
 

Introduction

 

Since this issue is devoted to the interaction between
philosophy of mathematics and mathematical practice,
I would like to begin with an introductory reflection on
this topic, before I enter the specifics of my contribu-
tion. In the past thirty years there has been a marked
shift in philosophy of mathematics, due to the appear-
ance of research on aspects of mathematics that were
previously ignored by philosophers of mathematics. A
short, and very incomplete, list includes work on the
dynamics of mathematical growth,1 the debate on
computer proofs,2 the role of diagrammatic reasoning in
mathematics,3 induction and conjecture in mathematics,4

problems at the interface of theoretical physics and
mathematics.5 In some cases, these contributions have
been accompanied by much fanfare about the need to
pay attention to mathematical practice and by an attack
on philosophy of mathematics as “foundations of math-
ematics”, variously called, “formalism”, “foundation-
alism”, “justificationism.”6 Whereas some of the
polemical tone might have served to bring attention to
new and exciting developments, I find that overall it is
unwarranted and tends to muddle the issues. First of all,
the characterization of the foundational programs, which
are being attacked, is often one-sided at best and
patently false in the worst cases. But even leaving
questions of historical accuracy aside, all the programs
in foundations of mathematics in this century have, in
my opinion, been concerned with mathematical practice.
In the grand foundational programs, say Hilbert’s,
attention to practice was necessary to insure that the
consistency program be able to account for all of math-
ematics, as opposed to a small part of it.7 And setting
up the formalisms does require a very good sense of
how much you need for various parts of mathematical
practice. In this sense, many programs in contemporary
logical foundations, such as reverse mathematics or

predicative mathematics, are extremely sensitive to
issues of mathematical practice. Moreover, the distinc-
tion between elementary and non-elementary methods,
which was one of the cornerstones of Hilbert’s program,
is a typical issue emerging from mathematical practice.
However, it is true that many of the classical founda-
tional programs “filter out” many aspects of mathe-
matical practice which are irrelevant to their goals.
Hence, there is a kernel of truth in the above mentioned
criticisms. There are many aspects of mathematical
practice that are irrelevant for some of the classical
foundational programs but nonetheless worthy of
philosophical attention. Thus, for instance, while a study
of mathematical heuristics is not relevant to Hilbert’s
program, it has much to offer to the philosophers and
mathematicians who are interested in aspects of math-
ematics which go beyond the specific aims set by
Hilbert for his task. But this, contrary to some of the
polemical claims I referred to above, in itself does not
invalidate Hilbert’s program (other considerations do!).
It only calls for a liberalization concerning what aspects
of mathematics should be objects of philosophical
interest. I think that much of the alleged opposition
between these developments can be deflated if one
keeps in mind that the aims of both traditions are legit-
imate and all provide essential information about the
complex reality we are interested in, i.e. mathematics.

The topic of my paper, mathematical explanation,
also escapes traditional foundational work. Part of the
reason is that the subject area is admittedly vague, and
consequently difficult to treat with precise mathemat-
ical or logical tools. Moreover, it does not bear directly
upon some of the traditional foundational concerns, such
as certainty, which have dominated much of philosophy
of mathematics. It is nonetheless a subject of great
philosophical interest. Consider, for instance, the situ-
ation in philosophy of science. There the topic of sci-
entific explanation has received much attention. In this
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area researchers have focussed on two sets of concerns.
The first has been the proposal and analysis of several
competing models of scientific explanation. In addition,
there has been also much interest in what role explana-
tory concerns play in scientific practice. This can of
course shed a lot of light on scientific controversies and
styles of doing science.8 In contrast to these rich devel-
opments very little attention has been devoted to the
topic of mathematical explanation. In diagnosing the
difficulty of providing an account of mathematical
explanation Resnik and Kushner have claimed the
following:

Although from Aristotle onwards empirical science has acknowl-
edged the production of explanations as one of its major goals
and accomplishments, this is not an acknowledged goal of math-
ematical research. Mathematicians rarely describe themselves as
explaining and Steiner’s work (Steiner, 1978) is one of the few
philosophical accounts of mathematical explanation. Given such
evidence that the practice of explaining mathematical phenomena
has been barely acknowledged, one could hardly expect that
testing descriptive or normative accounts of it would be an easy
task (1987, p. 151).

Since Resnik and Kushner wrote their piece, new work
on mathematical explanation, to be discussed below, has
deepened our understanding of the topic.

In this paper I have three major aims. The first is to
introduce the topic of mathematical explanation by
listing a number of problems followed by a reflection
on the status of research and prospects for further devel-
opment. The second is to draw attention to an impor-
tant tradition in philosophy of mathematics for which
explanation is a concern. For want of a better term I will
call this tradition “hypothetico-inductivist” (henceforth
h-inductivist; I would have used “inductivist” had this
not been in conflict with Lakatos’ use of the word
“inductivism”). Thirdly, I will present a case study of a
development in mathematical practice which originates
from explanatory concerns. Hopefully, this material will
contribute to the “evidence” we need in order to
propose, and evaluate, descriptive or “normative”
accounts of mathematical explanation.

Accordingly, the paper is divided into three parts. The
first part introduces the general topic of mathematical
explanation and provides important conceptual distinc-
tions and clarifications. The second part discusses Mill,
Russell, Gödel, Lakatos and other philosophers of math-
ematics on mathematical explanation by emphasizing
the central “h-inductivist” intuition. What joins these
philosophers is a view of mathematics that renders the

boundaries with physics less sharp than the tradition
would want us to believe. The third part presents Alfred
Pringsheim’s “explanatory” approach to the foundations
of complex analysis.

Part I. Five questions on mathematical explanation

The following five questions will serve as an introduc-
tory guide to the topic of mathematical explanation:

1. Are there explanations in mathematics?
2. What form do they take?
3. Is mathematical explanation a novelty in philosophy

of mathematics?
4. What are the philosophical accounts of mathemat-

ical explanation?
5. What is the relationship between mathematical

explanation and theories of scientific explanation?

I.1. Are there explanations in mathematics?

Many mathematicians find the distinction between
proofs that explain and proofs that convince but do not
explain to be important (I will treat the philosophers in
section I.3). For instance, Georges Bouligand presents
that distinction under the terminology of causal and non-
causal proofs. Thus in his Premières leçons sur la
théorie générale des groupes, we read:

Causal demonstrations. Many theorems can be given different
demonstrations. The most instructive are of course those that let
one understand the deep reasons of the results that one is estab-
lishing. On this matter the notion of domain of causality gives us
a guide. (Bouligand, 1932, p. 6)9

Bouligand identified the causal/non-causal opposition
with that of explanatory/non-explanatory proofs. This is
clear from several passages of his work of which the
following, concerning a concrete example on homo-
graphic transformations, is representative:

One sees clearly the difference between these two ways of treating
the same problem. Only the second gives a satisfactory explana-
tion, precisely because it takes place within the domain of
causality of the propositions that is to be established. (Bouligand,
1932, p. 7)10

Let us consider a concrete example, given by Bouligand
(1933, p. 258). I will give three proofs of Pythagoras’
theorem (Euclid, Elements, I.47). According to
Bouligand, the first proof convinces but does not
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explain; the second is explanatory; the third is intuitive
but not explanatory.

Pythagoras’ theorem: In right-angled triangles the
square on the side sub-tending the right angle is equal
to the sum of the squares on the sides containing the
right angle.

Euclid’s proof:
Let ABC be a right-angled triangle. Consider the squares
on the sides AB, AC, and BC. Through A draw AL
parallel to BD. Join AD and FC.

Since the angles BAC and BAG are right it follows that
CA is in a straight line with AG (by proposition I.14).
For the same reason BA is also in a straight line with
AH. Now, since the angles DBC and FBA are both right,
adding the same angle ABC to both of them, we obtain
two equal angles, DBA and FBC (by common notion 2).

Consider now the triangles ABD and FBC. Since FB
= AB, BD = BC and the angles DBA and FBC are equal
we obtain, by I.4, that the triangles ABD and FBC are
equal.

Consider now the parallelogram BL, with base BD
and height DL. By I.41 the parallelogram BL is double
the triangle ABD, for they have the same base BD and
are constructed between the same parallels BD and AL.
By appealing again to I.41 one can also see that the
square ABFG is double the triangle FBC, for they have
the same base FB and are constructed between the same

parallels FB, GC. Thus BL = 2ABD and ABFG = 2FBC
= 2ABD. Thus, the parallelogram BL is equal to the
square ABFG.

By an analogous argument one now proves that the
parallelogram CL is equal to the square ACKH. Thus
the square BDEC, which is the sum of the parallelo-
grams BL and CL, is equal to the squares ABFG and
ACKH.

Explanatory proof:
Consider the triangle ABC. Draw AD perpendicular to
BC.

We obtain two triangles DAB and DAC, which are
similar to ABC. Indeed, ABC and DAC are similar since
they have equal angles (ADC and BAC are both right;
ACB is in common). An analogous reasoning establishes
that ABD and ABC are similar. Now the areas of similar
plane figures (not only triangles!) are to each other as
the squares of the corresponding sides. Thus the areas
of DAC and ABC are to each other as the squares of
AC and BC. Similarly the areas of ABD and ABC are to
each other as the squares of AB and BC. Thus,
ADC/ABC = AC2/BC2 and ADB/ABC = AB2/BC2, and
hence ADC + ADB/ABC = AC2 + AB2/BC2. But ADC +
ADB = ABC, which implies that AB2 + AC2 = BC2.

It is easily seen that the Pythagorean theorem is a
special case of the fact that the area of a figure F
constructed upon the hypothenuse is equal to the sum
of the areas of figures similar to F constructed upon
the other sides. Indeed, the areas of similar plane figures
are to each other as the square of their corresponding
sides. Thus we can write the shaded areas as 

 

λAC2,
λBC2, and λAB2. All we need to do now is to find three
similar figures satisfying λAC2 + λAB2 = λBC2. But we
already have those since, by the above, ADC + ADB =
ABC. Hence AC2 + AB2 = BC2.

Finally, we give a proof that is intuitive but not
explanatory.
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Intuitive proof:

The shaded areas correspond to the squares constructed
on AC and AB respectively. The square built on the
hypothenuse is CBED. The proof consists in noticing
that in order to obtain AXWZ from CBED one would
need to add the same area (four times the triangle CXD)
that is needed to go from the shaded areas to AXWZ.11

It is worthwhile to point out that Steiner, indepen-
dently of Bouligand, also focussed on the second proof
of the Pythagorean theorem as an example of explana-
tory proof (1978, p. 138). Moreover, both of them claim
that the “explanatoriness” of the second proof is due to
its more general nature (although Steiner is tentative
on this).

Another mathematician who has recently emphasized
the role that the search for explanatory proofs plays in
mathematics is Rota. In connection to the computer
proof of the four color theorem he says: “Not all proofs
give satisfying reasons why a conjecture should be true.
Verification is proof, but verification might not give
reason” (1997, pp. 186–187). Moreover, after having
discussed the history of the classification theorem for
Lie groups, he concluded: “We are led to the conclusion
that mathematicians are not satisfied with proving
conjectures. They want the reason” (p. 187). This search
for reasons, or “explanations”, seems to play an
important role in mathematical practice.12 Moreover, it
is important to point out that many examples of expla-
nation in mathematics are not of the sort mentioned
above (explanatory vs. non-explanatory proofs). For
instance, we are often faced with successful analogies
between different areas of mathematics that remain
mysterious until a new theory comes around to forge the
right connections thereby providing an explanation for
the successful analogy between the two areas. A good
example here is how admissible set theory gave an

explanation for a number of surprising analogies (and
not less surprising disanalogies) that had been noticed
between different classes of the arithmetical and ana-
lytical hierarchies. Examples could easily be added.
Indeed, in his dissertation of 1997 Sandborg has
shown how widespread informal talk of explanation in
mathematics is by running a CD-ROM search of
Mathematical Reviews, which provided several inter-
esting examples.

It is my impression that the question I raised in this
section is to be answered unequivocally in the positive.
However, much more needs to be done here. The goal,
in my opinion, is to focus on examples that mathe-
maticians will recognize as central to the discipline and
that will carry a force of persuasion similar to the
standard stock of examples available in philosophy of
science. Only detailed case studies will eventually
provide us with what is needed. Part three of this paper
is a contribution in this direction.

Having established that mathematical explanations
exist we now need to ask what form they take.

I.2.  What form do mathematical explanations take?

“Explanation” is a notoriously ambiguous word. Its
meanings range from explaining the meaning of a
concept to explaining how to fix a bike. In connection
to mathematics talk of explanation, in addition to all
its standard informal meanings, occurs in different
contexts. In order to clarify what meaning of mathe-
matical explanation I am primarily after, it is important
to remark that the focus is on pure mathematics and that
I am not, at least not immediately, after the following
contexts:

1. One often speaks of the explanatory role played by
mathematics in explaining physical phenomena. In
this sense Poincaré claims that the explanation
why space has three dimensions (a physical fact) is
to be found in a theorem about group theory (a
mathematical fact).13

2. Appealing to the distinction between context of dis-
covery/context of justification, one often encounters
cases where the context of discovery provides an
informal explanation for a result which is later jus-
tified by rigorous mathematical means. In this sense
Dedekind speaks of the intuitive notion of mea-
suring one extensive magnitude by another as an
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explanation of irrational numbers (something he dis-
agrees with). Other examples of this sort abound in
areas where physical intuitions are at the source of
a formal mathematical development.14

3. In the classroom we often provide, or are presented
with, explanations. There is some literature on
mathematical explanation from the point of view of
mathematical education (see Hanna, 1990, 1997;
Sierpinska, 1994; Hersh, 1993, 1997, for discussion
of explanatory proofs in the classroom). There are
however good reasons to keep separate what might
be explanatory in the classroom and what is explana-
tory for the community of mathematicians (see my
comments on Hersh in section II.5).

Eventually, it would be good to be able to account for
all these different uses of the word “explanation” in
mathematical contexts. But at the moment it is impor-
tant at least to draw the basic conceptual distinctions,
while keeping in mind that there are often borderline
examples and possible overlaps between the categories.

In recent contributions Sandborg (1997, 1998) has
emphasized the mathematical practice of explaining
mathematical phenomena by reference to case studies
from contemporary mathematics. In particular, he has
given a lengthy analysis of several proofs of Pick's
theorem and of a theorem by Polya on inequalities.
Sandborg has pointed out that mathematical explana-
tions come in several varieties (he gave a classification
with seven main patterns)15 but his main focus is on the
opposition between proofs that explain and proofs that
do not explain. To complement his work, I would like
here to pay attention to forms of explanation in mathe-
matics in which a particular presentation of a theory
provides the natural explanation for its results. The test
case I present in the third part offers an example from
the theory of functions of a complex variable.

In Mancosu, 2000 I also emphasized cases of expla-
nations as "reduction to the familiar”, such as in the
translation given by Menger of Brouwerian set theory
into concepts of the classical theory of real functions.16

The relevance of the distinction between explanatory
and non-explanatory proofs for the mathematical
practice of the past has been raised in Chemla, 1997
for third-century Chinese mathematics, in Mancosu,
2000 for seventeenth century mathematics, in Desanti,
1975 for Greek mathematics and later developments,
and in Bouligand, 1933 for nineteenth century devel-
opments in geometry and group theory.17

Once again, I think there is much to be done in this
area by means of classifying patterns of mathematical
explanation and isolating perspicuous examples, both
in contemporary mathematics and in the history of
mathematics.

I.3. Is explanation a novelty in philosophy of 
mathematics?

In two recent articles (Mancosu, 1999 and 2000) I have
argued that there is a long tradition in the philosophy
of mathematics that considers the problem of explana-
tion central to the discipline. The main intuitions of this
tradition go back to Aristotle. In Posterior Analytics I.13
Aristotle distinguished between demonstrations “of the
fact” and demonstrations “of the reasoned fact”. The
former do not provide scientific reasoning because they
proceed from the effect (“the explanandum”) to the
cause (“the explanans”), whereas the latter proceed from
causes to effects. “Cause” here translates aitia which,
as a matter of fact, is most of the time translated as
explanation. Thus, under this reading of Aristotle’s
theory we can argue that Aristotle is here characterizing
a distinction between explanatory proofs and non-
explanatory ones. According to Aristotle, the best
examples of explanatory proofs are to be found in the
mathematical sciences. This Aristotelian distinction
is at the source of the Renaissance and seventeenth-
century debates on mathematical explanation (see
Mancosu, 1996 for an extended treatment) and of two
major accounts of mathematical explanation in the nine-
teenth century, those of Bolzano and Cournot (see
Kitcher, 1975 and Mancosu, 1999). Bolzano and
Cournot clearly distinguish between explanatory proofs
and non-explanatory proofs and see the role of philos-
ophy of mathematics primarily as that of accounting for
the distinction. In this paper I add something new to the
story. I will show in part two that a number of impor-
tant philosophers of mathematics, sharing an “hypo-
thetico-inductivist” intuition, find it very natural to talk
about mathematics in explanatory terms.

I.4. Contemporary philosophical accounts of 
mathematical explanation

There are mainly two philosophical accounts of math-
ematical explanation available. The first is due to
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Steiner (1978) and has been discussed by Resnik and
Kushner (1987). Whereas Steiner attempts to single out
certain proofs as tout court explanatory, Resnik and
Kushner argue, following van Fraassen, that explana-
tion is a context-dependent feature of proofs: “nothing
is an explanation simpliciter but only relative to the
context dependent why-question(s) that it answers”
(p. 153) (see Sandborg, 1997, ch. 2 and Mancosu, 2000
for a summary of the discussion). The second is due to
Kitcher, who has discussed mathematical explanation in
a number of publications (1975, 1984, 1989). Kitcher is
a well known proponent of an account of scientific
explanation as theoretical unification (see also
Friedman, 1974). His account is meant to encompass
mathematics and empirical science as well:

And as in other sciences, explanation can be extended by
absorbing one theory within another. It is customary to praise
scientific theories for their explanatory power when they forge
connections between phenomena which were previously regarded
as unrelated. Within mathematics the same is true and it has
become usual to defend the ‘abstract’ approach to mathematics
by appealing to the connections which are revealed by studying
familiar disciplines as instantiations of general algebraic struc-
tures. (Kitcher, 1975, pp. 259–260)

It is not my intention here to discuss the virtues or faults
of the above accounts. I think the general feeling is that
we are still very far from having a satisfactory philo-
sophical account of mathematical explanation. But,
given that work in this area has picked up momentum
only recently, this is only to be expected.

In philosophy of science one distinguishes between
epistemic and ontological accounts of scientific expla-
nation (Ruben, 1993). Epistemic accounts often put
emphasis on the relationship between understanding
and explanation. Understanding in mathematics is
obviously a very important topic in connection to
explanation. Recent contributions to understanding in
mathematics from a philosophical point of view include
Thurston, 1994 and Manders, 1989 (for mathematical
understanding from a pedagogical point of view see
Sierpinska, 1994).

Another issue of great potential interest is how far
explanations can be pushed. Are there mathematical
facts that are unexplainable? Recent investigations by
Chaitin on algorithmic information theory seem to point
to an affirmative answer.18

I.5. What is the relationship between mathematical
explanation and theories of scientific 
explanation?

The topic of mathematical explanation seems to me a
central one for an accurate understanding of mathe-
matics. Mathematicians, as we have seen, do not simply
struggle to obtain rigorous and compelling proofs. They
often look for new proofs or consider old proofs unsat-
isfactory on account of their lack of “explanatoriness”.
This aspect of mathematical activity must be accounted
for by a philosophy of mathematics that is faithful to
mathematical practice.

In addition to the relevance to philosophy of mathe-
matics, the issue of mathematical explanation is also
important for the testing of theories of scientific expla-
nation. Theories of scientific explanation often attempt
to characterize the “scientific” aspect of an explanation,
independently of the subject area in which it might be
offered. These accounts should thus be able to capture
mathematical explanations. If they are unable to do so
this will reveal a serious limitation of the theories. If,
on the other hand, it turns out that there is no single
theory that can account for explanations as given in
empirical science and mathematics, this will reveal a
very interesting difference between the two domains. It
is thus clear that mathematical explanations can be
used to test theories of scientific explanation and that
an account of mathematical explanation might have
important consequences for the philosophy of science.
Sandborg, 1998 has used his case studies to “test” the
viability of van Fraassen's theory of scientific explana-
tion (1990) as a theory of mathematical explanation.
Once again, there is much room here for further
contributions.

Part II. The “hypothetico-inductivist” tradition on
explanation in mathematics

II.1. Explanation and hypothesis in science and 
mathematics

Talk of explanation is ubiquitous in the natural sciences.
So much so that many philosophers of science, as
well as many scientists, have claimed that explanation
is the principal aim of science. For instance, E.
Meyerson in De l’explication dans les sciences (1921)
writes:
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The concern for explanation and the tenacious will to extend its
domain at any cost so far outweigh any other consideration in
the march of science that the truths that initially seemed the most
plausible, the most well-established facts, are set aside, inten-
tionally forgotten as it were, upon the appearance of a more com-
prehensive theory allowing a much greater number of phenomena
to be reduced to a system, to be connected by deduction (p. 78;
English translation, p. 63).19

However, some have even denied that explanation has
any place in science. Duhem epitomizes the distinction
between the two points of view as follows:

The first question we should face is: What is the aim of a physical
theory? To this question diverse answers have been made, but
all of them may be reduced to two main principles:

“A physical theory,” certain logicians have replied, “has for
its object the explanation of a group of laws experimentally estab-
lished.”

“A physical theory,” other thinkers have said, “is an abstract
system whose aim is to summarize and classify logically a group
of experimental laws without claiming to explain these laws.”
(Duhem, 1906, Engl. Transl. p. 7)

It is well known that Duhem was, together with Comte
and Mach, an ardent supporter of the second view. One
recognizes in this description of the two alternative
views of the goal of physical theories a central aspect
of the debate on explanation and hypothesis in the
natural sciences, which was raging in the nineteenth and
early twentieth century. As John Stuart Mill noted, the
connection is fundamental:

A hypothesis is any supposition which we make (either without
actual evidence, or on evidence avowedly insufficient) in order
to endeavor to deduce from it conclusions in accordance with facts
which are known to be real; under the idea that if the conclu-
sions to which the hypothesis leads are known truths, the hypoth-
esis itself either must be, or at least is likely to be, true. If the
hypothesis relates to the cause or mode of production of a phe-
nomenon, it will serve, if admitted, to explain the facts as are
found capable of being deduced from it. And this explanation is
the purpose of many, if not most, hypotheses. (Mill, 1843, Book
3, Ch. XIV §4)20

The issue of the role of hypotheses in science was a
burning one in nineteenth-century physics. A strong
reaction against the use of explanatory models led many
to consider explanations as metaphysical extra baggage.
The book by Meyerson quoted above should in fact be
seen as an extended polemic against positivist and
idealist theories of science. Both are guilty, according
to Meyerson, of reducing arbitrarily the explanatory
power of science.21

Much of contemporary philosophy of science has
been deeply engaged in the attempt to explicate the

concept of scientific explanation. These attempts are not
concerned directly with the debates mentioned above
and often assume that despite the variability of the
criteria of what is accepted as explanatory, explanations
can always be captured as belonging to specific types.

By contrast, mathematics looks remarkably free from
issues related to hypotheses and explanatory concerns
as they appear in physical theories. However, I will try
to show that some very important philosophers of math-
ematics have forged a connection between mathematics,
explanations and hypotheses.

Perhaps the easiest place to begin is with Mill.

II.2. John Stuart Mill on mathematical explanation

We have seen the close connection that Mill drew
between hypotheses and explanations in science.
However, according to Mill, the deductive sciences –
including arithmetic and geometry – are not essentially
different from the empirical sciences:

From these considerations it would appear that Deductive or
Demonstrative Sciences are all, without exception, Inductive
Sciences; that their evidence is that of experience; but that they
are also, in virtue of the peculiar character of one indispensable
portion of the general formulae according to which their induc-
tions are made, Hypothetical Sciences. Their conclusions are only
true on certain suppositions, which are, or ought to be, approxi-
mations to the truth, but are seldom, if ever, exactly true; and to
this hypothetical character is to be ascribed the peculiar certainty
which is supposed to be inherent in demonstration. (Mill, 1843,
Book 2, Ch. VI, §1)

It thus follows that for Mill mathematics presents expla-
nations just as any empirical science does, for the
hypotheses of arithmetic and geometry are introduced
to explain the regularities found in the phenomena. In
my opinion Mill is one of the most important defenders
of the “h-inductivist” tradition in philosophy of math-
ematics. Although in Mill the “h-inductivism” is a con-
sequence of his empiricism the two positions should not
be conceptually confused. What is meant here by “h-
inductivism”? H-inductivism is, roughly, a conception
of mathematics which asserts that the acceptance of
axioms for a mathematical discipline might be moti-
vated not by criteria of evidence and certainty but rather,
like hypotheses in physics, by their success in deriving
and systematizing a certain number of familiar conse-
quences. In this sense the consequences are often more
evident than the axioms we are appealing to in deriving
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them. Eminent philosophers and mathematicians such
as Russell and Gödel defended an h-inductivist view and
remarked upon the relationship between h-inductivism
and explanation.

II.3. Russell and Gödel on hypothetico-inductivism in
the foundations of mathematics

Let us look at Russell’s position on h-inductivism in
mathematics. Particularly revealing in this connection
is a paper entitled “The Regressive Method of Discov-
ering the Premises of Mathematics” read before the
Cambridge Mathematical Club on March 9, 1907 and
published in the collection Essays in Analysis (1973).
The analogy between mathematics and the experimental
sciences is stated at the very beginning of the article:

My object in this paper is to explain in what sense a compara-
tively obscure and difficult proposition may be said to be a
premise for a comparatively obvious proposition, to consider how
premises in this sense may be discovered, and to emphasize the
close analogy between the methods of pure mathematics and the
methods of the sciences of observation (p. 272).

The problem was pressing for Russell. Indeed,
according to his logicist project an evident truth like
2 + 2 = 4 can be proved from more basic propositions
of logic, which are however more recondite and obscure
(see also Couturat, 1905, pp. 7–8). For Russell this is
consistent with claiming that the logical truths are
simpler than the mathematical ones. This is because
“it is a mistake to suppose that a simpler idea or
proposition is always easier to apprehend than a more
complicated one” (p. 273). According to this criterion
of logical complexity Russell goes on to say that
the propositions more easily apprehended are those
which are neither too simple nor too complex. He then
adds:

In mathematics, except in the earliest parts, the propositions from
which a given proposition is deduced generally give the reason
why we believe the given proposition. But in dealing with the
principles of mathematics, this relation is reversed. Our proposi-
tions are too simple to be easy, and thus their consequences are
generally easier than they are. Hence we tend to believe the
premises because we can see that their consequences are true,
instead of believing the consequences because we know the
premises to be true. But inferring the premises from consequences
is the essence of induction; thus the method of investigating the
principles of mathematics is really an inductive method, and is
substantially the same as the method of discovering general laws
in any other science (pp. 273–274).

The above passage justifies our use of h-inductivism for
characterizing the position outlined in the previous
section. One important problem to keep in mind is that
Russell seems to apply the h-inductivist conception only
to the regress involved in the discovery of the basic laws
from which mathematics can be derived. He seems to
think that most theorems of ordinary mathematics are
not justified inductively, i.e. we believe them because
we believe the premises to be true. Russell concluded
his paper remarking that the traditional conception of
mathematics only gave us the right order of exposition
but not the right order of knowledge, which goes from
what is most evident to what is not as evident:

But when we push analysis farther, and get to more ultimate
premises, the obviousness becomes less, and the analogy with the
procedure of other sciences becomes more visible. The various
sciences are distinguished in their subject matter, but as regards
method, they seem to differ only in the proportions between the
three parts of which every science consists, namely (1) the reg-
istration of ‘facts’, which are what I have called empirical
premises; (2) the inductive discovery of hypotheses, or logical
premises, to fit the facts; (3) the deduction of new propositions
from facts and hypotheses (p. 282).

I find this paper by Russell extremely revealing. Surely,
one can find here and there in Russell’s writings state-
ments pointing at his h-inductivist position. For instance
the h-inductivist position is defended in the Preface to
Principia Mathematica (1910).22 Moreover, it is found
in the paper “Logical Atomism” where we read:

When pure mathematics is organized as a deductive system – i.e.
as the set of all those propositions that can be deduced from an
assigned set of premises – it becomes obvious that, if we are to
believe in the truth of pure mathematics, it cannot be solely
because we believe in the truth of the set of premises. Some of
the premises are much less obvious than some of their conse-
quences and are believed chiefly because of their consequences.
This will be found to be always the case when a science is
arranged as a deductive system. It is not the logically simplest
propositions of the system that are the most obvious, or that
provide the chief part of our reasons for believing in the system.
With the empirical sciences this is evident. Electro-dynamics,
for example, can be concentrated into Maxwell’s equations, but
these equations are believed because of the observed truth of
certain of their logical consequences. Exactly the same happens
in the realm of pure logic [. . .]. Our reasons for believing logic
and pure mathematics are, in part, only inductive and probable
[. . .]. (Russell, 1924, pp. 325–326)

However, the 1907 paper is the clearest statement of
Russell’s h-inductivism.23 For my goals the article is
important in connection to the issue of explanation. If
work in the foundations of mathematics is seen in
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analogy with the postulation of hypotheses in physical
theory then it should follow almost of necessity that
the organization of the body of mathematics provided
by the foundational apparatus can be seen in terms of
explanatory hypotheses on a par with the explanatory
hypotheses in the natural sciences. Russell does not use
these terms although he speaks of the foundations as
providing an “organization of our knowledge” (p. 282).
Only in “La théorie des types logique” the connection
to explanation becomes explicit:

Les raisons d’accepter un axiome, comme tout autre proposition
sont toujours, en grande partie, inductives: c’est par exemple, le
fait qu’on peut déduire nombres de propositions, qui sont de leur
côté à peu près hors de doute; et qu’on ne connait aucune manière
aussi plausible d’expliquer la vérité de ces propositions, si
l’axiome était faux; et, enfin, qu’on n’en peut déduire aucune
proposition qui soit probablement fausse. (1911, p. 300; my
emphasis; the English manuscript, published in Russell, 1973
reads differently)

In any case, the connection is obvious and indeed it did
not escape Gödel.

Gödel’s writings on philosophy of mathematics often
call attention to the analogy between mathematics and
the natural sciences. In “Russell’s mathematical logic”
Gödel wrote:

The analogy between mathematics and a natural science is
enlarged upon by Russell also in another respect (in one of his
earlier writings). He compares the axioms of logic and mathe-
matics with the laws of nature and logical evidence with sense
perception, so that the axioms need not necessarily be evident in
themselves, but rather their justification lies (exactly as in physics)
in the fact that they make it possible for these “sense perceptions”
to be deduced; [. . .] I think that [. . .] this view has been largely
justified by subsequent developments. (Gödel, 1944, p. 121 of
CW)

Also well known are Gödel’s analogies between empir-
ical intuition and intuition in mathematics (see Gödel,
1947). But for my purposes the most interesting fact is
the explicit connection Gödel drew between h-induc-
tivism and explanation.24 In his commentary on Gödel,
1944, Parsons remarks on the fact that although Gödel
“does not use the language of explanation in the two
passages, where he is most explicit about the justifica-
tion of mathematical axioms through their conse-
quence”, it is nonetheless the case that “in spite of its
lack of direct support, the interpretation in terms of
explanation is difficult to refute” (Parsons, 1990,
p. 108). Parsons was correct in stressing the importance
of explanation and more evidence can be given to
support his interpretation. In Mehlberg, 1960 we find

mentioned a conversation between Mehlberg and Gödel
on the issue of the role of foundations:

The limited effect of the failure of Hilbert’s program upon the
dependability of the impressive cluster of mathematical theories
which he tried to place on a common ‘foundation’ can be clari-
fied by reference to certain relevant views of Gödel which he
informally conveyed to me, some years ago, during a discussion
we had at Princeton, N.J. According to Gödel, an axiomatization
of classical mathematics on a logical basis or in terms of set
theory is not literally a foundation of the relevant mathematics,
i.e., a procedure aiming at establishing the truth of the relevant
mathematical statements and at clarifying the meaning of the
mathematical concepts involved in these theories. In Gödel’s
view, the role of these alleged ‘foundations’ is rather comparable
to the function discharged, in physical theory, by explanatory
hypotheses. Thus, in the physical theory of electromagnetic phe-
nomena, we can explain why the sky looks blue to us under
normal circumstances, and we are even able to produce the same
phenomenon in the laboratory. Both the explanation of the
physical phenomenon under consideration and its production
under laboratory conditions are due to the logical fact that the
statements describing the blue of the sky or that of an artificially
produced area in the laboratory are theorems provable within an
axiomatic system the postulates of which are concerned with
hypothetical laws governing electro-magnetic phenomena, the
composition of the atmosphere, etc. It would not occur to a physi-
cist that these electro-magnetic assumptions which enjoy the role
of postulates in an axiomatized, or axiomatizable physical theory,
are more dependably known to be true than the pre-scientific phe-
nomena (like the blue of the sky) which are being explained by
being shown to be provable theorems in the aforementioned
physical theory. Thus, the actual function of postulates or axioms
occurring in a physical theory is to explain the phenomena
described by the theorems of this system rather than to provide
a genuine ‘foundation’ for such theorems. Professor Gödel
suggests that so-called logical or set-theoretical ‘foundations’ for
number-theory, or any other well established mathematical theory,
is explanatory, rather than really foundational, exactly as in
physics (pp. 86–87).

The analogy mentioned by Mehlberg is, as Parsons had
already remarked, presupposed in what Gödel said in
his philosophical papers although in the published work
we never encounter such explicit mention of explana-
tion. Remarkable is also the similarity to Russell’s view,
even in the choice of electro-magnetism as the example
for an explanatory theory in physics.

II.4.  Lakatos on mathematical explanation

The h-inductivist conception of mathematics was
emphasized in a number of publications by Lakatos in
the sixties (he calls it quasi-empirical). Lakatos tried to
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extend as much as possible these h-inductivist tenden-
cies by proposing a view of mathematics as a quasi-
empirical science, modelled upon the Popperian scheme
of conjectures and refutations. In his papers Lakatos
often speaks of explanation in mathematics. Lakatos
emphasizes the opposition between the Euclidean model
of science and mathematics and what he calls the quasi-
empirical conception.25 Whereas the former aims at
reaching self-evident axioms from which to prove the
remaining part of the system, the quasi-empirical
methodology is fashioned according to a heuristic model
of bold hypotheses which aim at “explanation”:

The methodology of a science is heavily dependent on whether
it aims at a Euclidean or at a quasi-empirical ideal. The basic
rule in a science which adopts the former aim is to search for
self-evident axioms – Euclidean methodology is puritanical,
antispeculative. The basic rule of the latter is to search for bold,
imaginative hypotheses with high explanatory and ‘heuristic’
power, indeed, it advocates a proliferation of alternative
hypotheses to be weeded out by severe criticism – quasi-empir-
ical methodology is uninhibitedly speculative. (Lakatos, 1967,
p. 29)

Lakatos argued throughout his work that the proper
methodology of science and mathematics is quasi-
empirical. Thus, according to him, in mathematics
we also witness the development of theories which
will put forward hypotheses to explain mathematical
phenomena. There are at least three different contexts
in which Lakatos raises the issue of mathematical
explanation.

The first context concerns examples of global foun-
dational activity. In connection with the foundations of
the calculus he says in “Cauchy and the Continuum”:

What was revolutionary about Weierstrass’ theory was that the
known calculus could be fully explained, and even further devel-
oped, with Weierstrassian real numbers only [. . .]. It was the
heuristic potential of growth – and explanatory power – of
Weierstrass’ theory that brought about the downfall of infinites-
imals. (Lakatos, 1978a, pp. 48 and 54)

Another example often discussed by Lakatos is the
Frege-Russell program in the foundations of mathe-
matics:

The Frege-Russell approach aimed to deduce all mathematical
truths – with the help of ingenious definitions – from indubitably
true logical axioms. It turned out that some of the logical (or
rather set-theoretical) axioms were not only not indubitably true
but not even consistent. It turned out that the sophisticated second
(and further) generations of logical (or set-theoretical) axioms –
devised to avoid the known paradoxes – even if true, were not

indubitably true (and not even indubitably consistent), and that
the crucial evidence for them was that classical mathematics might
be explained – but certainly not proved – by them. (Lakatos, 1967,
p. 30)26

The last distinction between explaining and proving
might seem puzzling at first sight. According to
Lakatos, in a Euclidean theory the indubitable axioms
at the top of the deductive system prove the rest of the
system, whereas in a quasi-empirical conception the true
basic statements are explained by the hypotheses orga-
nizing the system (see Lakatos, 1967, p. 29). And in
Proofs and Refutations he also remarks:

It is well known that criticism may cast doubt on, and eventually
refute, ‘a priori truths’ and so turn proofs into mere explanations.
That the lack of criticism or of refutation may turn implausible
conjectures into ‘a priori truths’ and so tentative explanations into
proofs is not so well known but just as important. (Lakatos, 1976,
p. 49, note 1)

In short, for Lakatos quasi-empirical theories are always
conjectural, since the hypotheses which organize the
system can only be conjectural and thus will at best
provide an explanation for the set of basic facts which
we hold as true and as the explananda of the system.
These basic facts might even be derivable from the
hypotheses but they cannot be proved in the Euclidean
sense of the term (i.e. shown to be true from indubitable
premises).

The second context in which Lakatos talks about
explanations in mathematics concerns the idea of formal
theories as explanatory accounts of informal mathe-
matical theories. For instance, addressing a hypothetical
case wherein some formal set theory proves a statement
whose intended meaning is that there exists a non-
Goldbachian even number while a number theorist
provides an informal proof that all even numbers are
Goldbachian, Lakatos says:

If it [the informal proof] cannot be thus formalized in the formal
set theory, the formal set theory will not [have been shown to]
be inconsistent, but only to be a false theory of arithmetic [. . .].
Then we may call the informally proved Goldbach theorem a
heuristic falsifier, or more specifically, an arithmetical falsifier
of our formal set theory. The formal theory is false in respect of
the informal explanandum that it had set out to explain; we have
to replace it by a better one. (Lakatos, 1967, p. 36)27

Finally, we also encounter in Lakatos a traditional dis-
tinction between proofs that convince and proofs that
explain. For instance, in Proofs and Refutations we
read:
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Teacher: Do you then reject our proof?
Omega: I do. The satisfactory proof has to explain the

Eulerianness also of the ‘great stellated dodecahedron’.
(Lakatos, 1976, p. 62)

In short, the importance of explanations for the devel-
opment of mathematical theories for Lakatos cannot
be overestimated.28 Indeed, he sees in explanation the
key to success in the mathematical arena: “The battle
between rival mathematical theories is most frequently
decided also by their relative explanatory power”
(Lakatos, 1967, p. 40).

II.5.  Hersh on proving and explaining

In the wake of Lakatos’ philosophy of mathematics (and
a good dose of Quine)29 several influential philosophers
of mathematics have raised the issue of mathematical
explanation. I have already mentioned in part I,
Steiner’s30 and Kitcher’s contributions.

I will conclude my survey of the h-inductivist tradi-
tion discussing a contribution on mathematical proof by
Reuben Hersh. Hersh has defended, by building on
Lakatos’ insights, a fallibilist approach to the philos-
ophy of mathematics (see Davis and Hersh, 1981,
Hersh, 1997a; also Burgess and Ernest, 1997 for an
appraisal). In two recent articles, Hersh (1993 and 1997)
emphasizes the different role proofs play in research and
in the classroom:

The role of proof in class is not the same as in research. In
research, it’s to convince. In class, students are all too easily con-
vinced! [. . .] The student needs proofs to explain, to give insight
why a theorem is true. Not proof in the sense of formal logic
(1997, p. 162).

An then again:

Proof can convince, and it can explain. In research convincing is
primary. In high-school or undergraduate class, explaining is
primary (1997, p. 164).

Given Hersh’s admiration for Lakatos’ philosophy of
mathematics the emphasis on proofs that explain was to
be expected. However, he draws the line between con-
vincing and explaining as having to do primarily with
the distinction between research and pedagogical
concerns. Lest we be misled by Hersh’s characteriza-
tion, I hasten to add that we have to take into account
the fact that mathematical research itself is often driven
by explanatory concerns. It is not my desire here to
claim that these concerns are primary. I am happy to

grant that explanatory concerns might emerge only after
a “convincing” number of results have already been
obtained. However, mathematicians do not stop there
but aim, like all good scientists, to obtain proofs or
theories that organize the facts in an intellectually sat-
isfactory way. Very often this takes the form of an
appeal to explanatory proofs or theories. So far, Hersh
would probably be in agreement. However, and this is
what I find misleading in Hersh’s characterization, the
“explanatory” concerns to be found in mathematical
practice should not be confused with what might count
as “explanatory” in the classroom. At the very least, an
argument would have to be given to show that the
“explanatory” concerns emerging in mathematical
research always coincide with those needed in the class-
room. I personally have serious doubt that the call for
“explanation” in these two contexts is to be identified.
For instance in the classroom we might want to explain
by means of a picture-proof a result whose “deep”
explanation might require some extremely complex
mathematics. The latter might turn out to be a perfect
explanation for the professional mathematician but not
for the student. Another aspect of the same conflation
occurs in Hersh, 1993:

In my opinion, the main purpose of an upper division course
[. . .] is to introduce new concepts to the student, and to explain
them. A proof is a complete explanation. Sometimes a partial
explanation suffices. (Hersh, 1993, p. 397)

According to the above, every (complete) proof counts
as an explanation. But I think this is false both for the
research environment as well as for the classroom. It
also seems to me that the claim goes against both the
spirit and the word of Hersh’s own approach. In
research, as we have seen, a proof might leave us so
unsatisfied that it leaves us wondering why the result
is true. Talking about the four color theorem Hersh
himself says

More than whether a conjecture is correct, we ask why it is
correct. We want to understand the proof, not just be told it exists.
(Hersh, 1997, p. 161; 1993, p. 390)

Moreover, it could be reasonably argued that a full proof
might not serve as an explanation in the classroom.
Indeed, often pictures or informal arguments will play
an ideal “explanatory” role, whereas a full proof will be
no explanation at all in that context.31 After all, consider
the discussion of the solutions to the two-pancake
problem (the area of two plane pancakes of arbitrary
shape can be simultaneously bisected by a single
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straight line cut of the knife) given in Davis, Hersh,
Marchisotto, pp. 306–316. It shows how the teacher
gave a first proof, which led to a crisis in the classroom,
and then a second proof, which resolved the crisis. Thus,
the first proof (although complete) could not function
as an explanation, which shows that (complete) proofs
are not always explanations. The example of the two
proofs of the irrationality of √

–
2 (pp. 331–333) also leads

to the same conclusion (“Proof II seems to reveal the
heart of the matter” [. . .] “Proof II exposes the ‘real’
reason”). The role of explanations in the classroom and
in research, and their comparison, seems to me to be
an important topic to pursue.

The following case study is intended to bring atten-
tion to a specific mathematical research program
emerging from “explanatory” concerns in mathematical
practice.

Part III. Pringsheim’s 

 

Vorlesungen über
Funktionenlehre

In the following I will present the approach to the
theory of analytic functions propounded by Alfred
Pringsheim in his Vorlesungen über Funktionenlehre
(1925). The original approach to complex analysis
defended by Pringsheim is based on the claim that
only according to his method it is possible to “explain”
a great number of results, which in previous approaches,
in particular Cauchy’s, remain mysterious and unex-
plained. However, in order to fully understand
Pringsheim’s contribution it is important to provide
some background.

III.1. Historical background on the theory of analytic
functions

Complex analysis was developed in the 19th century
within the schools founded by Cauchy, Riemann, and
Weierstrass respectively. To some extent there certainly
were mutual influences between these schools in that
they did not work in complete isolation and indepen-
dently from each other.32 At the same time, one can
observe critical distance and rivalries between them.
After Riemann’s death, for example, his methods were
repeatedly attacked by Weierstrass, which led to many
mathematicians abandoning Riemann’s methods (see
Neuenschwander, 1981, pp. 96ff.). Weierstrass also had
reservations concerning the ideas and results of Cauchy.

He hardly ever quoted Cauchy in his courses at the
University of Berlin, “and when the Paris Academy pre-
sented him with the first volume of the recently-pub-
lished collected works of Cauchy, Weierstrass wrote
not a line in response” (Kolmogorov and Yushkevich,
1996, p. 186). These tensions are noticeable in
Pringsheim’s work, who adopts the Weierstrassian
approach sharing certain lines of criticisms vis-à-vis the
alternative approaches to the theory of analytic func-
tions. But he also put forward an attempt at bridging the
three different methodologies. Before considering his
position in more detail let us first set the stage by briefly
sketching these three approaches.

One can trace the emergence of modern complex
function theory to C. F. Gauss; this is sometimes done
with particular reference to his well known letter to
Bessel in 1811, which is a testimony to his knowledge
of central results in complex analysis. However, since
he did not contribute anything in print to the develop-
ment of this new field, it is Cauchy who is usually
credited with “officially” originating complex function
theory, starting with his Mémoire sur les intégrales
définies in 1814 (published only in 1827). The object of
study are “monogène” functions, i.e. functions f : C →
C that possess a complex derivative. The notion of dif-
ferentiability is taken over from real analysis without
great methodological worries. Cauchy showed that
monogène functions satisfy the so-called Cauchy-
Riemann differential equations.33 Central to Cauchy’s
development is the notion of residues and the celebrated
integral theorem. The special version of this theorem
for disks is formulated as follows:

Let G be an open set and f (complex) differentiable
in G. If γ describes a circle34 ∂K such that the disk K
enclosed by γ is contained in G, then we have

Among the French mathematicians that worked
within the basic framework created by Cauchy, and
further developed it, are P. A. Laurent, J. Liouville and
V. Puiseux.

In Riemann’s theory the geometrical point of view
is essential – already in his groundbreaking disserta-
tion of 1851. He defines “analytic function” like
Cauchy, via the Cauchy-Riemann differential equations.
The deeper motivation for studying analytic functions
is the idea of “similarity in the smallest parts”.
Conceiving of functions as mappings between regions
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in the complex plane, or, more generally, between
Riemann surfaces, Riemann showed that analytic func-
tions transform small pieces of one region into similar
small pieces of the other region, i.e. in modern termi-
nology that analytic functions are conformal. The geo-
metrical conception of complex functions was a new
step in the history of complex analysis. “It can be
compared in significance with the introduction of the
graphs of functions originally represented by formulas”
(Kolmogorov and Yushkevich, 1996, p. 207). Riemann
surfaces together with the so-called Dirichlet Principle35

are the basic tools in Riemann’s approach.
Weierstrass puts the concept of power series at the

center of complex function theory, which he developed
in an algebraic manner. An “analytic” function is
defined as a function that can be locally expanded into
a convergent power series. The beginnings of this con-
ception can be found in J. L. Lagrange but in contrast
to earlier approaches which considered in general just
one power series for each function, Weierstrass repre-
sented functions by whole systems of power series,
organically interconnected by the process of analytic
continuation. The methods of Weierstrass introduced a
new standard of rigor to the study of complex functions.
“In comparison with the Weiertrassian function
theory, built on strictly arithmetical foundations, the
Riemannian theory, still operating in part with intuition
and unproven limiting procedures, was in a truly diffi-
cult position” (Neuenschwander, 1981, p. 97). Poincaré
captured the essence of the opposition by saying that
Weierstrass and the Berlin school “does not try to see
but to understand” (Poincaré, 1898, p. 16).

The three methodologically quite distinct approaches
turn out to be equivalent in the sense that the class of
functions satisfying the Cauchy-Riemann equations
coincides with the class of analytic functions in
Weierstrass’ sense. This equivalence was proved by
Goursat in 1900, and after that the three theories were
gradually unified.36

III.2.  Pringsheim’s program

Pringsheim begins his Funktionenlehre by positioning
himself in the context of the different schools in
function theory described above:

The present account of the “foundations of the theory of analytic
functions” published as the first series of my lectures on complex
analysis [Funktionenlehre], differs essentially from all accounts
I know in so far as it aims at an organic merger of Weierstrass’

definition of an analytic function as a system of interconnected
power series – which forms the basis of the present account –
with the Cauchy-Riemann theory presupposing only differentia-
bility. We achieve this by applying a method of mean values, used
occasionally by Cauchy already and perfected by the author. This
method which is, by the way, not at all alien to Weierstrass’
approach either, allows one to prove, immediately upon
introducing Weierstrass’ concept of function, that Cauchy’s
“monogen”, i.e. complex differentiable functions (which Riemann
called just functions of one complex variable) coincide with those
functions that can be expanded into a power series, i.e. the
“analytic” functions in Weierstrass’ sense. (Pringsheim, 1925,
p. v)37

The extensional equivalence of the three classes had
already been proved by Goursat in 1900. Accordingly,
the advantage of Pringsheim’s new approach does not
lie in the mathematical result itself but rather in the fact
that the new approach systematizes and “explains” a
good number of results in an organic way. Pringsheim
says:

If we thus, from the very start provide a common basis for both
concepts of function, which, according to their definition appear
radically distinct, then we gain an advantage not to be underes-
timated over the common approach within Cauchy’s theory
involving complex integration right from the beginning – namely
that basic insights which appear in Cauchy’s theory as sensational
results of a mysterious mechanism performing miracles as it were,
receive within our approach their natural explanation [my
emphasis, P.M.] by means of a reduction to the humbler efficacy
of the four species [= arithmetical operations]. That’s not to say
that this great analytic tool should be excluded once and for all;
rather we only claim here that if we don’t use it prematurely, then
the construction of the whole theory gains essentially in per-
spicuity. (Pringsheim, 1925, p. v)38

The treatment presented in the Funktionenlehre origi-
nated from a series of previous investigations dating
back to the late 1890s. These investigations show that
Pringsheim’s approach was from the start motivated
by a desire to achieve a certain organic development in
the theory of functions of a complex variable. His
methodological motivation is also very much in
evidence in his Vorlesungen über Zahlenlehre (1916)
with his emphasis on the use of “elementary methods”.
Hans Hahn, who reviewed the book for the Göttingische
gelehrte Anzeigen (1919, pp. 321–347) challenged
Pringsheim to provide a characterization of the notion
of “elementary”. Pringsheim came back to the issue in
his paper “Elementare Funktionentheorie und komplexe
Integration” (1920). Although he claimed that it would
be hopeless to try to specify what counts as elementary
at the outset he insisted on the advantages of an
“elementary” treatment:
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Moreover, in my opinion there is more to the advantages of an
“elementary” account, as the one we are concerned with here, than
just the “aesthetic” effect. Rather, I believe that operating with
more elementary and hence more perspicuous methods often
yields a clearer understanding of the essence of the matter than
the more mechanical methods of the infinitesimal calculus which
work in a more obscure way. (Pringsheim, 1920, p. 149)39

And in the same paper he adds,

I am of the opinion that [elementary complex analysis] has also
additional important advantages: not only does the choice of the
starting point and, in turn, the structure of the whole development
seem to be much more natural and self-evident, as it were, than
Cauchy’s theory, but here it also becomes apparent again that
the application of more elementary methods gives a clearer insight
into the working of the fundamental results and how they are
related to arithmetic, which usually gets completely obscured by
the proof-shortening mechanism of complex integration.
(Pringsheim, 1920, p. 152)40

I will try to convey the essence of Pringsheim’s
approach to complex analysis by developing some of
the basic notions and treating a single example in detail.
We need first of all to introduce the concept of “mean
value of a function”.

III.3.  The concept of mean value of a function

Pringsheim introduces the mean value of a function in
order to prove the mentioned equivalence between the
Weierstrassian concept of analyticity and the Cauchy-
Riemann concept of differentiability. Thereby he intends
to provide right from the beginning a common basis
for both theories and merge them in an organic way.
Before giving the formal definition let us recall the geo-
metric interpretation of complex numbers and their kth
roots. This will aid the understanding of the intuition
underlying this concept of mean value.

Every complex number z = a + bi can be expressed
uniquely in the form z = r(cosθ + isinθ) where θ ∈ [0,
2π) and r = .

Let k be a positive integer. The k distinct kth roots of
unity are given as follows:

2π 2π 2π 2π
1, cos ––– + isin  –––, cos2 ––– + isin2 –––, . . . , 

k k k k 

2π 2π
cos(k – 1) ––– + isin(k – 1) –––

k k

One can easily verify that the kth power of each of these
complex numbers equals 1 relying on De Moivre’s
Theorem, i.e. [r(cosθ + isinθ)]k = rk(coskθ + isinkθ) and
observing that cos2nπ = 1 and sin2nπ = 0 (for n = 1, 2,
. . .). The value cos 2π

k + isin 2π
k is called the ‘main kth

root of unity’, let’s call it ‘ck’. Again using De Moivre’s
Theorem we see that the above kth roots of unity can
be expressed as powers of ck:

ck
0, ck

1, ck
2, . . . , ck

k–1, 

All the kth roots of unity lie on the unit circle in the
complex plane and since they are equally spaced on this
circle one can conceive of them as the vertices of a
regular polygon inscribed in the circle.

More generally, for circles with arbitrary radius r (and
center at the origin) the vertices of an inscribed regular
polygon of k sides are given by

rck
0, rck

1, rck
2, . . . , rck

k–1 (2) 

Our aim is to determine the average value of a (con-
tinuous) function f on a given circle Γ with radius r, and
we proceed by considering a sequence of regular
polygons, inscribed in Γ, of increasingly many vertices.

√
––––––––
a2 + b2
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For each polygon the arithmetic mean of the values of
f at its vertices z1, . . . , zN is just 

It can be shown that the sequence of these arithmetic
means converges as N goes to infinity – which suggests
strongly to take this limit as the mean value of f on Γ.

This is the main idea behind Pringsheim’s definition
of the concept of mean value of a function. However,
instead of working with the full range of inscribed
polygons (of vertices N = 3, 4, 5, . . .), he restricts
himself, for technical as well as methodological reasons,
to those whose number of vertices is N = 2n (where
n = 2, 3, 4, . . .). Given this restriction and bearing in
mind how vertices can be represented by roots of unity,
as in (2), we finally arrive at the following definition.

Def. 1.  Let f : C → C be a function bounded on the
circle Γr with center at the origin and radius r. For n =
1, 2, 3, . . . let cn denote the (2n)th main root of unity.
(This simplifies our notation, according to the outline
above we would rather have to write, more clumsily,
c2n.) Then we use the symbol ‘}n(f, r)’ to refer to the
arithmetic mean of the values f(rcn

0), f(rcn
1), . . . , f(rcn

2n–1).
Hence we set

Under the additional assumption that f is continuous on
Γr (implying that f is even uniformly continuous on Γr),
we can prove the existence of a limit of the sequence
}1(f, r), }2(f, r), . . . for n → ∞. For the details of this
proof see Pringsheim 1896, p. 133ff. or 1925, p. 270ff.
The proof is considerably simplified by the restriction
to 2n-gons in place of arbitrary polygons of n vertices
which is exactly Pringsheim’s technical reason for
adopting it. Now we are in the position to define the
mean value of a function.

Def. 2.  Let f and Γr be as in Definition 1. Additionally,
let f be continuous on Γr. Then we set

}(f, r) = lim }n(f, r)
n→∞

and we call }(f, r) the mean value of f on Γr.
The definitions of }n(f, r) and }(f, r) can easily be

generalized from circles around the origin to circles
with arbitrary center (cf. Pringsheim, 1925, p. 274).

Furthermore, by observing that for any constant q it
holds that

we infer as an almost immediate corollary of Definition
2 that for any constant q,

}(q f, r) = q}(f, r) (3)

As another simple corollary concerning the sum of func-
tions f0, f1, . . . , fm we get }((f0 + f1 + . . . + fm), r) =
}(f0, r) + }(f1, r) + . . . + }(fm, r) provided all of the
functions have the properties presupposed of f in
Definition 1 and 2. This can be even further generalized
to an infinite series ∑∞

m=0 fm on the additional assump-
tion that ∑∞

m=0 fm converges uniformly on Γr. In that case
we have

This will already suffice to obtain an interesting result
about mean values in the next section.

III.4. The explanatory power of mean values. An
example

As an illustration of the claim that the use of elemen-
tary methods can serve to explain in a natural way
“basic insights, which appear in Cauchy’s theory as
sensational results of a mysterious mechanism”
(Pringsheim, 1925, p. v), Pringsheim repeatedly dis-
cusses the use of mean values to represent the coeffi-
cients of power series.

In the context of this simple application we start
with a function f given by a power series converging for
|z | < R, i.e. inside the circle ΓR, thus

So on the one hand we clearly have f(0) = a0. Let’s now
compute the mean value }(f, r) for some fixed r such
that 0 < r < R. We observe that the functions amzm satisfy
all requirements for the applicability of (4). That’s
because every amzm is continuous and hence ∑∞

m=0 amzm
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1
N

1
N

(f (z1) + . . . + f (zN)) =
N

∑
j = 1

f (zj).

1
2n

2n – 1

∑
j = 0

f(rcn
j).}n(f, r) = 

1
2n

1
2n

2n – 1

∑
j = 0

2n – 1

∑
j = 0

q f(rcn
j).

f(rcn
j)

}n(q f, r) =

= q}n(f, r)= q ( )

∞
∑

m = 0

∞
∑

m = 0
} (fm, r) (4)= ) )(( fm , r }

∞
∑

m = 0
f(z) = a0 + a1z + a2z

2 + . . . = amzm.



converges locally uniformly (e.g. on a circle Γr) inside
of ΓR. Thus according to (4) we get

It remains to determine the values of }(amzm, r), and
since according to (3), }(amzm, r) = am}(zm, r), we are
left with the task of determining }(zm, r) for m = 0, 1,
2, . . . , but this can be done quite straightforwardly.

Let’s first consider the case m = 0. By Definition 2,
}(z0, r) = limn→∞ }n(z

0, r) and by Definition 1 as well
as by the fact that z0 = 1 we have for all n, }n(z

0, r)
=  1

2n ∑j=0
2n–1 (rcn

j)0 =  1
2n ∑j=0

2n–1 1 =  1
2n 2n = 1. So it follows

that }(z0, r) = 1. Now let m > 0. Again, we have to
consider }n(z

m, r), i.e.  1
2n ∑j=0

2n–1 (rcn
j)m. After simplifying

the sum by pulling out the factor rm, which yields
 1
2n rm ∑j=0

2n–1 (cn
j)m, we observe that by switching the expo-

nents the sum ∑j=0
2n–1 (cn

j)m can be written as a (finite) geo-
metric series, namely as ∑j=0

2n–1 (cn
m)j. Thus applying the

general formula for geometric series

to our series yields

But since cn is the (2n)th main root of unity, that’s to say
cn

2n
= 1, we conclude that (cn

m)2n
= (cn

2n
)m = 1m = 1 and,

in turn,

Hence, putting everything together we have for
m > 0

and therefore also }(zm, r) = 0.
Relying on our results we are now finally able

to determine }(f, r): }(f, r) = }((∑∞
m=0 amzm), r) =

∑∞
m=0 am}(zm, r) = a0}(z0, r) + ∑∞

m=1 am}(zm, r) = a01 +
0 = a0.

This result has been derived by very elementary
means and since, as already mentioned, f(0) = a0 (and
0 being the center of Γr) our final equation }(f, r) = a0

amounts to “a significant statement about the course of
values of the function f(z): its values propagate in such
a symmetrical way that the value at zero is retained
again and again as the mean value (average value) of
the different values of the function on an arbitrary circle
|z | = r” (Pringsheim, 1925, p. vii).

Pringsheim’s approach to the foundations of complex
analysis shows one of the many ways in which explana-
tory concerns play a role in mathematical practice. Here,
we are not investigating a “local” phenomenon, such
as providing an “explanatory” proof for a theorem, but
rather a “global” reorganization of a theory according
to explanatory principles. This particular example
reveals the role that unification and purity of methods
might play in mathematical explanations. Pringsheim
emphasized the unification of Cauchy’s and Weierstrass’
approaches that he obtained as a natural consequence of
his approach. The issue of purity of methods arises in
the restriction, as much as possible, of the development
to “elementary” methods, so that the more analytical
parts, prominent in Cauchy’s approach, will not be
applied prematurely. Pringsheim claims that the use of
elementary methods corresponds to a gain in perspicuity
and captures the essence of the matter. Finally, I should
add that Pringsheim’s approach did not have a large
following. Contemporary textbooks in complex analysis
do not follow his approach. It would be interesting to
study why Pringsheim’s approach did not catch on.
However, this lack of success does not detract from the
importance of Pringsheim’s work as an expression of
the urge, common to natural science and mathematics,
to look for explanations of the facts.
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Notes

1 See Lakatos, 1976, 1978; Davis, Hersh and Marchisotto, 1995;
Hersh, 1997a; Kitcher, 1984; Breger and Grosholz, 2000.
2 See for instance the debate on the four-color theorem. Among
others see Tymoczko, 1979; Detlefsen and Luker, 1980; Teller, 1980.
3 See Brown, 1997, 1999 (especially chapters 3, 6, 9, 11), Barwise
and Etchemendy, 1996; Allwein and Barwise, 1996; Giaquinto, 1992,
1993, 1994.
4 See the general introduction in chapter 10 of Brown, 1999 and
Mazur, 1997.
5 Especially informative here is the recent debate that took place in
the pages of The Bulletin of the American Mathematical Society. See
Jaffe and Quinn, 1993; Jaffe and Quinn, 1994; Thurston, 1994;
Atiyah et al. 1994. Of related interest is also the special issue of
Synthèse in 1997 edited by Kanamori containing, among other things,
Jaffe, 1997; MacLane, 1997; Rota, 1997; Mazur, 1997.
6 Quine, Putnam, and Lakatos set the trend. For attacks on founda-
tionism or foundationalism see Davis and Hersch, 1981 (2nd edition,
with Marchisotto, 1995), Hersh, 1997a; Aspray and Kitcher, 1988;
Tymoczko, 1986. On “justificationism” see Sandborg, 1997.
7 For an introduction to Hilbert’s program and further references
see Mancosu, 1998. For a discussion that highlights some of the
problems touched in the introduction see the review of Davis, Hersh
and Marchisotto, 1995 written by Burgess and Ernest (Burgess and
Ernest, 1997).
8 See Salmon, 1990 for an extended bibliography and Ruben, 1994
and Pitt, 1988 for anthologies.
9 Démonstrations causales. Bien des théorèmes sont susceptibles de
différentes démonstrations. Les plus éducative sont naturellement
celles qui font comprendre les raisons profondes des résultats qu’on
se propose d’établir. En pareille matière la notion du domaine de
causalité fournit une guide (Bouligand, 1932, p. 6).

Bouligand’s account of the difference between explanatory and
non-explanatory proofs is not always easy to follow and brings
into play different intuitions. Central to his account are the notions
of causality in mathematics, domain of causality, and the distinction
between direct vs. indirect methods. Since Bouligand looked at
several examples from analysis, algebra, and geometry, his work is
a rich source of test cases for the topic of mathematical explanation.

In 1935 it was pointed out to Bouligand that his notion of
causality was related to Cournot’s distinction between ordre logique
and ordre rationnel, which he acknowledged (see Mancosu, 1999 and
Bouligand, 1935, p. 139). For Bouligand’s methodological reflec-
tions see Bouligand, 1932, 1933, 1934, 1935, 1937.
10 On voit nettement la différence entre ces deux manières de traiter
une même question. La seconde seule nous donne une explication
satisfaisante, précisément parce qu’elle s’exerce au sein même du
domaine de causalité de la proposition à établir (Bouligand, 1932,
p. 7).

In La causalité des théories mathématiques (1934) he also spoke
of causal proofs as “compréhensive”: “Nous avons vu l’idée de
causalité mathématique s’introduire du fait qu’il y a des démonstra-
tions causales (on pourrait dire aussi: compréhensives) et d’autres
qui ne le sont guère, leur réussite semblant tenir à des hasards hereux”
(Bouligand, 1934, p. 16).
11 Whereas we have a stock example of scientific explanations, we
cannot say the same about mathematical explanations. Another simple

example that was used already in Steiner, 1978 is the following.
Consider the usual proof by induction for the statement: 1 + 2 +
. . . + n =   2

n(n + 1).
Proof by mathematical induction:
For n = 1 the theorem is true.
Assume it is true for n = k.
Then 1 + 2 + . . . + k + (k + 1) = [k(k+l)]

2 + (k + 1) = (k+l)
2
(k+2)

This shows the theorem to hold for k + 1 = n + 1. Thus the
theorem holds for all n.

Now compare that above proof with the proof Gauss gave.
Gauss’ proof.
Consider S(n) = 1 + 2 + . . . + n.
Then,
S(n) = 1 + 2+ . . . + n
S(n) = n + (n – 1) + . . . + 1
–––––––––––––––––––––––––––––
2S(n) = (n + 1) + (n + 1) + . . . + (n + 1)
Thus S(n) =    2

n(n + 1)

Finally, consider the following picture-proof:

By counting the points on the diagonals, starting from bottom left,
the result is easily seen to hold. Many people find the second and
third proofs explanatory but not the first. However, even on this
simple example there is no unanimity. Hanna finds the Gaussian
proof explanatory but not the first (1990, pp. 10–11). Brown says:
“In the two number theory cases above [one of which is the theorem
in question], a proof by induction is probably more insightful and
explanatory than the picture-proofs. I suspect that induction – the
passage from n to n + 1 – more than any other feature, best charac-
terizes the natural numbers. That’s why a standard proof by induc-
tion is in many ways better” (1999, p. 42).
12 The geometer Thurston raises the same issue when he says:
“There is a real joy in doing mathematics, in learning ways of
thinking that explain and organize and simplify. One can feel this joy
of discovering new mathematics, rediscovering old mathematics,
learning a way of thinking from a person or text, or finding a new
way to explain or to view a new mathematical structure” (1994,
p. 11). Note that here the explanatory activity does not exclusively
apply to proofs.
13 L’ensemble de tous les déplacements constitute ce qu’on appelle
un groupe; l’ensemble des déplacements qui laissent fixe un point
de l’espace constituera un group partiel ou sous-groupe. C’est dans
les rapports de ce groupe et de ce sous-groupe qu’il faut chercher
l’explication de ce fait que l’espace a trois dimensions (Poincaré,
1895, p. 641). See also Nehrlich, 1979.
14 A good case could be Witten’s representation of the Jones
invariant of knots using Chern-Simons field theory. See the remarks
in Jaffe, 1997, pp. 139–140. For a treatment of the topic in the context
of mathematical education see Hanna and Janke, 1999.
15 The seven patterns he discerns by using the results of his CD-
Rom search of Mathematical Reviews are:

Proven but unexplained results; counterexamples explained by
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restrictions placed on theorems; counterexamples explain restrictions
put upon a theorem; explanations of “mathematical-empirical” data;
physically applicable mathematical explanations; explanations of
informal facts; explanations of theoretical analogies (see chapter 3
of Sandborg, 1997). Note that the case discussed in part three of this
paper does not fall in any of the above classes.
16 Richard Epstein rightly pointed out to me that the translation
would not be an explanation for the intuitionist, for the translation
in general does not preserve meaning. However, I think there is no
contradiction here in claiming that the translation might function as
an explanation for the classical mathematician.
17 For instance, Karine Chemla in her work on Chinese mathematics
says: “[Mathematicians] also prove in order to understand the state-
ment proved, to know why it is true and not only that it is true” (1997,
p. 229).
18 “One normally thinks that everything that is true is true for a
reason. I’ve found mathematical truths that are true for no reason at
all. These mathematical truths are beyond the power of mathemat-
ical reasoning because they are accidental and random” (Chaitin,
1994, p. 4).
19 Le souci de l’explication, la volonté tenace d’en étendre à tout
prix le domaine, priment à tel point, dans la marche de la science,
toute autre considération, que les vérités qui ont d’abord paru les plus
plausibles, les faits les mieux acquis, sont mis de côté, intention-
nellement oubliés en quelque sorte, quand surgit une théorie plus
large, permettant de réduire en systême, de relier par une déduction
un nombre beaucoup plus considérable de phénomènes (Meyerson,
1921, p. 78; English translation, p. 63).

Of course, not everyone would agree. The physicist Ruhla writes:
“It is often thought that science is an explanation of the world.
Though this is an important feature, it is not the most characteristic:
the overriding priority in science is prediction” (Ruhla, 1992, p. 1).
On Meyerson’s conception of explanation see Kelly, 1937.
20 For Mill on explanation see Ruben, 1990.
21 Were we to follow in detail the development of the above men-
tioned debates we would also be faced with one essential fact about
explanation: what kinds of arguments scientists have been willing to
accept as explanations have changed throughout time. This raises an
important issue: Is it possible to formulate general criteria for sci-
entific explanation that are independent of the historical shifts which
have characterized the development of science?
22 “The justification for this is that the chief reason in favour of any
theory of the principles of mathematics must always be inductive,
i.e. it must lie in the fact that the theory in question enables us to
deduce ordinary mathematics. In mathematics, the greatest degree
of self-evidence is usually not to be found quite at the beginning,
but at some later point; hence the early deductions, until they reach
this point, give reasons rather for believing the premisses because
true consequences follow from them, than for believing the conse-
quences because they follow from the premisses” (Whitehead and
Russell, 1910, Preface, p. v).

In Les Paradoxes de la Logique (1906) we read: “En tout cela,
la Logistique est exactement sur le même pied que l’astronomie par
exemple, excepté que, en astronomie, la vérification s’effectue non
par l’intuition mais par les sens. Les “propositions primitives” d’où
partent les déductions de la Logistique doivent, si possible, être evi-
dentes par l’intuition; mais ce n’est pas indispensable, et, en tout cas,
ce n’est pas la raison unique de leur adoption. Cette raison est induc-

tive, à savoir que, parmi leurs conséquences connues (y compris
elle-mêmes), beaucoup paraissent à l’intuition être vraies, aucune
ne parait fausse, et celles qui paraissent vraies ne peuvent pas se
déduire (autant qu’on peut voir) de quelques système de propositions
indémontrables avec le système en question” (Russell, 1906,
p. 630).
23 See Irvine, 1989 for an analysis of Russell’s paper in the context
of Russell’s philosophy.
24 The presence of explanatory issues in Russell and Gödel was first
pointed out in Lakatos, 1967. However, whereas Lakatos was more
interested in the “inductivism”, and consequent “fallibilism”, my
emphasis is on the consequences of this position for explanation in
mathematics. The parallel between Russell and Gödel is also dis-
cussed in Irvine, 1989.
25 The literature on Lakatos is very extensive. For an informative
discussion of Lakatos’ philosophy of mathematics see Koetsier,
1991.
26 “Let us draw some conclusions which Russell refused to draw.
The infinite regress in proofs and definitions in mathematics cannot
be stopped by a Euclidean logic. Logic may explain mathematics
but cannot prove it. It leads to sophisticated speculation which is
anything but trivially true” (Lakatos, 1962, p. 19). Compare this
passage with Wittgenstein’s Lectures on the Foundations of mathe-
matics where Wittgenstein argues against the idea that Russell’s logic
can be seen as an explanation. “If Russell has connected mathemat-
ical procedures with logic, this might mean that he just translates
them in a new language. But it is misleading to think this an
explanation: to think that when we get down to predicates and
predicative functions we see what mathematics is really about”
(Wittgenstein, 1976, p. 271). Of course, the meanings of explana-
tion in Lakatos and Wittgenstein appear to be different.
27 On the heuristic pattern of deductive guessing, Lakatos says in
the voice of Pi:

“The first main pattern is when naive concept-stretching outstrips
the theory by far and produces a vast chaos of counterexamples: our
naive concepts are loosened but no theoretical concepts replace them.
In this case deductive guessing may catch up – piecemeal – with the
backlog of counterexamples. This is, if you like, a continuous ‘gen-
eralizing’ pattern – but do not forget that it starts with refutations,
that its continuity is the piecemeal explanation by a growing theory
of the heuristic refutations of its first version [. . .] But it might
happen that each single refutation or expansion of naive concepts is
immediately followed by an expansion of the theory (and theoretical
concepts) which explains the counterexample; ‘continuity’ then gives
place to an exciting alternation of concept-stretching refutations and
ever more powerful theories, of naive concept-stretching and explana-
tory theoretical concept stretching [. . .] in both of them [heuristic
patterns] the power of the theory lies in its capacity to explain its
refutations in the course of its growth” (Lakatos, 1976, pp. 93–94).
28 Steiner, 1983 mentioned the second and third contexts of
Lakatos’ notion of explanation and relates it to his own theory of
explanation (Steiner, 1978).
29 “We may more reasonably view set theory, and mathematics
generally, in much the same way in which we view theoretical
portions of the natural sciences themselves; as comprising truths or
hypotheses which are to be vindicated less by the pure light of reason
than by the indirect systematic contribution which they make to the
organizing of empirical data in the natural sciences” (Quine, 1958;
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quoted in Lakatos, 1967). In this context it would be appropriate, of
course, to also discuss indispensability arguments and their bearing
on holistic views concerning mathematics and the natural sciences.
But since our space is rather limited we have to leave that aside in
this paper.
30 “Philosophers have long pondered explanation in the natural
sciences [. . .]. The growing acceptance, however, of continuity
between the natural and mathematical sciences – urged by Quine,
Putnam, and the present author – has prepared the way for what
follows” (Steiner, 1978). In Steiner, 1983 the emphasis is on Lakatos.
31 On pictures as explanations see Brown, 1999, p. 42.
32 Cf. Neuenschwander, 1981 and further literature referred to
therein on the interactions among the French school, Riemann, and
Weierstrass.
33 Letting z = x + iy and f(z) = u(x, y) + iv(x, y), the Cauchy-Riemann
differential equations state: ∂u/∂x = ∂v/∂y; ∂u/∂y =–∂v/∂x.
34 More precisely, γ is a counterclockwise parametrization of the
boundary of a disk K in G.
35 According to this principle a function can be determined by a
system of (presumed) necessary and sufficient conditions indepen-
dently of an analytic expression. In 1870 Weierstrass pointed out that
this principle can fail, the conditions used by Riemann do not always
define a function.
36 Modern textbooks in complex analysis usually proceed from the
definitions of the line integral and the complex derivative of a
function.
37 Die vorliegende, als erste Abteilung meiner Vorlesungen über
Funktionenlehre erscheinende Darstellung der “Grundlagen der
Theorie der analytischen Funktionen” unterscheidet sich von
allen mir bisher bekannt gewordenen wesentlich insofern, als sie,
grundsätzlich aufgebaut auf der Weierstraßschen Definition einer
analytischen Funktion als eines Systems ineinander greifender
Potenzreihen, nichtsdestoweniger von vornherein eine organische
Verschmelzung mit der Cauchy-Riemannschen, lediglich auf der
Voraussetzung der Differenzierbarkeit beruhenden Theorie anstrebt.
Dieses Ziel wird erreicht durch Anwendung einer gelegentlich schon
von Cauchy benutzten und vom Verfasser vervollkommneten,
übrigens auch dem Weierstraßschen Gedankenkreise keineswegs
fernliegenden Mittelwertmethode, welche es ermöglicht, unmittelbar
an die Einführung des Weierstraßschen Funktionsbegriffes den
Nachweis zu knüpfen, daß die Cauchyschen “monogenen”, d.h. im
komplexen Sinne differenzierbaren Funktionen (von Riemann
schlechthin und ausschließlich als Funktionen einer komplexen
Veränderlichen bezeichnet) keine anderen sind, als die in
Potenzreihen entwickelbaren, im Weierstraßschen Sinne “analytis-
chen” (Pringsheim, 1925, p. v).
38 Werden auf diese Weise die beiden definitionsgemäß gänzlich
verschieden erscheinenden Funktionsbegriffe von vornherein auf eine
gemeinsame Basis gestellt, so gewinnt man gegenüber der üblichen,
von vornherein die komplexe Integration in Anspruch nehmenden
Behandlungsweise der Cauchyschen Theorie den nicht zu unter-
schätzenden Vorteil, daß grundlegende Erkenntnisse, die dort als sen-
sationelle Ergebnisse eines geheimnisvollen, gleichsam Wunder
wirkenden Mechanismus erscheinen, hier ihre natürliche Erklärung
durch Zurückführung auf die bescheidenere Wirksamkeit der vier
Spezies finden. Damit soll jenes glänzende analytische Hilfsmittel
keineswegs ein für allemal ausgeschalten werden, vielmehr wird
hier nur die Ansicht verfochten, daß der Aufbau der ganzen Theorie

durch den Verzicht auf dessen vorzeitige Anwendung wesentlich an
Durchsichtigkeit gewinnt (Pringsheim, 1925, p. v).
39 Im übrigen bin ich der Ansicht, daß die Vorzüge einer “ele-
mentaren” Darstellung, wie der in Rede stehenden, mit jener
“ästhetischen” Wirkung keineswegs erschöpft sind. Vielmehr glaube
ich, daß das Operieren mit den elementareren und darum durch-
sichtigeren Hilfsmitteln in vielen Fällen einen deutlicheren Einblick
in das Wesen der Dinge gewährt, als die mechanischer und ver-
steckter arbeitenden Infinitesimal-Methoden (Pringsheim, 1920,
p. 149).

There are interesting parallels between Pringsheim’s work and
Bouligand’s contraposition between algorithmic methods and direct
methods (see for instance Bouligand, 1934). Exploring this topic
would lead us too far from our present goals.
40 Ich bin indessen der Meinung, daß sie [= die elementare
Funktionentheorie] doch noch andere nicht unerhebliche Vorzüge
besitzt: mir erscheint nicht nur die Wahl des Ausgangspunktes und
die daraus sich ergebende Anordnung des ganzen Aufbaus viel
natürlicher, ich möchte sagen selbstverständlicher, als bei der
Cauchyschen Theorie, sondern es zeigt sich auch hier wieder, daß
die Anwendung der elementaren Methoden zumeist eine klarere
Einsicht in das Zustandekommender grundlegenden Ergebnisse und
deren arithmetischen Zusammenhang ermöglicht, welcher durch den
beweiskürzenden Mechanismus der komplexen Integration meist
völlig verdeckt wird (Pringsheim, 1920, p. 152).
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