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1. Introduction

1.1. The Purpose of This Paper

Cryptography is one of the most important tools that enable e-commerce because cryp-
tography makes it possible to protect electronic information. The effectiveness of this
protection depends on a variety of mostly unrelated issues such as cryptographic key
size, protocol design, and password selection. Each of these issues is equally important:
if a key is too small, or if a protocol is badly designed or incorrectly used, or if a pass-
word is poorly selected or protected, then the protection fails and improper access can
be gained.

In this article we give some guidelines for the determination of cryptographic key
sizes. For each of a number of cryptosystems we describe the effort and cost required
for a successful attack, where the cost may be measured in several different ways. Other
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protocol- or password-related issues are not discussed. We do not aim to predict the
future, butif current trends persist, then following our guidelines will result in acceptable
security for commercial applications of cryptography.

Key size recommendations are scattered throughout the cryptographic literature or
may, for a particular cryptosystem, be found in vendor documentation. Unfortunately
it is often hard to tell on what premises (other than marketability) the recommenda-
tions are based. As far as we know this article is the first uniform, clearly defined,
and properly documented treatment of this subject for the most important generally
accepted cryptosystems. We formulate a set of explicit parameter settings and apply
these uniformly to existing data about the cryptosystems. The resulting key size rec-
ommendations are thus obtained in a uniform mechanical way, depending only on our
default settings, but independent of further assumptions or non-scientific considera-
tions. The resulting key size recommendations are intended for designers who want
a “conservative” estimate for the key sizes for various schemes over the next 20-30
years.

Our key size recommendations are not intended as “best estimates” based on arguments
arguing for or against certain implementation-related difficulties. Even though some of
these arguments may be not without merit, they are avoided. Basing a security argument
on something that currently happens to be perceived as a problem as opposed to basing
it on the more intrinsic bigger picture is, in our opinion, wishful thinking.

Despite our attempt to be objective we do not expect that our defaults are to every-
one’s taste. They can, however, easily be changed without affecting the overall approach,
thereby making this article useful also for those who object to our choices or the resulting
key size recommendations. Other papers containing key size recommendations are [3],
[5] (symmetric key cryptosystems), [29] (RSA), [16] (RSA and elliptic curve cryptosys-
tems), and [38] (symmetric and asymmetric key cryptosystems). An extended abstract
of this article appeared in [22].

Although the choice of key sizes usually gets the most attention, nearly all failures
are, in our experience, not due to inadequate key sizes but to protocol or password
deficiencies. To illustrate this, the cryptographic key sizes used by the popular emalil
encryption program “Pretty Good Privacy” (PGP) offer an acceptable level of security
for current applications. However, the user-password that protects the private PGP keys
stored on an Internet-accessible PC does not necessarily offer the same security. Even if
the user is relatively security-conscious and selects a password consisting of 9 characters
randomly chosen from 62 alphanumeric choices, the resulting security is comparable
with the security offered by the recently broken “Data Encryption Standard” and thereby
unacceptable by today’s standards.

An even more disturbing example can be found in many network configurations. In one
example each user may select a password that consists of 14 characters, which should, in
principle, offer enough security. Before transmission over the network the passwords are
encrypted, with the interesting feature however that each password is split into two parts
of at most 7 characters each, and that each of the two resulting parts is treated separately,
i.e., encrypted and transmitted over the network. This effectively reduces the password
length of 14 to 7, which is not sufficiently secure. For more examples we refer to [1].
Thus, application of the guidelines given here makes sense only after one is convinced
of the overall security of the design, of its implementation, and of end-to-end system
engineering.
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Our suggestions are based on reasonable extrapolations of developments that have
taken place during the last few decades. This approach may fail: a single brightidea may
prove that all currently popular cryptographic protocols are considerably less effective
than expected. It may even render them completely ineffective, as shown by the follow-
ing two examples. In the 1980s the then popular knapsack-based cryptosystems were
suddenly wiped out by a new type of attack. More recently, three independent groups of
researchers showed that elliptic curve cryptosystems based on the use of curves of trace
one are easily breakable.

In this article we discuss only cryptosystems for which itis believed to be unlikely that
such catastrophes will ever occur. Nevertheless, for some of these systems non-trivial,
but non-catastrophic, new cryptanalytic insights are obtained on a fairly regular basis.
So far, a gradual increase in key sizes has been an effective countermeasure against these
new insights. From an application point of view it is to be hoped that this will not change
anytime soon. Itis the purpose of this article to give an idea by how much key sizes have
to be increased to maintain a comfortable margin of security.

If sufficiently large quantum computers can be built, then all asymmetric key cryp-
tosystems discussed in this article are insecure [34]. It is unclear if quantum computers
are feasible at all. Our suggestions do not take quantum computers into account. Neither
do we incorporate the potential effects of molecular computing [28].

1.1.1. Remark Many of the considerations discussed in this article, and the default
choices we make, concern parameters and issues that are at best of secondary importance.
They are included for the non-specialized reader who may not immediately be able to
recognize the relative importance or potential impact of the various issues related to key
size selection.

1.2. Run Time Convention

All run time estimates in this article are based on actual run times or reliable estimates
of run times on a 450 MHz Pentium Il processor, at the time of writing of this paper
one of the most popular commonly available processors. A “PC” always refers to this
processor.

Inthe literature, computing power is often measured in Mips-Years, where a Mips-Year
is defined as the amount of computation that can be performedin one year by a single DEC
VAX 11/780. This measure has often been criticized because it is unclear how it can be
used in a consistent manner for processors with instruction sets different from the VAX.
We fully agree with the concerns expressed in [37]. Nevertheless, because of its popularity
and the wide acceptance it has gained, we use this measure here as well. We use the con-
vention that 1 year of computing on a PC is equivalent to 450 Mips-Years, where it should
be keptin mind that ultimately all our estimates are based on runtimes on a PC and noton
the literal definition or our definition of Mips-Years. As shown in 2.2.4 the two definitions
are, however, sufficiently close. Our Mips-Year figures should therefore be compatible
with Mips-Year figures found elsewhere. We write MMY for 1 million Mips-Years.

1.3. Lower Bounds

The guidelines in this article are meant as lower bounds in the sense that keys of sizes
equal to or larger than the recommended sizes attain at least a certain specified level of
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security. From a security point of view it is acceptable to err on the conservative side
by recommending keys that may be slightly larger than actually required. Most key size
guidelines in this article are therefore obtained by systematically underestimating the
computational effort required for a successful attack. Thus, keys are estimated to be
weaker than they are in reality, which is acceptable for our purpose of finding lower
bounds. In some cases slight overestimates of the attack effort are used instead, but in
those cases there are other factors that ensure that the desired level of security is achieved.

1.4. Equivalence of Attack Efforts

We present key size recommendations for several different cryptosystems. For a certain
specified level of security these recommendations may be expected to be equivalent
in the sense that the computational effort or number of Mips-Years (Section 1.2) for a
successful attack is more or less the same for all cryptosystems under consideration.
So, from a computational point of view the different cryptosystems offer more or less
equivalent security when the recommended key sizes are used.

This computationally equivalent security should not be confused with, and is not
necessarily the same as, security with equivalent cost of equipment, or cost-equivalent
security for short. Here we say that two systems offer cost-equivalent security if accessing
or acquiring the hardware that allows a successful attack in a certain fixed amount of time
costs the same amount of dollars for both systems. Note that although the price is the
same, the hardware required may be quite different for the two different attacks; some
attacks may use PCs, for other attacks it may be possible to get the required Mips-Years
relatively cheaply by using special-purpose hardware. Following our guidelines does not
necessarily result in cost-equivalent security. In 3.2.5 and Section 4.5 we indicate how
our guidelines may be changed to obtain cost equivalence, thereby possibly giving up
computational equivalence.

There are at least two reasons why we use computationally equivalent security as
opposed to cost-equivalent security. Most importantly, we found that computational
equivalence allows rigorous analysis, mostly independent of our own judgment or pref-
erences. Analysis of cost equivalence, on the other hand, depends on subjective choices
that change over time, and that have a considerable effect on the outcome. Thus, for cost
equivalence there is a whole spectrum of “reasonable” outcomes, depending on one’s
perception of what is reasonable. In Section 4.5 we present three points of the spectrum.

Another reason why we restricted ourselves to computational equivalence is that, in the
model we have adopted, we need a workable notion of equivalence to achieve our goal of
determining acceptable key size recommendations—achieving any type of equivalence
in itself has never been our goal. Whether or not the resulting recommendations are
indeed acceptable depends on how acceptable our model is found to be.

1.4.1. Remark on published versus unpublished attack$he analyses in this paper are
often based on recently published cryptanalytic results. However, as can be seen below
(in particular in 3.1.2), we never use these published results to assess the security of
cryptographic systems, only to derive data about the computational effort involved in a
successful attack. Thus, arguments such as “a 512-bit RSA key was broken only in 1999
(see 2.4.6), so 1024-bit RSA keys must be safe for quite a while” are not used in this
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article [38]. Does anyone seriously believe that published attacks represent the state of
the art? It may safely be assumed that unpublished work is many years ahead of what
the public at large gets to see: a public announcement that a system is broken provides
at best a rather trivial upper bound—and a very simple-minded one, in our opinion—for
the date that the system became vulnerable. This is illustrated in Remark 3.1.8. See also
2.45and 3.1.3.

1.5. Organization of This Paper

In Section 2 we describe the cryptographic primitives for which we derive key size rec-
ommendations, namely the cryptographic primitives that are mentioned in the Wassenaar
Arrangement (Section 2.1). In Section 3 we present the model underlying our key size
recommendations. The model is based on a number of variables that parametrize envi-
ronmental factors affecting the security or perceived security of key size choices. The
role of the parameters is described and conservative default settings are suggested.

In Section 4 we apply the model from Section 3 to the cryptographic primitives from
Section 2. This results in a number of formulas from which, for instance with the default
settings, key size recommendations can be derived. In Section 5 we discuss some of the
implications of our key size recommendations.

2. Cryptographic Primitives

2.1. The Wassenaar Arrangement

The Coordinating Committee for Multilateral Export Controls (COCOM) was an inter-
national organization regulating the mutual control of the export of strategic products,
including cryptographic products, from member countries to countries that jeopardize
their national security. Member countries, e.g., European countries and the US, imple-
mented the COCOM regulations in national legislation (e.g., the ITAR in the US).

The Wassenaar Arrangement is a follow-up of the COCOM regulations. The current
restrictions in the Wassenaar Arrangement (December 1998) with respect to cryptog-
raphy are rather detailed [42]. For five types of cryptographic primitives a maximum
key size is given for which export does not require a license. Due to the nature of the
Wassenaar Arrangement, it is not surprising that it turns out that these key sizes do not
provide adequate protection for the majority of commercial applications.

In this article we limit ourselves to these cryptographic primitives. In the remainder
of this section we review for each of these cryptographic primitives some facts and data
that are relevant for our purposes:

A brief description.

The key size recommendation from the Wassenaar Arrangement.

The most important known (i.e., published) attacks.

The effectiveness of those attacks using generic software implementations.
The effectiveness of those attacks using special-purpose hardware.

The effectiveness of guessing (Remark 1.1.1).

The effectiveness of incomplete attacks (Remark 1.1.1).

Past cryptanalytic progress.



260 A. K. Lenstra and E. R. Verheul

We distinguish the cryptographic primitives into symmetric key (or secret key) and
asymmetric key (or public key) cryptosystems. Such systems are instrumental to build
e-commerce enabling solutions and, more specifically, can be used to achieve confiden-
tiality, integrity, authenticity, and non-repudiation of electronic information. For sim-
plicity we assume two communicating parties, a serland a receiveR, who want

to maintain confidentiality of the communication frdato R. At the end of the section

we briefly mention cryptographic hash functions as well.

2.2. Symmetric Key Cryptosystems

2.2.1. Description In symmetric key cryptosystengandR share a key. To maintain
confidentiality the key should be kept secret. The size of the key, i.e., its number of bits,
depends on the symmetric key cryptosystem. Often both the message and its encryption
consist of a whole number of blocks, where a block consists of a fixed number of
bits that depends on the symmetric key cryptosystem. The best-known symmetric key
cryptosystem is the Data Encryption Standard (DES), introduced in 1977, with key size
56 bits and block size 64 bits. Other examples of symmetric key cryptosystems are:

Two Key Triple DES (key size 112, block size 64);

— IDEA (key size 128, block size 64);

RCS5 (variable key and block sizes);

the forthcoming Advanced Encryption Standard (AES), with key sizes of 128, 192,
or 256 bits and block size 128.

2.2.2. Wassenaar Arrangement The maximum symmetric key size allowed by the
Wassenaar Arrangement is 56 bits for “niche market” applications and 64 bits for “mass
market.”

2.2.3. Attacks Despite many years of research, no method has been published that
breaks a DES-encrypted message substantially faster than exhaustive key search, i.e.,

trying all 26 different keys. The expected number of trials of exhaustive key search
is 255,

2.2.4. Software data points Nowadays the DES is not considered to be sufficiently
secure. In 1997 a DES key was successfully retrieved after an Internet search of ap-
proximately 4 months ([31] and Remark 3.1.3). The expected computing power required
for such a software exhaustive key search is underestimated as 0.5 MMY (Section 1.2).
This estimate is based on the Pentium-based figures that a single DES block encryption
with a fixed key requires 360 Pentium clock cycles [8] or 500 Pentium clock cycles
with a variable key [2]. Furthermore, our estimate lies between two DEC VAX8Q
estimates that can be found in [9] and [29]. It follows that our Mips-Years convention is
sufficiently accurate.

Half a million Mips-Years is roughly 13,500 months on a PC. This is equivalent to
4 months on 3500 PCs, because an exhaustive key search can be evenly divided over any
number of processors. For a proper security analysis one therefore has to evaluate and
keep track of the total computational power of the Internet.
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2.2.5. Special-purpose hardware data pointsAt the cost of a one-time investment

a hardware attack is substantially faster than a software attack. In 1977 a $20 million
parallel DES key searching machine was proposed with an expected search time of
12 hours [11]. We write “[$20 million, 12 hours, 1977]-hardware” for this design. In [10]

it was corrected to [$50 million, 2 days, 1980]-hardware. Wiener published a detailed

[$1 million, 3.5 hours, 1993]-hardware design [43], and special purpose [$130,000,

112 hours, 1998]-hardware was actually built [19]; see also [13].

2.2.6. Effectiveness of guessingThere is always the possibility that someone may find

a key simply by guessing it. For reasonable key sizes the probability that this happens is
small: even for a 50-bit key there is a total probability of one in a million that it is found

if one billion people each make a different guess. With the same effort, the probability
of success halves for each additional key bit: for a 60-bit key it becomes only one in a
billion. Note that exhaustive key search is nothing more than systematic guessing.

2.2.7. Incomplete attacks The success probability of exhaustive key search is propor-
tional to the fraction of the key space searched; i.e., fongry< x < 1, the chance is
X that the key is found after searching a fractioof the key space.

2.2.8. Cryptanalytic progress We assume no major changes, i.e., thatfuture symmetric
key cryptosystem designs do not allow faster attacks than exhaustive key search. Also,
we assume that a design that turns out to allow a faster attack will no longer be used.
Below we assume the existence of a generic symmetric key cryptosystem of arbitrary
key size for which exhaustive key search is the best attack. It follows thatfditekey

a successful attack can be expected to require on the ordérbfrocations of the
underlying function.

2.3. Asymmetric Key Cryptosystems Overview

In asymmetric key cryptosystems the receiRdras a private key (whicR keeps secret)

and a corresponding public key that anyone, includigas access to. The sendgr
usesR’s public key to encrypt information intended f&, and R uses its private key

to decrypt the encrypted message. If the private key can be derived from the public key,
then the system can be broken. What the private and public keys consist of, and how
hard it is to break the system, depends on the type of asymmetric key cryptosystem. For
cryptanalytic and historic reasons we distinguish the following three types:

1. Classical asymmetric systems.
2. Subgroup discrete logarithm systems.
3. Elliptic curve systems.

These three types of systems are discussed in more detail in the next three subsections.

2.4. Classical Asymmetric Systems

Classical Asymmetric Systems refer to RSA, due to Rivest, Shamir, and Adleman, and
traditional discrete logarithm systems, such as the Diffie—Hellman and EIGamal schemes.
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2.4.1. RSA description In RSA the public key contains a large non-prime number,
the so-called RSA modulus. It is chosen as the product of two large primes. If these
primes can be found, then the private key can be found, thereby breaking the system.
Thus, the security of RSA is based on the difficulty of the integer factorization problem
(see 2.4.10). The size of an RSA key refers to the bit-length of the RSA modulus. This
should not be confused with the actual number of bits required to store an RSA public
key, which may be slightly more.

2.4.2. TDL description In a traditional discrete logarithm (TDL) system the public
key consists of a finite field Gip) of size p, a generatog of the multiplicative group
GF(p)* of GF(p), and an element of GF(p)* that is not equal to 1. We assume that the
field sizep is such thaip — 1 has a prime factor of roughly the same order of magnitude
as p. The private key is the smallest positive integeisuch thatg™ = y. Thism is
referred to as the discrete logarithmyofvith respect tay. The private keynis at least 1

and at mosp— 2. If m can be found, the system can be broken. Thus, the security of TDL
systems is based on the difficulty of computing discrete logarithms in the multiplicative
group of a finite field. The size of a TDL key refers to the bit-length of the field pize
The actual number of bits required to store a TDL public key is larger, since the public
key containg andy as well.

2.4.3. Wassenaar Arrangement Both the maximal RSA modulus size and the maximal
field size allowed by the Wassenaar Arrangement are 512 bits, i.e., RSA modyli and
as above should be less thati®2

2.4.4. Attacks Factoring an RSA-modulus by exhaustive search amounts to trying

all primes up to,/n. Finding a discrete logarithm by exhaustive search requires on the
order of p operations in GFp). Thus, if exhaustive search were the best attack on these
systems, then 112-bit RSA moduli or 56-pis would give security comparable with the
DES. However, there are much more efficient attacks than exhaustive search and much
larger keys are required. Surprisingly, the methods to attack these two entirely different
problems are similar, and for this reason we treat RSA and TDL systems as the same
category.

The fastest factoring algorithm published today is the Number Field Sieve, invented
in 1988 by John Pollard. Originally it could be used only to factor numbers of a special
form, such as the ninth Fermat numb@¥2-1 (factored in 1990). This original version is
currently referred to as the Special Number Field Sieve (SNFS) as opposed to the General
Number Field Sieve (NFS), which can handle numbers of arbitrary form, including RSA
moduli. On heuristic grounds the NFS can be expected to require time proportional to

3
(1.9229+0(1)) In(m* In(In(n)#* D

to factor an RSA modulus, where theo(1) term goes to zero asgoes to infinity. For
notational convenience we refer to (1) lag], which is an abbreviated version of the
more common definition

u 1-u
L[n,u,v] = gv+o@) In(m*Indn(m)= 2)
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The run timeL[n] is called subexponential in the input sinebecause as goes to
infinity it is less tham® for any constant > 0. The storage requirements of the NFS
are proportional ta/L[n]. The expected run time of the SNFSLi§n, % 1.5262]; thus,

the SNFS is much faster than the NFS, but it cannot be used to attack RSA moguli. If
is a prime number, then a discrete logarithm variation of the NFS, which we refer to as
“DLNFS,” finds a discrete logarithm in GIp) in expected time proportional o[ p].

These run time estimates—with omission of tti&) as is customary—cannot be used
directly to estimate the number of operations required to factor a certaito compute
discrete logarithms in a certain Gp). For instance, the discrete logarithm problem in
GF(p) is considerably more difficult than factoring amf about the same size asbut
L[ p] andL[n] are approximately equal if the&(1)’s are omitted. However, as shown by
extensive experiments, the estimates can be used for limited range extrapolation. If one
knows, by experimentation, that factoring an RSA modulusing the NFS takes tinte
then factoring some other RSA moduls> n will take time close ta (L[m]/L[n])
(omitting theo(1)'s), if the sizes oh andm do not differ by too much, say by not more
than 100 bits. If, howevem is much bigger than, then the effect of the(1) going to
zero can no longer be ignored, arn@d.[m]/L[n]) will be an overestimate of the time to
factorm [36]. The same run time extrapolation method applies to the DLNFS.

2.4.5. NFS background For a better appreciation of the security offered by classical
asymmetric systems when comparing them with other asymmetric systems, we describe
a few more details of the NFS. It consists of two major steps, a sieving step and a matrix
step, which in theory take an equal amount of computing tima gees to infinity.

For numbers in our current range of interest (say, up to 700 bits), however, the matrix
step takes only a fraction of the computing time of the sieving step. The sieving step
can be evenly distributed over any number of processors, with hardly any need for
communication, resulting in a linear speedup. The computing power required for the
sieving step of large-scale factorizations can in principle quite easily be obtained on any
loosely coupled network of computers such as the Internet. The matrix step on the other
hand does not allow such a straightforward parallelization.

The situation is worse for the DLNFS. Although, as in the NFS, the DLNFS sieving
and matrix steps are in theory equally hard, the DLNFS matrix step is several orders
of magnitude more time- and memory-consuming than the NFS matrix step. Currently
the matrix step is considered to be the major bottleneck obstructing substantially larger
factorizations or even mildly interesting discrete logarithm computations. Efforts are
underway to implement it on a fast and high-bandwidth network of PCs. Even though
the effectiveness of that approach is still uncertain, early experiments look encouraging
[24], [39] and there is no reason to believe that parallelization of the matrix step will not
be successful.

It is tempting to use the perceived difficulty and apparent “unparallelizability” of
the matrix step as an argument in favor of RSA keys smaller than solely based on the
estimated computational cost of breaking them. It is unclear to us, however, how this
perceived difficulty should be factored in, and, more importantly, we find it imprudent
to do so because it is unlikely that it will last. Indeed, there are strong and consistent
indications that very fast networks of rather large PCs have been designed, and may even
have been built, that would be able to tackle matrices that are very far out of reach for
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generally accessible computer systems. In this context we repeat (Remark 1.4.1) that it
is nave to believe that the published factorization of a 512-bit RSA modulus referred to
in 2.4.6 below is the best one can do at this point (see also 3.1.2).

2.4.6. Software data points The largest published factorization using the NFS is that

of the 512-bit number RSA155, which is an RSA modulus of 155 decimal digits, in
August of 1999 [6]. This factoring effort was estimated to cost at most 20 years on a PC
with at least 64 MB of memory (or a single day on 7500 PCs). This time was spent almost
entirely on the sieving step. It is less tharf Mips-Years and corresponds to fewer than

3 % 10' operations, whereds[10'%%] = 2 % 10'° (omitting theo(1)). This shows that

L[n] overestimates the number of operations to be carried out for the factorization of
n. The run time given here is the actual run time of the RSA155 factoring effort and
should not be confused with the estimates given in [37], which appeared around the same
time; these estimates are 100 times too high [26]. The largest number factored using the
SNFS is the 233-digit (and 773-bit) numbéer®+ 1, in November of 2000, in less than
17,000 Mips-Years. These run times are only a fraction of the cost of a software DES
key search, but the amount of memory needed by the NFS is several orders of magnitude
larger.

Practical experience with the DLNFS is still limited. It is generally accepted that, for
anyb up to about 500, factorinb-bit integers takes about the same amount of time as
computing discrete logarithms i — x)-bit fields, wherex is a small constant around
20. Forb going to infinity there is no distinction between the hardnedsait factoring
andb-bit discrete logarithms. Below we do not present separate key size suggestions for
TDL systems and we recommend using the RSA key size suggestions for TDL systems
as well.

2.4.7. Special-purpose hardware data pointsSpecial-purpose hardware devices are
occasionally proposed for the most time-consuming step of factoring algorithms such
as the sieving step of the NFS, but no useful data points have been published. Recently,
Shamir proposed the TWINKLE opto-electronic sieving device [33], [21]. This device,

if feasible at all, does not affect the asymptotic run time of the NFS, nor does it affect
the matrix step.

Dueto the complexity of the underlying factorization algorithms and the corresponding
hardware design for any special-purpose hardware factoring device, it would be difficult
to achieve parallelization at a reasonable cost and at a scale comparable with hardware
attacks on the DES, but it may not be impossible. Also, by the time a special-purpose
design could be operational it is conceivable that it would no longer be competitive due
to new algorithmic insights and faster general-purpose processors. Given the current
state of the art we consider it to be unlikely that special-purpose hardware will have a
noticeable impact on the security of RSA moduli.

However we find it imprudent to ignore the possibility altogether, and warn against
too strong a reliance on the belief that special-purpose attacks on RSA are impossible.
To illustrate this, the quadratic sieve factoring method was implemented successfully
on a Single-Instruction-Multiple-Data (SIMD) architecture [12]. An SIMD machine is
by no means special-purpose hardware, but it could be relatively cheap compared with
ordinary PCs.
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2.4.8. Effectiveness of guessingObviously, key sizes for classical asymmetric systems
have to be larger than 512 to obtain any security atall (where 512 is the size of the “broken”
RSA modulus RSA155; see 2.4.6). It may safely be assumed that breaking the system
by guesswork is out of the question: it would require at least 254 correctly guessed bits
for RSA or 512 bits for TDL. So, from this point of view, classical asymmetric systems
seem to be more secure than symmetric key cryptosystems. For RSA there is more to
this story, as shown in 2.4.9 below.

2.4.9. Incomplete attacks Both the NFS and the DLNFS are effective only if run to
completion. There is no chance that any results will be obtained early. RSA, however, can
also be attacked by the Elliptic Curve Method (ECM). After a relatively small amount
of work this method produces a factor with substantially higher probability than mere
guesswork. To give an example, if 1 billion people were to attack a 512-bit RSA modulus,
each by running the ECM for just 1 hour on their PC, then the probability that one of them
would factor the modulus is more than 10%. For a 768-bit RSA modulus the probability
of success of the same computational effort is about one in a million. Admittedly, this
is a very low success probability for a tremendous effort—but the success probability is
orders of magnitude larger than guessing, while the amount of work is of the same order of
magnitude. No discrete logarithm equivalent of the ECM has been published. The details
of our ECM run time predictions are beyond the scope of this article. See also Section 5.9.

2.4.10. Cryptanalytic progress Classical asymmetric systems are the prime example
of systems for which the effectiveness of cryptanalysis is steadily improving. Roughly
speaking the effect of algorithmic improvements over the last 25 years turned out to be
comparable with the effect of faster hardware; see Remark 4.3.1(2).

The current state of the art of factoring (and discrete logarithm) algorithms should
not be interpreted as the culmination of many years of research but is just a snapshot of
work in progress. It may be due to the relative complexity of the methods used that so
many more or less independent improvements and refinements have been made and—
without any doubt—will be made. We illustrate this point with a list of some of the
developments since the early seventies, each of which had a substantial effect on the dif-
ficulty of factoring or computing discrete logarithms: continued fraction method, linear
sieve, quadratic sieve, multiple polynomial variation, Gaussian integers, loosely coupled
parallelization, multiple large primes, special number field sieve, structured Gaussian
elimination, number field sieve, singular integers, lattice sieving, block Lanczos or con-
jugate gradient, sieving-based polynomial selection for the NFS, and, most recently,
parallelized block Lanczos. We find it reasonable to assume that this trend of continuous
algorithmic developments will continue in the years to come.

Ithas never been proved that breaking RSA is equivalent to factoring the RSA modulus.
Indeed, for RSA there is evidence that the equivalence does not hold if the so-called
public exponent (another part of the RSA public key) is small. We therefore introduce
the explicit assumption that breaking RSA is equivalent to factoring the RSA modulus.
Based on recent results in this area the public exponent for RSA must be sufficiently
large. Values such as 3and 17 can no longer be recommended, but commonly used values
such as ¥ + 1 = 65,537 still seem to be fine. If one prefers to stay on the safe side one
may select an odd 32-bit or 64-bit public exponent at random.
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Furthermore we restrict ourselves to TDL-based protocols for which attacks are prov-
ably equivalent to either computing discrete logarithms or solving the Diffie—Hellman
problem—the problem of finding?° giveng? andgP for knowng (but unknowra and
b). There is strong evidence that the latter problem is equivalent to computing discrete
logarithms. We explicitly exclude, however, TDL-based protocols that rely on the so-
called Decision Diffie—-Hellman problem—the problem of distinguishisif from g°
wheng, g2, g°, g?°, andg® for a randont are given [18].

2.5. Subgroup Discrete Logarithm Systems

2.5.1. Description Subgroup discrete logarithm (SDL) systems are like traditional
discrete logarithm systems, except tigagienerates a relatively small, but sufficiently
large, subgroup of the multiplicative group G5*, an idea due to Schnorr. The size of
the subgroup is prime and is indicateddpyThe private keym is at least 1 and at most

g — 1. The security of SDL is based on the difficulty of computing discrete logarithms in
a subgroup of the multiplicative group of a finite field. These can be computed if discrete
logarithms in the full multiplicative group can be computed. Therefore, the security of
an SDL system relies on the sizes of botland p. Nevertheless, the size of an SDL
key simply refers to the bit-length of the subgroup sigewhere the field sizep is

given by the context. The actual number of bits required to store an SDL public key is
substantially larger than the SDL key sigesince the public key contains, g, andy

as well.

2.5.2. Wassenaar Arrangement The maximum SDL field size allowed by the Wasse-
naar Arrangement is 512 bits—there is no maximum allowed key size. A popular sub-
group size is 160 bits. That choice is used in the US Digital Signature Algorithm, with
field sizes varying from 512 to 1024 bits.

2.5.3. Attacks Methods that can be used to attack TDL systems can also be used to
attack SDL systems. The field sipeshould therefore satisfy the same security require-
ments as in TDL systems. However, the subgroup discrete logarithm problem can also
be attacked directly by Pollard’s rho method, which dates from 1978, and by Shanks’s
even older baby-step—giant-step method. These methods can be applied to any group,
as long as the group elements allow a unique representation and the group law can be
applied efficiently—unlike the DLNFS it does not rely on any special properties that
group element representations may have. The expected run time of Pollard’s rho method
is exponential in the size @f, namely 125, /q group operations, i.e., multiplications in
GF(p). Its storage requirements are very small. Shanks’s method needs about the same
number of operations but needs storage for aQdgigroup elements.

Pollard’s rho method can easily be parallelized over any number of processors, with
very limited communication, resulting in alinear speedup [40]. This is another illustration
of the power of parallelization and another reason to keep track of the computational
power of the Internet. Furthermore, there is no post-processing involved in Pollard’s rho
(unlike the (DL)NFS, where after completion of the sieving step the cumbersome matrix
step has to be carried out), although for the parallelized version substantial amounts of
storage space should be available at a central location.



Selecting Cryptographic Key Sizes 267

2.5.4. Datapoints We have notbeen able to find any useful data about the effectiveness

of an attack on SDL systems using the parallelized version of Pollard’s rho method. Our

figures below are based on an adaptation of data points for elliptic curve systems. This
is described in detail in 4.2.5.

2.5.5. Effectiveness of guessingAs long as SDL keys are not shorter than the 112 bits
permitted by the Wassenaar Arrangement for EC systems (see 2.6.2), guessing the private
key requires guessing at least 112 bits, which may safely be assumed to be infeasible.

2.5.6. Incomplete attacks The success probability of Pollard’s rho method is, roughly
speaking, proportional to the square of the fraction of the work performed, i.e., for any
X, 0 < x < 1, the chance ig? that the key is found after performing a fractirrof the
expected 5, /q group operations. So, doing 10% of the work yields a 1% success rate.

2.5.7. Cryptanalytic progress Since the invention of Pollard’s rho method in 1978 no
new results have been obtained that threaten SDL systems, with the exception of the
efficient parallelization of Pollard’s rho method in 1996. The only reasonable extrapo-
lation of this rate of algorithmic progress is to assume that no substantial progress will
be made. Progress would almost necessarily imply an entirely new approach and may
instantaneously wipe out all practical SDL systems. The results in [27] and [35] that, in
a certain generic model of computation, Pollard’s rho method is essentially the best one
can do may be comforting in this context. It should be kept in mind, however, that the
generic model does not apply to any practical situation that we are aware of, and that the
possibility of a subexponential attack against SDL systems cannot be ruled out.

2.6. Elliptic Curve Systems

2.6.1. Description Elliptic curve (EC) systems are like SDL systems, except ¢hat
generates a subgroup of the group of points on an elliptic cirexer a finite field
GF(p), an idea independently due to Koblitz and Miller. The sigef the subgroup
generated by is prime and the private kay is in the range [1q — 1].

The security of EC systems is based on the difficulty of computing discrete logarithms
in the subgroup generated gyThese can be computed if discrete logarithms in the full
group of points on an elliptic curve over a finite field can be computed. This problem is
known as the ECDL problem. No better method to solve the ECDL problem is known
than by solving the problem in all cyclic subgroups and by combining the results. The
difficulty of the ECDL problem therefore depends on the size of the largest prime divisor
of the order of the group of points of the curve (which is close)Xd-or that reasom,

E, andq are usually chosen such that the sizep@indq are close. Thus, the security
of EC systems relies on the sizeggfand the size of an EC key refers to the bit-length of
the subgroup sizq. The actual number of bits required to store an EC public key may
be substantially larger than the EC key gigesince the public key contairns E, g, and

y as well.

A description of the group of points on an elliptic curve over a finite field and how
such points are represented or operated upon is beyond the scope of this article. Neither
do we discuss how appropriate elliptic curves and finite fields can or should be selected.
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2.6.2. Wassenaar Arrangement The maximum EC key size allowed by the Wassenaar
Arrangement is 112 bits, with unspecified field size. For prime fields a popular size is
160 bits both for the field size and the subgroup size. For non-prime fields an example
of a commercially available choice js= 213 with a 161-bitq.

2.6.3. Attacks A DLNFS equivalent or other subexponential method to attack EC
systems has never been published. The most efficient method published to attack EC
systems is Pollard’s parallelizable rho method, with an expected run time38{/q

group operations. This run time is exponential in the sizg.dthe expected number of
iterations is a factok/2 smaller than for SDL systems, due to the result independently
described in [15] and [46]. If field inversions are properly handled, the average number
of field multiplications per group operation is approximately 12 [14].

2.6.4. Software data points Becausep andq are assumed to be of the same order

of magnitude the cost of the group operation is proportionaldg,(q))?. Data about

the effectiveness of an attack using Pollard’s rho method can be found in [7]. From the
estimates given there we derive that a 109-bit EC systempuvith21%° should take about
18,000 years on a PC (or, equivalently, 1 year on 18,000 PCs) which is about 8 MMY.
This computation is feasible on a large network of computers. It also follows from [7]
that an attack on a 109-bit EC system with a pripnef about 109 bits should take about

2.2 MMY. This is an underestimate because it is based on primes of a special form and
thus overly optimistic for general primes [14]. Nevertheless, it is used as the basis for
extrapolations to estimate the effort required for software attacks on larger EC systems
over prime fields (Section 1.3).

2.6.5. Special-purpose hardware data pointsin 1996 an attack against a 120-bit EC
system withp = 2%% was sketched (and published 3 years later, see [40]) based on a
special-purpose hardware design that achieves a 25-million-fold parallelism, i.e., 330,000
special-purpose processor chips each running 75 independent Pollard rho processes.
Building this machine would cost $10 million and its run time would be about 32 days.
The designers claim that an attacker can do better by using current silicon technology
and that further optimization may be obtained from pipelining. On the other hand, in [7]

it is mentioned that 131-bit EC systems “are expected to be infeasible against realistic
software and hardware attacks,” where 131-bit systems over 131-bit fields are about
32 times harder to break than 120-bit systems over 155-bit fields. This shows that there is
no clear distinction between which computations are considered to be feasible and which
are not, and that drawing a conclusion from a cost evaluation is mostly a matter of personal
taste and preferences (see 3.1.2). The pipelined designis further consideredin Section 3.2.

2.6.6. Effectiveness of guessingAs long as EC keys are not shorter than the 112 bits
permitted by the Wassenaar Arrangement, guessing the private key requires guessing at
least 112 hits, which may safely be assumed to be infeasible.

2.6.7. Incomplete attacks As with Pollard’s rho attack against SDL systems, the
chance i< that the key is found after performing a fractirrof the expected 88, /q
group operations.
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2.6.8. Cryptanalytic progress With the exception of the result from [15] and [46], no
progress threatening the general ECDL problem has been made since the invention of
Pollard’s rho method in 1978 and its parallelization in 1996 (see 2.5.7). The key word here
is “general,” because EC-related cryptanalytic results are obtained quite regularly. So far
these results mostly affect, or rather “wipe out,” special cases, e.g., curves for which the
order of the group of points or the underlying finite field have special properties. For the
non-specialized user this is hardly comforting: EC systems are relatively complicated
and designers often apply special cases to avoid nasty implementation problems.

We make the explicit assumption that curves are picked at random, i.e., that special
cases are not used, and that only curves over prime fields are used. Based on this assump-
tion and the lack of cryptanalytic progress affecting such curves it is not unreasonable
to assume that there will be no substantial progress in the years to come. It is, however,
not hard to find researchers who find that EC systems have not been around long enough
to trust them fully and that the rich mathematical structure of elliptic curves may still
have some surprises in store. Others argue that the ECDL problem has been studied
extensively, and that the lack of progress affecting well-chosen EC systems indicates
that they are sufficiently secure. We do not want to take a position in this argument but
note that some recent developments [17] and [41] seem to support the former standpoint.

For the purposes of the present paper, we simply suggest two key sizes for EC systems:
one based on “no cryptanalytic progress” and one based on “cryptanalytic progress at a
rate comparable with RSA and TDL systems,” the latter despite our fear or conviction that
any new cryptanalytic insight against EC systems, such as a subexponential method, may
prove to be fatal. Readers may then interpolate between the two types of extrapolations
according to their own taste.

2.7. Cryptographic Hash Functions

2.7.1. Description A cryptographic hash function is a function that maps an arbitrary
length message to a fixed length “hash” of the message, satisfying various properties
that are beyond the scope of this article. The size of the hash function is the length in bits
of the resulting hash. Examples of cryptographic hash function are MD4, MD5 (both of
size 128), SHA-1, RIPEMD-160 (both of size 160), and, most recently, SHA-256 (of
size 256).

2.7.2. Attacks We assume that a successful attack against a cryptographic hash func-
tion consists of finding andt with s = t such that the hashes ®&ndt are the same. If
suchs andt cannot be found the hash function is called “collision-resistant.” For hash
functions that are only required to be “target collision-resistant” (i.e., it is supposed to
be infeasible to find al that hashes to a given target hash value), the sizes may be
halved assuming the hash function is properly used. Cryptographic hash functions can
be attacked by the so-called birthday paradox attack. The number of hash function ap-
plications required by a successful attack is expected to be proportioriaf tavRerex

is the size of the hash function.

2.7.3. Software data points In[4] 241, 345,837, and 1016 Pentium cycles are reported
for MD4, MD5, SHA-1, and RIPEMD-160, respectively. This compares with 360—
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500 cycles for the DES depending on fixed or variable keys, as reported in [2] and [8]
(see 2.2.4). Thus, the software speed of a hash function application as used by a birthday
paradox attack is comparable with the software speed of a single DES block encryption.

2.7.4. Special-purpose hardware data pointsSpecial-purpose hardware has been de-
signed for several hash functions. We may assume that their speed is comparable with
the speed of special-purpose exhaustive key search hardware.

2.7.5. Cryptanalytic progress We assume the existence of a generic cryptographic
hash function for which the birthday paradox attack is the best attack. If a proposed
design allows a faster attack, we assume that it will no longer be used. We assume that an
exhaustive key search attack on our generic symmetric key cryptosystem of kéy size
can be expected to take about the same time as a birthday paradox attack on our generic
cryptographic hash function of size.2l'hus, a lower bound for the size of cryptographic
hash functions follows by doubling the lower bound for the size of symmetric key
cryptosystems. Because of this simple “rule of thumb,” sizes of cryptographic hash
functions are not discussed in what follows. If speeds differ, adjust accordingly.

3. The Model

3.1. Key Points

In this subsection we present the four points on which the choice of cryptographic key
sizes depends primarily:

1. Life span: the expected time the information needs to be protected.

2. Security margin: an acceptable degree of infeasibility of a successful attack.

3. Computing environment: the expected change in computational resources available
to attackers.

4. Cryptanalysis: the expected developments in cryptanalysis.

Efficiency and storage considerations concerning the cryptographic keys may also influ-
ence the choice of key sizes, but since they are not directly security-related they are not
discussed here.

3.1.1. Life span In the table in Section 4 key sizes are suggested for the cryptosys-
tems discussed in Section 2, depending on the expected life span of the cryptographic
application. It is the user’s responsibility to decide until what year the protection should
be effective, or how the expected life span corresponds to popular security measures
such as “short-term,” “medium-term,” or “long-term” security. The user’s decision may
depend on the value of the data to be encrypted.

3.1.2. Security margin A cryptosystem can be assumed to be secure only if it is
considered to be sufficiently infeasible to mount a successful attack. Unfortunately, it
is hard to quantify what precisely is meant by “sufficiently infeasible” (see 2.6.5). One
could, for instance, decide that a key size for a certain cryptosystem is secure for current
applications if breaking it would be, say,limes harder than the largest key size that
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can currently be broken for that cryptosystem. There are several problems with this
approach.

First, the choice 10is rather arbitrary. Secondly, it is ive to believe that the largest
published key broken so far accurately represents the best that can currently be done
(Remark 1.4.1). In the third place, for some of the cryptographic primitives considered
here data may not be available (TDL, see 2.4.6, and SDL, see 2.5.4), or they may be
outdated, thereby ruling out uniform application of this approach. Finally, the problem
of any fixed security margin is that there are always users who prefer a different choice.
We opt for a different approach by offering a flexible choice of security margin.

Definition I.  The security margisis defined as the year until which a user was willing
to trust the DES.

The rationale for this definition of security margin is that the security offered by the
DES is something most users can relate to, for instance because their company used the
DES until a certain year. Furthermore, different choices alfow us to satisfy different
security needs. Another advantage of our choice of security margin is discussed in
Remark 3.1.4.

The DES was introduced in 1977 and stipulated to be reviewed every 5 years. We
therefore assume thatthe DES was at least sufficiently secure for commercial applications
until 1982.

Default Setting . Our default setting fos is s = 1982.

Our default setting fasassumes thatin 1982 a computational effort of 0.5 MMY provided

an adequate security margin for commercial DES applications against software attacks
(see 2.2.4). Asfar as hardware attacks are concerned, the DES key searching [$50 million,
2 days, 1980]-hardware (see 2.2.5) was not a serious threat for commercial applications
of the DES at least until 1982. We stress “commercial applications” because, even for
1980 budgets, $50 million and 2 days were by no means an insurmountable obstacle for
certain organizations. Our default setting$as further discussed below (Remark 3.1.8).
Although all our results are based on the default settirg 1982, they can easily be
adapted to produce key size recommendations for any other reasonable value of
Section 4.4 it is indicated how this can be done.

The maximal value of a “commercial application” of the DES, either back in 1982 or
right now, is the value of the company encrypting the data. Thus, over time there is no
intrinsic difference between the possible value of commercial applications of the DES. As
businesses move online the number of commercial applications is increasing, but volume
is not a security factor. A concept of “value” is therefore not directly incorporated in our
model, but value can be compared with the cost of an attack using our notion of “cost
equivalence” (Section 4.5 and the penultimate column of Table 1). See also 3.1.1. We
are grateful to an anonymous referee for suggesting us to clarify this point.

3.1.3. Remark on security margin A particular choice fos does not imply that the
DES is thought to be vulnerable from yeaon [38]; it means that the user who picked
s is willing to trust the DES until the yea. Of course, any responsible user maintains
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a comfortable margin between the moment until which they are willing to use a system
and the moment when they believe the system to be vulnerable. It is baffling that anyone
would seriously believe [38] that the DES was not actually broken until 1997, the year
that it was publicly demonstrated (Remarks 1.4.1 and 3.1.8).

3.1.4. Remark on security margin and incomplete attacki$ should be understood that

our definition of security margin (Definition 1) also takes into account the probability

of success of incomplete attacks. Indeed, trusting the DES implies that one finds it to
be sufficiently resistant to all types of potential attackers. That is, the whole spectrum
between, on the one hand, attackers that search a fraction close to 1 of the key space
and, on the other hand, attackers that search a fraction close to 0 of the key space. The
former is assumed to be too expensive to carry out, and for the latter it is assumed that
the probability of success is too low.

Note that the success probability of exhaustive key search is proportional to the fraction
of the key space searched (see 2.2.7), but that for Pollard’s rho method the probability of
success is only proportional to the square of the fraction of the work performed (see 2.5.6
and 2.6.7). Therefore, an incomplete attack against EC or SDL systems has a smaller
probability of success than a similarly incomplete attack against the DES. Thus, if EC
or SDL key sizes may be expected to satisfy a certain security margin, they also offer
resistance againstincomplete attacks thatis at least equivalent to the resistance offered by
the DES. Because furthermore incomplete attacks against RSA and TDL systems cannot
be expected to be successful at all (see 2.4.9 and Section 5.9), we conclude that the effect
ofincomplete attacks has effectively been taken care ofin our model. See also Section 5.8.

3.1.5. Computing environment To estimate how the computing power available to at-
tackers may change over time we use Moore’s law. Moore’s law states that the density of
components per integrated circuit doubles every 18 months. A widely accepted interpre-
tation of this law is that the computing power per chip doubles every 18 months. There
is some skepticism whether this law will, or even can, hold much longer because new
technologies will eventually have to be developed to keep up with it. Therefore we allow
the user to define the following slight variation of Moore’s law that is less technology
dependent.

Definition II.  The variablem > 0 is defined as the number of months it takes on
average for an expected twofold processor speedup and memory size increase.

Default Setting Il.  Our default setting fomis m = 18.

Definition Ill.  The 0,1-valued variabledefines howm must be interpreted:

— If t = 1 the amount of computing power and random access memory (RAM) one
gets for a dollar is expected to double evarynonths.

— If t = 0 the amount of computing power and RAM is expected to double avery
months, irrespective of the price.

Default Setting Ill.  Our default setting fotist = 1.
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Default Setting Il corresponds to a popular interpretation of Moore’s law. Combined
with Default Setting Il it leads to a less technology dependent version of Moore’s law
that may hold even if Moore’s traditional law no longer holds because of technological
limitations.

So far Default Settings Il and 11l seem to be sufficiently accurate: every 18 months the
amount of computing power and RAM one gets for a dollar doubles. With these default
settings it follows that for the same cost one expects to get a fact&ft-é¥2® ~ 100 more
computing power and fast memory every 10 years, either in software on multipurpose
chips (PCs) or using special-purpose hardware.

To illustrate this, it is not unreasonable to assume that a cheaper and slower version
of the DES key searching [$50 million, 2 days, 1980]-hardware (see 2.2.5) would be
[$1 million, 100 days, 1980]-hardware, i.e., 50 times less hardware and therefore 50 times
slower. With Default Settings 1l and 1l the latter hardware may be expected t&be 2
times faster in 1993, since there arexII3 = 18x 8.66 months between 1980 and 1993.
Since 37 ~ 406 and 100406 days is about 6 hours, this would result in [$1 million,

6 hours, 1993]-hardware which is indeed close to Wiener’s [$1 million, 3.5 hours, 1993]-
hardware design (see 2.2.5).

On the other hand, further extrapolation suggests [$1 million, 0.6 hours, 1998]-
hardware for DES key searching. That is approximately equivalent to [$130,000, 4.6
hours, 1998]-hardware, and thereby about 24 times faster than the [$130,000, 112 hours,
1998]-hardware that was actually built in 1998 [19]. According to Kocher [20] this
anomaly is due to the fact that building the $130,000 machine was, relatively speaking,
a small-scale enterprise where every doubling of the budget would have quadrupled the
performance. Obviously this non-linear improvement applies only as long as the device
is relatively small.

If t = 0 itis assumed that the computational resources available to attackers double
everym months, so their budgets are not immediately relevartt.3f 1 the effect of
budget increases and inflation have to be taken into account. This leads to the following
definition.

Definition IV.  The variabld > 0 is defined as the number of years it takes on average
for an expected twofold increase of budget.

Default Setting IV.  Our default setting fobisb = 10.

The US Gross National Product shows a trend of doubling every 10 years: $1630 billion
in 1975, $4180 billion in 1985, and $7269 billion in 1995, where each figure is given
in contemporary dollars. Default Setting IV leads to the assumption that the budgets of
organizations—including the ones breaking cryptographic keys—double every 10 years,
measured in contemporary dollars.

Note that with Default Setting IV the effect of budget increases is very small; see
Remark 1.1.1.

3.1.6. Combination of Defaults Settings I-IVIf in 1982 an amount of computing
power of 0.5 MMY is assumed to be infeasible to invest in an attack on a commercial
cryptographic application, therr 100* 2 x 0.5 = 100 MMY is infeasible in 1992,
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Furthermore;~ 200% 100= 2 % 10* MMY is infeasible in 2002, and 4 10° MMY is
infeasible in 2012. These figures agree with Odlyzko’s estimates based on computing
power that may be available on the Internet [29]. Our estimates are, however, obtained
in an entirely different fashion.

3.1.7. Cryptanalysis Itisimpossible to say what cryptanalytic developments will take
place, or have already taken place surreptitiously. We find it reasonable to assume that
the pace of (published) future cryptanalytic findings and their impact are not going to
vary dramatically compared with what we have seen from 1970 until 1999, as described
in 2.2.8, 2.4.10, 2.5.7, 2.6.8, and 2.7.5. Nevertheless, we allow some flexibility in the
choice of expected cryptanalytic progress.

As indicated in 2.2.8 and 2.7.5 we assume that there will be no cryptanalytic devel-
opments affecting symmetric key cryptosystems or hash functions: if there is progress
we assume that the affected system or function is replaced by a system or function that
is not affected.

It follows from 2.4.10 and 2.6.8 that we have to take a more flexible approach to
asymmetric cryptosystems.

Definition V. The number > 0 is defined as the number of months it is expected to
take on average for cryptanalytic developments affecting classical asymmetric systems
to become twice as effective, i.e.months from now we may expect that attacking the
same classical asymmetric system costs half the computational effort it costs today.

Default Setting V. Our default setting for isr = 18.

Default Setting V corresponds closely to cryptanalytic progress affecting classical asym-
metric systems during the past 25 years, as mentioned in 2.4.10; see Remark 4.3.1(2).

Definition VI.  The number > 0 is defined as the number of months it is expected to
take on average for cryptanalytic developments affecting EC systems (chosen as indicated
in 2.6.8) to become twice as effective, unless 0 in which case no EC cryptanalytic
progress is expected.

Default Setting VI. Our default setting foc is ¢ = 0.

Default Setting VI corresponds with the fact that there has not been substantial cryptan-
alytic progress affecting EC systems, assuming the system has been properly chosen as
indicated in 2.6.8.

Since there has been no cryptanalytic progress affecting SDL systems since the in-
vention of Pollard’s rho method (and its parallelization) other than progress affecting
the full multiplicative group (see 2.5.7), we assume no cryptanalytic progress affecting
SDL systems. Although for EC systems the situation is similar (i.e., for properly cho-
sen parameters no progress to speak of over the last 10 or so years) we chose to allow
progress for EC cryptanalysis (with Default Setting VI “no progress”) because, unlike
SDL systems, it is not hard to find researchers who find it not unlikely that there will
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be EC cryptanalytic progress. We do not find it realistic to exclude the possibility of
cryptanalytic progress affecting classical asymmetric systems,is@ssumed to be
strictly positive.

3.1.8. Remark on default settings We do not expect that everyone agrees with our
default settings. In particular Default Setting | is debatable. Note, however, that it does
not assume that the DES was unbreakable in 1977 or 1982. It assumes that the DES
offered enough security for commercial applications, not that well-funded government
agencies were unable to break it back in 1977. In this context it may be entertaining to
mention that Wiener, after presenting his [$1 million, 3.5 hours, 1993]-hardware design
at a cryptography conference, was told that he had done a nice piece of work and he was
offered a similar machine at only 85% of the cost—with the catch that it was 5 years old
[45]. In any case, anyone who feels that our default 1982 infeasibility assumption is too
weak or too strong can still use the key size recommendations that result from Default
Setting |, i.e.s = 1982. In Section 4.4 it is explained how this may be done.

Neither do we expect that everyone agrees with Default Settings II-IV. Some argue
that Moore’s law cannot hold much longer, others argue that it is well understood that
Moore’s law is very likely to die around 2012 or so, and still others [20] find that
for big machines Moore’s law is too pessimistic. Default Settings |11V thus represent
a reasonable compromise, in particular because they allow a technology-independent
interpretation of Moore’s law—even if technology gets worse, if that were possible,
acquiring computing power may become cheaper.

3.2. Software versus Special-Purpose Hardware Attacks

The proposed key sizes in the next section are obtained by combining Default Settings |-
VI with the software based Mips-Years data points from Section 2. This implies that
all extrapolations are based on “software only” attacks and result in computationally
equivalent key sizes (Section 1.4). One may object that this does not take special-purpose
hardware attacks into account. In this subsection we discuss to what extent this is a
reasonable decision, and how our results should be interpreted to take special-purpose
hardware attacks into account as well.

3.2.1. Symmetric key systemsin 1980 the DES could either be broken at the cost of
0.5 MMY (see 2.2.4), or using [$50 million, 2 days, 1980]-hardware (see 2.2.5).1n 3.1.5
we have shown that this is consistent with Default Setting Il and Wiener’s 1993 design.
It follows from this consistency that the 1982 relation between software and special-
purpose hardware attacks on the DES has not changed. In particular, if one assumes that
the DES was sufficiently resistant against a special-purpose hardware attack in 1982, the
same holds for the symmetric key sizes suggested for the future, even though they are
based on extrapolations of “software only” attacks. We note that our estimates and the
resulting cost of special hardware designs for exhaustive key search are consistent with
the estimates given in [3] and [5].

Furthermore, it seems reasonable to assume that a DES attack of 1 MMY is comparable
with an attack by [$10 million, 20 days, 1980]-hardware or, using Default Setting I,
[$200x 10°/21066 — $125,000, 1 day, 1996]-hardware.
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3.2.2. EC systems The cost of a software attack on a 109-bit EC system with 210°

was estimated as 8 MMY (see 2.6.4), so that attacking a 120-bit EC system with>°

should take abou@120-199/2) 4 (155/109)? ~ 91 times as many Mips-Years, i.e., about

730 MMY. The [$10 million, 32 days, 1996]-hardware design attacking a 120-bit EC
system withp = 2% (see 2.6.5) should thus be more or less comparable with 730 MMY.
However, the designers of the hardware device remark that their design was based on
1992 (or even older) technology which can be improved by using 1996 technology. So,
by Default Setting Il, the “upgraded” [$10 million, 32 days, 1996]-hardware design could
be more or less comparable with 78@(1996-1992/15 ~ 4600 MMY. It follows that an

EC attack of 1 MMY is comparable with [$70,000, 1 day, 1996]-hardware.

With 3.2.1 we find that 1 MMY is equivalent to [$70,000-$125,000, 1 day, 1996]-
hardware depending on an EC or a DES attack. Because of the consistency of these con-
versions it is tempting to suggest that 1 MMY is approximately equivalent to [$100,000,

1 day, 1996]-hardware; more generally, that 1 MMY would be equivalent to°}$10
20y~1996/15¢ 1 day,y]-hardware in yeay. That is, 1 MMY is equivalent to [$25,000,

1 day, 1999]-hardware. This conversion formula would allow us to go back and forth
between software and special-purpose hardware attacks, and make our entire model
applicable to hardware attacks as well.

In our opinion the consistency between the two conversions is a mere coincidence
without much practical merit. In the first place, the estimate holds only for relatively
simple-minded DES or EC cracking devices for elliptic curves over non-prime fields
(i.e., those withp = 2%), not for elliptic curves over prime fields and certainly not for
full-blown PCs. For prime fields the hardware would be considerably slower, whereas in
software EC systems over prime fields can be attacked faster than those over non-prime
fields (see 2.6.4). Thus, for special-purpose hardware attacks on EC systems over prime
fields the above consistency no longer holds.

In the second place, according to [44], the pipelined version of the EC-attacking
special-purpose hardware referred to above would be about seven times faster, which
means that also for special-purpose hardware attacks on EC systems over non-prime
fields the consistency between DES and EC attacks is lost. Also according to Wiener
[44], the prime field version of the pipelined device would be abbwh 2° times slower
than the non-prime field version. It should be noted that the details of the pipelined device
have never been published (and most likely will never be published [45]).

As mentioned in 2.6.8, we consider only EC systems that use randomly selected curves
over prime fields. Therefore we may base our recommendations on “software only”
attacks, if we use the software-based data point that a 109-bit EC system can be attacked
in 2.2 MMY (see 2.6.4). This can be seen as follows. The 2.2 MMY underestimates the
true cost, and is lower than the 8 MMY cost to attack the non-prime field of equivalent
size. The latter can be done using non-pipelined special-purpose hardware in a way that
is more or less consistent with our DES infeasibility assumption, as argued above. For
special-purpose hardware a non-prime field can be attacked faster than a prime field of
equivalent size, so if we use theima DES-consistent hardware conversion, then the
hypothetical special-purpose hardware that follows from extrapolation of the 2.2 MMY
figure to larger prime fields substantially underestimates the true hardware cost. That
means that the resulting key sizes are going to be too large, which is acceptable since
we are deriving lower bounds for key sizes (Section 1.3).
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The more realistic prime field equivalent of the non-DES-consistent pipelined device
for non-prime fields is, based on the figures given above, at [éa8f22.2x7) > 8times
slower than our hypothetical hardware. This implies that the more realistic hardware
would lead to lower key sizes than the hypothetical hardware. Thus, it is acceptable to
stick to the latter (Section 1.3). It follows that if one assumes that the DES was sufficiently
resistant against a special-purpose hardware attack in the year indicated by the security
margins as in Definition I, then the same holds for the EC key sizes suggested for the
future, even though they are based on extrapolations of “software only” attacks.

3.2.3. SDL systems The same holds for SDL systems because our analysis of SDL
key sizes is based on the EC analysis as described in 4.2.5 below.

3.2.4. Classical asymmetric systemsFor classical asymmetric systems we do not con-
sider special-purpose hardware attacks, as argued in 2.4.7. The issue of software attacks
on classical asymmetric systems versus special-purpose hardware attacks on other cryp-
tosystems is discussed in 3.2.5 below.

3.2.5. Cost comparison of software and special-purpose hardware attacRsr key

size recommendations below are computationally equivalent (Section 1.4) and, as argued
in 3.2.2, they all offer security at least equivalent to the 1982 security of the DES (based
on Default Setting I), both against software and special-purpose hardware attacks. That
does not necessarily imply that the key sizes for the various cryptosystems are also
cost equivalent (Section 1.4), because the equipment costs of the 1982 software and
special-purpose hardware attacks on the DES are not necessarily equal either.

One point of view is that accessing the hardware required for software attacks is, or
ultimately will be, essentially for free. This is supported by all Internet-based cryptosys-
tem attacks so far and other large computational Internet projects such as SETI. Adoption
of this simple-minded rule would make computational and cost equivalence identical,
which is certainly not generally acceptable [44]. Unfortunately, a precise equipment cost
comparison defies exact analysis, primarily because no precise “cost of a PC” can be
pinpointed, but also because a truly complete analysis has never been carried out for the
pipelined EC attacking design from [44] and [45]. As pointed out in Section 1.4 this
is one of the reasons that we decided to use computational equivalence as the basis for
our results. Nevertheless, we sketch how an analysis based on cost equivalence could be
carried out.

Definition VII.  The numberP > 0 is defined as the price in US dollars of a stripped
down PC with at least 64 MB of RAM. By a stripped down PC we mean a 450 MHz
Pentium Il processor, a mother-board, and communications hardware.

Default Setting VII.  Our default setting foP is P = 100.

According to newspaper advertisements fully equipped PCs can be bought for prices
varying from $0 to $450. The “free” machines support the point of view that software
attacks are for free. Default Setting VII assumes that one does not want to deal with
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the strings attached to the free machines and is based on wholesale extrapolation of
current prices. Our choice disregards the possibility of a much larger quantity discount
one should be able to negotiate for a very large order.

Assuming Default Setting VI, 1 million software Mips-Years is equivalent to [$365
10° % 100/450 = $81 million, 1 day, 1999]-hardware. Compared with the exhaustive
DES key search [$125,000, 1 day, 1986]$31,250, 1 day, 1999]-hardware from 3.2.1,
a software Mips-Year is thus about

365x% 10° % $100

~ 100% 26 = 26% P
450+ $31,250 ¥ *

times more expensive. Compared with the pipelined [$70,00Dday, 1996} [$2600,

1 day, 1999]-hardware to attack EC systems over non-prime fields referred toin 3.2.2, a
software Mips-Year is more thans310* = 300 P times more expensive, but at most
about 2<10° = 20« P times more expensive than the prime field version of the pipelined
design.

It follows that for our purposes software Mips-Years are at most Bétimes more
expensive than Mips-Years produced by special-purpose hardware. In Section 4.5 it is
shown how this factor 26 P can be used to derive cost-equivalent key sizes from the
computationally equivalent ones.

Note that the factor 26 P should be taken with a large grain of salt. Its scientific
merit is in our opinion questionable because it is based on the presumed infeasibility of
special-purpose hardware attacks on RSA (see 2.4.7 and the pipelined design in [12]).

3.3. Memory Considerations

The processors contributing to a parallelized exhaustive key search do not require a
substantial amount of memory. This is also the case for the processors involved in a
parallelized attack using Pollard’s rho method against SDL or EC systems. Although
for the parallelized version of Pollard’s rho method substantial storage space has to be
available at a central location, we assume that storage requirements do not have to be
taken into account to estimate SDL and EC system key sizes.

For parallelized NFS attacks against classical asymmetric systems, however, each of
the contributing processors needs a relatively large amount of RAM of speed compatible
with the processor speed. Until recently memory access times and not processor speeds
determined the effective run times of the standard type of sieving used: a clock rate
twice as fast would often result in only marginally faster sieving. This is because stan-
dard sieving requires very little computation and consists almost exclusively of constant
updates of more or less random locations in a large chunk of memory, and thus does not
allow efficient caching. Straightforward extrapolation of run times to faster processors
was therefore impossible.

Newer generations of processors with larger memories allow efficient implementation
of NFS lattice sieving, which is, compared with standard sieving, a relatively compute-
intensive method. Its efficiency depends mostly on the processor speed, and memory
access time hardly matters. To illustrate this, we observed that the speed of NFS lattice
sieving on Pentium processors grows strictly linearly with the processor speed, with
an interesting larger-than-expected speedup when moving from Pentium | to Pentium
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Il processors: an average sieving step operation for the result presented in [6] takes
15.8 seconds on a 133 MHz Pentium |, 12.7 seconds on a 166 MHz Pentium |, 5.34 sec-
onds on a 300 MHz Pentium Il, and 3.61 seconds on a 450 MHz Pentium Il. Here
all processors execute the same binary that uses about 48 MB of their about 200 MB
RAMs.

As a consequence, there does not seem to be any reason not to extrapolate NFS run
times in the standard fashion. At worst the extrapolated sieving times are lower than the
actual ones, making factoring look easier than it actually is, and thereby making the RSA
key size recommendations somewhat larger (Section 1.3).

The amount of memory required by the NFS grows with the square root of the run
time. Sincem (Definition II) is assumed to be strictly positive, available RAM grows
linearly with the processor speed. Thus, since current processors have in general enough
memory for problems that are currently solved using the NFS, we may assume that future
processors have more than enough memory to tackle future problems. Combining these
observations we conclude that the NFS memory requirements do not explicitly have to
be taken into account when extrapolating NFS run times to future processors and larger
RSA moduli or field sizes.

4. Lower Bound Estimates for Cryptographic Key Sizes

4.1. Introduction

In this section we present formulas that can be used to derive lower bounds for crypto-
graphic key sizes. In Sections 4.2—-4.5 we concentrate on key size recommendations that
can be expected to offer an acceptable security margin until a year specified by the user.
In Section 4.6 we describe how key size recommendations can be derived that can be
expected to offer a level of security that is currently (i.e., at the time of writing of this
article) at least equivalent to a symmetric key size specified by the user.

The recommendations in this paper are based on the default settings. To use other
settings, refer to Section 4.4, or use the Java applet provided by PaldlE3a].

4.1.1. Remark on precisian Our “progress” parameters, r, andc (from Defini-

tions 11, V, and VI, respectively) are measured in months, because that corresponds to
the way Moore’s law is often formulated. Below, however, time is measured in whole
years, as is the security margiffrom Definition I). In principle we could adopt a much
finer granularity and, for instance, use the more precise data point that a 511.7-bit RSA
modulus was broken in 1999.64. In our opinion that would give a misleading sense of
precision that would be inappropriate for an article of this sort.

One may object—and we would not disagree—that key size recommendations should
not be given on a year-by-year basis, as we do below. In our experience, however,
the uncertainties inherent in this type of “back-of-the-envelope” engineering are not
appreciated by all intended users: if a year is not specified in our tables, they may end
up using an interpolated value, instead of simply using the next year up. If calculated
properly, there is nothing wrong with interpolated values (the curves are convex, and
we are only interested in lower bounds), but it is more convenient, and safer, simply to
provide values for all years.
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Another point of criticism is that we do not round the values resulting from our
formulas, thereby failing to reflect that they are crude estimates at best. Thus, if according
to some formula, a key size of 1537 bits is believed to be adequate for a certain year
(and certain parameter settings), then we print the value 1537 in our tables, and not
1500, 1536, 1568, or 1600. We wholeheartedly agree that something like 1537 gives
a misleading sense of precision, and of course we considered rounding values, but we
decided not to do so for a couple of reasons. First, we would always have to round up,
but we would have to use different granularities for RSA and TDL recommendations
compared with those for symmetric key, SDL, or ECC systems. Without any doubt the
resulting relatively long RSA keys would be interpreted as the authors’ bias against RSA
and in favor of ECC, something we want to avoid at all cost. Secondly, and this may seem
strange to many readers, there is an amazingly common belief, or misunderstanding, that
RSA keys must have a length that is divisible by a non-trivial power of 2 such as 32,
64, or 128. We do not want to fuel this misconception by recommending RSA key sizes
that are all 0 modulo 32 or even 10, or that show any other pattern that can (and will) be
misunderstood. Thus, rounding is fine, but the user will have to do it—we just provide
the bare, unbiased numbers.

We are grateful to an anonymous referee for bringing up this subject once again. We
hope these paragraphs clarify our opinions and decisions.

4.2. Key Size Formulas for a Given Year

4.2.1. Infeasible number of Mips-Yea(MY ). Suppose that key sizes have to be
determined that achieve at least a specified security margin untilyydzeaking the
DES takes 5« 10° Mips-Years (see 2.2.4). This amount of computation offered an
acceptable level of security in the yesfDefinition | in 3.1.2). Based on Definitions |-
IV in 3.1.2 and 3.1.5 it follows that in yeay, i.e., y — s years later, an amount of
computation of

IMY (y) = 55 10° % 212=9/m 4 2l=9/b Mips-Years

offers an acceptable level of security. Heék&Y (y) stands for “Infeasible number of
Mips-Years for yeay”. The factor 229-9/M is due to the expected processor speedup
in the period from yeas to yeary (Definitions | and Il in 3.1.2 and 3.1.5), and the factor
2ty-9)/b reflects the expected increase in the budget available to an attacker (Definitions |,
lll, and IV in 3.1.2 and 3.1.5). The resulting valldY (y) is used to derive key sizes
that offer an acceptable level of security until ygarfor all cryptographic primitives
considered in Section 2.

4.2.2. Symmetric key systemsFor symmetric key cryptosystems we introduce the
possibility that the block-encryption speed of the symmetric key system to be used is
different from the block-encryption speed of the DES.

Definition VIII.  The variablev > 0 is defined as the ratio of the number of cycles
required for a single block encryption using the DES and the symmetric key system the
user wishes to use.
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Default Setting VIII.  Our default setting fov isv = 1.

Because the symmetric key system to be usediimes slower than the DES, attacking
it goesv times slower as well. It follows that if the symmetric key system is used with a
keyd of at least

564 log,(IMY (y)/(5 % 10° % v)) = 56+ (y — $)(12/m + t/b) — log,(v) bits,

with IMY(y) as in 4.2.1, then the security offered by the symmetric key system until
yeary is at least computationally and cost equivalent (see 3.2.1) to the security offered
by the DES in yeas. Here we use that the DES has a 56-bit key (see 2.2.1), that it can
be attacked in 5 10° Mips-Years (see 2.2.4), and that there is no faster attack method
than exhaustive search (see 2.2.8).

4.2.3. Classical asymmetric systemsFor classical asymmetric systems we use the
asymptotic run time.[n] of the NFS (omitting theo(1)) as defined in 2.4.4 combined
with the data point that a 512-bit key was broken in 1999 at the cost of less thitid

Years (see 2.4.6). Furthermore, we expect cryptanalytic progress by a f&tot®9/f
compared with the state of the art in 1999, the year of the data point (see 2.4.10 and
Definition V in 3.1.7). It follows that if the classical asymmetric key skzis chosen

such that

L[24] _ L
IMY (y) * 212y-1999/r = 10%

then the security offered by classical asymmetric systems untilyyisaat least compu-
tationally equivalent to the security offered by the DES in y&df, on the other hand,
the classical asymmetric key sikeis chosen such that

L[2"] o L[
IMY (y) # 212y-1999/r = 10# 26 P’

then the security offered by classical asymmetric systems until yéaat least cost
equivalent to the security offered by the DES in yedDefinition VIl in 3.2.5). The
factor 26« P is explained in 3.2.5.

Because the data point used slightly overestimates the cost of factoring a 512-bit key
and because we omit tleg1), the difficulty of breaking classical asymmetric systems
is overestimated (see 2.4.4), i.e., the classical asymmetric key sizes should be slightly
larger than given in Table 1. We did not attempt to correct this, because the effectis minor
and may disappear if the RSA key sizes given in Table 1 are rounded in a reasonable
way (Remark 4.1.1).

4.2.4. EC systems For EC systems we use the expected growth rate of the number of
group operations required by Pollard’s rho method (see 2.6.3), the expected growth of
the cost of the group operations (see 2.6.4), and the optimistic estimate that a 109-bit EC
system can be broken in 2.2 MMY (see 2.6.4). Furthermorme~f0 (Definition VI in

3.1.7), we expect cryptanalytic progress by a factd¥21999/¢ compared with the state
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ofthe artin 1999 (the year of the data point). WeGet 1if c = 0 andC = 212y-1999/c
otherwise. It follows that if the EC key sizeis chosen such that

2U/2 4 y2 21092 4 10F
>
IMY(y) xC — 22%10° °

then the security offered by EC systems until ygas at least computationally and
cost equivalent (see 3.2.2) to the security offered by the DES ingy@re factorsu?

and 109 account for the relative speed of the arithmetic operations to be performed by
Pollard’s rho method.

4.2.5. SDL systems For SDL systems we use finite field sikewith k either equal

tok ork’ asin 4.2.3 (see 2.4.6, 2.5.1, and 2.5.3). Because no suitable SDL data points
are available (see 2.5.4) we estimate that arithmetic operationk4hitafinite field
arek?/(109 x 9) times more expensive than arithmetic operations in an elliptic curve
group over a 109-bit finite field (where the “9” underestimates the number of field
multiplications required for an EC operation, estimated as 12 in 2.6.3). Since for SDL
V2 more iterations in Pollard’s rho method may be expected than for EC systems, it
follows that if the subgroup sizesatisfies

272 % k2 - 21092 4 10%F % 9

IMY(Y) — /2%22%10°
and the finite field size is at ledstthen the security offered by SDL systems until year
y is at least equivalent to the security offered by the DES in geapmputationally

equivalent ifk = k and cost equivalent K = k’ with k andk’ as in 4.2.3. Note that the
above expression faris equivalent to

z > 109+ 2 log, ( IMY (y) *1092*9>‘

k2 % /2% 2.2 % 108

The resulting sizes are too large because the 2.2 MMY estimate is on the low side. This
optimism is to a small extent corrected by the optimistic choice of nine field multiplica-
tions (where 12 or 13 would be more accurate [14]). It follows from a straightforward
analysis that the subgroup size resulting from the above formula is of the required diffi-
culty, independent of the EC data point, if a multiplication in a field of &i@kes about

k?/69 Pentium clock cycles. According to our own experiments with reasonably fast
but non-optimized software a field multiplication can be donk?(24 Pentium clock
cycles, so that the subgroup sizes resulting from the EC-based data point are at most two
bits too large (Section 1.3).

4.3. Lower bounds for computationally equivalent key sizes

For years ranging from 1982 to 2050 and for Default Settings I1-VIII the computationally
equivalentkey size recommendations resulting (Remark 4.1.1) from the formulas givenin
Section4.2 are given in Table 1. Furthermore, Table 1 contains key size recommendations
for c = 18, i.e., cryptanalytic progress affecting EC systems comparable with Default
Setting V for the cryptanalytic progress affecting classical asymmetric systems. For
cost-equivalent key size recommendations see Section 4.5.



Selecting Cryptographic Key Sizes 283
4.3.1. Remarks on the computation of Talile

1. Strictly speaking the data for years before 1999 do not make sense for the “EC
with ¢ = 18" column, because we already know that for random curves over prime
fields such progress did not occur before 1999. Nevertheless, the data can be found
in Table 1 as well, in italics. It is described in Section 4.4 in what circumstances
the data, and the other data in italics, may be used.

2. The data in Table 1 do not change significantly if the “512-bif, M@ps-Years,
1999 data point is replaced by, for instance, “333-bit, 30 Mips-Years, 1988” (the
first 100-digit factorization) or “429-hit, 5000 Mips-Years, 1994” (the factorization
of the RSA-Challenge; 5000 Mips-Years overestimates the time it took to break
the RSA-Challenge despite the remarks made in [37]). This validates our default
setting forr for cryptanalytic progress affecting classical asymmetric systems, see
2.4.10 and 3.1.7.

4.3.2. Using Tablel. Assuming one agrees with Default Settings I-VII, Table 1 can be
used as follows. Suppose one is developing a commercial application in the year 2000 in
which the confidentiality or integrity of the electronic information has to be guaranteed
for 20 years, i.e., until the year 2020. Looking at the row for the year 2020 in Table 1,
one finds that an amount of computing 092+ 10'* Mips-Years in the year 2020 may

be considered to be as infeasible asl®® Mips-Years was in 1982 (see 2.2.4). Security
computationally equivalent (Section 1.4) to that offered by the DES in 1982 is obtained
by using in the year 2020 (while keeping Remark 4.1.1 in mind):

— Symmetric keys of at least 86 bits, and hash functions of at least 172 bits.

— RSA moduli of at least 1881 bits; the meaning of the “1472" given in the second
entry of the same column is explained in Section 4.5.

— Subgroup discrete logarithm systems with subgroups of at least 151 bits with finite
fields of at least 1881 bits. Thus, for an SDL system such as XTR it follows that
log,(q) =~ 151 and 6« log,(p) ~ 1881 [23].

— Elliptic curve systems over prime fields of at least 161 bits if one is confident that
no cryptanalytic progress will take place, and at least 188 bits if one prefers to be
more careful.

If finite fields are used in SDL or EC systems that allow significantly faster arithmetic
operations than suggested by our estimates, the data in Table 1 can still be used: if the
field arithmetic goex times faster, keys should be roughly g, (x) bits larger than
indicated in Table 1. As noted above, however, the field arithmetic is already assumed
to be quite fast. Similarly, if one does not agree that the data point used for EC systems
underestimates the actual cost and that we overestimated the cost by & faetothat

the 2.2 MMY to attack 109-bit EC systems (see 2.6.4) should be oBjxMMY, add
roughly 2x log,(x) bits to the suggested EC key sizes.

Note that it does not follow from Table 1 or the default settings that 1024-bit RSA
keys will be safe only until 2002 [38]. It follows from Table 1 that until the year 2002,
RSA keys of 1024 bits can be expected to offer security computationally equivalent to
the DES in 1982. In this context, see also Remarks 1.4.1 and 3.1.3.



Table 1. Lower bounds for computationally equivalent key sizes, assumirg 1982,m = 18,t = 1,

b=10,r =18,c=0andc = 18,v = 1.

Classical Lower bound Corresponding
asymmetric o for hardware number of
key size SDL Ell;fég;:sﬁggve Infeasible costin US$ for years on
Symmetric and SDL key number of a 1 day attack a 450 MHz

Year key size field size size ¢c=0 «c=18 Mips-Years (see 4.5) Pentium Il PC
1982 56 417 ogg 102 105 85 5.00% 10° 3.98x 10 1.11%10°
1984 58 463 39 105 108 89 1.45%10° 4575107 3.22x103
1986 60 513 35, 107 111 96  4.19%10° 5.25% 107 9.31x 103
1988 61 566 3g4 109 114 101 1.21% 107 6.04 10 2.69x 10
1990 63 622 4g 112 117 106 351% 10 6.93x% 10 7.80x% 104
1991 63 652 445 113 119 109 5.97x% 107 7.435% 107 1.33%10°
1992 64 682 g 114 120 112 1.02x108 7.96x 10 2.26% 10°
1993 65 713 51, 116 121 114 1.73% 108 854 107 3.84%10°
1994 66 744 544 117 123 117 2.945% 108 9.15x% 107 6.53x% 10°
1995 66 777 544 118 124 121 5.00x% 108 9.81x 107 1.11%10°
1996 67 810 576 120 126 122 851108 1.05x 108 1.89+ 10P
1997 68 844 gog 121 127 125 1.45% 10° 1.13%10° 3.22x10°
1998 69 879 a0 122 129 129 2.46% 10° 1.21%10° 5.48x% 10°
1999 70 915 g7 123 130 130 49 10° 1.29%10° 9.31x10°
2000 70 952 704 125 132 132 3% 10° 1.39%10° 1.58% 107
2001 71 990 735 126 133 135 P1x 100 1.49% 108 2.70% 107
2002 72 1028 765 127 135 139 D6+ 1010 1.59x 10° 459% 107
2003 73 1068 ggg 129 136 140 H14 100 1.71%10° 7.80% 107
2004 73 1108 g3z, 130 138 143 D8 1010 1.83x 108 1.334 108
2005 74 1149 ggs 131 139 147 D2+ 101 1.96% 10° 2.26% 108
2006 75 1191 ggg 133 141 148 73x 101 2.10% 108 3.84x 108
2007 76 1235 gy 134 142 152 D4« 1011 2.25% 108 6.54x 108
2008 76 1279 950 135 144 155 D1 101 241108 1.11%10°
2009 77 1323 1924 137 145 157 &2 1011 259 108 1.89x 10°
2010 78 1369 1056 138 146 160 U5 1012 2.77% 108 3.22x10°
2011 79 1416 10gg 139 148 163 2471012 2.97% 108 5.48x% 10°
2012 80 1464 1159 141 149 165 49x 1012 3.19x% 108 9.32x 10°
2013 80 1513 1184 142 151 168 4% 1012 341108 1.59% 1010
2014 81 1562 1216 143 152 172 p1x1013 3.66x 10° 2.70% 1010
2015 82 1613 1945 145 154 173 D7 1013 3.92x% 108 459 100
2016 83 1664 1312 146 155 177 F1+1013 4.20% 108 7.81x 1010
2017 83 1717 1344 147 157 180 D8« 1013 4515108 1.33% 1011
2018 84 1771 1376 149 158 181 D2+ 1014 4.83x 108 2.26x 1011
2019 85 1825 1449 150 160 185 731014 5.18x% 108 3.85x 101
2020 86 1881 1472 151 161 188 D4 1014 5.55x% 108 6.54x% 1011
2021 86 1937 1536 153 163 190 11014 5.945% 108 11141012
2022 87 1995 1565 154 164 193 &2 1014 6.37% 108 1.89x 1012
2023 88 2054 1632 156 166 197 U5+ 1015 6.83% 108 3.22x 1012
2024 89 2113 1595 157 167 198 247+ 1015 7.32% 108 5.48x 1012
2025 89 2174 1708 158 169 202 £0x 1015 7.845% 108 9.33x 1012
2026 90 2236 179> 160 170 205 4% 1015 8.41x 108 1.59% 1013
2027 91 2299 1g56 161 172 207 P1x1018 9.01x 108 2.70% 1013
2028 92 2362 183 162 173 210 D7+ 1016 9.66x 108 459 1013
2029 93 2427 1950 164 175 213 H2x 1016 1.04%10° 7.81x 1013
2030 93 2493 5015 165 176 215 D8« 1016 1.11%10° 1.33% 1014
2032 95 2629 2144 168 179 222 731017 1.27%10° 3.85x 1014
2034 96 2768 5070 171 182 227 D1+ 1017 1.46% 10° 1111015
2036 98 2012 5499 173 185 232 U5+ 1018 1.68x 10° 3.22% 1010
2038 99 3061 5508 176 188 239 205 1018 1.93x 10° 9.33x 101°
2040 101 3214 2¢56 179 191 244 ©2x 1019 2.22%10° 2.70% 1016
2042 103 3371 2784 182 194 248 F2%1019 2.55% 10° 7.82% 10
2044 104 3533 044 185 197 255 D2 10%° 2.93x 10° 2.26 % 107
2046 106 3700 307, 187 200 260 D5 102 3.36x 10° 6.55% 1017
2048 107 3871 3230 190 203 265 &3 1070 3.86 10° 1.90% 10'8
2050 109 4047 339, 193 206 272 A7 % 107 4445 10° 5.49% 10'8
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4.4. Alternative Security Margin

Default Setting | (see 3.1.2) assumes thatthe DES offered enough security for commercial
applications until the year 1982, but not beyond 1982. For corporations that have used
the DES beyond 1982 or even until the late 1990s the resulting default infeasibility
assumption of 0.5 MMY in 1982 (see 2.2.4) may be too strong. For others it may be too
weak. Here we explain how to use Table 1 to look up key sizes foryefar example

y = 2005, ifs = 1982+ x, i.e., if one trusts the DES until the year 1982x. Here

X is negative if our infeasibility assumption is considered to be too weak and positive
otherwise. We assume the default settings for the other parameters. So, for example,
x = 13 if one trusts the DES until 1995. Of course Remark 4.1.1 applies again.

— Symmetric keys: take the entry for year— X, i.e., 2005— 13 = 1992 in our
example. The resulting symmetric key size suggestion is 64 bits.

— Classical asymmetric keys: take the entry for year23x x/43, i.e., 2005- 23x
13/43 ~ 1998 in our example. So 879-bit RSA and TDL keys should be used.

— SDL keys: lek’ be the classical asymmetric key size for ygar 23« x /43, letz
be the SDL size for yeay — X, and letk be the classical asymmetric key size for
yeary — X, then use a subgroup of sizet 4 x log,(K) — 4 * log, (k) over a field
of sizek’. In our examplék’ = 879,z = 114, andk = 682, so that a subgroup of
size 114+ 4x10g,(682) — 4x10g,(879 ~ 113 bits should be used with an 879-bit
field.

— EC systemswith = 0: take the £ = 0" entry foryeary—x, i.e., 2005- 13 = 1992
in the example. The resulting EC key size suggestion is 120 bits.

— EC systems witlt = 18: take the ¢ = 18" entry for yeary — 23 x x/43, i.e.,
2005— 23x% 13/43 ~ 1998 in our example. The resulting EC key size suggestion
is 129 bits.

TheTable 1 entries in italics for years before 1999 may be used in the last application;
the other italics entries may be usedik 0.

The correctness of these methods can be seen as follow&(yet) denote the
classical asymmetric key size recommendakiéor a certain yeay and security margin
s. We want to find the yeay for whichk(y, s) = k(y, s+x), wheres = 1982 by Default
Setting I. From the definition dMY (y) in 4.2.1 and the walgis chosen in 4.2.3 it follows
that

(Y—9)(12/m+t/b) +12(y —1999/r = (y—s—Xx)(12/m+t/b) +12(y —1999/r,
from which we find thaly = y — 23 % x/43 if the default settings are used. The other
results follow in the same way.

4.5. Cost-Equivalent Key Sizes

Table 1 can be used to derive cost-equivalent key sizes in the following manner, if the
default settings are used. A lower bound for the equipment cost for a successful 1 day
attack is given in the penultimate column of Table 1, in year dollars of yeaty.

4.5.1. Symmetric key and EC systemd he symmetric key sizes are derived based on
the definition of the security margmwhich imply sufficient resistance against either
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software or special-purpose hardware attacks. The EC key sizes are based on estimates
that are cost consistent with the symmetric key sizes (see 3.2.2). So for symmetric key
and EC systems no corrections are necessary.

4.5.2. Classical asymmetric systemsFor classical asymmetric systems, Mips-Years
are supposedly 26P times as expensive, see 3.2.5. For our computational purposes only
this is equivalent to assuming that the DES offers acceptable security until about 1997,
since 12m+t/b = 23/30, 252%30js close to 26 P for P = 100 (Default Setting VII,
3.2.5),and 198215 = 1997. Thus, using Section 4.4, classical asymmetric key sizes that
are equipment cost equivalent to symmetric and EC key sizes foiyesar be found in
Table 1 in the classical asymmetric key size column for year(23x 15)/43 =y — 8.
The resulting key sizes, rounded up to the nearest multiple of 32, are given as the
second entry in the classical asymmetric key sizes column of Table 1. Breaking such
keys requires a substantially smaller number of Mips-Years than the infeasible number
of Mips-Years for yeary, but acquiring the required Mips-Years is supposed to be
prohibitively expensive.

Note that this value is rounded up to the next multiple of 32, despite Remark 4.1.1,
reflecting the inherently inaccurate choiee= 100 in Default Setting VII (see 3.2.5).

4.5.3. SDL systems For subgroup discrete logarithm systems in ygdet z andk be
the subgroup and finite field size, respectively, for ygaand letk’ be the finite field
size for yeaty — 8. For cost equivalence with symmetric and EC key sizes in yese
subgroups of size + 4 x log, (k) — 4 *x log, (k") over finite fields of sizd’. As a rule of
thumb, subgroups of size+ 2 over finite fields of siz&’ will do.

As an example, inthe year 2000 the following key sizes are more or less equipment cost
equivalent: 70-bit symmetric keys, 682-bit classical asymmetric keys, 127-bit subgroups
with 682-bit finite fields, and 132-bit EC keys.

A similar straightforward analysis can be carried out for any other setting for the
parametelP. For instance, foP = 10 or P = 1000 they — 8 should be changed into
y — 6 ory — 10, respectively.

4.6. Key Sizes Currently Equivalent to Given Symmetric Key Size

4.6.1. Formulas for key sizes equivalent to symmetric key si&ippose that key sizes
have to be determined that are currently at least equivalent to a symmetric kel size
Note that the resulting formulas must be independent of our assumptions on security
margin, hardware advances, or cryptanalytic progress. The only settings used lere are
(see 3.2.5) and (see 4.2.2), because they are the only settings relevant for the current
circumstances.

Compared with breaking a 56-bit DES key at an expected cost a5 Mips-Years,
breaking a key of sizd used in conjunction with a symmetric key system thattisnes
slower than the DES can be expected to take

EMY(d) = 29756 4« 5% 10° x v Mips-Years,

whereEMY stands for “Equivalent number of Mips-Years.”
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If the classical asymmetric key sikds chosen such that
L2 _ L[]
EMY(@) — 10
(see 4.2.3), then the security offered by classical asymmetric systems is currently at

least computationally equivalent to the security offered by a symmetric key ofisize
However, if the classical asymmetric key skfes chosen such that

L[2¥] . L[2517]
EMY() ~— 10* % 26% P
(see 4.2.3), then the security offered by classical asymmetric systems is currently at least

cost equivalent to the security offered by a symmetric key ofdize
If the EC key sizeu is chosen such that

224 y2 21992 4 109
>
EMY() = 22x1C°
(see 4.2.4), then the security offered by EC systems is currently at least computationally

and cost equivalent to the security offered by a symmetric key oftsize
If the SDL subgroup size satisfies

z > 109+ 2 % log, (EMY(d) * 109 x 9)

K2 % /2% 2.2 % 108

(see4.2.5), wher& is the finite field size, then the security offered by SDL systems
is currently at least equivalent to the security offered by a symmetric key ofdsize
computationally equivalent ik = k and cost equivalent ik = k', with k andk’ as
above.

From the formulas given here and in Section 4.2 it is obvious how formulas should be
obtained for key sizes equivalent to a given symmetric key size in a given year: use the
formulas from Section 4.2 withtVY (y) replaced byEMY(d).

4.6.2. Looking up currently computationally equivalent key sizeAssuming the de-
fault settings, Table 1 can also be used to look up the key sizes that follow from the
formulas in 4.6.1. Given a symmetric key siteasymmetric key sizes that are currently
computationally equivalent to it can be looked up as follows. For classical asymmetric
systems look up the classical asymmetric key size for yéar 30« d/43 + 195Q8.

This formula follows by solving the equation

EMY(d) = IMY(y') % 212/ ~1999/1

for y’ (see 4.2.1). For the other systemsyédte the year in Table 1 in whicth occurs

in the symmetric key size column. For SDL look up the SDL key zifer yeary, the
classical asymmetric key sikéfor yeary’, and the classical asymmetric key skzfor
yeary; then subgroups of size+ 4 x log,(k) — 4 x log, (k') over a field of siz&’ offer
security that is currently computationally equivalent, in the year 1999, to symmetric keys
of sized. For EC simply look up the EC key size for yeaand ‘c = 0.”
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Given a classical asymmetric key sikethe currently computationally equivalent
symmetric key size can be found by looking up the ygam which k occurs, and by
using symmetric key size 48y/30 — 27962; this follows immediately fromy’ =
30« d/43+ 19508.

As an example, for a symmetric key of side= 85 we find thaty = 2019 and
y’ = 30% 85/43+ 19508 = 201Q1. Currently computationally equivalent key sizes
are: about 1375 bits for classical asymmetric keys, subgroups of size250152 over
1375 bits fields, and EC systems of 160-bits. Similarly, for a classical asymmetric key
of sizek’ = 1024 we find thay = 2002 and that a currently computationally equivalent
symmetric key size is given by 432002/30 — 27962 ~ 74. The latter corresponds to
a currently computationally equivalent EC key size of 139 bits.

4.6.3. Looking up currently cost-equivalent key size&iven a symmetric key size

d, asymmetric key sizes that are currently cost equivalent to it can be looked up in a
very similar way: just replace 1950.8 and 2796.2 from 4.6.2 by 1942.9 and 2784.9,
respectively. This formula follows by solving the equation

EMY(d)
26x P

for y'. Here we use Default Setting VII (i.eB = 100, see 3.2.5) as in Section 4.5.
As an example, for a symmetric key of side= 85 we find thaty = 2019 andy’ =
30x 85/43+ 19429 = 20022. Currently cost-equivalent key sizes are: about 1036 bits
for classical asymmetric keys, subgroups of size 350= 152 over 1036 bits fields,
and EC systems of 160 bits.

Similarly, for a classical asymmetric key of sike= 1024 we find thay = 2002 and
that a currently cost-equivalent symmetric key size is given by2(82/30— 27849 ~
85.

— IMY(y/) % 212(y’—1999/r

5. Practical Consequences

5.1. DSS

The US Digital Signature Standard (DSS) uses 160-bit subgroups with field sizes ranging
from 512 to 1024 bits, and a 160-bit hash function. According to Table 1 only the largest
field size (1024) can be recommended for commercial applications and then only until
the year 2002. The other sizes can be recommended until 2013 for the hash function,
and until 2026 for the subgroup size. Assuming the default settings, the security offered
by the DSS may become inadequate very soon, unless the DSS is used in combination
with a 1513-bit finite field until 2013. A change in the field size does not affect the size
of the DSS signatures. Beyond 2013 the 160-bit size of SHA-1, the cryptographic hash
function used in conjunction with the DSS, may no longer be adequate. Note, however,
that the hash size may have to match the subgroup size, so that changing the hash size
may force a change in the subgroup size that would otherwise not have been necessary
until 2026.

According to [25], NIST is working on a revision for the DSS, with key sizes as
reported in Table 2 (and hash size matching the sizg)oThese values are in close
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Table 2. Proposed key sizes for the revised DSS.

Sizeq 160 256 384 512
Sizep 1024 3072 7680 15,360

agreement with the values that follow from our current cost equivalence model as in
Section 4.5 (i.e., with Default Setting VR = 100, see 3.2.5). However, it follows from
Table 1 that thep sizes have to grow much faster than proposed in Table 2 if current
cryptanalytic trends persist and if equivalence between the sizpsaofiq has to be
maintained in the future.

5.2. Effect on Cryptosystem Speed

RSA keys that are supposed to be secure until 2040 are about three times larger than the
popular 1024-bit RSA keys that are currently secure. That makes those large keys 9-27
times slower to use: 9 for signature verification or encryption assuming a fixed length
public exponent, 27 for the corresponding signature generation or decryption. TDL
systems will slow down by a factor of 27 compared with those that are currently secure.
SDL systems slow down by about a factor of 11 compared with currently secure SDL
systems, because of the growth of the underlying finite field combined with the growth
of subgroup size. The speed of EC systems, however, is hardly affected: a slowdown
by a factor of at most 4, assuming cryptanalytic progress with 18. Within a few

years, however, faster processors will have solved these performance problems if our
default setting fom turns out to be reasonable. Note, however, that this may not be the
case in more restricted environments such as smartcards, where bandwidth and power
consumption constraints also have a more limiting effect on key sizes.

5.3. 512Bit RSA Keys

Despite the fact that they were already considered to be suspicious in 1990, 512-bit RSA
keys are still widely used all over the Web. For instance, 512-bit RSA moduli are used in
the international version of Secure Socket Layer (SSL) secured webservers to exchange
session keys. An attacker who breaks an SSL RSA modulus will be able to access all
session keys used by the SSL server, and hence all information protected by those keys.
According to Table 1, 512-bit RSA keys should not have been used beyond 1986.

It should be noted that, apart from the security risk of using 512-bit RSA keys, there
are also considerable publicity risks in using them: organizations using them may get
bad media-coverage when it is found out, because a 512-bit RSA key was factored in
August 1999. Although this result is the first published factorization of a 512-bit RSA
modulus, it would be rige to believe that it is the first time such a factorization has been
obtained (Remark 1.4.1 and 2.4.5).

5.4. 768Bit RSA Keys

According to Table 1 usage of 768-bit RSA keys can no longer be recommended. Even
in the cost-equivalent model 768-bit RSA keys will soon no longer offer security com-
parable with the security of the DES in 1982.
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5.5. RSAand EC

If one evaluate& [219%4] (see 2.4.4) omitting the(1) the result is close to the number of
32-bit operations to be performed by an attack using Pollard’s rho method on a 160-bit
EC system. It was shown in 2.4.6, however, thn] substantially overestimates the
actual number of operations to be performed by the NFS factorizatiorNgvertheless,

in the (commercial) cryptographic literature 1024-bit RSA and 160-bit EC systems are
often advertised as offering more or less the same level of security.

If oneisinterested in currently computationally equivalent security, then 1024-bit RSA
and 139-bit EC systems or 1375-bit RSA and 160-bit EC systems may be considered
to be comparable, as follows from the example in 4.6.2. For currently cost-equivalent
security the example in 4.6.3 suggests that 1024-bit to 1035-bit RSA and 160-bit EC
systems may be comparable. This last comparison depends strongly on the setting one
deems reasonable for the paramédeas explained in 3.2.5 and Section 4.5.

5.6. SDL and EC

The gap between the suggested SDL and EC key sizes widens slowly. This is due to the
rapidly growing size of the underlying finite fields in SDL, which makes the finite field
operations required for an attack using Pollard’s rho method relatively slow. Note that
the field size for SDL systems can be found in the classical asymmetric key size column
of Table 1.

5.7. Effectiveness of Guessing

The sizes suggested in Table 1 for the year 2000 or later give keys that are in practice
infeasible to guess.

5.8. Effectiveness of Incomplete Attacks

Spending only a fractiofMY (y)/x of the full effortIMY (y) (see 4.2.1) required to break

a system using the key sizes suggested for ydaads to success probabilityx for ex-
haustive search (symmetric systems; see 2.2.7), 0 for the (DL)NFS (classical asymmetric
systems, see 2.4.9; for the ECM see Section 5.9)/%7 for Pollard’s rho method (SDL

and EC; see 2.5.6 and 2.6.7). This implies that on average incomplete attacks cannot
be expected to pay off. Despite the lack of appreciable economic incentive an attacker
may nonetheless try to harness a small fraction of the required run time and get a non-
negligible chance that his efforts bear fruit. As noted in Remark 3.1.4, however, if our
definition of security margin (see 3.1.2) is acceptable, then this risk is acceptable as well.

5.9. Effectiveness of Elliptic Curve Method

The Elliptic Curve Method (ECM) finds a 167-bit factor of a 768-bit number with
probability 0.63 after spending 6200 Mips-Years, under the assumption that such a factor
exists [47]. Based on this data point, we have computed the probability that the ECM
successfully factors RSA moduli of the sizes specified in Table 1, assuming we invest the
correspondindMY (y) Mips-Years (see 4.2.1) in each factoring attempt: for a 952-bit
RSA modulus the probability of success i62107 after spending 1« 10° Mips-Years
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(for y = 2000), deteriorating to probability«10~° for a 1149-bit modulus in 2005, and

1.2% 10~ for 1369 bits in 2010. It follows that, despite the impossibly large investment,
the ECM cannot be expected to break keys of the suggested sizes. The ECM success
probability vanishes with the years, consistent with the fact that the NFS is asymptotically
superior to the ECM. Note that these probabilities apply only to regular RSA where the
modulus has two prime factors of about equal size. If the primes have different sizes
[32] or if there are more primes dividing the modulus ([31]: the “Multiprime” variation

of RSA), the success probability of the ECM is considerably higher.

5.10. Wassenaar Arrangement for Mass Market Applications

Currently the Wassenaar Arrangement allows 64-bit symmetric keys and 512-bit clas-
sical asymmetric keys for mass market applications. According to Table 1 and publicly
available data on successful attacks it would be advisable (in 2001) to increase the 512-bit
bound for classical asymmetric keys to a more reasonable bound such as 736 or 832 bits.

Disclaimer

The contents of this article are the sole responsibility of its authors and not of their
employers. The authors or their employers do not accept any responsibility for the use
of the cryptographic key sizes recommended in this article. The authors do not have any
financial or other material interests in the conclusions attained in this article, nor were
they inspired or sponsored by any party with commercial interests in cryptographic key
size selection. The data presented in this article were obtained in a two stage approach
that was strictly adhered to: formulation of the model and collection of the data points,
followed by computation of the lower bounds. No attempt has been made to alter the
resulting data so as to match the authors’ (and possibly others’) expectations or taste
better. The authors made every attempt to be unbiased as to their choice of favorite
cryptosystem, if any. Although the analysis and the resulting guidelines seem to be quite
robust, this will no longer be the case if there is some “off-the-chart” cryptanalytic
or computational progress affecting any of the cryptosystems considered here. Indeed,
according to at least one of the present authors, strong long-term reliance on any current
cryptosystem without very strong physical protection of all keys involved—including
public ones—is irresponsible. This does not necessarily imply lack of trust in public
key cryptosystems—it reflects mixed feelings about the way they are implemented or
embedded in applications.
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