Adenovirus Protein VII Condenses DNA, Represses Transcription, and Associates with Transcriptional Activator E1A

Jeffrey S. Johnson, Yvonne N. Osheim, Yuming Xue, Margaux R. Emanuel, Peter W. Lewis, Alex Bankovich, Ann L. Beyer and Daniel A. Engel

Updated information and services can be found at: http://jvi.asm.org/content/78/12/6459

These include:

REFERENCES

This article cites 62 articles, 31 of which can be accessed free at: http://jvi.asm.org/content/78/12/6459#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Adenovirus Protein VII Condenses DNA, Represses Transcription, and Associates with Transcriptional Activator E1A

Jeffrey S. Johnson, Yvonne N. Osheim, Yuming Xue, Margaux R. Emanuel, Peter W. Lewis, Alex Bankovich, Ann L. Beyer, and Daniel A. Engel*

Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908

Received 22 December 2003/Accepted 16 February 2004

Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is highly basic, and an estimated 1070 copies associate with each viral genome, forming a tightly condensed DNA-protein complex. We have investigated DNA condensation, transcriptional repression, and specific protein binding by protein VII. Xenopus oocytes were microinjected with mRNA encoding HA-tagged protein VII and prepared for visualization of lambrush chromosomes. Immunostaining revealed that protein VII associated in a uniform manner across entire chromosomes. Furthermore, the chromosomes were significantly condensed and transcriptionally silenced, as judged by the dramatic disappearance of transcription loops characteristic of lambrush chromosomes. During infection, the protein VII-DNA complex may be the initial substrate for transcriptional activation by cellular factors and the viral E1A protein. To investigate this possibility, mRNAs encoding E1A and protein VII were coinjected into Xenopus oocytes. Interestingly, whereas E1A did not associate with chromosomes in the absence of protein VII, expression of both proteins together resulted in significant association of E1A with lambrush chromosomes. Binding studies with proteins produced in bacteria or human cells or in vitro translation showed that E1A and protein VII can interact in vitro. Structure-function analysis revealed that an N-terminal region of E1A is responsible for binding to protein VII. These studies define the in vivo functions of protein VII in DNA binding, condensation, and transcriptional repression and indicate a role in E1A-mediated transcriptional activation of viral genes.

The adenovirus nucleoprotein core consists of double-stranded genomic DNA, three highly basic viral proteins VII, V, and μ (mu), as well as protein IVα2 and the 55-kDa terminal protein (1, 8, 33, 42, 52–54, 61). Protein VII is the major protein component of the core, with an estimated 1,070 copies present per virion (20). Along with μ, it is bound noncovalently to the DNA in a sequence-independent manner (2, 6, 36, 55). Protein V contacts the DNA as well and also acts as a bridge between protein VII and the outer capsid (19, 55). Protein IVα2 makes sequence-specific contacts with the viral DNA packaging sequence and is thought to play a role in DNA packaging (64). Salt-extracted preparations of the core contain only DNA and protein VII, suggesting that this protein is the most tightly DNA bound of all core proteins (60). Similarly, Sarkosyl preparations of the core contain predominantly DNA and protein VII (8).

Structural features of the DNA-protein complex within the adenovirus capsid and during infection remain largely unknown. DNA within the capsid is in a highly compact configuration, and electron microscopy studies of purified viral core reveal structures reminiscent of beads on a string, or higher-order chromatin compaction, depending on the method of preparation (8, 18, 45, 49, 50, 60, 63). Nuclease digestion of core preparations results in discrete populations of protected DNA fragments, suggesting a chromatin-like configuration but without a characteristic ladder of repeating units (15, 45, 58, 60). Nuclease sensitivity of viral DNA extracted from infected cells has been reported to change to a state similar to cellular chromatin, although an association of viral DNA with cellular histones has not been demonstrated (16, 17, 56, 57). A protein the size of protein VII could be cross-linked to viral DNA throughout the infectious cycle, including early times, suggesting that the protein VII-DNA interaction is stable within the nucleus and that it might be the initial substrate for early viral transcriptional activation (14). Supporting this suggestion, immunohistochemical staining of early-phase infected cells revealed that protein VII enters the nucleus within the same time frame as viral DNA (28). Protein V has also been shown to enter the nucleus during infection (14, 43), whereas the fate of μ is not known.

We are interested in the role of adenovirus chromatin, and protein VII in particular, in the mechanism of transcriptional activation of the adenovirus early genes. The viral transactivators E1A289 and E1A243 induce early-phase transcription and regulate cellular transcription, and their mechanisms of action have been well studied. Several cellular transcription factors can interact with E1A289 and have been implicated in E1A-dependent transcriptional activation, including ATF2, TATA box binding protein (TBP) (see, however, reference 5), TBP-associated factors, and the mammalian Srb-Mediator complex (5, 7, 22). Others, which interact with both E1A289 and E1A243, have also been implicated in viral activation (21, 47, 62). However, the function of E1A in the context of viral chromatin has not been explored. With the exception of the E1A gene itself, the viral genome is transcriptionally silent until expression of E1A triggers activation, suggesting a role for viral chromatin in transcriptional repression (34). In addition, viral core prepa-

* Corresponding author. Mailing address: Department of Microbiology, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908. Phone: (434) 924-8633. Fax: (434) 982-1071. E-mail: dac2s@virginia.edu.
rations and reconstituted protein VII-DNA complexes are inactive or poorly active when used as templates for in vitro transcription or DNA replication assays (37, 48, 59). One possible explanation of these findings is that viral core proteins, most notably protein VII, act to repress transcription at early times during infection and that part of the function of E1A is to overcome this repression.

Here we report the ability of protein VII to condense DNA and repress transcription in a nuclear environment. Furthermore, we demonstrate that ectopically expressed protein VII can recruit E1A to chromatin, suggesting that such recruitment takes place during infection in the context of viral chromatin leading to early transcriptional activation. These results are supported by the demonstration that protein VII and E1A can interact directly in vitro. Additionally, chromatin immunoprecipitation assays reveal an in vivo association between protein VII and adenovirus DNA during the early phase of infection when E1A protein is known to be active. These studies define the in vivo functions of protein VII in DNA binding, condensation, and transcriptional repression and indicate a role in E1A-mediated transcriptional activation of viral genes.

MATERIALS AND METHODS

Cells and viruses. HeLa and HEK 293 cells were grown as monolayers in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, penicillin, and streptomycin (all from Gibco). Phenotypically wild-type adenovirus type 5 dl309 was propagated in HeLa cells and dl520 was propagated in HEK 293 cells to produce virus stocks.

Transfection and infection. HEK 293 cells were transfected by calcium phosphate precipitation as described previously (4) and incubated for 48 hr before collection. HeLa cells were infected by addition of purified dl309 (35) or dl520 (30) virus to 100-mm plates of 70% confluent cells at 20 PFU/cell and incubated for 12 hr at 37°C. To make lysates, cells were scraped from plates and placed in lysis/binding buffer (50 mM HEPES, 250 mM NaCl, 10 mM MgCl2, 150 mM CaCl2, 0.2 mM ZnCl2, 0.1% Nonidet P-40, 50 μg of DNase I [Sigma] per ml, 30 μg of phenylmethylsulfonyl fluoride [PMSF] per ml, 1 μg of antipain per ml, 1 μg of leupeptin per ml [pH 7.8]) on ice for 90 min. Lysates were then cleared by centrifugation in a Sorvall MC-12V microcentrifuge at 12,000 rpm and 4°C for 20 min.

Plasmids. To produce pGSTVII and pKE1A289, inserts were generated by PCR with adenovirus type 5 DNA or E1A 13S cDNA as the template. Primers contained 5′ BamHI and 3′ EcoRI sites and the PCR products were cloned into pGEX 3X (pGST-VII) or pGEM 3 (pKE1A289). To produce pGST1A289, pGST1A1CR3, pGST1A 139–289, pGST1A 1–67, pGST1A 1–120, and pGST1A 1–139, inserts were generated by PCR with pKE1A289 as the template. Primers contained 5′ BamHI and 3′ EcoRI sites, and PCR products were cloned into pGEX-3X (pGST1A1CR3, pGST1A 139–289, pGST1A 1–67, pGST1A 1–120, and pGST1A 1–139) or pGEX-4T-2 (pGST1A289). To produce pPSP-VII, a PCR fragment encoding protein VII was cloned into pCMV 5.1 (46), which contains an N-terminal HA tag. PCR amplification of the resulting HA-VII sequence was performed using primers containing 5′ EcoRI and 3′ BglII sites, and the PCR product was cloned into pSP64t. To produce pCMV-Flag VII, inserts were generated by PCR using adenovirus type 5 DNA as the template. Primers contained a 5′ BamHI site and FLAG tag-encoding sequences and a 3′ EcoRI site, and the inserts were cloned into pCMV 5 (46). pBtuF-His, a gift from Robert Kadner, contains a His-tagged BtuF gene in pET-17b (10). pGST CAS YXXP, contains the YXXP domain of CAS in pGEX-2T-K (9). pBS-HRB87F contains the BtuF gene in pET-17b (10). pGST CAS YXXP, a gift from Amy Bouton, contains the YXXP domain of CAS in pGEX-2T-K (9). pBS-HRB87F contains the BtuF gene in pET-17b (10). pGST CAS YXXP, a gift from Amy Bouton, contains the YXXP domain of CAS in pGEX-2T-K (9). pBS-HRB87F contains the BtuF gene in pET-17b (10).

In vitro transcription and translation. mRNA for oocyte microinjections was made with the Riboprobe in vitro transcription system (Promega) using 5 μg of pKE1A289, pSP6-VII, or pBS-HRB87F linearized with EcoRI, ScaI, or NotI, respectively, followed by addition of GpppG Cap analog (New England Biolabs). The mRNA was treated with RNase A (Promega), phenol-chloroform extracted, ethanol precipitated, and resuspended in water. 35S-labeled, in vitro-translated E1A289 was produced using the TNT coupled reticulocyte lysate transcription-translation system (Promega) with 1.5 μg of pKE1A289.

Oocyte injections. Xenopus oocytes were isolated and injected as previously described (31), except that the injections were made into the cytoplasm of medium-size oocytes (stages 4 and 5). Twenty-three nanoliters per oocyte of each injection mixture was injected: VII mRNA (0.6 or 1.2 ng/ul), E1A289 mRNA (1.3 ng/ul each, or 0.5 ng of VII per nl), E1A289 mRNAs (1.3 ng/ul each, or 0.5 ng of VII per nl + 1.5 ng of E1A289 per nl), and Drosophila HRB87F mRNA (0.6 or 1.2 ng/ul). Injected oocytes were incubated in modified Barth’s solution (29) for 6 or 24 h at 19°C before being collected for Western blot analysis or processed for chromosome spreads.

Lampbrush spreads. Lampbrush spreads were performed as described previously (25–27), except that dithiothreitol was omitted from the 5:1 isolation medium and both dithiothreitol and Ca2+ were omitted from the dispersal medium. Using jeweler’s tweezers, the germinal vesicle was quickly isolated in isolation medium, transferred to dispersal medium, where adhereing yolk was removed by pipetting, and then moved to the slide dispersal chamber, where the nuclear envelope was removed.

Slides were stored at 4°C until ready for centrifugation (~30 min). They were centrifuged in the large buckets of a Sorvall RT6000B refrigerated table-top centrifuge in adaptors made of small plastic boxes lined with a foam pad, two slides per box. Centrifugation was carried out at 3,000 rpm for 30 min. Chromosome preparations were fixed with 2% paraformaldehyde in PBS for 90 min.

Immunofluorescence staining and microscopy. Lampbrush preparations were rinsed three times in PBS and blocked with 10% horse serum–PBS in a humid chamber at 4°C. Primary antibody was added and the slides were incubated for 1 h at room temperature. After the preparations were rinsed in PBS, the secondary antibody was applied, and the mixtures were incubated for an additional 1 h at room temperature followed by a PBS rinse.

The following antibodies were used: 3F10 (rat) against the HA epitope (Roche Applied Science) diluted 1:250, anti E1A monoclonal antibody M73 diluted 1:250 (31), rabbit polyclonal anti-protein VII antibody (see below) diluted 1:100.
and M2 (mouse) antibody against the FLAG epitope (Sigma) diluted 1:100. Secondary antibodies were Cy3-goat anti-rat immunoglobulin G IgG (Amersham Life Sciences) diluted 1:1,000, fluorescein-labeled horse anti-mouse IgG (H + L), and fluorescein-labeled goat anti-rabbit IgG (H + L) (Vector Laboratories), both diluted 1:100. Slides were mounted in 50% glycerol containing 1 mg of phenylemadiamine dihydrochloride (DAPI) (27). Lampbrush chromosomes were viewed with a Zeiss Axiosplan fluorescence microscope.

Production of GST fusion proteins. Plasmids were transformed into E. coli BL21 Codon Plus RPE (Stratagene). Cultures (3 ml) were grown overnight at 37°C in Luria-Bertani LB broth with ampicillin (100 µg/ml) and chloramphenicol (50 µg/ml). They were expanded in 500 ml to an optical density at 600 nm of 0.2. The temperature was then reduced to 30°C, and isopropyl-β-D-thiogalactopyranoside (IPTG) (Gibco-BRL) was added to a final concentration of 0.25 mM. After 3 h, the cells were pelleted by centrifugation and resuspended in binding buffer (50 mM NaCl, 2.7 mM KCl, 10.15 mM Na2HPO4, 1.75 mM KH2PO4, 10 mM MgCl2, 1% (vol/vol) Triton X-100, 30 µg of DNAse I, 30 µg of PMSF per ml, 1 µg of aprotinin per ml 1 µg of pepstatin A per ml, 10 µg of leupeptin per ml (pH 7.4)). Lysis was by done with a French press at 18,000 lb/in² at 4°C.

RESULTS

Protein VII associates with viral DNA during the early phase of infection. ChIP was used to determine that protein VII associates with adenovirus DNA during the early phase of infection. HeLa cells were infected at a multiplicity of infection (MOI) of 50 and incubated for 4 h. Nuclei and postnuclear supematant were prepared and analyzed as described in Materials and Methods. (A) (Top) Postnuclear supernatant (sup.) and nuclear (nuc.) fractions were analyzed by SDS-PAGE and subjected to Western blotting for tubulin and EGFR to monitor cytoplasmic (tubulin) and plasma membrane (EGFR) contamination of the nuclear preparations. (Bottom) Western blot analysis of total cell lysate (total) and nuclear fraction, using anti-protein VII polyclonal antibody, (B) Nuclei were treated with formaldehyde and sonicated, and the products were subjected to immunoprecipitation with anti-protein VII polyclonal antibody or pre-immune serum as described in Materials and Methods. M, lysates from mock-infected cells; I, lysates from dl309-infected cells. α-VII, anti-protein VII antibody; pre, preimmune serum. (Top) PCR analysis for adenovirus-specific DNA. Control PCR amplifications were performed in the presence (+) or absence (–) of purified adenovirus type 5 DNA. (Bottom) PCR analysis for rDNA. Control PCR amplifications were performed with nuclear lysate as the source of DNA.

FIG. 1. ChIP analysis of protein VII during the early phase of infection. Cells were infected with phenotypically wild-type dl309 at an MOI of 50 and incubated for 4 h. Nuclei and postnuclear supematant were prepared and analyzed as described in Materials and Methods. (A) (Top) Postnuclear supernatant (sup.) and nuclear (nuc.) fractions were analyzed by SDS-PAGE and subjected to Western blotting for tubulin and EGFR to monitor cytoplasmic (tubulin) and plasma membrane (EGFR) contamination of the nuclear preparations. (Bottom) Western blot analysis of total cell lysate (total) and nuclear fraction, using anti-protein VII polyclonal antibody, (B) Nuclei were treated with formaldehyde and sonicated, and the products were subjected to immunoprecipitation with anti-protein VII polyclonal antibody or pre-immune serum as described in Materials and Methods. M, lysates from mock-infected cells; I, lysates from dl309-infected cells. α-VII, anti-protein VII antibody; pre, preimmune serum. (Top) PCR analysis for adenovirus-specific DNA. Control PCR amplifications were performed in the presence (+) or absence (–) of purified adenovirus type 5 DNA. (Bottom) PCR analysis for rDNA. Control PCR amplifications were performed with nuclear lysate as the source of DNA.

Production of GST fusion proteins. Plasmids were transformed into E. coli BL21 Codon Plus RPE (Stratagene). Cultures (3 ml) were grown overnight, and pelleted as above. The cells were resuspended in lysis buffer (50 mM Na2HPO4, 300 mM NaCl, 10 mM imidazole, 30 µg of PMSF per ml, 1 µg of aprotinin per ml 1 µg of pepstatin A per ml, 10 µg of leupeptin per ml (pH 8.0)) and lysed by described above. The lysate was cleared by centrifugation as described above. His-tagged proteins were purified by adding 1 ml of a 1:1 slurry of Ni-nitrioltriacetate agarose beads (Qiagen) to 10 ml of cleared lysate at 1 mg of protein per ml and the mixture was incubated for 4 h at 4°C. The bead-bound proteins were washed three times in 15 ml of binding buffer.

Production of His-tagged proteins. Plasmids were transformed into BL21 Codon Plus RPE. coli (Stratagene). Cultures were grown, induced, and pelleted as above. The cells were resuspended in lysis buffer (50 mM Na2HPO4, 300 mM NaCl, 10 mM imidazole, 30 µg of PMSF per ml, 1 µg of aprotinin per ml 1 µg of pepstatin A per ml, 10 µg of leupeptin per ml (pH 8.0)) and lysed by described above. The lysate was cleared by centrifugation as described above. His-tagged proteins were purified by adding 1 ml of a 1:1 slurry of Ni-nitrioltriacetate agarose beads (Qiagen) to 10 ml of cleared lysate at 1 mg of protein per ml and incubated for 4 h at 4°C. The beads were washed three times in 15 ml of wash buffer (50 mM Na2HPO4, 300 mM NaCl, 20 mM imidazole (pH 8.0)). Elution was done with four 0.5 ml aliquots of elution buffer (50 mM Na2HPO4, 300 mM NaCl, 250 mM imidazole (pH 8.0)).

GST pulldown assays. (i) Pulldown of in vitro-translated product. A 2-µl volume of in vitro-translated 35S-labeled E1A289 was added to 50 µl of bead-bound GST fusion proteins (1:1 slurry in PBS) in 300 µl of binding buffer (50 mM KCl, 40 mM HEPES [pH 7.9], 5 mM 2-mercaptoethanol, 0.1% Tween 20, 0.5% nonfat dry milk, 0.2 mM ZnCl2), the mixture was incubated for 1 h at 4°C with rotation, and the beads were washed four times in 1.4 ml of binding buffer. Some reaction mixtures also contained 250 mM NaCl. Some reaction mixtures were brought to 100 µg of elution bromide per ml for 10 min just before or just after the 1-h incubation with GST-VII beads. Bound proteins were separated by SDS-PAGE and analyzed by phosphorimager analysis. In some reactions, 35S-labeled protein was replaced by a 32P-end-labeled 237 bp DNA fragment produced by HindIII digestion of pEBG, the products were washed as described above, and the bound DNA was analyzed by scintillation counting. Conditions for binding of His-tagged proteins were identical, except that the binding buffer also contained 250 mM NaCl and 3 µg of His-tagged protein was used. Bound proteins were analyzed by SDS-PAGE followed by Western blotting using an anti-tetra-His mouse monoclonal antibody (Qiagen).

(ii) Pulldown of Flag-VII or E1A from cell lysate. A 5-µg portion of bead-bound GST fusion proteins (1:1 slurry in PBS) was added to 250 µl of cell lysate (1.5 mg of total protein per ml) as prepared above, the mixture was incubated for 1.5 h at 30°C with rotation and the beads were washed four times in 1.4 ml of lysis/binding buffer. Bound proteins were analyzed by SDS-PAGE followed by Western blotting with appropriate antibodies.

Antibody production. GST-VII protein was produced as described above, washed four times in 15 ml of binding buffer, and eluted from the beads four times in 0.5 ml of elution buffer (50 mM Tris-Cl, 15 mM reduced glutathione [Sigma], [pH 8.0]). Antibody production in New Zealand White rabbits was conducted by Cocalico Biologicals, Inc. Anti-protein VII was then affinity purified against recombinant protein VII cross-linked to beads followed by extensive preclearing against GST protein bound to glutathione-agarose beads.
tein VII-bound DNA and suggests that protein VII is restricted to adenovirus DNA at early times postinfection. Additionally, coding regions of the L2, L3, and E1A genes were assayed by ChIP, as were promoter regions for the E1A, E2A, and E4 genes. All regions gave identical results, as shown here for the E1B region, indicating association of protein VII with viral DNA during the early phase of infection (data not shown).

Protein VII condenses DNA and represses transcription in a nuclear environment. Adenovirus core particles extracted from virions contain highly condensed DNA. Furthermore, mixing of protein VII and DNA in vitro results in compact DNA-protein structures as viewed by electron microscopy (6; J. Johnson and W. Newcomb, unpublished data). With the exception of the E1A gene, viral DNA that is delivered to the nucleus at the onset of infection is transcriptionally silent until E1A protein is expressed in sufficient amounts (34). Therefore, we reasoned that ectopic expression of protein VII in nuclei might result in condensed, transcriptionally repressed chromatin. To test this hypothesis and to examine the functional properties of protein VII in a nuclear environment, microinjection of Xenopus oocytes was performed.

Stage 4 and 5 Xenopus oocytes contain chromosomes that are highly active transcriptionally. These “lampbrush chromosomes” are easily visible by phase-contrast microscopy and contain numerous loops representing regions of active transcription. Medium-size oocytes containing lampbrush chromosomes were harvested and microinjected with in vitro-transcribed protein VII mRNA or a control mRNA that encoded the Drosophila RNA-binding protein HRB87F. The protein VII mRNA encoded amino acids 25 to 198 of adenovirus type 5 preprotein VII. This portion is identical to the processed form of the protein that is found in mature virions. In addition, the protein contained an N-terminal HA epitope for immunohistochemical detection.

Control microinjections with HRB87F mRNA resulted in normal-appearing lampbrush chromosomes containing numerous transcription loops that were indistinguishable from those of water-injected oocytes (Fig. 2A and data not shown). Staining for HRB87F protein specifically revealed the transcription loops, due to the binding of newly synthesized HRB87F protein to chromosome-associated RNA (Fig. 2D). These data confirmed that the loops visible by phase-contrast microscopy were in fact transcription loops. Protein VII mRNA was microinjected at 0.6 ng/ nl (“low”) or 1.2 ng/ nl (“high”), and the oocytes were incubated for 6 or 24 h before being analyzed. As seen by phase-contrast microscopy, microinjection of 1.2 ng of protein VII mRNA per nl led to significant chromosomal condensation and a kinked appearance by 6 h postinjection in more than 50% of the oocytes analyzed, and condensation always occurred along with an obvious decrease in transcriptional activity as judged by the disappearance of transcription loops (Fig. 2B, Table 1). We refer to the most severely condensed chromosomes as “commas”; examples are shown in Fig. 2C. All chromosomes are shown at the same degree of magnification.

FIG. 2. Protein VII binding to lampbrush chromosomes. Microinjection of Xenopus oocytes with in vitro-transcribed mRNAs encoding the indicated proteins was carried out as described in Materials and Methods. Protein VII contained an HA epitope at the N terminus, followed by full-length protein VII. After 6 or 24 h of incubation, oocytes were processed for immunohistochemistry with anti-FLAG (for HRB87F) or anti-HA antibodies as described in Materials and Methods. Samples were also stained with DAPI to identify DNA-containing structures. All chromosomes are shown at the same degree of magnification. Phase, phase-contrast microscopy; fluorescence, fluorescence microscopy of antibody-stained samples; DAPI, fluorescence microscopy of DAPI-stained samples. Arrows indicate comma chromosomes; arrowheads indicate extrachromosomal amplified nucleoli.

In the oocytes injected with protein VII mRNA, staining with anti-HA antibody revealed a nearly uniform distribution of protein VII in association with the chromosomes (Fig. 2E and F), and the level of staining generally correlated with the degree of transcriptional repression and condensation (Table 1). By 24 h postinjection, 26 of 29 oocytes injected with protein VII mRNA showed some level of staining. In almost every case
for the 6- and 24-h time points, low to moderate staining correlated with some degree of condensation and transcriptional repression and high staining correlated with significant condensation and repression. In very few cases, we observed low to moderate staining without observable condensation or decrease in transcriptional activity. In addition, association of protein VII with nucleoli was observed (Fig. 2E and F), probably due to the binding of protein VII to nucleolar DNA. There was no anti-HA staining of chromosomes from control injections lacking protein VII mRNA (data not shown). For each condition, the proper number of chromosomes per nucleus was confirmed, indicating that the appearance of small chromosomes and commas (as in Fig. 2C) was not the result of fragmentation. DAPI staining showed that the chromosomes associated with protein VII also contained DNA, further confirming their identity (Fig. 2G to I). These data demonstrate the ability of protein VII to bind and condense DNA and repress transcription in a nuclear environment. Since adenovirus core DNA is in a condensed conformation and is transcriptionally silent prior to expression of E1A protein in infected cell nuclei, our results suggest that protein VII plays an important role in these processes and is able to associate stably with DNA in a nuclear environment in addition to its role within the capsid.

Protein VII recruits E1A protein to lampbrush chromosomes. The association of protein VII with adenovirus DNA during the early phase of infection suggested a role for protein VII in E1A-mediated transcriptional activation. To investigate this possibility, E1A mRNA was microinjected into *Xenopus* oocytes, alone or in the presence of protein VII mRNA (Table 2). Again, protein VII mRNA was injected at two different concentrations, in either the absence or presence of E1A mRNA. The oocytes were incubated for 6 h and then prepared for visualization of lampbrush chromosomes. When E1A mRNA was injected alone, there was no detectable association of E1A protein with lampbrush chromosomes (Fig. 3A; Table 2), despite ample E1A protein expression as determined by Western blot analysis (data not shown). In contrast, when protein VII and E1A mRNAs were coinjected, significant association of E1A with the chromosomes was observed (Fig. 3D; Table 2). This occurred for high (1.3 ng/nl) but not for low (0.5 ng/nl) levels of coinjected protein VII mRNA and correlated well with the efficiency of protein VII association with the chromosomes as determined by antibody staining. When high levels of protein VII mRNA were coinjected, 10 of 13 oocytes exhibited some level of E1A chromosome association, and half of these samples showed moderate to high staining. The presence of E1A did not affect the binding of protein VII to the chromosomes (Fig. 3E; Table 2). These data demonstrate that protein VII and E1A can colocalize on nuclear DNA and that the association of E1A with DNA is dependent on protein VII.

For injection with E1A mRNA alone, 5 of 12 oocytes exhib-

Table 1. Protein VII binding, chromosome condensation, and transcriptional repression

<table>
<thead>
<tr>
<th>Time and mRNA concn<sup>b</sup></th>
<th>Total no. of slides</th>
<th>Transcriptional activity (chromosome structure)</th>
<th>Level of staining with antibody to protein VII or Hrb87F<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High (relaxed)</td>
<td>Low (partially condensed)</td>
</tr>
<tr>
<td>6 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII low</td>
<td>18</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>VII high</td>
<td>27</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Hrb87F low</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Hrb87F high</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>24 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII low</td>
<td>11</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VII high</td>
<td>18</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Hrb low</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Hrb high</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

^a Each slide represents one independently microinjected oocyte. In every case, all chromosomes within an oocyte exhibited identical behavior, and qualitative estimates of binding, condensation, and transcriptional activity were made based on their appearance. Results are compiled from six independent experiments.

^b Low, 0.6 ng of mRNA per nl; high, 1.2 ng of mRNA per nl.

Table 2. Protein VII recruits E1A to chromosomes^a

<table>
<thead>
<tr>
<th>mRNA concn at 6 h<sup>b</sup></th>
<th>Total no. of slides</th>
<th>Transcriptional activity (chromosome structure)</th>
<th>Level of staining for protein VII or E1A<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High (relaxed)</td>
<td>Low (partially condensed)</td>
</tr>
<tr>
<td>VII low</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>VII high</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>E1A</td>
<td>12</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>E1A+VII low</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>E1A+VII high</td>
<td>13</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

^a Each slide represents one independently microinjected oocyte. In every case, all chromosomes within an oocyte exhibited identical behavior. Results are compiled from two independent experiments.

^b Low, 0.5 g of mRNA per nl; high, 1.3 ng of mRNA per nl.

^c For entries with two numbers, the first refers to E1A and the second refers to VII.
ited an effect on transcription and chromosome structure in the absence of any association with the chromosomes (Table 2). This effect seemed to occur with greater frequency than the background levels of transcriptional repression (4 of 31 oocytes) observed for injection of control HRB87F mRNA shown in Table 1. This effect is possibly due to E1A binding to cellular factors such as histone acetyltransferases, as has been shown for p300 and P/CAF in mammalian cells (3, 12), and displacing them from transcription complexes, leading to transcriptional repression.

Protein VII and E1A interact in vitro. Since protein VII is associated with adenovirus DNA during the early phase of infection, the results shown above suggested that E1A is recruited to the viral DNA by protein VII during infection, possibly by direct protein-protein interactions. To test this hypothesis, GST pulldown experiments were performed. GST-protein VII bound to agarose beads was incubated with in vitro-translated, 35S-labeled E1A289, and after being washed, the bound products were analyzed by SDS-PAGE. Figure 4A shows that E1A289 bound efficiently to GST-protein VII. Little background binding of E1A289 to GST alone was observed.

Since both protein VII and E1A (13) are capable of non-specific binding to DNA, it was necessary to rule out the notion that the observed interaction between the two proteins was mediated by contaminating DNA in the GST pull-down reactions. To achieve this, binding reactions were performed in the presence of 100 µg of ethidium bromide per ml, which disrupts DNA-protein interactions (39). Addition of ethidium bromide either before or after incubation of GST-protein VII with E1A failed to inhibit binding (Fig. 4B). To demonstrate that this amount of ethidium bromide efficiently blocked DNA-protein interactions, the GST-protein VII agarose beads were incubated with a 32P-labeled, 237-bp DNA fragment in the presence or absence of 100 µg of ethidium bromide per ml. As expected, GST-protein VII was able to bind the 32P-labeled DNA fragment in vitro (Fig. 4C). Importantly, ethidium bromide addition resulted in nearly complete inhibition of binding. These data demonstrate that the observed interaction between protein VII and E1A shown in Fig. 4A was not mediated by a DNA bridge.

To test if the E1A-protein VII interaction is direct, GST-protein VII and His-tagged E1A289 were first purified from bacteria and shown to be of the appropriate size (Fig. 5B). They were then used in a pulldown assay, and the bound products were analyzed by SDS-PAGE (Fig. 5A). Strong association between GST-protein VII and E1A289 was observed, whereas there was no binding of E1A to GST alone. Also, there was no association between GST-protein VII and a control His-tagged protein, BtuF. These data demonstrate spe-
The E1A-protein VII interaction is direct. GST-protein VII pulldown assays of His-tagged E1A₂₈₉ or His-tagged BtuF were performed as described in Materials and Methods. (A) The reaction products were washed and analyzed by SDS-PAGE and visualized by Western blot analysis with an anti-His antibody. 33% input indicates that 33% of the protein added to the binding-reaction mixtures. (B) Aliquots of input His-BtuF, His-E1A, GST-protein VII, and GST were analyzed by SDS-PAGE and stained with Coomassie blue. The dot indicates the position of full-length GST-protein VII. Minor breakdown products of GST-protein VII were also observed.

FIG. 5. The E1A-protein VII interaction is direct. GST-protein VII pulldown assays of His-tagged E1A₂₈₉ or His-tagged BtuF were performed as described in Materials and Methods. (A) The reaction products were washed and analyzed by SDS-PAGE and visualized by Western blot analysis with an anti-His antibody. 33% input indicates that 33% of the protein added to the binding-reaction mixtures. (B) Aliquots of input His-BtuF, His-E1A, GST-protein VII, and GST were analyzed by SDS-PAGE and stained with Coomassie blue. The dot indicates the position of full-length GST-protein VII. Minor breakdown products of GST-protein VII were also observed.

FIG. 6. Interaction of protein VII with native E1A₂₈₉ and E1A₂₄₃. HeLa cells were infected for 12 h with the indicated adenoviruses. Extracts were prepared and assayed by GST protein-VII pulldown as described in Materials and Methods. Following SDS-PAGE, Western blot analysis was performed with anti-E1A monoclonal antibody M73 (A) or anti-Ku86 monoclonal antibody (B). GST-CAS, GST-CAS-YXXP (9).
E1A_{1-120} and GST-E1A_{1-139}. Since binding of either E1A_{1-120} or E1A_{1-139} was much greater than that of E1A_{1-67}, a role for amino acids 68 to 139 is indicated. Mutant GST-E1A_{921/968} showed binding equivalent to the wild-type E1A protein. This mutant contains two amino acid substitutions within CR2 that abolish binding to the retinoblastoma (Rb) protein (38). Therefore, the Rb-binding domain of E1A is not required for association with protein VII. Deletion of residues 38 to 67 or 73 to 120 reproducibly resulted in somewhat diminished binding, but these proteins still bound efficiently (Fig. 7C). Taken together, these results indicate at least two regions within the N-terminal 139 amino acids that play a role in binding to protein VII. One region lies at the extreme N-terminus, since deletion of residues 2 to 36 abolishes binding and residues 1 to 67 support detectable, albeit weak, binding. The other region lies within amino acids 68 to 139, because addition of these residues to the fragment from residues 1 to 67 greatly enhance binding. It is possible that amino acids throughout the N-terminal 139 amino acids contribute to a structure required for efficient binding to protein VII.

DISCUSSION

The structure and fate of adenovirus genomic DNA during infection remains largely unknown. Questions persist as to the function of the viral chromatin and the way in which this complex relates to the cellular transcriptional and DNA replication machinery. Whereas the composition of the virion nucleoprotein core is known, its structure has not been elucidated. More mysterious are the structure and composition of viral chromatin in the infected cell nucleus. The identification of viral and cellular proteins that associate with adenovirus DNA in the nucleus and information regarding their function are far from complete.

The ChIP data presented here indicate that protein VII remains associated with the DNA during the early phase of infection, supporting a role for this protein during the early nuclear steps of virus replication. We also can visualize protein VII at early times in discrete nuclear “dots” whose number corresponds to incoming infectious particles (Y. Xue, J. S. Johnson, and D. A. Engel, unpublished data), further supporting an ongoing role for this protein during infection. It is known that protein VII condenses adenovirus DNA in the intact virion and that the genome is transcriptionally silent during infection prior to E1A protein expression. Our results therefore suggest that protein VII mediates transcriptional repression in the nucleus prior to E1A expression. Furthermore, they suggest that the mechanism of transcriptional activation by E1A may involve reversal of this repression in addition to the well-documented activities of E1A as a transcriptional activator.

Two lines of evidence support these conclusions. First, mi-
croinjection into Xenopus oocytes of in vitro-synthesized mRNA encoding protein VII resulted in efficient association of protein VII with lambrush chromosomes and dramatic DNA condensation and transcriptional silencing. These results demonstrate dramatically that protein VII is able to bind, condense, and repress genomic DNA in a nuclear environment and suggest that it behaves similarly in the context of adenovirus genomic DNA in the infected cell nucleus. It is worth remembering that Xenopus lambrush chromatin is constituted with histones. It is not known whether protein VII displaced cellular histones in our experiments or if it entered unoccupied sites on the DNA or both. Due to the high state of transcriptional activity of lambrush chromosomes, the density of nucleosomes is thought to be relatively low, and it is possible that this configuration allows access to ectopically expressed protein VII (11). It has been suggested from indirect evidence that in adenovirus the DNA converts to a cellular chromatin-like structure during infection, implying that histones displace protein VII from the incoming viral DNA or co-occupy the DNA with protein VII (16, 56, 57). Our ChIP data clearly indicate that complete displacement of protein VII does not occur, because protein VII was associated with viral DNA 4 h postinfection. Considering the ChIP data and the stable association of protein VII with Xenopus chromosomes despite the prior presence of nucleosomal histones, we favor a model in which the protein VII-adenovirus DNA association remains largely intact during infection. Whether cellular histones join the viral chromatin in addition to this is not yet known.

Second, we have observed direct binding of protein VII to E1A in vitro and protein VII-dependent recruitment of E1A to chromatin in vivo. In our pulldown experiments we used native virally expressed E1A and human cell-produced protein VII. These data strongly suggest that a protein VII-E1A interaction is important as an early step in E1A-induced transcriptional activation or relief of transcriptional repression. We also attempted to coimmunoprecipitate E1A and protein VII from infected cells, but these experiments did not give positive results. Several reasons for this are possible, including low levels of the two interacting proteins and low-affinity interactions, which could be important mechanistically. Several mechanistic possibilities exist for the role of protein VII in this relief of transcriptional repression and transcriptional activation. Recruitment of E1A by protein VII might stabilize the interactions between E1A and specific components of the transcriptional machinery, such as ATF-2, that have been implicated in E1A-dependent activation (22). In addition, protein VII binding to E1A may in turn result in recruitment of chromatin-remodeling factors that can alter the structure of the protein VII-DNA complex to allow accessibility to the transcriptional machinery. These could include various types of mammalian complexes including SWI/SNF, histone acetyltransferase complexes, mediator, p400, and TRRAP complexes, each of which has been implicated in aspects of E1A-regulated transcription (3, 7, 12, 24, 40, 44). Our finding that regions of the N-terminal 139 amino acids of E1A are involved in binding to protein VII support this possibility. Our in vitro experiments demonstrated a direct E1A-protein VII interaction. However, in vivo it is possible that this interaction may be mediated in part by cellular E1A-binding proteins or that the binding of these proteins to E1A might affect the interaction with protein VII. Involvement of N-terminal regions of E1A in early-gene transcriptional activation has been reported (21, 47, 62), and the N-terminal 139 amino acids include CR1, CR2, and the “N-terminal” domain, which contain binding sites for transcriptional regulators p300/CBP, P/CAF, GCN5, TRRAP, p400, and Rb (23). It is interesting to speculate that complexes form on adenovirus DNA that include one or more of these proteins along with E1A and protein VII.

Alternatively, binding of E1A to protein VII might result in the release of protein VII from the DNA, leading to chromatin remodeling and relief of transcriptional repression. Our ChIP experiments do not distinguish between full and partial occupancy of protein VII on viral DNA in the nucleus, and so a displacement model is possible. In our microinjection experiments, we observed no evidence for displacement of protein VII from lambrush chromosomes on expression of E1A. However, given the presumed structural dissimilarities between these and adenovirus chromatin, we cannot rule out E1A-mediated displacement of protein VII in the context of adenovirus chromatin. Previously, UV-cross-linking experiments suggested that protein VII remains associated with adenovirus DNA throughout the infectious cycle (14). Those data and our direct demonstration of a protein VII-DNA interaction in the nucleus of infected cells strongly suggest that complete displacement of protein VII does not take place. This, in combination with the fact that protein VII and E1A can interact, leads us to favor a model in which protein VII plays a continuing role in early-phase transcriptional regulation.

ACKNOWLEDGMENTS

This work was supported by Public Health Service grant CA60675 from the National Cancer Institute to D.A.E and by grant MCB-9513589 from the National Science Foundation to A.L.B.

REFERENCES
