-
served sequence is chosen as the best-matching sequence. The resulting
trace defines a mapping between elements of the observed and predicted
sequences. This mapping may contain elements from the observed se-
quence thatare not predicted (i.e., deleted) and elements from the predicted
sequence that are not observed (i.e., insertions). In addition, the process
generates a goodness-of-fit value as the mismatch between se-
quences—namely, the number of insertions, deletions, and substitutions
present in the mapping.

Figure 5 shows a sample trace for the protocol in Figure 2 and the model in
Figure 4. On the left, the figure shows the sequence of observed targets in the
protocol. On the right, the figure shows the best-matching sequence of pre-
dicted targets from the four possible target sequences described previously. In
addition to specifying the most likely strategy, the trace shows that the model
does not predict two fixations: the first fixation on B, which is likely a missed
saccade to the first element of the equation, and the final fixation on B, which
seems to represent a review of previously encoded information. We require
two deletions to transform the observed sequence to the predicted sequence,
so the mismatch (i.e., sequence distance) between the two sequences is 2.

Two issues arise when applying the sequence-matching algorithm in target
tracing. First, the model grammar used in tracing may be circular in that cer-
tain subgoals may repeat indefinitely. In such a case, target matching cannot
generate all possible grammar sequences because there exist an infinite num-
ber. Thus, when generating grammar sequences, target matching must ensure
that circularity is cut off at some convenient point. Second, ties sometimes oc-
cur in sequence matching when two or more model sequences have the same
sequence distance from the observed sequence. To break ties in these cases,
target tracing (somewhat arbitrarily) favors mapping in which matches occur
earlier rather than later in the sequences. Alternatively, target tracing could
break ties by favoring more likely sequences as determined by the rule proba-
bilities in the generating grammar.

Evaluation. Target tracing is fairly accurate and efficient, especially
for smaller, noncircular process models with few enumerated strategies.
However, because of the assignment of fixations to targets in the first stage,
target tracing sometimes can have difficulty tracing noisy protocols. Figure

56 SALVUCCI AND ANDERSON

Figure 5. Trace of the Figure 2 protocol using target tracing and the process model
grammar in Figure 4.

Observed Targets Mapping Predicted Targets

B

a — a
A - A
B - B
b - b
B

result - result

la illustrates such a protocol. When we look at the protocol as a whole, it
closely corresponds to the strategy in which values are encoded in pairs, so
Fixation 2 should be attributed to the target a. However, target tracing would
assign Fixation 2 to its closest target B, resulting in an observed target se-
quence [BA B }| after the first stage. This observed sequence matches equally
well with two predicted target sequences—namely, [a BA §] and [a A B}]. The
crucial problem here is the loss of information between stages: Once the first
stage assigns a fixation to a target, the second stage must rely only on the as-
signed target for tracing and cannot access information concerning where the
fixation may have fallen. A second problem with target tracing involves the
lack of ability to use rule probabilities in tracing. Although we could imagine
heuristics that may help—for example, multiplying the mismatch score by (1
— strategy probability)—target tracing has no parsimonious and straightfor-
ward way of incorporating strategy probabilities.

Fixation Tracing

Fixation tracing, like target tracing, is a two-stage process that comprises
identification and tracing. However, instead of assuming that fixations map to
the nearest target, fixation tracing allows the model to influence the mapping
by tracing fixations by using HMMs. HMMs are powerful probabilistic mod-
elsthathave been applied extensively in the development of speech and hand-
writing recognition systems (e.g., Lowerre & Reddy, 1980). Just as these
systems infer intended speech or writing from observed input, fixation tracing
infers intended encoding and fixation patterns from observed eye move-
ments. In previous work, researchers have used simple Markov models in
analyses of transition probabilities from one fixation target area to another
(e.g., Stark & Ellis, 1981; Suppes, 1990). These models shed light on the se-
quential nature of eye-movement protocols but ignore more global informa-

EYE-MOVEMENT ANALYSIS 57

tion by assuming that transitions do not depend on the prior sequence of
fixations. A few researchers have used HMM:s to represent velocity distribu-
tions in smooth eye movements (Kowler, Martins, & Pavel, 1984) and to
model explicit foveal sequences (Rimey & Brown, 1991). We extend this work
by developing a more rigorous approach that takes advantage of the full ex-
pressive power of HMM:s.

Fixation Identification. The first stage of fixation tracing transforms a
raw eye-movement protocol into a sequence of fixations by means of fixa-
tion identification. Like target tracing, fixation tracing uses a velocity-based
algorithm (Salvucci & Anderson, 1998) that produces a sequence of fixa-
tions represented as locations <x,y>. However, unlike target tracing, fixa-
tion tracing makes no assumptions about the intended targets for each
fixation in the first stage; this assignment occurs as part of the tracing pro-
cess in the second stage.

Tracing. The second stage of fixation tracing decodes, or interprets,
the identified fixation sequence with respect to a tracer HMM—an HMM
that probabilistically represents the process model. We first describe how to
construct the tracer HMM from the specified process model and target ar-
eas. We then describe how fixation tracing traces a protocol by determining
the alignment of observed fixations and tracer HM M states that maximizes
the probability of the fixation sequence with respect to the HMM.

We construct the tracer HMM in two steps.! Because the tracer HMM de-
codes (interprets) a fixation sequence, each state in the HMM must represent a
fixation. Thus, we first construct fixation HMMsfor each target area that repre-
sent the likely xand ylocations for fixations intended to encode that target. Fig-
ure 6a shows a sample fixation HMM for the equation-solving target area b.
This fixation HMM contains only one state that includes probability distribu-
tions for expected x and y coordinates for fixations intended to encode &; the
distributions center around the coordinate centers of the target area, and their
standard deviations lie near the boundaries of the target area. The transition
probabilities for the HMM force the state to be traversed exactly once. Al-
though this HMM is one possible fixation HMM, there are any number of
other possibilities, such as those included in Figure 6 that allow for repeating
and skipping of fixations (Figure 6b) and unpredicted intervening fixations on
any target with uniform xand y distributions (Figure 6¢). Overall, the fixation
HMM should represent expected fixations around a particular target given

1. In practical use, the tracer HMM need only be constructed once and can be
stored for subsequent traces.

58 SALVUCCI AND ANDERSON

Figure 6. Sample fixation HMMs for fixation tracing.

(©)

that the person intends to look at that target. The choice of fixation HMM can
depend on the given domain, particularly whether the model predicts fixa-
tions or gazes (consecutive fixations on the same target); for instance, the
HMM in Figure 6a represents only a single fixation, whereas those in Figures
6b and 6¢ can include multiple fixations that make up a gaze.

Once the fixation HMMs have been defined, fixation decoding uses the
HMM:s and the process model grammar to construct the tracer HMM, as shown
in Figure 7 for the grammar in Figure 4. Fixation decoding first converts each
grammar rule to a rule HMM that includes serially linked fixation HMM:s for
each predicted target in the rule. For instance, Figure 7 contains a rule HMM for
Rule 1 in Figure 4 in which the fixation HMMs (from Figure 6c¢) for 4, B, 4, and b
are linked together serially; it also contains a null rule HMM for Rule 4. Next,
the rule HMMs are linked together according to the nonterminals (subgoals)
present in the rules: Each rule HMM with a right-hand-side nonterminal (i.e.,
rule HMMs 1 and 2) is linked to each other rule HMM with that nonterminal in
the left-hand side (i.e., rule HMMs 3 and 4); each rule HMM with no
right-hand-side nonterminal (i.e., rule HMMs 3 and 4) is linked to a terminal
HMM that represents some special end observation. The probabilities of the
transition links are dictated by the probabilities of the rules to which the transi-
tions go. Note that because the fourth rule HMM is null, the transitions link the
first and second rule HMM:s directly to the terminal HMM.

By using the tracer HMM, fixation tracing traces a given protocol by deter-
mining the best alignment of observed fixations to tracer HMM states. This
process, called HMM decoding, finds the mapping from fixations to states that
maximizes the probability of the fixation sequence given the tracer HMM.

EYE-MOVEMENT ANALYSIS 59

Figure 7. Tracer HMM for fixation tracing and the process model in Figure 4.

40

(See Rabiner, 1989, for a detailed description of HMM decoding.) Decoding
produces a trace of the protocol in that observed fixations (and thus raw data
points) are mapped to their intended targets, as embodied in the tracer HMM
states. The mismatch score produced by fixation tracing is defined as follows:

mismatch = —loigP (1)

Here Pis the probability of the observed fixations given the tracer HMM as
provided by the HMM decoding process—that is, the probability of the
data given the model-—and L is the length of the observed fixation se-
quence. Thus, the equation represents the mismatch score as the average
log probability per fixation, with a perfect match between model and data
producing a mismatch score of 0. In general, the actual magnitude of the
mismatch score is less important than its magnitude relative to mismatch
scores for other models, allowing us to determine which model better fits
the given data. The case studies, particularly for the reading domain, illus-
trate this model comparison process.

Evaluation. Fixation tracing, because of the incorporation of fixation
assignment in the tracing process, allows for more flexible and accurate in-
terpretations than target tracing. In the Figure 1 protocol, although target
tracing assigns Fixation 2 to target Bbefore tracing, fixation tracing uses the
fixation’s location and the overall sequence of fixations to attribute the fixa-
tion accurately to the target a. By using HMM:s for tracing, fixation tracing is
able to employ higher level global information, namely the sequence of fix-
ations as predicted by the process model, to influence the interpretation of

60 SALVUCCI AND ANDERSON

lower level aspects of the protocol, namely the assignment of fixations to
targets. It also uses grammar rule probabilities, unlike target tracing. Never-
theless, the two-stage process of fixation tracing still results in some loss of
information between stages, namely the determination of where fixations
occur in the protocol. Figure 8a shows a protocol in which the fixation iden-
tification stage has failed to identify an evident fixation on target & (at the di-
rection reversal on the right side of the protocol). This has happened
because of the fixation’s short duration and the effects of time-averaged
sampling. We know there is a fixation on &by considering the larger proto-
col, but the cognitive model in the second stage cannot influence the deter-
mination of what is and is not a fixation.

Point Tracing

Point tracing identifies fixations and traces the protocol in a single stage,
thus avoiding the loss of information between stages suffered by target and fix-
ation tracing. The point-tracing algorithm relates very closely to the fixa-
tion-tracing algorithm: It constructs an HMM from the process model and
decodes the protocol with this HMM. However, rather than decoding a se-
quence of fixation locations, point tracing decodes the raw sequence of
eye-movement data. The one-stage process allows the process model to influ-
ence both the identification of fixations and the assignment of fixations to in-
tended targets.

Tracing. Point tracing begins with the construction of a tracer HMM
used to decode the given protocol. This process is, for the most part, identi-
cal to the construction of the tracer HMM in fixation tracing: It generates
fixation HMM:s for each possible target, builds rule HM M:s for each rule in
the model grammar, and links the rule HMM:s as described by the model
grammar. However, whereas the fixation HMMs in fixation tracing repre-
sent expected fixation locations, the fixation HMMs in point tracing repre-
sent expected raw eye-movement data. Figure 9 shows one possible fixation
HMM for target b analogous to that for fixation tracing in Figure 6a. The
first state represents the saccade points present before the fixation; the state
includes uniform x and y distributions and a v velocity distribution centered
around high velocities. The velocity distributions can be estimated from ex-
isting protocol data (Salvucci & Anderson, 1998). The second state repre-
sents fixation points with x and y distributions centered around the 4 target
and a v distribution centered around low velocities. Of course, we could also
design alternative fixation HM Ms analogous to those in Figures 6b and 6c.

By using the constructed tracer HMM, point tracing decodes the given pro-
tocol and determines the optimal protocol trace. First, it augments the <x,j>

EYE-MOVEMENT ANALYSIS 61

Figure 8. Tllustrative protocol traced with (a) fixation tracing and (b) point tracing.

(@)

1 | g 1 | —
12] 4] Lo T Lresu]
& o3

x / B0 ey 20 7 4 x=[]

®

{ | 1 11 | —
18] 4] Lo Lresult
= 5 .
20._____5«‘“20 7.2y x|

eye-movement protocol with point-to-point velocities to generate sequences of
<x,y,2> tuples. Second, it decodes these tuples with the tracer HMM to find the
optimal trace, or mapping, from observed to predicted fixations. The trace pro-
vides a mapping between data points and tracer HMM states, which can be used
to collapse the raw protocol into fixations or gazes. The mismatch score for point
tracing can be defined exactly as that for fixation tracing, as shown in Equation 1.
Note that the mismatch scores between fixation and point tracing are not directly
comparable because the mismatch for point tracing represents the negative log of
the average probability per raw data point rather than fixation.

Evaluation. Because point-tracing HMMs can be much larger than
fixation-tracing HMMs and must decode much more data, point tracing is
typically much less efficient than fixation tracing. This loss in efficiency is

62 SALVUCCI AND ANDERSON

counterbalanced somewhat by gains in information from tracing a raw pro-
tocol directly: Point tracing allows the process model to influence both fixa-
tion identification and assignment. For instance, Figure 8b shows the same
protocol as Figure 8a traced with point tracing; here the model determines
that the bend in data points nearest the 4 target must correspond to a fixa-
tion, even though the point velocities fail to indicate a fixation. Unfortu-
nately, point tracing occasionally fails to identify incidental or extraneous
fixations as we would expect: Rather than assigning them to some any state,
point tracing tends to identify points for incidental fixations as saccade
points rather than fixation points—for instance, Fixation 3 in Figure 8a that
disappears in Figure 8b. This problem sometimes causes difficulty when
analysis requires the determination of incidental fixations.

3.3. Issues

Fixations represent a fairly natural grain size for typical analysis and model-
ing of eye movements. However, for some applications or domains, many re-
searchers have used gazesas the basic units of eye-movement analysis (e.g., Just
& Carpenter, 1984; Rayner & Morris, 1990). A gaze typically is defined as a se-
quence of one or more consecutive fixations on the same target area. Gazes al-
low researchers to focus their analyses on eye movements between visual
targets and to ignore eye movements within targets. All three tracing methods
allow a user to trace eye movements at the level of either fixations or gazes.
The decision to use fixations or gazes impacts the specification of the process
model and the tracing algorithms themselves. First, the process model should
predict scanning behavior at the level of the desired analysis: If we are inter-
ested in tracing gazes in a physics task, our model should predict individual
gazes; if we are interested in tracing fixations in a reading task, our model
should predict fixations. Second, the tracing algorithms as described generally
assume analysis at the fixation level. At the gaze level, the algorithms require
slight modification. For target tracing, target identification must collapse con-
secutive, repeated fixations on target areas into single gazes before passing the
target sequence to target tracing. For fixation and point tracing, the fixation
HMMs should allow for repeated fixations on their respective targets to model
the multiple fixations that can compose a gaze. The case studies presented
later illustrate analysis at both the fixation and gaze levels.

The tracing methods use the locations of fixations and the sequence in
which they occur. Additional information present in an eye-movement proto-
col—namely, fixation durations and onset times—potentially can facilitate in-
terpretation of the protocol. Fixation durations can indicate the amount of
cognitive processing dedicated to particular fixations or gazes. This informa-
tion could help determine whether a fixation is intended or incidental, or

EYE-MOVEMENT ANALYSIS 63

whether computation takes place during a fixation; for instance, fixations in
the equation-solving task during which the person performs a mathematical
operation are typically longer than other fixations. Fixation onset times can
help us to understand the interleaving of encoding and other actions, such as
typing or mouse movements. By comparing the onset times of fixations with
the times of these other types of actions, tracing methods potentially could dis-
tinguish between various strategies with similar eye movements but dissimilar
behavior in these actions.

Another issue is that some process models of visual attention may not pre-
dict the exact target of every fixation but rather may posit that a fixation lands
in some area on “any” target in that area. For instance, in the equation-solving
domain, students sometimes move their eyes down onto the equation from the
start target area to orient themselves as to where elements of the equation lie;
the fixation is not intended for a particular target value but more so for the en-
tire equation as a whole. Although such fixations occasionally could be mod-
eled with larger target areas, it is often convenient to use a special any target
area that captures fixations on any target. All three tracing methods can handle
the any target area: Target tracing requires a slight modification of the se-
quence-matching algorithm, and fixation and point tracing require fixation
HMM states in which the x and y distributions area fairly uniform (flat) and
thus do not center over a particular target.

3.4. Summary

Figure 10 provides a summary of the tracing methods with respect to model
influences and complexity. The model influences illustrate the power of the
various methods in terms of what aspects of the tracing process are influenced
by the specified process model. The complexities of the different methods de-
pend on four factors: the length of the raw protocol 7, the number of fixations
F; the number of enumerated strategies M, and the number of tracer HMM
states N. Not surprisingly, all the methods depend on the protocol length 7.
The dependency of target tracing on Mis related closely to the dependency of
fixation and point tracing on N. For simpler models, M and N may be near
equal, but Nmay be significantly smaller than M for more complex, hierarchi-
cal process models. Also, the factor of O(/N?2) in fixation and point tracing typi-
cally behaves more like O(N) for process models that generate sparse tracer
HMMs. Note that the complexities for fixation and point tracing do not in-
clude the time needed for tracer HMM construction, which typically is per-
formed once per process model and reused for all traces with the model.

The tracing methods, like the fixation identification methods, are difficult
to compare in the absence of an application domain. The next section pro-
vides detailed quantitative and qualitative evaluations and comparisons of the

64 SALVUCCI AND ANDERSON

Figure 10. Summary of the interpretation methods.

Method Model Influences Complexity*
Target tracing Trace O(T+ MF)
Fixation tracing Fixation assignment, trace O(T+ NP
Point tracing Fixation identification, O(N*1)

fixation assignment, trace

“The complexity parameters are interpreted as follows: T'is the length of the raw protocol, Fis
the number of fixations, Mis the number of enumerated strategies for the process model, and
Nis the number of states in the tracer hidden Markov models.

tracing methods in the context of application domains. The subsequent gen-
eral discussion includes an overview of these results and a number of recom-
mendations for choosing an appropriate tracing method for future
applications.

4. CASE STUDIES

We have applied the tracing techniques and methodology to three comple-
mentary domains: equation solving, reading, and gaze-based interfaces. These
applications serve two purposes. First and foremost, the applications help to
evaluate the accuracy and speed of the tracing methods. As yet we have only
described how the methods form interpretations of eye-movement protocols;
in this section we show that the methods indeed form accurate interpretations
and can produce them significantly faster than human experts. Second, the ap-
plications demonstrate the uses and benefits of tracing for the offline study of
user behavior and the online inference of user intentions. Although the chosen
applications involve relatively basic tasks, these tasks nicely allow for rigorous
testing and evaluation of the tracing methods and demonstrate numerous
ways in which the methods could be used in larger scale applications.

To apply the tracing methods to the studied domains, we have developed a
testbed system called EyeTracer? that embodies the three tracing methods de-
scribed in the previous section as well as a number of other algorithms used by
and with the tracing methods. EyeTracer facilitates both exploratory and con-
firmatory analysis of eye-movement protocols. For exploratory analysis, the
system can replay protocols in real time or any arbitrary speed, which pro-
vides an extremely useful tool for an initial understanding of behavior (Smith

2. EyeTracer is publicly available on the World Wide Web at
http://www.cbr.com/~dario/EyeTracer

EYE-MOVEMENT ANALYSIS 65

etal., 1993). EyeTracer also can display static plots of an eye-movement proto-
col with various aids for analysis; for instance, EyeTracer can plot points at
sizes that correspond to their velocities, mark and number fixations in the plot,
and mark when other (non-eye-movement) events take place (e.g., key-
strokes). Such displays incorporate little to no bias in the interpretation of the
protocols, thus allowing the user to view essentially unadulterated data. In ad-
dition, given the postprocessed protocols, EyeTracer can be customized to
perform any type of exploratory analysis in which the user may be interested,
such as fixations counts and durations, Fisher cycles, or Markov transition ma-
trices. For confirmatory analysis, EyeTracer can display eye-movement proto-
cols highlighted according to a trace with respect to a cognitive model; for
instance, the system can highlight predicted fixations in blue and unpredicted
fixations in red. The functionality of EyeTracer thus enables its users to better
understand behavior, construct prototype cognitive models, and subsequently
refine the models based on the match and mismatch between predicted and
observed behavior.

4.1. Equation Solving

We begin with an application of the tracing methods to equation solving
(Salvucci & Anderson, 1998). The equation-solving task involves solving
equations of the form ax/B= A/bby computing the result x = (4/a)(B/4). Our
study of equation solving emphasizes one use of tracing in particular: the clas-
sification of protocols into given model strategies. The study evaluates both
the accuracy and speed of the tracing methods in classifying protocols.

The equation-solving study tests the methods’ accuracy and speed in two
ways. The first way involves comparing their interpretations to the “correct”
interpretations as generated in an instructed-strategy paradigm. The in-
structed-strategy paradigm asks students to solve problems by using a particu-
lar strategy; this instructed strategy specifies the exact sequence of steps to
perform in solving the problem, including visual accesses (i.e., look at and en-
code this value), computational cognitive processes (e.g., divide 4 by a), and
motor actions (e.g., type the result). The instruction provides a “correct” an-
swer for interpreting the protocol—that is, we knew what strategy a student
should be using for a given protocol. By asking each tracing method to inter-
pret the protocols as one of the instructed strategies, we can compare their in-
terpretations to the correct strategies and determine how accurately they
perform.

The second way of testing the tracing methods entails comparing their per-
formance to that of expert human coders. Regardless of the power of the tracing
methods, it is reasonable to assume that they may not interpret all protocols ac-
curately because of user variability, data noise, or both. However, because the

66 SALVUCCI AND ANDERSON

tracing methods are intended to automate the analysis task typically performed
by humans, we are primarily interested in how accurately they interpret com-
pared with human coders. This comparison controls for protocols in the data set
that simply cannot be interpreted because of the student failing to perform the
instructed strategy or because of extreme data noise.

Experiment

In the experiment, students solved equations in five 1-hr sessions. In the
first session, students could solve the equations however they wished. In each
of the next four sessions, students were instructed to solve the equations by us-
ing one of the following strategies: read values left to right [a BA4 8], read values
left to right in pairs [a A B 8], read values right to left [6 A B d], and read values
right to leftin pairs [0 B A4 a]. In all strategies, intermediate results (4/a and B/b)
were computed as soon as possible. Note that students used only one strategy
in a particular session to avoid confusion between strategies. Our analysis in-
cludes the data from four students for a total of 369 trial protocols.

For this experiment and all others described in this article, we collected
eye-movement data by using an ISCAN, Inc.® (Burlington, MA)
RK726/RK520 eye tracker with a Polhemus FASTRAK™ head tracker. The
ISCAN eye tracker uses the pupil-center and corneal-reflection points to esti-
mate the angle of the left eye’s gaze. The head tracker determines the position
of the head and eye with respect to the visual field. The system collects eye and
head information to produce a stream of on-screen point-of-regard locations.
Data were sampled at arate of 120 Hz. Participants were seated approximately
30 in. from the computer display screen. Characters in the equation-solving
stimuli were approximately % in. in height (0.48° of visual angle) with approxi-
mately 1 in. (1.91° of visual angle) between them.

Protocol Analysis

To analyze the protocols by using the tracing methods, we require a process
model grammar that describes student behavior in the task. Fortunately, the
task specifies the model for us: The model is a straightforward translation of
the instructed strategies, as shown in Figure 11. The grammar incorporates
two additional features not included in the original strategies. First, Rule 1 (the
rule that fires first) produces a fixation on the start area, as students were re-
quired to do. Second, Rules 6 through 8 fixate any item or items as review
(Rule 6), fixate the result area and terminate (Rule 7), or simply terminate
(Rule 8). Because students were instructed to perform the strategies with equal
frequency, the rule probabilities are distributed evenly among rules for each
subgoal.

EYE-MOVEMENT ANALYSIS 67

Figure 71. Process model grammar for the constrained equation-solving task.

Number Rule Probability
1 start-trial - start compute-result 1
2 compute-result -~ a B A b type-result 1/4
3 compute-result -~ a 4 B b type-result 1/4
4 compute-result - 5 4 B a type-result 1/4
5 compute-result - 5 B A a type-result 1/4
6 type-result -~ any type-result 1/3
7 type-result - result 1/3
8 type-result - 1/3

Classifying Strategies

We first examine how the tracing methods classify protocols as one of the
given instructed strategies. To compare the methods’ performance to that of
human coders, we extracted a test set of the student protocols and had two cod-
ers classify each protocol as one of the instructed strategies. The test set com-
prised the last two protocols from each strategy and each participant (2 x 4 x 4
= 32 protocols total). The coders viewed the protocols as printed eye-move-
ment displays, with numbered fixations to clarify their temporal sequencing.
Both coders (a professor and graduate student in cognitive psychology) were
highly experienced in studying such printed displays and in developing cogni-
tive process models. Figure 12 shows the percentage agreement between the
tracing methods, human coders, and “correct” interpretations for the 32-pro-
tocol test set. The tracing methods achieved an accuracy of 87.5% to 93.7%,
whereas the human coders achieved an accuracy of 78.1% to 90.6%. Fixation
and point tracing achieved the highest accuracy of 93.7%. Interestingly, for
five of six cases, the agreement between the tracing methods and the human
coders was as great as or greater than the agreement between the human cod-
ers. These results demonstrate that, on average, the tracing algorithms inter-
preted the protocols at least as accurately as the human coders. Not
surprisingly, the tracing methods interpreted the protocols in significantly less
time: As Figure 12 shows,3 the tracing methods averaged 1 sec or less per pro-
tocol, whereas the human coders averaged approximately 1 min per protocol.

Asabetter comparison among the tracing methods themselves, we also can
compare the tracing methods’ interpretations for the entire protocol data set.

3. Allreported times for the tracing methods were collected on a 200 MHz Power
Macintosh, and times for fixation and point do not include the (small) one-time cost
of building the tracer HMM.

68 SALVUCCI AND ANDERSON

Figure 12. Percentage agreement and interpretation time per protocol for the tracing
methods, human coders, and “correct” interpretations in the constrained equa-
tion-solving task.

Target Fixation Point Human 1 Human 2 Correct
Target — 84.4 84.4 81.2 90.6 87.5
Fixation — 93.7 81.2 84.4 93.7
Point — 78.1 90.6 93.7
Human 1 — 81.2 78.1
Human 2 — 90.6
Time (sec) .038 .045 1.01 67.5 60.0

Target tracing interpreted 91.9% of the protocols correctly, fixation tracing
93.2%, and point tracing 94.3%. These results reflect the fact that as the meth-
ods use more information for tracing (see Figure 10), their accuracy increases
accordingly. We should note that we cannot expect 100% accuracy from any
method: The inherent noise and human variability in certain protocols simply
preclude correct interpretation, as attested by the accuracy of the human cod-
ers. Overall, the results of the constrained study demonstrate that the tracing
methods do indeed form reliable and accurate interpretations of eye-move-
ment protocols.

4.2. Reading

The second application examines reading, a domain in which eye move-
ments have received a great deal of attention in both empirical work (e.g., Just
& Carpenter, 1984; McConkie & Rayner, 1976; O’Regan, 1981) and model-
ing work (e.g., Just & Carpenter, 1980; Legge, Klitz, & Tjan, 1997; Reichle,
Pollatsek, Fisher, & Rayner, 1998). The study and modeling of eye movements
in reading typically have addressed two types of information in the data: tem-
poral information in the form of fixation durations (and related measures) and
spatial information in the form of fixation or gaze locations. Although these
types of information provide a good picture of reading behavior, research in
reading has paid less attention to another important aspect of eye movements:
sequential information. It may seem surprising at first that sequential informa-
tion is an important component of eye movements in reading; one might have
the impression that the eye simply moves left to right with few interesting devi-
ations. On the contrary, this sequential information can be quite complex.
When considering only left-to-right eye movements at the word level, the eye
sometimes refixates words or skips some words entirely. These possibilities
produce interesting transitions where, from a given word, the eye may move
to the same word, the next word, or any subsequent word with some likeli-

EYE-MOVEMENT ANALYSIS 69

hood. Sequential information nicely complements temporal and spatial infor-
mation and provides a fuller picture of human reading behavior.

The reading study emphasizes two uses of tracing: quantitative evaluation
of process models and cleaning up noisy eye-movement data for subsequent
data analysis. The first use takes advantage of the mismatch score (i.e., the
goodness-of-fit measure) provided by tracing and compares two existing pro-
cessmodels of reading: E-Z Readers 3 and 5 (Reichle etal., 1998). E-Z Readers
3 and 5 represent two of five E-Z Reader models developed to predict eye
movements in reading at the word level. Reichle et al. fit all five E-Z Reader
models to several aspects of a previously collected data set (Schilling, Rayner,
& Chumbley, 1998), specifically to fixation durations and probabilities on
words of different frequencies. E-Z Readers 3 and 5 were found to provide the
best fits with respect to these measures. The essential difference between the
two models was that E-Z Reader 5 included an assumption that words farther
in the periphery are more difficult to process. However, because both models
provided equally good fits to these measures, Reichle et al. could rely only on
qualitative examination to discern which model was indeed the more accurate
model of reading behavior. We demonstrate how tracing facilitates quantita-
tive comparison of the two models.

The second use of tracing emphasized in the reading study is “cleaning up”
noisy eye-movement data to facilitate later analyses. The reading experiment
described here is a replication of a previous experiment, which we term the
“SRC” experiment after the authors (Schilling et al., 1998). Although the origi-
nal SRC data were available for use, they included only duration, word posi-
tion, and letter position of each fixation; they did not include the
millisecond-by-millisecond raw data required for the tracing algorithms. The
experiment in this study, which we term the “New” experiment, gathers these
raw data and, at the same time, replicates the experimental results with a dif-
ferent eye tracker and subject population. However, the eye tracker used in
the New experiment was somewhat less accurate than that used in the SRC ex-
periment (accuracies of %2 to 1° for New vs. % ° for SRC) and had a worse tem-
poral resolution (sampling at 120 Hz for New vs. 400 Hz for SRC).
Nevertheless, as we later see, tracing helps make sense of the less accurate data
where naive algorithms produce inconclusive results.

The reading tasks and the equation-solving tasks have an important differ-
ence that concerns the possible strategies in the two tasks. For equation solv-
ing, the number of potential strategies that students could employ is relatively
low, allowing us to enumerate every strategy fully in the model grammar. For
reading, the number of potential strategies—that is, possible sequences of
word fixations—can be extremely high; for instance, for left-to-right strategies
on a 10-word sentence in which each word may be fixated or skipped, there
may be up to 210=1,024 strategies. It is generally infeasible to enumerate this

70 SALVUCCI AND ANDERSON

many strategies fully in a model grammar. Thus, we must reduce the full gram-
mar to a more feasible grammar that, although it contains less information, in-
corporates as much of the important aspects of the original grammar as
possible; for instance, we use a “first-order” grammar in which one state repre-
sents each word and the transitions between states represents eye movements
between words. The reading domain and the eye-typing domain in the next
section provide good illustrations of how this reduction can be realized.

Because of the nature of the reduced model grammars, the reading study
uses only the HMM-based tracing methods—namely, fixation tracing and
point tracing. Target tracing, due to its basis in sequence matching, requires
that grammars be expanded into lists of every possible strategy (given the algo-
rithm presented here); even with a threshold on the number of cycles or length
of strategies, such a process would generate an infeasible strategy list for the re-
duced reading grammars. Thus, although target tracing provided good if not
excellent results in the equation-solving studies, we cannot employ it at all in
the reading study. This study, like the eye-typing study, illustrates how the
novel HMM:-based tracing methods facilitate analysis even for domains in
which sequence-matching methods are entirely inapplicable.

Experiment

The reading experiment is a replication of the original SRC experiment
(Schilling etal., 1998). In this experiment, participants read 48 medium-length
(8- to 14-word) sentences and occasionally answered questions to ensure that
they had processed the information. Our analysis includes data from 16 stu-
dents, all of whom were native English speakers.

Protocol Analysis

As mentioned, enumerating every possible strategy (i.e., fixation sequence)
for each sentence would create infeasibly large model grammars. Thus, it is
necessary to build smaller model grammars that capture interesting aspects of
the models’ behavior while eliminating much of the unnecessary or less inter-
esting information. A straightforward way to build such grammars is to trans-
late the predictions of the models to first- and second-order grammars—that is,
grammars that describe only the first- or second-order transitions between
words. These grammars assume that the next word to be fixated depends only
on the current word (for a first-order grammar) or the current and previous
word (for a second-order grammar). Although the grammars clearly have less
information than one that contains all enumerated strategies, they embody the
most important sequential information in the models and provide an excellent
starting point for tracing the reading data.

EYE-MOVEMENT ANALYSIS 71

The first- and second-order grammars were generated from simulations of
the E-Z Reader models. Both E-Z Reader models comprise two primary com-
ponent processes: lexical access, which checks the familiarity of a word and
then retrieves its semantic representation, and saccade programming and exe-
cution, which plans when and where the eyes move and then executes the
movement (under certain conditions). During a simulation run, E-Z Reader
begins a familiarity check on the first word and then, when the check is com-
pleted, initiates full lexical access of the word as well as a saccade program to
the next word. Depending on how the subsequent processes run, the pro-
grammed eye movement sometimes runs to completion and executes a
saccade; however, the program is sometimes canceled by a subsequent pro-
gram to another word. Thus, E-Z Reader provides an account of the indirect
relation between the movement of attention (i.e., lexical processing) and the
movement of the eyes. Consult Reichle etal. (1998) for a complete description
of the simulation and running of the E-Z Reader models.

Simulations of the E-Z Reader models were used to generate the first- and
second-order grammars as follows. First, for each sentence, the models were
run for 300 simulations, and the resulting fixation sequences were collapsed
into first- and second-order transitions; simulations with regressions to previ-
ous words were discarded. Because the E-Z Reader models start by fixating the
first word, the model grammars assume that the first fixation always occurs on
this word. The transitions for the first-order grammar comprised first-order
transitions from each word to itself and every word to its right. The transitions
for the second-order grammar comprised first-order transitions from the first
word to all other words and second-order transitions from a pair of words to
the second word and words to its right. Probabilities for the transitions were
derived directly from the model simulations; in other words, each transition
probability represented the number of times the transition occurred divided
by the number of opportunities in which the transition could occur. This entire
process results in the creation of a first- and second-order grammar for each of
the 48 sentences.

Comparing Models

We first explore how the tracing methods provide a quantitative compari-
son of E-Z Readers 3 and 5 with respect to sequential information. By tracing
the protocols with the first- and second-order grammars for each model, the
tracing methods provide the mismatch score between each grammar and the
observed data. Figure 13 shows the average mismatch scores per sentence for
all grammars and for fixation and point tracing. In all cases, E-Z Reader 5 ex-
hibits a lower mismatch score and thus provides a better fit to the data. Re-
peated measures analyses of variance show that the differences are

72 SALVUCCI AND ANDERSON

Figure 13. Mismatch scores for the first-order and second-order reading models using
fixation tracing and point tracing.

First-Order Grammar Second-Order Grammar
Fixation Point Fixation Point
EZR 3 EZR 5 EZR3 EZR5 EZR3 EZR 5 EZR3 EZR 5
11.824 11.780 13.961 13.959 11.913 11.851 13.962 13.959

Note. Scoresare notdirectly comparable between methods or grammars. EZR = E-Z Reader.

moderately significant for the first-order grammar with point tracing (p <.1)
and very significant for all other grammars and methods (»<.0001). The dif-
ferences are generally quite small because the models have only one impor-
tant difference: E-Z Reader 5 posits that words farther in the periphery are
more difficult to process, and E-Z Reader 3 does not. This distinction makes
transitions to farther words slightly less likely for E-Z Reader 5 than for E-Z
Reader 3, leading to small differences in the predictions of the models and thus
in the goodness-of-fit scores. Nevertheless, even these small differences hold
for almost all individual readers, producing significant within-readers effects.
Note that scores are not directly comparable between methods, because of the
different fixation HMMs, or between grammars, because of lower transition
probabilities in the second-order grammar. This quantitative comparison of
model fit thus supports Reichle et al.’s (1998) qualitative argument that E-Z
Reader 5 is the better model of reading behavior.

Cleaning Data

Another interesting line of examination illustrates how tracing cleans up
the data and facilitates analysis of temporal measures. In their original treat-
ment of E-Z Reader, Reichle et al. (1998) examined the SRC data with three
measures: gaze duration, or the sum of durations of consecutive fixations on a
word; first-fixation duration, or the duration of only the first fixation on a word,;
and single-fixation duration, or the duration of only single fixations on a word.
Figure 14 shows their SRC results for five classes of words where Class 5 words
are most frequent and Class 1 words are least frequent. The overall result was
that readers spent less time on more frequent words (i.e., with a higher class)
than on less frequent words. To gather analogous results from the New data,
we first analyzed these data without tracing by simply mapping fixations to the
nearest words. With this analysis, as Figure 14 shows, the “Untraced New”
data failed to manifest these effects due primarily to the noisier eye-movement
data. Figure 14 illustrates this point by showing the correlation between the

EYE-MOVEMENT ANALYSIS 73

Figure 4. Mean gaze durations for the SRC data, Untraced New data, and Traced New data
(in milliseconds).

Gaze First Fixation Single Fixation
Untraced Traced Untraced Traced Untraced Traced
Class SRC New New SRC New New SRC New New
1 293 276 251 248 228 226 265 247 240
2 272 253 232 234 220 212 249 235 222
3 256 243 230 228 223 218 243 236 227
4 234 242 225 223 227 216 235 240 223
5 214 232 208 208 224 205 216 230 206
R .93 .96 — 22 .87 — .82 .95
Span 79 44 43 40 8 21 49 17 34

Note. The Traced New data were analyzed with fixation tracing and the first-order grammar. R =
correlation between the SRC data and the New data; Span=the difference between the minimum
and maximum gaze durations.

SRC and Untraced New results and the span of each result as defined by the
difference between the smallest and largest duration. Although the Untraced
New gaze durations closely resembled the SRC durations with a high correla-
tion and reasonable span, the first-fixation durations did not match, and the
single-fixation durations matched only to a lesser degree.

Tracing considerably cleans up the New data and provides a much closer
match with the results of the SRC experiment. The traced results for the New
data asinterpreted by fixation tracing and the first-order grammar are denoted
in Figure 14 as Traced New. In essence, tracing assigns some fixations to words
other than the nearest words given the statistics of the model; for instance, if a
fixation lies between two words, tracing would assign the fixation to the more
likely of the two words (e.g., the word with the lower frequency of occurrence).
The gaze duration results changed little, but the results for the other two mea-
sures were improved significantly in both the correlations and the size of the
spans. These results, like the equation-solving results in the previous section,
show how tracing facilitates understanding of temporal information given se-
quential model predictions. It may seem in some sense that we have simply
massaged the data to produce the desired results; after all, tracing influences
interpretation of the data according to the given model. However, we empha-
size that tracing uses only sequential information in its interpretations; there is
no a priori reason that the temporal aspects of the traced protocols should cor-
relate better with the SRC data. The fact that the traced results match closely
with the SRC results provides indirect but sound evidence that the tracing
methods form accurate interpretations of the data.

74 SALVUCCI AND ANDERSON

4.3. Eye Typing

The third application explores the use of the tracing methods in an intelli-
gent user interface (Salvucci, 1999a). In particular, we use a type of gaze-based
interface in which users communicate with a computer by means of their eye
movements—in our case, an “eye-typing” interface in which users type char-
acters by looking at characters on an on-screen keypad (see Figure 1b). Re-
searchers recently have developed gaze-based interfaces for a wide variety of
tasks, including word processing (e.g., Frey, White, & Hutchinson, 1990; Gips,
1998; Hutchinson et al., 1989; Stampe & Reingold, 1995), operating system
control (Salvucci & Anderson, 2000), musical composition (Gips, 1998), and
control of robotic wheelchairs (Yanco, 1998). Although gaze-based interfaces
may appear to have little in common with the previous two domains of equa-
tion solving and reading, the domains in fact share a critical commonal-
ity—the need to interpret human actions by mapping actions to the thoughts
that produced them. However, gaze-based interfaces must interpret actions
online and in real time, making them an excellent application domain in
which to test both the speed and accuracy of tracing.

The eye-typing study emphasizes the use of the tracing methods to infer in-
tent in a real-time interface and to provide more efficient, user-friendly user in-
put. Previous eye-typing systems (e.g., Frey et al, 1990; Gips, 1998;
Hutchinson et al., 1989; Stampe & Reingold, 1995) have enjoyed good suc-
cess, enabling physically disabled users to type using their eye movements
alone. However, previous systems used a fairly simple scheme to interpret eye
movements: The user had to fixate precisely over a letter for some minimum
time, or dwell threshold, for the letter to be typed. This scheme led to several
required restrictions—such as large spacing between letters and long dwell
thresholds—that facilitated interpretation but also limited their usability and
design. This study examines a prototype eye-typing interface that minimizes
these restrictions but, as expected, makes the interpretation of user input ex-
tremely difficult. The study uses this interface to explore how difficult interpre-
tation becomes when restrictions are removed and how the tracing methods
can assist in interpreting this input. The study then investigates the speed-ac-
curacy tradeoffs of the various tracing methods and discusses their applicabil-
ity to real-time interfaces.

Experiment

The eye-typing experiment involved typing words using the eyes on an
on-screen keyboard, as shown in Figure 1b. For each trial, the user read the
given word, typed the word by fixating its letters in order, and ended the trial
by fixating the space bar. Repeated letters were typed by first fixating the letter

EYE-MOVEMENT ANALYSIS 75

and then fixating a special Repeat key at the bottom-right corner of the key-
board. On completion of the trial, the interface interpreted the trial protocol
by using the full model and 12-word vocabulary (described subsequently) and
displayed its interpretation for 1 sec in the space bar box. (Note that although
the interface used only this model for online interpretation, the subsequent
discussion describes offline interpretation using all the various models.) Seven
users typed 12 different words four times each for a total of 336 trials.

Protocol Analysis

As for the reading domain, the eye-typing allows for several possible model
grammars that incorporate differing amounts of sequential information. Three
types of process models were used: a full model that enumerated every word as
a sequence of letters, a second-order model that included only second-order
transitions, and a first-order model with first-order transitions. These models en-
able tracing to make use of the sequential information in the vocabulary; for in-
stance, after seeing a fixation on @, the models would bias interpretation to favor
interpreting the next fixation as U. In addition, we created models for three vo-
cabularies of 12, 100, and 1,000 words, each of which included the 12 original
typed words. The different model grammars and vocabularies allow us to ex-
plore the various speed-accuracy tradeoffs that arise with the tracing methods.

Inferring Intent Online

Figure 15a shows the percentage accuracy with which fixation tracing inter-
preted user protocols for each model. The figure includes results for each of
the three models and for three vocabulary sizes; for comparison, it also in-
cludes results for a “no-model” condition in which fixations simply map to the
nearest letter. In addition, because only the full model guarantees an interpre-
tation that maps to a vocabulary word, we performed a sequence match on the
no-model, first-order, and second-order interpretations to translate them to
the nearest vocabulary word. As expected, models with more sequential infor-
mation outperformed models with less information. The full model was highly
accurate for all vocabularies. The second-order and first-order models showed
good accuracy for the smaller vocabularies but degraded somewhat for larger
vocabularies, whereas accuracy for no-model was worst for all vocabularies.
Figure 15b shows the average time needed to interpret one protocol, in milli-
seconds. The accuracy of the more sophisticated models goes hand in hand
with slower performance; these models are larger and thus require more time
to interpret protocols. With one exception (the full model of the 1,000-word
vocabulary), tracing interprets the protocols in real time—that is, faster than
the time taken to generate the protocol. These times can be improved signifi-

76 SALVUCCI AND ANDERSON

Figure 15. Eye-typing results showing (a) interpretation accuracy and (b) interpreta-
tion time (in milliseconds) for the full, second-order, and first-order model grammars
and the no-model condition.

(a)

Vocabulary Size Full Second-Order First-Order No Model
12 .99 .98 .94 .89
100 .99 91 .83 .79
1,000 .95 75 74 .70

(b)

Vocabulary Size Full Second-Order First-Order No Model
12 124 106 70 58
100 867 483 157 136
1,000 9,104 1,771 866 883

Note. All values represent results derived by using fixation tracing and subsequent sequence
matching as described in the text.

cantly by using common techniques such as a beam search; Salvucci (1999b)
provided a detailed discussion of these techniques and their results.

These results have two important implications. First, the tracing methods
clearly form accurate interpretations of the data; as for equation solving, we have
directevidence that the methods’ interpretations correspond to known user strat-
egies (i.e., the given words to be typed). Second, the tracing methods can provide
agreat deal of flexibility for designing and implementing online interpretation al-
gorithms for use in intelligent user interfaces. Whereas existing methods primar-
ily use the simplest algorithm (our no-model condition) for interpretation, the
tracing methods allow for a wide range of possible models that provide different
speed-accuracy characteristics. Thus, developers can trade off speed and accu-
racy as needed to achieve a good balance for a particular system.

Facilitating User Input

The inference of user intentions goes hand in hand with the facilitation of
user input: By producing intelligent interpretations of user actions, an inter-
face can more easily understand user intentions and thus provide faster and
more accurate responses to these actions. We compared the average typing
time in our eye-typing system to those of previous systems to evaluate whether
our tracing-enhanced interface allowed for better user performance. For our
system, users required 821 msec per character on average to eye-type the
words; the fastest user averaged 430 msec, whereas the slowest user averaged

EYE-MOVEMENT ANALYSIS 77

1,255 msec. These times are faster than those reported for other eye-typing
systems (e.g., Hutchinson et al., 1989, 85 min/page; Stampe & Reingold, 1995,
1,870 msec/character). Users also showed improvement over the two halves
of the experiment, averaging 870 msec in the first half and 772 msec in the sec-
ond half. Thus, although our minimally restrictive interface increased the diffi-
culty of interpreting protocols, the tracing methods compensated for this
difficulty and allowed users to type at their desired speed without the need for
restrictions such as dwell times and widely spaced keyboards.

4.4. Summary

The three domain applications provide arigorous test for the tracing methods
and illustrate how the tracing methods facilitate a number of aspects of protocol
analysis and cognitive model development. The equation-solving and eye-typ-
ing domains provide direct evidence that the tracing methods generate accurate
interpretations by comparing theirinterpretations toknown “correct” interpreta-
tions. The reading and equation-solving domains provide indirect evidence of
the methods’ accuracy by showing how they facilitate higher level analysis of
temporal aspects of the data. The eye-typing and equation-solving domains dem-
onstrate that the tracing methods can produce interpretations much faster than
human experts and in real time. The equation-solving domain illustrates tracing
with a small number of enumerated strategies; the other two domains illustrate
tracing with reduced grammars that represent a large number of strategies. Thus,
the domains nicely complement one another and provide a good picture of how
the tracing methods benefit different types of applications.

5. GENERAL DISCUSSION

The major contribution of this article is a class of tracing methods for interpret-
ing eye-movement protocols with process models. The domain applications have
shown that the tracing methods interpret eye movements as accurately as human
experts in significantly less time. They also demonstrate the flexibility with which
researchers can use different methods and process models to best suit their needs.
Overall, the tracing methods, as well as tracing methodology in general, serve asa
powerful tool that facilitates both offline analysis and modeling of user behavior
and online interpretation of user intentions.

5.1. Tracing in HCI Research

Although we have discussed a number of uses for tracing in the context of
the application domains, it is worthwhile to review the most important uses for
research in HCI. Figure 16 summarizes these uses as well as their correspon-

78 SALVUCCI AND ANDERSON

Figure 76. Illustrative uses for the tracing methods and their correspondence with the
application domains.

Uses Equation Solving Reading Eye Typing
1. Classifying strategies Vv v

2. Coding protocols + + +

3. Developing cognitive models +

4. Comparing models + Vv

5. Cleaning data + v

6. Inferring intent online v

7. Facilitating input v

Note. Check marks (V) represent uses and applications described in this article; plus signs (+)
represent additional uses and applications described in Salvucci (1999b).

dence with the studied domains; the figure includes both correspondences
that are described in this article (V) as well as additional correspondences real-
ized and described elsewhere (+), particularly in Salvucci (1999b).

The first two uses of eye-movement tracing in Figure 16 address the offline
interpretation of protocols for rigorous study and understanding of behavior.
Strategy classification (Use 1) assigns protocols to one of a set number of
model strategies. Protocol coding (Use 2), a more generalized form of strategy
classification, maps observed eye movements to predicted fixations and
subgoals as described by the model. The classified strategies or hierarchies of
predicted subgoals enable a variety of subsequent analyses; for instance, they
may be used to study strategy frequencies, strategy adaptation, metastrategies,
and between-user and within-user variability. The automated nature of the
tracing methods enables such analyses to encompass a much larger set of pro-
tocols than hand classification or coding could allow.

Use 3 involves tracing for the purposes of developing a cognitive model of
user behavior. As described earlier, several researchers, most notably Ritter
and Larkin (1994), have formalized a methodology for developing models by
using an iterative trace-based approach. Clearly, the eye-movement tracing
methods described here fit directly into this framework, allowing the same
type of development for models of eye movements and visual attention. We
ourselves have developed a model of behavior in an “unconstrained” equa-
tion-solving task in which students solve equations however they choose. The
unconstrained task provided no a priori process model like the instructed
strategies in the described equation-solving task. To develop such a model, we
began with an exploratory analysis of the data, using tracing to identify fixa-
tions and map them to the nearest targets (i.e., with no model bias). This analy-
sisled to an initial model of behavior that we iteratively evaluated and refined:
At each stage of the iteration, we traced the data with the model, determined

EYE-MOVEMENT ANALYSIS 79

where the model failed to predict behavior, and refined the model accord-
ingly. The final model enabled a higher level analysis that showed a significant
effect of computation on students’ gaze durations; this analysis was only possi-
ble because of the protocol coding provided by tracing.

The next two uses relate closely to model development and higher level
analysis. Tracing allows for model comparison (Use 4) by providing a mis-
match score, or goodness-of-fit measure, that describes how well the model
predicts the data. As we did in the reading study, comparing mismatch scores
for different models gives a quantitative comparison of the models with re-
spect to sequential information—that is, how well the different models predict
the occurrences of fixations and transitions between fixations. Tracing also
cleans up data (Use 5) to facilitate higher level analysis and thus obtain a more
accurate sense of both the behavior in the task and the model’s accuracy in ac-
counting for this behavior. Like the unconstrained equation-solving analysis
and the reading study described earlier, tracing alleviates noise by using se-
quential information such that analysis of other measures, such as temporal in-
formation, more accurately reflects behavior.

The final two uses address tracing in the context of intelligent user inter-
faces. Because of its speed and accuracy, tracing can provide intelligent inter-
faces with real-time estimations of user intent (Use 6); that is, tracing
determines the user’s intentions based on a noisy input signal that represents
the user’s actions. As opposed to the offline nature of coding and model devel-
opment, online tracing is essential for user interfaces that react to user actions
as they occur. For instance, intelligent tutoring systems typically trace student
actions to infer their current state of knowledge. In such systems, eye move-
ments help disambiguate problem-solving strategies that cannot be inferred
solely from more typical data such as keystrokes (Gluck, 1999). As another ex-
ample, gaze-based user interfaces such as our eye-typing interface allow users
to execute commands with explicit or implicit eye movements. As a conse-
quence of accurate inference of user intent, tracing facilitates user input (Use 7)
by minimizing interface restrictions and allowing the user to control the inter-
face more freely. The eye-typing study demonstrates that, although allowing
freer input can lead to serious difficulties in interpretation, the tracing methods
alleviate these difficulties and perform as well as or better than existing inter-
pretation techniques. Thus, better eye-movement tracing algorithms enable
intelligent interfaces to better understand user intentions and thus provide
more efficient, usable interaction.

5.2. Method Comparison and Recommendations

Based on our experiences with the tracing methods, we can offer a general
comparison of their advantages and disadvantages along with recommenda-

80 SALVUCCI AND ANDERSON

tions for their use. Target tracing provides fast interpretations with reasonable
accuracy and robustness to protocol noise. Its primary advantage is the ease in
which a user can understand and implement the algorithm. Its accuracy, al-
though not as good as the other algorithms, is likely adequate for many simple
applications. Target tracing has three major disadvantages that hinder its use
in practical applications. First and foremost, the algorithm cannot handle com-
plex process models with many possible enumerated strategies. Hierarchical
or circular process models with even a small number of rules can generate
enough enumerated strategies to make target tracing infeasible. Second, target
tracing cannot incorporate rule probabilities in any systematically meaningful
way, forcing process models to consider every strategy equally likely. Third,
target tracing produces a fairly coarse mismatch score that can have only inte-
ger values. Nevertheless, target tracing is a more than adequate tracing algo-
rithm that should serve well in simple applications.

Fixation tracing generates more accurate and robust interpretations than
target tracing with only a minor loss of speed. In addition, unlike target tracing,
fixation tracing can handle hierarchical and circular process models and strat-
egies of different probabilities. Its only real disadvantage, the difficulty of im-
plementing the algorithm, can be alleviated through the use of a public or
commercial package for HMM construction and decoding. In all, fixation
tracing stands out as the most powerful and usable of the three tracing algo-
rithms. Its balance of speed and accuracy, plus its flexibility in acceptable pro-
cess models, makes it an excellent choice for many applications.

Point tracing is the least efficient of the tracing algorithms but also provides
the best accuracy, with reservations. Although it allows the process model to in-
fluence all aspects of tracing, its major difference with fixation tracing—the abil-
ity of the model to influence fixation identification—does not seem to have a
major impact on tracing; in reality, fixation identification is often fairly robust,
and thus sequential information in a process model helps very little in the pro-
cess. In fact, this difference sometimes causes a problem with finding incidental
fixations because point tracing is more likely to identify them as saccades and
not count them as incidental fixations. Thus, the extra predictive power of point
tracing does not significantly improve its performance and sometimes may even
degrade the usefulness of its resulting traces. Overall, fixation tracing seems to
serve best as the tracing method of choice for most applications.

NOTES

Background. This article is based on Dario Salvucci’s dissertation research under
the direction of John Anderson.

EYE-MOVEMENT ANALYSIS 81

Acknowledgments. We thank Ken Koedinger, Herb Simon, Keith Rayner, Erik
Reichle, Scott MacKenzie, the ACT-R research group, and three anonymous re-
viewers for many insightful comments and informative discussions in the develop-
ment of this research.

Support. This work was supported in part by National Science Foundation Grant
CDA-9720359 and Office of Naval Research Grant N00014-96-1-0491.

Authors’ Present Addresses. Dario Salvucci, Department of Math and Computer
Science, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104. E-mail:
salvucci@drexel.edu. John Anderson, Department of Psychology, Carnegie
Mellon University, Pittsburgh, PA 15213. E-mail: ja@cmu.edu.

HCI Editorial Record. First manuscript received April 12, 2000. Accepted by
Scott MacKenzie. Final manuscript received September 29, 2000. — Editor

REFERENCES

Aaltonen, A., Hyrskykari, A., & Riihd, K. (1998). 101 spots, or how do users read
menus? Human Factors in Computing Systems: CHI’98 Conference Proceedings,
132-139. New York: ACM.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associ-
ates, Inc.

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R. (1995). Cognitive tu-
tors: Lessons learned. Journal of the Learning Sciences, 4, 167-207.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Lawrence Erlbaum Associates, Inc.

Bhaskar, R., & Simon, H. A. (1977). Problem solving in semantically rich domains:
An example from engineering thermodynamics. Cognitive Science, 1, 193-215.
Byrne, M. D., Anderson, J. A., Douglass, S., & Matessa, M. (1999). Eye tracking the
visual search of click-down menus. Human Factors in Computing Systems: CHI’'99

Conference Proceedings, 402-409. New York: ACM.

Cabiati, C., Pastormerlo, M., Schmid, R., & Zambarbieri, D. (1983). Computer anal-
ysis of saccadic eye movements. In R. Groner, C. Menz, D. T. Fisher, & R. A.
Monty (Eds.), Eye movements and psychological functions: International views (pp.
19-29). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Card, S., Moran, T., & Newell, A. (1983). The psychology of human—computer interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Carpenter, P. A, & Just, M. A. (1978). Eye fixations during mental rotation. In J. W.
Senders, D. F. Fisher, & R. A. Monty (Eds.), Eye movements and the higher psychologi-
cal processes (pp. 115-133). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Crosby, M. E., & Wesley, W. (1991). Using eye movements to classify search strate-
gies. Proceedings of the Human Factors and Ergonomics Society 35th Annual Meeting,
1476-1480. Santa Monica, CA: Human Factors and Ergonomics Society.

Edwards, G. (1998). A tool for creating eye-aware applications that adapt to changes
in user behavior. Proceedings of ASSETS 98, 67-74. New York: ACM.

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review,
87, 215-251.

82 SALVUCCI AND ANDERSON

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cam-
bridge, MA: MIT Press.

Erkelens, C. J., & Vogels, I. M. L. C. (1995). The initial direction and landing posi-
tion of saccades. In J. M. Findlay, R. Walker, & R. W. Kentridge (Eds.), Eye move-
ment research: Mechanisms, processes, and applications (pp. 133-144). New York:
Elsevier Science.

Fisher, C. (1991). Protocol analyst’s workbench: Design and evaluation of computer-aided
protocol analysis. Unpublished doctoral dissertation, Department of Psychology,
Carnegie Mellon University, Pittsburgh, PA.

Flagg, B. N. (1978). Children and television: Effects of stimulus repetition on eye ac-
tivity. In J. W. Senders, D. F. Fisher, & R. A. Monty (Eds.), Eye movements and the
higher psychological processes (pp. 279-291). Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates, Inc.

Frederiksen, J. R., & White, B. Y. (1990). Intelligent tutors as intelligent testers. In N.
Frederiksen, R. Glaser, A. Lesgold, & M. G. Shafto (Eds.), Diagnostic monitoring of
skill and knowledge acquisition (pp. 1-25). Hillsdale, NJ: Lawrence Erlbaum Associ-
ates, Inc.

Frey, L. A., White, K. P., & Hutchinson, T. E. (1990). Eye-gaze word processing.
IEEE Transactions on Systems, Man, and Cybernetics, 20, 944-950.

Fuchs, A. F. (1971). The saccadic system. In P. Bach-y-Rita, C. C. Collins, & J. E.
Hyde (Eds.), The control of eye movements (pp. 343-362). New York: Academic.

Garlick, S., & VanLehn, K. (1987). CIRRUS: An automated protocol analysis tool (Tech-
nical Report 6). Pittsburgh, PA: Department of Psychology, Carnegie Mellon Uni-
versity.

Gips, J. (1998). On building intelligence into EagleEyes. In V. O. Mittal, H. A.
Yanco, J. Aronis, & R. Simpson (Eds.), Assistive technology and artificial intelligence
(pp- 50-58). Berlin: Springer-Verlag.

Gluck, K. A. (1999). Eye movements and algebra tutoring. Unpublished doctoral disser-
tation, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA.

Goldberg, J. H., & Kotval, X. P. (1998). Computer interface evaluation using eye
movements: Methods and constructs. International Journal of Industrial Ergonomics,
24, 631-645.

Goldberg, J. H., & Schryver, J. C. (1995). Eye-gaze determination of user intent at
the computer interface. In J. M. Findlay, R. Walker, & R. W. Kentridge (Eds.), Eye
movement research: Mechanisms, processes, and applications (pp. 491-502). New York:
Elsevier Science.

Goldberg, J. H., Zak, R. E., & Probart, K. (1999). Visual search of food nutrition la-
bels. Human Factors, 41, 425-437.

Harris, C. M., Hainline, M., Abramov, 1., Lemerise, E., & Camenzuli, C. (1988). The
distribution of fixation durations in infants and naive adults. Vision Research, 28,
419-432.

Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic
word problems: Evidence from students’ eye fixations. Journal of Educational Psy-
chology, 84, 76-84.

Hoffman, J. E. (1998). Visual attention and eye movements. In H. Pashler (Ed.), 4¢-
tention (pp. 119-153). Hove, England: Psychology Press.

EYE-MOVEMENT ANALYSIS 83

Huang, X. D., Ariki, Y., & Jack, M. A. (1990). Hidden Markov models for speech recogni-
tion. Edinburgh, Scotland: Edinburgh University Press.

Hutchinson, T. E., White, K. P., Martin, W. N., Reichert, K. C., & Frey, L. A. (1989).
Human-computer interaction using eye-gaze input. JEEE Transactions on Systems,
Man, and Cybernetics, 19, 1527-1534.

Jacob, R. J. K. (1991). The use of eye movements in human-computer interaction

techniques: What you look at is what you get. ACM Transactions on Information Sys-
tems, 9, 152-169.

Jacob, R.J. K. (1995). Eye tracking in advanced interface design. In W. Barfield & T.
A. Furness (Eds.), Virtual environments and advanced interface design (pp. 258-288).
New York: Oxford University Press.

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87, 329-354.

Just, M. A., & Carpenter, P. A. (1984). Using eye fixations to study reading compre-
hension. InD. E. Kieras & M. A. Just (Eds.), New methods in reading comprehension re-
search (pp. 151-182). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individ-
ual differences in working memory. Psychological Review, 99, 122-149.

Karsh, R., & Breitenbach, F. W. (1983). Looking at looking: The amorphous fixation
measure. In R. Groner, C. Menz, D. F. Fisher, & R. A. Monty (Eds.), Eye movements
and psychological functions: International views (pp. 53-64). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Kieras, D. E., & Meyer, D. E. (1997). A computational theory of executive cognitive
processes and multiple-task performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3-65.

Kowler, E. (1990). The role of visual and cognitive processes in the control of eye
movement. In E. Kowler (Ed.), Eye movements and their role in visual and cognitive pro-
cesses (pp. 1-70). New York: Elsevier Science.

Kowler, E., Martins, A. J., & Pavel, M. (1984). The effect of expectations on slow
oculomotor control IV: Anticipatory smooth eye movements depend on prior tar-
get motions. Vision Research, 24, 197-210.

Kruskal, J. B. (1983). An overview of sequence comparison: Time warps, string ed-
its, and macromolecules. SIAM Review, 25, 201-234.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for gen-
eral intelligence. Artificial Intelligence, 33, 1-64.

Lallement, Y. (1998). A hierarchical ensemble of decision trees applied to classifying
data from a psychological experiment. Proceedings of the Eleventh International
FLAIRS Conference, 230-234. Sanibel Island, FL: AAAI Press.

Lee, F.J., & Anderson, J. R. (2001). Does learning of a complex task have to be com-
plex? A study in learning decomposition. Cognitive Psychology, 42, 267-316.

Legge, G.E,, Klitz, T. S., & Tjan, B. S. (1997). Mr. Chips: Anideal-observer model of
reading. Psychological Review, 104, 524-553.

Lohse, G. L. (1997). Consumer eye movement patterns on yellow pages advertising.
Journal of Advertising, 26, 61-73.

Lohse, G. L., & Johnson, E.J. (1996). A comparison of two process tracing methods
for choice tasks. Organizational Behavior and Human Decision Processes, 68, 28—-43.

84 SALVUCCI AND ANDERSON

Lowerre, B., & Reddy, R. (1980). The HARPY speech understanding system. In W.
Lea (Ed.), Trends in speech recognition (pp. 340-346). Englewood Cliffs, NJ: Prentice
Hall.

McConkie, G. W., & Rayner, K. (1976). Asymmetry of the perceptual span in read-
ing. Bulletin of the Psychonomic Society, 8, 365-368.

McDowell, E. D., & Rockwell, T. H. (1978). An exploratory investigation of the sto-
chastic nature of the drivers’ eye movements and their relationship to roadway ge-
ometry. InJ. W. Senders, D. F. Fisher, & R. A. Monty (Eds.), Eye movements and the
higher psychological processes (pp. 329-345). Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates, Inc.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice Hall.

Noton, D., & Stark, L. (1971). Scanpaths in saccadic eye movements while viewing
and recognizing patterns. Vision Research, 17, 929-942.

Ohlsson, S. (1990). Trace analysis and spatial reasoning: An example of intensive
cognitive diagnosis and its implications for testing. In N. Frederiksen, R. Glaser,
A. Lesgold, & M. G. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acqui-
sition (pp. 251-296). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

O’Regan, K. (1981). The “convenient viewing position” hypothesis. In D. F. Fisher,
R. A. Monty, &J. W. Senders (Eds.), Eye movements: Cognition and visual perception
(pp- 289-298). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Peck, V. A., & John, B. E. (1992). The Browser model: A computational model of a
highly interactive task. Proceedings of the CHI’92 Conference on Human Factors in
Computer Systems, 165-172. New York: ACM.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77, 257-286.

Rayner, K. (1995). Eye movements and cognitive processes in reading, visual
search, and scene perception. In J. M. Findlay, R. Walker, & R. W. Kentridge
(Eds.), Eye movement research: Mechanisms, processes, and applications (pp. 3-21). New
York: Elsevier Science.

Rayner, K., & Morris, R. K. (1990). Do eye movements reflect higher order pro-
cesses in reading? In R. Groner, G. d’Ydewalle, & R. Parham (Eds.), From eye to
mind: Information acquisition in perception, search, and reading (pp. 179-190). New
York: Elsevier Science.

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of
eye movement control in reading. Psychological Review, 105, 125-157.

Rimey, R. S., & Brown, C. M. (1991). Controlling eye movements with hidden
Markov models. International Journal of Computer Vision, 7, 47-65.

Ritter, F. E. (1992). 4 methodology and sofiware environment for testing process models’ se-
quential predictions with protocols. Unpublished doctoral dissertation, Department
of Psychology, Carnegie Mellon University, Pittsburgh, PA.

Ritter, F. E., & Larkin, J. H. (1994). Developing process models as summaries of HCI
action sequences. Human—Computer Interaction, 9, 345-383.

Salvucci, D. D. (1999a). Inferring intent in eye-movement interfaces: Tracing user

actions with process models. Human Factors in Computing Systems: CHI’99 Confer-
ence Proceedings, 254-261. New York: ACM.

EYE-MOVEMENT ANALYSIS 85

Salvucci, D. D. (1999b). Mapping eye movements to cognitive processes. Unpublished doc-
toral dissertation, Department of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.

Salvucci, D. D., & Anderson, J. R. (1998). Tracing eye movement protocols with cog-
nitive process models. Proceedings of the Twentieth Annual Conference of the Cognitive
Science Society, 923-928. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Salvucci, D. D., & Anderson, J. R. (2000). Intelligent gaze-added interfaces. Human
Factors in Computing Systems: CHI’2000 Conference Proceedings, 273-280. New York:
ACM.

Salvucci, D. D., & Anderson, J. R. (2001). Integrating analogical mapping and gen-
eral problem solving: The path-mapping theory. Cognitive Science, 25, 67-110.
Salvucci, D. D., Anderson, J. R., & Douglass, S. (2000). Interleaving visual attention

and problem solving. Manuscript in preparation.

Sanderson, P., Scott, J., Johnston, T., Mainzer, J., Watanabe, L., & James, J. (1994).
MacSHAPA and the enterprise of exploratory sequential data analysis (ESDA).
International Journal of Human—Computer Studies, 41, 633-681.

Schilling, H. E. H., Rayner, K., & Chumbley, J.I. (1998). Comparing naming, lexical
decision, and eye fixation times: Word frequency effects and individual differ-
ences. Memory & Cognition, 26, 1270-1281.

Sen, T., & Megaw, T. (1984). The effects of task variables and prolonged perfor-
mance on saccadic eye movement parameters. In A. G. Gale & F. Johnson (Eds.),
Theoretical and applied aspects of eye movement research (pp. 103-111). Amsterdam:
Elsevier.

Smith, J. B., Smith, D. K., & Kuptsas, E. (1993). Automated protocol analysis. Hu-
man— Computer Interaction, 8, 101-145.

Stampe, D. M., & Reingold, E. M. (1995). Selection by looking: A novel computer
interface and its application to psychological research. In J. M. Findlay, R. Walker,
& R. W. Kentridge (Eds.), Eye movement research: Mechanisms, processes, and applica-
tions (pp. 467-478). New York: Elsevier Science.

Stark, L., & Ellis, S. R. (1981). Scanpath revisited: Cognitive models of direct active
looking. In D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye movements: Cogni-
tion and visual perception (pp. 193-226). Hillsdale, NJ: Lawrence Erlbaum Associ-
ates, Inc.

Sudkamp, T. A. (1988). Languages and machines. New York: Addison-Wesley.

Suppes, P. (1990). Eye-movement models for arithmetic and reading performance.
In E. Kowler (Ed.), Eye movements and their role in visual and cognitive processes (pp.
455-477). New York: Elsevier Science.

Suppes, P., Cohen, M., Laddaga, R., Anliker, J., & Floyd, R. (1983). A procedural
theory of eye movements in doing arithmetic. Journal of Mathematical Psychology,
27, 341-369.

Tole, J. R., & Young, L. R. (1981). Digital filters for saccade and fixation detection. In
D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye movements: Cognition and vi-
sual perception (pp. 247-256). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Viviani, P. (1990). Eye movements in visual search: Cognitive, perceptual, and mo-
tor control aspects. In E. Kowler (Ed.), Eye movements and their role in visual and cog-
nitive processes (pp. 353-393). New York: Elsevier Science.

86 SALVUCCI AND ANDERSON

Waterman, D. A., & Newell, A. (1971). Protocol analysis as a task for artificial intelli-
gence. Artificial Intelligence, 2, 285-318.

Waterman, D. A., & Newell, A. (1973). PAS-II: An interactive task-free version of an au-
tomatic protocol analysis system (Technical Report 73-34). Pittsburgh, PA: Depart-
ment of Computer Science, Carnegie Mellon University.

Widdel, H. (1984). Operational problems in analysing eye movements. In A. G.
Gale & F. Johnson (Eds.), Theoretical and applied aspects of eye movement research (pp.
21-29). New York: Elsevier Science.

Winikoff, A. (1967). Eye movements as an aid to protocol analysis of problem solving. Un-
published doctoral dissertation, Department of Psychology, Carnegie Mellon
University, Pittsburgh, PA.

Wolfe, B., & Eichmann, D. (1997). A neural network approach to tracking eye posi-
tion. International Journal of Human—Computer Interaction, 9, 59-79.

Yanco, H. A. (1998). Wheelesley: A robotic wheelchair system: Indoor navigation
and user interface. In V. O. Mittal, H. A. Yanco, J. Aronis, & R. Simpson (Eds.),
Assistive technology and artificial intelligence (pp. 256-268). Berlin: Springer-Verlag.

Young, L. R., & Sheena, D. (1975). Survey of eye movement recording methods. Be-
havioral Research Methods and Instrumentation, 7, 397-429.

Zhai, S., Morimoto, C., & Ihde, S. (1999). Manual and gaze input cascaded
(MAGIC) pointing. Human Factors in Computing Systems: CHI’99 Conference Proceed-
ings, 246-253. New York: ACM.

