
DAMTP 2009/NA06

The BOBYQA algorithm for bound constrained

optimization without derivatives

M.J.D. Powell

Abstract: BOBYQA is an iterative algorithm for finding a minimum of a function
F (x), x∈Rn, subject to bounds a≤x≤b on the variables, F being specified by a
“black box” that returns the value F (x) for any feasible x. Each iteration employs
a quadratic approximation Q to F that satisfies Q(y

j
) = F (y

j
), j = 1, 2, . . . ,m,

the interpolation points y
j

being chosen and adjusted automatically, but m is a

prescribed constant, the value m = 2n+1 being typical. These conditions leave
much freedom in Q, taken up when the model is updated by the highly successful
technique of minimizing the Frobenius norm of the change to the second derivative
matrix of Q. Thus no first derivatives of F are required explicitly. Most changes
to the variables are an approximate solution to a trust region subproblem, using
the current quadratic model, with a lower bound on the trust region radius that is
reduced cautiously, in order to keep the interpolation points well separated until
late in the calculation, which lessens damage from computer rounding errors.
Some other changes to the variables are designed to improve the model without
reducing F . These techniques are described. Other topics include the starting
procedure that is given an initial vector of variables, the value of m and the initial
trust region radius. There is also a new device called RESCUE that tries to
restore normality if severe loss of accuracy occurs in the matrix calculations of
the updating of the model. Numerical results are reported and discussed for two
test problems, the numbers of variables being between 10 and 320.

Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA,
England.

August, 2009.

1. Introduction

BOBYQA is a package of Fortran subroutines that seeks the least value of an
objective function F (x), x∈Rn, subject to the simple bounds

ai ≤ xi ≤ bi, i=1, 2, . . . , n, (1.1)

on the components of x. The user defines the objective function by another
subroutine that returns the value F (x) for any x in Rn that obeys the constraints
(1.1). No derivatives of F are required. The name BOBYQA is an acronym for
Bound Optimization BY Quadratic Approximation.

The method of BOBYQA is iterative, k and n being reserved for the iteration
number and the number of variables, respectively. Further, we reserve m for the
number of interpolation conditions that are imposed on a quadratic approximation
Qk(x), x∈Rn, to F (x), x∈Rn. The approximation is available at the beginning
of the k-th iteration, the interpolation equations have the form

Qk(yj
) = F (y

j
), j =1, 2, . . . ,m, (1.2)

and m is a constant integer from the interval [n+2, 1
2
(n+1)(n+2)], chosen by the

user of the software. We let xk be the point in the set {y
j

: j =1, 2, . . . ,m} that

has the property
F (xk) = min{F (y

j
) : j =1, 2, . . . ,m}, (1.3)

any ties being broken by giving priority to an earlier evaluation of the least func-
tion value F (xk). A positive number ∆k, called the “trust region radius”, is also
available at the beginning of the k-th iteration.

If certain conditions are achieved, as specified later, then termination occurs
on the k-th iteration. Otherwise, a step dk from xk is constructed such that
‖dk‖≤∆k holds, such that x =xk+dk is within the bounds (1.1), and such that
xk +dk is not one of the interpolation points y

j
, j = 1, 2, . . . ,m. Then the new

function value F (xk+dk) is calculated, and one of the interpolation points, y
t
say,

is replaced by xk+dk, where y
t
is different from xk. It follows that xk+1 is defined

by the formula

xk+1 =





xk, F (xk+dk) ≥ F (xk),

xk+dk, F (xk+dk) < F (xk).
(1.4)

Further, ∆k+1 and Qk+1 are generated for the next iteration, Qk+1 being subject
to the constraints

Qk+1(ŷj
) = F (ŷ

j
), j =1, 2, . . . ,m, (1.5)

at the new interpolation points

ŷ
j
=





y
j
, j 6= t,

xk+dk, j = t,
j =1, 2, . . . ,m. (1.6)

2

These features without the restrictions (1.1) are taken from the NEWUOA
software (Powell, 2006) for unconstrained optimization without derivatives, as are
several other features that receive attention later. We are trying to make the
excellent efficiency of NEWUOA for large n available to applications that include
simple bounds on the variables. The use of quadratic models allows NEWUOA
to provide high accuracy in many cases using far fewer than 1

2
n2 function values

altogether, although a quadratic function of n variables has 1
2
(n+1)(n+2) degrees

of freedom. Let #F be the total number of calculations of values of F and let
x∗ be the optimal vector of variables. The numerical results of Powell (2008)
for NEWUOA, where the range of n goes up to 320, show clearly that, if m
is set to 2n+1, then often #F is only of magnitude n or less, and it happens
occasionally that smaller values of m are even more efficient. In these cases, if F
is twice differentiable, one cannot expect ∇2Qk to become a good approximation
to ∇2F (x∗), #F being far too small. Indeed, in a range of experiments when F
itself is quadratic, the final value of the Frobenius matrix norm ‖∇2F −∇2Qk‖F

exceeds 1
2
‖∇2F‖F , although ‖xk−x∗‖≤ 10−6‖x1−x∗‖ is achieved at termination

(Powell, 2009, to be published). We are employing the Frobenius matrix norm,
because Qk+1 is constructed from Qk by a version of the symmetric Broyden
formula that has the property

‖∇2F −∇2Qk+1‖F ≤ ‖∇2F −∇2Qk‖F , k=1, 2, 3, . . . , (1.7)

when F is quadratic.
The methods of NEWUOA and BOBYQA are the only algorithms known to

the author for optimization without derivatives that employ quadratic models,
and that take up the freedom in Qk+1 by minimizing ‖∇2Qk+1−∇2Qk‖F , after
satisfying the interpolation conditions (1.5) with ∇2Qk+1 symmetric. The reason
for trying this technique originally was that the calculation of Qk+1 from Qk

requires only O(n2) operations in the case m = 2n+1, but O(n4) operations are
needed if Qk+1 is defined completely by the interpolation conditions (1.5), the
value of m being 1

2
(n+1)(n+2). It was not expected then that the reduction in m

would provide the huge improvement to #F that is reported above. The author’s
knowledge of convergence theory had nothing to do with that success, and it
remains unhelpful to the present work. Thus NEWUOA and BOBYQA provide
a counter-example to the suggestion in Gould and Toint (2004) that theoretical
insight is of vital importance to the development of good numerical methods.
Some interesting work on the theory of quadratic models for minimization without
derivatives can be found in Conn, Scheinberg and Vicente (2009), but it does not
address algorithms that achieve high accuracy with #F substantially less than
O(n2).

The operations of BOBYQA that prepare for the first iteration are described
in Section 2. They require the user to provide an initial vector of variables x0∈Rn

and the initial trust region radius ∆1, in addition to the bounds of expression (1.1)
and the value of m. The choice of dk is specified in Section 3. On “trust region”

3

iterations, dk is a convenient estimate of the vector d that solves the subproblem

Minimize Qk(xk+ d), d∈Rn,

subject to a ≤ xk+ d ≤ b and ‖d‖ ≤ ∆k



 . (1.8)

There are also “alternative” iterations, however, and then dk is chosen in a way
that promotes good linear independence in the interpolation conditions (1.5).

Two updating procedures are addressed in Section 4, one of them being the
calculation of Qk+1 from Qk. The change Qk+1−Qk to the quadratic model is
defined by an (m+n+1)×(m+n+1) system of linear equations, which is solved
in only O(m2) operations, due to the construction of the inverse of the matrix of
this system from the previous inverse by the other updating procedure. Let Ωk be
the leading m×m submatrix of the inverse matrix. It is important to numerical
stability that in theory Ωk can be expressed as the product

Ωk = Zk ZT
k , (1.9)

where Zk is a real matrix with m rows but only m−n−1 columns. It is possible, and
rare, for an accumulation of rounding errors to introduce a negative eigenvalue
into Ωk+1. In this case NEWUOA would express Ωk+1 in the form Zk+1Sk+1Z

T
k+1,

Zk+1 being m×(m−n−1) as usual, while Sk+1 is an (m−n−1)×(m−n−1) diagonal
matrix with each diagonal element set to −1 or +1. The response of BOBYQA to
a negative eigenvalue, however, is to move a few interpolation points if necessary
to restore the factorization Ωk+1 = Zk+1Z

T
k+1. Details of this new device, which

has the name RESCUE, are given in Section 5.
Several other subjects are considered briefly in Section 6. They include the

selection of t for formula (1.6), the calling of RESCUE, the adjustment of the trust
region radius, the choice between “trust region” and “alternative” iterations, the
conditions for termination, and shifts of the origin. Finally, Section 7 provides
numerical results for two of the test problems in Powell (2008), namely “trigono-
metric sum of squares” and “points in square”. The bounds (1.1) are irrelevant
in the first example, its purpose being to demonstrate that #F can be O(n) for
large n. The purpose of the second example is to show the robustness and some
limitations of BOBYQA in a difficult case where F has several local minima.

2. Preliminary calculations

It has been stated already that the user has to supply an initial vector of variables
x0∈Rn, the vectors a and b whose components are the bounds of expression (1.1),
the initial trust region radius ∆1, and the number m of interpolation conditions,
where n+2 ≤ m ≤ 1

2
(n+1)(n+2). A gradient of the first quadratic model is

constructed from the changes that occur in F when steps from x0 parallel to coor-
dinate directions are taken in Rn, the lengths of these steps being ∆1. When there
are two such steps in the same direction, they provide a diagonal element of the

4

second derivative matrix ∇2Q1. Because room is required for these constructions,
an error return is made immediately from BOBYQA if the bounds fail to satisfy
the conditions

bi ≥ ai + 2∆1, i=1, 2, . . . , n. (2.1)

The position of x0 also has to be suitable for these constructions, and if necessary
it is altered automatically without an error return. Let i run through the integers
1, 2, . . . , n, and let (x0)i be the i-th component of the given vector x0. This
component is overwritten by ai or bi in the case (x0)i <ai or (x0)i >bi, respectively.
Moreover, it is overwritten by ai+∆1 or bi−∆1 in the case ai < (x0)i <ai+∆1 or
bi−∆1 < (x0)i < bi, respectively, In all other cases, the original value of (x0)i is
retained.

We are now ready to specify the interpolation points y
j
, j =1, 2, . . . ,m, of the

first quadratic model, these points being the same as in NEWUOA if the current
x0 is not on the boundary of any constraint. We set y

1
=x0, and, for i=1, 2, . . . , n,

we define y
i+1

and y
n+i+1

by the formula

y
i+1

= x0 + ∆1 ei and y
n+i+1

= x0 − ∆1 ei, ai <(x0)i <bi

y
i+1

= x0 + ∆1 ei and y
n+i+1

= x0 + 2∆1 ei, (x0)i =ai

y
i+1

= x0 − ∆1 ei and y
n+i+1

= x0 − 2∆1 ei, (x0)i =bi





, (2.2)

where ei is the i-th coordinate vector in Rn. If m≤2n+1, then the interpolation
points of the first quadratic model are y

j
, j = 1, 2, . . . ,m, the definitions of y

j
,

j >m, being superfluous. The function values F (y
j
), j =1, 2, . . . ,min[m, 2n+1],

are calculated.
When m>2n+1, the points y

j
, j =1, 2, . . . , 2n+1, are taken from the previous

paragraph, but they may be reordered a little. Specifically, y
i+1

and F (y
i+1

) are

exchanged with y
n+i+1

and F (y
n+i+1

) for all integers i in [1, n] that satisfy both

ai <(x0)i <bi and F (y
n+i+1

)<F (y
i+1

), which provides a bias towards lower values
of F in the following construction. The last m−2n−1 interpolation points of Q1

have the form

y
j

= y
p(j)+1

+ y
q(j)+1

− x0, 2n+2≤j≤m, (2.3)

where p(j) and q(j) are different integers from [1, n]. Equations (2.2) and (2.3)
show that the p(j)-th and q(j)-th components of y

j
−x0 have modulus ∆1, all the

other components of y
j
−x0 being zero. The values of p(j), j ≥ 2n+2, are given

by the formula

p(j) =

{
j − 2n − 1, 2n+2≤j≤3n+1,

p(j−n), 3n+2≤j≤m,
(2.4)

so they cycle through the sequence {1, 2, . . . , n}. Further, q(j) is set to p(j)+ℓ or
p(j)+ℓ−n during the ℓ-th of these cycles, the choice between these alternatives

5

being settled by 1≤ q(j)≤n. For example, if n=5 and m=20, there are 9 pairs
{p(j), q(j)}, generated in the order {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 3},
{2, 4}, {3, 5} and {4, 1}, as mentioned in Powell (2006). The function values
F (y

j
), j =2n+2, 2n+3, . . . ,m, are also calculated.

We now have all the data for the interpolation equations (1.2) when k=1. In
order to specify the 1

2
(n+1)(n+2)−m remaining degrees of freedom in Q1, we

write the first quadratic model in the form

Q1(x0+ s) = Q1(x0) +
n∑

i=1

(g
0
)i si + 1

2

n∑

p=1

n∑

q=1

(∇2Q1)pq sp sq, s∈Rn, (2.5)

where g
0

is the gradient ∇Q1(x0). The first interpolation condition with y
1
=x0

gives Q1(x0)=F (y
1
). Then formula (2.2) implies that, for every integer i in the

interval [1, min{n,m−n−1}], the coefficients (g
0
)i and (∇2Q1)ii are defined by

the conditions Q1(x0) = F (y
1
), Q1(yi+1

) = F (y
i+1

) and Q1(yn+i+1
) = F (y

n+i+1
).

Further, if m<2n+1, then, for every integer i in [m−n, n], we set (∇2Q1)ii =0,
so now (g

0
)i is defined by Q1(x0) = F (y

1
) and Q1(yi+1

) = F (y
i+1

). On the other

hand, if the interpolation point (2.3) is required due to m≥2n+2, and if we put
s=y

j
−x0 into expression (2.5), then all the nonzero terms on the right hand side of

the expression are known, except for the contributions from {p, q}={p(j), q(j)}.
Thus the two second derivatives (∇2Q1)p(j) q(j) = (∇2Q1)q(j) p(j) are derived from
Q1(yj

)=F (y
j
). The remaining off-diagonal elements (∇2Q1)pq, p 6=q, when {p, q}

is not one of the pairs {p(j), q(j)}, 2n+2≤j≤m, are set to zero, which completes
the description of the first quadratic model. One can take the view that the
freedom in Q1 has been taken up by minimizing the Frobenius norm ‖∇2Q1‖F .

We recall from Section 1 that the inverse of the matrix of a linear system
of equations is employed on each iteration to assist the calculation of the next
quadratic model Qk+1 from Qk. The construction of this inverse for the first
iteration, which is also a part of the preliminary work, is described next. The
linear system is square and has the partitioned form

(
A Y T

Y 0

) 


λ

c
g


 =




r

0


 l m

l n+1 ,
(2.6)

as in expression (3.10) of Powell (2006). In this section we study the symmetric
matrices

W =

(
A Y T

Y 0

)
and H = W−1 =

(
Ω ΞT

Ξ Υ

)
, (2.7)

taking advantage of the structure that comes from the initial positions of the
interpolation points. Further attention is given to the system (2.6) in Section 4.
The m×m symmetric matrix A has the elements

Aij = 1
2
{(y

i
−x0)

T (y
j
−x0)}2, 1≤ i, j≤m, (2.8)

6

while Y is the (n+1)×m matrix

Y =

(
1 1 · · · 1

y
1
−x0 y

2
−x0 · · · y

m
−x0

)
, (2.9)

which completes the specification of the data that define the matrix H =W−1 for
the first iteration.

Similar interpolation points and matrices occur in the technique of Section 5,
except that, for i=1, 2, . . . , n, the modulus of the nonzero component of y

i+1
−x0

may be different from ∆k. We make the present work relevant to Section 5 by
writing expression (2.2) in the form

y
i+1

= x0 + αi ei and y
n+i+1

= x0 + βi ei, i=1, 2, . . . , n, (2.10)

where the multipliers αi and βi are assumed to be any nonzero numbers that
satisfy αi 6= βi, except that βi and y

n+i+1
are not required if n+ i+1 exceeds

m. This increase in generality preserves the validity of every statement in the
paragraph that includes equation (2.5). We retain formula (2.3) without altering
p(j) and q(j), and also we keep the definitions (2.8) and (2.9) of the submatrices
A and Y .

The elements of the submatrices Ξ and Υ, introduced in expression (2.7), are
written down explicitly below, with the elements of an m×(m−n−1) matrix Z such
that Ω is the product ZZT . Checking the correctness of the given values is left
as an exercise for the reader. These tasks are possible, because of the sparseness
and structure that are provided by equations (2.10), (2.3), (2.8) and (2.9) with
y

1
= x0. In particular, y

1
−x0 is the zero vector, and y

i
−x0 has only one or two

nonzero components in the cases 2≤ i≤2n+1 or i≥2n+2, respectively.
The dimensions of Ξ are (n+1)×m. Its first row is the first coordinate vector

in Rm, because the first row of W is the (m+1)-th coordinate vector of Rm+n+1.
For 1 ≤ i ≤ min[n, m−n−1], the (i+1)-th row of Ξ has exactly three nonzero
elements that take the values

Ξi+11 = − 1

αi

− 1

βi

, Ξi+1 i+1 =
βi

αi (βi− αi)
and Ξi+1 n+i+1 =

αi

βi (αi− βi)
.

(2.11)
For m≤ 2n and m−n≤ i≤ n, the (i+1)-th row of Ξ has only the two nonzero
elements

Ξi+11 = − 1

αi

and Ξi+1 i+1 =
1

αi

, (2.12)

which completes the description of Ξ. All the elements of the initial (n+1)×(n+1)
submatrix Υ are zero in the case m≥ 2n+1. Otherwise, Υ has only 2n−m+1
nonzero elements, and they are the diagonal entries

Υi+1 i+1 = −1
2
α2

i , m−n≤ i≤n. (2.13)

The freedom to post-multiply Zk by any (m−n−1)×(m−n−1) orthogonal
matrix in equation (1.9) allows the m×(m−n−1) matrix Z of the first iteration

7

to have a convenient property. It is that the square matrix whose rows are the
last (m−n−1) rows of Z is diagonal. Thus, for 1≤ℓ≤min[n, m−n−1], there are
exactly three nonzero entries in the ℓ-th column of Z with the values

Z1 ℓ =

√
2

αℓ βℓ

, Zℓ+1 ℓ =

√
2

αℓ (βℓ− αℓ)
and Zn+ℓ+1 ℓ =

√
2

βℓ (αℓ− βℓ)
. (2.14)

Further, if Z has more than n columns, then, for n+1 ≤ ℓ≤m−n−1, the ℓ-th
column of Z has the four nonzero elements

Z1 ℓ = Zn+ℓ+1 ℓ =
1

αp(j) αq(j)

and Zp(j)+1 ℓ = Zq(j)+1 ℓ =
−1

αp(j) αq(j)

, (2.15)

the indices p(j) and q(j) being taken from equation (2.3) in the case j =n+ℓ+1.
The description of Z is complete.

By applying the remarks of the last two paragraphs, it is straightforward
to generate the required inverse matrix W−1 for the first iteration, keeping the
leading m×m submatrix Ω in the factored form (1.9).

3. The choice of dk

Both “trust region” and “alternative” iterations are mentioned in Section 1. The
techniques they employ to construct the step dk from xk are different and are
described in this section. In both cases, the step satisfies the constraints

a ≤ xk + dk ≤ b and ‖dk‖ ≤ ∆k. (3.1)

One complication is that, if dk is generated by the trust region procedure, and if
‖dk‖ is less than 1

2
∆k, then, instead of calculating F (xk+dk), the current iteration

may be replaced by an “alternative” iteration. Thus BOBYQA postpones the use
of short steps, because smaller steplengths ‖dk‖ in the conditions Qk+1(xk)=F (xk)
and Qk+1(xk+dk)=F (xk+dk) tend to increase the damage to Qk+1 from various
possible errors. Further attention is given to switches between the two types of
iteration in Section 6, so now only the two choices of dk are described.

Another complication is shifts of origin. Often the interpolation points y
j
,

j =1, 2, . . . ,m, including xk, are in a cluster whose diameter is of magnitude ∆k.
Then, in order to avoid much cancellation in the differences y

i
−y

j
, i 6= j, it is

helpful if the distance from xk to the origin has this magnitude too. In the usual
case when ∆k becomes small as the iterations proceed, however, we do not expect
this property to hold, unless the position of the origin is adapted automatically
to the progress of the iterations. We reserve x0 for the current position of the
origin, which agrees with the preliminary calculations of Section 2, as shown in
the definitions (2.8) and (2.9). Occasionally x0 becomes the current xk, but this
change is made rarely, because the amount of computation of each shift of origin
is O(m2n), as explained in Section 6. Advantage is taken of the shift by working

8

with a−x0, b−x0 and xk−x0, instead of with a, b and xk, when dk is calculated.
It is important in practice to ensure that, if any of the constraints

a−x0 ≤ (xk−x0) + dk ≤ b−x0 (3.2)

are satisfied as equations, then the corresponding constraints (3.1) hold also as
equations. We simplify the remainder of this section by assuming x0 = 0, which
does not lose generality, because the following descriptions are in terms of exact
arithmetic.

The calculation of the “trust region” step dk is done by subroutine TRSBOX
of BOBYQA, the name being an acronym for Trust Region Step in the BOX
defined by expression (3.2). The vector d of the subproblem (1.8) is adjusted by
an active set version of the truncated conjugate gradient procedure, beginning at
the centre d=0 of the trust region {d : ‖d‖≤∆k}, with a restart and an enlarged
active set if d becomes restricted by an additional side of the box. There is no
removal of indices from the active set of the current subproblem. If d reaches the
boundary of the trust region, the alternative being termination of the conjugate
gradient iterations with ‖d‖<∆k, then further changes may be made to d, staying
on the boundary ‖d‖=∆k. Let I contain the indices of the components of d that
are fixed at bounds by the active set method, and, for any v in Rn, let PI(v) be
the vector in Rn whose i-th component, 1≤ i≤ n, is vi or zero if i /∈ I or i∈ I,
respectively. Each further change to d on the boundary of the trust region is in
the two dimensional space spanned by PI(d) and PI(∇Qk(xk+d)) for the current
d. Details of these constructions are given below.

Let (xk)i be at its lower bound ai. If d becomes nonzero in xk +d, only zero
or positive values of the component di are allowed. Further, di >0 provides a first
order reduction in Qk(xk+d) if and only if (g

k
)i < 0 holds, where g

k
=∇Qk(xk).

Therefore, in the unfavourable case (g
k
)i≥0, we fix di at zero by putting the index

i into I. Specifically, the initial active set I contains the integers i in [1, n] that
have the properties

either (xk)i = ai and (g
k
)i ≥ 0

or (xk)i = bi and (g
k
)i ≤ 0

}
. (3.3)

Termination has to occur with dk = 0 if every i ∈ {1, 2, . . . , n} is in the initial
active set. Usually, however, s =−PI(gk

) is nonzero, and it is chosen to be the
first search direction of the conjugate gradient procedure.

On every step along a search direction by this procedure, the d at the beginning
of the step is strictly inside the trust region and the bounds (1.1) are satisfied at
x = xk +d. Further, the chosen search direction s has both the zero components
si = 0, i∈I, and the descent property sT∇Qk(xk +d) < 0. Let αB be the largest
number such that a≤ xk +d+αBs≤ b holds, let α∆ be the largest number such
that ‖d+α∆s‖≤∆k is retained, and let αQ (which may be infinite) be the largest
number such that Qk(xk +d+αs), 0 ≤ α ≤ αQ, decreases monotonically. These
numbers are calculated, the chosen steplength α being the least of them, and d is
overwritten by d+αs.

9

In the case α =α∆, the trust region boundary has been reached, which com-
pletes the iterations of the conjugate gradient method; further changes may be
made to d as mentioned already. In the case α<α∆ and α=αB, the current line
search is restricted by a bound constraint. Its index is added to I so that subse-
quent choices of xk+d remain on the boundary of the additional active constraint.
At this stage, Q(xk)−Q(xk+d) is the total reduction in Qk that has occurred so
far, and the product ‖PI(∇Qk(xk+d))‖∆k is likely to be an upper bound on any
further reductions. Therefore termination with dk set to the current d occurs if
the condition

‖PI(∇Qk(xk+ d))‖∆k ≤ 0.01 {Qk(xk) − Qk(xk+ d)} (3.4)

is achieved, because the effort of more iterations does not seem to be worthwhile.
Otherwise, the conjugate gradient method is restarted at the current point xk+d
with s = −PI(∇Qk(xk +d)) as the next search direction. In the remaining case
α < α∆, α < αB and α = αQ, the change from d to d+αs is a full projected
conjugate gradient step without any interference from constraints, which gives a
strict reduction in Qk. If this reduction is at most the right hand side of expression
(3.4), or if inequality (3.4) holds at the new point xk +d, then termination also
occurs with dk set to the current d. The alternative is a line search from the new
point along a direction s, chosen in a way that is usual for the conjugate gradient
method, and having the properties stated in the previous paragraph. Specifically,
s is the projected steepest descent direction −PI(∇Qk(xk+d)) augmented by the
multiple of the previous search direction that gives orthogonality to the change
in ∇Qk that occurred on the previous iteration. The description of the conjugate
gradient iterations is complete.

If d is going to be moved round the trust region boundary, the components di,
i∈I, remain fixed as usual, and a substantial first order reduction in Qk(xk+d) is
possible if and only if both ‖PI(∇Qk(xk+d))‖ and the angle between PI(d) and
−PI(∇Qk(xk +d)) are sufficiently large. Therefore the current d is returned as
the solution of subproblem (1.8) if it satisfies the termination condition

‖PI(d)‖2 ‖PI(∇Qk(xk+ d))‖2 − {PI(d)TPI(∇Qk(xk+ d))}2

≤ 10−4 {Qk(xk) − Qk(xk+ d)}2. (3.5)

Otherwise, s is set to the vector in the two dimensional linear space spanned by
PI(d) and PI(∇Qk(xk +d)) that has the properties ‖s‖ = ‖PI(d)‖, sTPI(d) = 0
and sTPI(∇Qk(xk+d))<0. Then d is moved round the trust region boundary by
letting θ become positive in the expression

d(θ) = d − PI(d) + cos θPI(d) + sin θ s, 0 ≤ θ ≤ 1
4
π, (3.6)

the d on the right hand side being the one at the beginning of the move. The length
‖d(θ)‖=∆k is preserved, because the definition of PI implies that both PI(d) and
s are orthogonal to d−PI(d). Let θB be the largest number in [0, 1

4
π] such that

10

a≤xk+d(θ)≤ b, 0≤θ≤θB, holds, and let θQ be the greatest value of θ in [0, 1
4
π]

such that Qk(xk+d(θ)), 0≤ θ≤ θQ, decreases monotonically. These numbers are
found approximately, θ is set to the smaller of them, and d is overwritten by d(θ).
If this change to d is restricted by one of the bounds on the variables, the index of
that bound is added to I. Alternatively, when θ is an estimate of θQ, termination
occurs with dk set to the current d if the reduction in Qk from this move round
the trust region boundary is at most the right hand side of expression (3.4). The
remaining possibility is another search for a better choice of d, using the method
described already, which begins by testing the termination condition (3.5).

Numerical experiments show that it is very unusual for subroutine TRSBOX
to make more than ten changes to d when seeking an approximate solution to the
subproblem (1.8), even if there are hundreds of variables. Further, the work of
each change is only O(n), except for the task of multiplying s by ∇2Qk whenever
a change to d is under consideration. Thus the calculation of dk by TRSBOX is
within the target of O(n2) operations per iteration.

A major difference between a “trust region” and an “alternative” iteration is
that, in the latter case, the selection of t for formula (1.6) is made before dk is
chosen. Specifically, t is set to an integer in [1,m] that satisfies the equation

‖y
t
− xk‖ = max{‖y

j
− xk‖ : j =1, 2, . . . ,m}, (3.7)

which is helpful to the aim of clustering the interpolation points round xk as the
calculation proceeds, but the quadratic model Qk(x), x ∈ Rn, is ignored in the
construction of dk by an “alternative” iteration. Instead, attention is given to the
updating of the inverse matrix H of expression (2.7), the dependence on the inter-
polation points being through the definitions (2.8) and (2.9) of the submatrices A
and Y . Details are given in the next section, but a few of them are needed now.
The key remark is that, assuming exact arithmetic, the change (1.6) causes the
new conditions (1.5) to be linearly dependent (and probably contradictory) if and
only if a division by zero occurs in the procedure for updating H.

Let Λt(x), x∈Rn, be a quadratic function that satisfies the Lagrange interpo-
lation conditions

Λt(yj
) = δjt, j =1, 2, . . . ,m, (3.8)

where δjt is the Kronecker delta, and let the freedom in Λt be taken up by mini-
mizing the Frobenius norm of the symmetric second derivative matrix ∇2Λt. It is
explained in the next section that the coefficients of Λt are available in the t-th
column of the inverse matrix H. The function Λt is relevant, because the only
denominator in the updating of H is the expression

σ = Htt β(xk+ dk) + {Λt(xk+ dk)}2 (3.9)

(Powell, 2006), where β(x), x ∈ Rn, is a nonnegative quartic polynomial that
satisfies β(y

j
)=0, j =1, 2, . . . ,m. Further, it is shown in the next section that β

has the property

0 ≤ β(xk+α {y
j
− xk}) ≤ 1

2
α2 (1−α)2 ‖y

j
− xk‖4, α∈R, (3.10)

11

for every interpolation point y
j

that is different from xk. The diagonal matrix

element Htt is also nonnegative, due to the factorization (1.9) of the leading m×m
submatrix of H.

The denominator (3.9) is required to be substantial, and in theory is bounded
below by {Λt(xk+dk)}2. Therefore, on each “alternative” iteration of NEWUOA
(Powell, 2006), dk is set to an estimate of the vector d that maximizes |Λt(xk+d)|
subject to ‖d‖≤∆k. It is reported by Powell (2008), however, that some further
constraints on d not only assist the calculation of dk but also reduce #F in several
experiments. Therefore, on the “alternative” iterations of BOBYQA, xk + dk

is selected usually from one of the m−1 straight lines in Rn through xk and
another interpolation point. Occasionally, this usual choice of dk is replaced by a
constrained Cauchy step of the function |Λt(xk+d)|, ‖d‖≤∆k, as explained later.

For every integer j in [1,m] such that y
j
6=xk, let φj be the quadratic φj(α)=

Λt(xk +α{y
j
−xk}), α ∈R, and let αj be the value of α that maximizes |φj(α)|

subject to a≤xk+α(y
j
−xk)≤b and ‖xk+α(y

j
−xk)‖≤∆k. Further, from among

these integers j, let ℓ be the one that maximizes the product

{φj(αj)}2 [1
2
Htt α

2
j (1−αj)

2 ‖y
j
− xk‖4 + {φj(αj)}2] . (3.11)

The usual choice of dk is αℓ(yℓ
− xk). Thus the denominator (3.9) is made sub-

stantial in a way that employs the bounds (3.10) on β(xk+α{y
j
−xk}), instead of

calculating β(xk+α{y
j
−xk}) explicitly, because that would be too expensive for

every j. The gradient ∇Λt(xk) is formed in O(mn) operations before the cycle
through j, in order that each quadratic function φj can be generated easily from
the data φj(0)=0, φ ′

j(0)=(y
j
−xk)

T∇Λk(xk) and φj(1)=δjt. Thus the total work

of this part of an “alternative” iteration of BOBYQA is only O(mn).
There is a fundamental disadvantage, however, in choosing dk to be a multiple

of y
ℓ
−xk. It is that, if the steps y

j
−xk, j =1, 2, . . . ,m, fail to span Rn, then, due

to formula (1.6), this property is inherited by the new steps ŷ
j
−xk, j =1, 2, . . . ,m.

Furthermore, a tendency towards this hypothetical property occurs in the usual
situation when, for sufficiently large k, some of the bounds (1.1) are active on
every “trust region” iteration. An important task of the “alternative” iterations
is to pick steps that oppose this tendency, because the interpolation conditions
(1.2) should supply useful estimates of sT∇F (xk) along all directions s in Rn.
Such directional derivatives are crucial to the decision whether or not to move
away from the boundary of an active constraint. Let ck be the Cauchy step of
the maximization of |Λk(xk+d)|, d∈Rn, subject to the usual constraints, details
being given below. The condition

{Λt(xk+ck)}2 > Htt β(xk+ dk) + {Λt(xk+ dk)}2 (3.12)

is going to be tested for the choice of dk in the previous paragraph. If it is satisfied,
then dk is replaced by ck, in order to increase the denominator in the procedure
for updating the inverse matrix H, and in order to resist the possible tendencies
towards degeneracy that have been mentioned.

12

Two Cauchy steps are generated, one being for the minimization of Λt(xk+s),
‖s‖≤∆k, and the other one being for the minimization of −Λt(xk+s), ‖s‖≤∆k,
with the usual bounds a≤xk+s≤ b. We pick the Cauchy step that provides the
larger value of |Λt(xk+ck)|. Only the first of these calculations is described below,
the other one being similar. First the procedure of the next paragraph provides
the exact solution, s=sk say, of the subproblem

Minimize Λt(xk) + sT∇Λt(xk), s∈Rn,

subject to ‖s‖ ≤ ∆k and a ≤ xk+ s ≤ b



 . (3.13)

Then ck is set to the multiple of sk that minimizes Λt(xk+ck) subject to ‖ck‖≤∆k

and a≤xk+ck≤b. We call this technique a “Cauchy step”, because the objective
function of expression (3.13) is a linear approximation to Λt(xk+s), s∈Rn, but
the construction of ck from sk requires the curvature term sT

k ∇2Λt(xk)sk, which is
generated in O(mn) operations.

Let g be the gradient ∇Λt(xk) throughout this paragraph, and let ŝ be the
vector with the components

ŝi =





ai− (xk)i, gi > 0,
0, gi = 0,

bi− (xk)i, gi < 0,
i=1, 2, . . . , n. (3.14)

If ‖ŝ‖≤∆k holds, then s = ŝ is the required solution of the linear programming
subproblem (3.13). Otherwise, there is a subset S of the integers {1, 2, . . . , n} and
a multiplier µ>0 such that the required s has the components

si =

{
ŝi, i∈S,

−µ gi, i /∈S,
i=1, 2, . . . , n. (3.15)

Further, when S becomes the required subset, then µ is defined by expression
(3.15) and by the property ‖s‖ = ∆k. BOBYQA constructs S by an iterative
procedure that begins with S = {i : ŝi = 0}. Each iteration adds at least one
element to S until termination. For each S that occurs, a positive value of µ is
given by the equations (3.15) and by ‖s‖=∆k. The calculation is complete if the
components (3.15) satisfy the conditions ai ≤ si+(xk)i ≤ bi, i /∈S. Otherwise, all
the integers i /∈S of failures of these conditions are added to S and a new iteration
is begun. We note that at most n−1 iterations are required, that the work of
each iteration is only O(n), and that the calculated values of µ increase strictly
monotonically.

By employing the techniques in the second half of this section, subroutine
ALTMOV of BOBYQA constructs both dk and ck on every “alternative” iteration.
The decision whether to overwrite dk by ck is taken later, after the term β(xk+dk)
of the test (3.12) is calculated within the updating procedure of Section 4.

13

4. Updating procedures

Much of the material of this section can be found in several papers by the author,
including Powell (2006). The bounds (1.1) are irrelevant, because we address the
problem of calculating the new quadratic model Qk+1 from Qk, when Qk+1 has
to satisfy the interpolation conditions (1.5), and when the remaining freedom in
Qk+1 is taken up by requiring ∇2Qk+1 to be the symmetric matrix that minimizes
the Frobenius norm ‖∇2Qk+1−∇2Qk‖F , the matrix ∇2Qk being symmetric. This
problem is expressed below as the solution of a linear system of equations that
has the partitioned form (2.6).

The KKT conditions of the calculation of Qk+1 provide a property that is
highly useful when the number m of interpolation conditions is much less than
1
2
n2. It is that the change to the second derivative matrix of the model can be

expressed as the sum

∇2Qk+1 −∇2Qk =
∑m

ℓ=1 λℓ ŷ
ℓ
ŷT

ℓ
, (4.1)

where the multipliers λℓ, ℓ=1, 2, . . . ,m, satisfy the equations

∑m
ℓ=1 λℓ = 0 and

∑m
ℓ=1 λℓ ŷ

ℓ
= 0. (4.2)

Let c ∈ R and g ∈ Rn be the differences Qk+1(x0)−Qk(x0) and ∇Qk+1(x0)−
∇Qk(x0), respectively, where x0 is the current position of the origin, which is
shifted occasionally as mentioned in the second paragraph of Section 3. We write
Qk+1 in the form

Qk+1(x) = Qk(x)+c+(x−x0)
Tg+ 1

2
(x−x0)

T
{ m∑

ℓ=1

λℓ ŷℓ
ŷT

ℓ

}
(x−x0), x∈Rn. (4.3)

Thus the construction of Qk+1 is reduced to the calculation of m+n+1 unknowns,
namely c ∈ R and the components of g ∈ Rn and λ ∈ Rm. The values of these
unknowns are derived from equations (1.5) and (4.2). Moreover, the conditions
(4.2) allow every ŷ

ℓ
to be replaced by ŷ

ℓ
−x0 in expressions (4.1)–(4.3).

By making this replacement, and by letting x be ŷ
j

in the form (4.3), we find

that the constraints (1.5) on Qk+1 are the equations

c + (ŷ
j
−x0)

Tg + 1
2

m∑

ℓ=1

λℓ {(ŷj
−x0)

T (ŷ
ℓ
−x0)}2 = F (ŷ

j
)−Qk(ŷj

), j =1, 2, . . . ,m.

(4.4)
It follows that, if we put hats on all the y vectors in the definitions (2.8) and
(2.9) of A and Y , and if we let r ∈ Rm have the components F (ŷ

j
)−Qk(ŷj

),

j = 1, 2, . . . ,m, then we have derived the first m rows of the partitioned system
(2.6). Furthermore, with this modification of Y , the conditions (4.2) supply the
other n+1 rows of the partitioned system (2.6).

When the partitioned matrix H in expression (2.7) is the inverse of the matrix
of the linear system of the previous paragraph, then the solution of the system

14

is H times the right hand side. Thus the coefficients λℓ, ℓ = 1, 2, . . . ,m, of the
form (4.3) are the components of Ω r, the coefficient c is the first component of
Ξ r ∈Rn+1, and the components of g ∈Rn are the last n components of Ξ r. A
further simplification comes from the observation that equations (1.6) and (1.2)
imply the property

rj = F (ŷ
j
) − Qk(ŷj

) = F (y
j
) − Qk(yj

) = 0, j ∈ {1, 2, . . . ,m}\{t}. (4.5)

Therefore Ω r and Ξ r are multiples of the t-th column of Ω and Ξ, respectively,
the multiplying factor being F (ŷ

t
)−Qk(ŷt

) in both cases. These remarks provide
BOBYQA with the vectors g and λ for the next quadratic model (4.3), but the
coefficient c is not required.

A disadvantage of the form (4.3), however, is that, if ∇2Qk is available, and
if ∇2Qk+1 is stored explicitly, then the calculation of all its elements would take
O(mn2) operations. Instead, the work of a typical iteration of BOBYQA is kept
within O(m2) operations by writing second derivative matrices of quadratic mod-
els in the form

∇2Q = M +
∑m

ℓ=1 µℓ (yℓ
− x0)(yℓ

− x0)
T . (4.6)

A symmetric n×n matrix M , with the parameters µℓ that specify ∇2Qk, is known
at the beginning of the k-th iteration. After choosing the integer t of formula
(1.6), the term µt(yt

−x0)(yt
−x0)

T of expression (4.6) is added to M explicitly and
µt is set to zero. It follows from equations (4.3) and (1.6) that the construction
of ∇2Qk+1 from ∇2Qk is completed by replacing µℓ by µℓ+λℓ for ℓ=1, 2, . . . ,m,
no further change being made to M . Because the representation (4.6) allows any
vector in Rn to be multiplied by ∇2Q in O(mn) operations, it is suitable for every
calculation of dk in Section 3.

A gradient of Qk is also required at the beginning of the k-th iteration. We
let it be g

k
= ∇Qk(xk), because of the importance of g

k
to the construction of

dk on a “trust region” iteration. This choice is also helpful to the preservation
of accuracy in floating point arithmetic in the usual case when g

k
becomes very

small as k increases. Therefore BOBYQA employs the form

Qk(x) = Qk(xk) + (x − xk)
T g

k
+ 1

2
(x − xk)

T∇2Qk (x − xk), x∈Rn. (4.7)

We see that the coefficient c of expression (4.3) is unnecessary, the values Qk(xk)=
F (xk) and Qk+1(xk+1)=F (xk+1) being available, because xk and xk+1 are interpo-
lation points of Qk and Qk+1, respectively. By differentiating the function (4.3),
we obtain the formula

∇Qk+1(xk) = g
k
+ g +

m∑

ℓ=1

λℓ {(ŷℓ
− x0)

T (xk− x0)} (ŷ
ℓ
− x0). (4.8)

It supplies the required gradient g
k+1

= ∇Qk+1(xk+1) in the case xk+1 = xk, the

vectors g∈Rn and λ∈Rm being given by the system (2.6) as mentioned already.
When formula (1.4) sets xk+1 = xk +dk, however, then g

k+1
is formed by adding

15

∇2Qk+1 dk to ∇Qk+1(xk). The description of the updating of the quadratic model
is complete.

At the beginning of the k-th iteration, the matrix H = W−1 of expression
(2.7) is known, with Ω in the factored form (1.9), the submatrices A and Y of
W being defined by equations (2.8) and (2.9). The points y

j
, j = 1, 2, . . . ,m, of

these definitions are the interpolation points of the constraints (1.2) on Qk. The
construction of Qk+1 from Qk, however, is dependent on the new interpolation
points ŷ

j
, j = 1, 2, . . . ,m. In other words, it is dependent on the H matrix that

is going to be available at the beginning of the (k+1)-th iteration. Therefore
BOBYQA derives the new H matrix from the old one, details being given below,
before applying the procedure in the previous two paragraphs for updating the
quadratic model.

For fixed x0, let the change (1.6) be made to the interpolation points. We see
that all changes to the elements (2.8) are confined to the t-th row and column
of A, and that only the t-th column of Y is altered in definition (2.9). Thus the
changes to W in expression (2.7) are also confined to its t-th row and column.
Hence, assuming nonsingularity, the new H matrix, Hnew say, can be derived from
the old one, H say, and from the new t-th column of W , the new t-th row of W
being given by symmetry. Indeed, letting Wold be the inverse of H, we define
Wnew by overwriting the t-th column and row of Wold by the new ones, which
implies Hnew = W−1

new. The calculation of Hnew by BOBYQA is a version of this
procedure, without the explicit calculation of Wold and Wnew, that takes only
O(m2) computer operations.

We find in Powell (2006) that Hnew is given by the formula

Hnew = H + σ−1
[
α (et− Hw) (et− Hw)T − βHet e

T
t H

+ τ
{
Het (et− Hw)T + (et− Hw) eT

t H
}]

, (4.9)

where et is the t-th coordinate vector in Rm+n+1, where w has the components

wi = 1
2
{(y

i
−x0)

T (x+−x0)}2, i=1, 2, . . . ,m

wm+1 = 1 and wi+m+1 = (x+−x0)i, i=1, 2, . . . , n

}
, (4.10)

x+ being the vector xk+dk, and where the parameters take the values

α = eT
t Het, β = 1

2
‖x+− x0‖4 − wT Hw,

τ = eT
t Hw and σ = αβ + τ 2.



 (4.11)

There is another twist in the updating techniques of NEWUOA and BOBYQA,
which is that the (m+1)-th column and row of each H matrix are not retained. The
absence of these elements does not matter in the updating of quadratic models,
because the (m+1)-th component of the right hand side of the system (2.6) is
zero, and because that updating does not require the system (2.6) to supply the
value of c for expression (4.3). Formula (4.9) is modified slightly below, however,

16

because Hw includes a substantial contribution from the (m+1)-th column of H,
due to wm+1 =1.

Let s be the integer in [1,m] such that xk = y
s
, and let v be the s-th column

of W =H−1, so it has the components

vi = 1
2
{(y

i
−x0)

T (xk−x0)}2, i=1, 2, . . . ,m

vm+1 = 1 and vi+m+1 = (xk−x0)i, i=1, 2, . . . , n

}
. (4.12)

We recall from Section 1 that s is different from t. The equations W =H−1 and
Wes =v imply Hv=es, giving the identities

Hw = H (w−v) + es

wT Hw = (w−v)T H (w−v) + 2ws − vs

}
. (4.13)

The modification of formula (4.9) is that the four occurrences of et −Hw are
replaced by et−es−H(w−v). We also replace eT

t Hw and wT Hw by eT
t H(w−v)

and by the second part of expression (4.13) in the definitions (4.11) of τ and β.
Because the (m+1)-th component of w−v is zero, it follows that the new formula
provides the first m and last n columns and rows of Hnew as required when the
(m+1)-th row and column of H are not available.

This version of formula (4.9) is applied directly to update the (m+n)×n
matrix that is called BMAT in the Fortran listing of BOBYQA. The first m rows
of BMAT are ΞT without its first column, and the last n rows of BMAT are Υ
without its first row and column, the submatrices ΞT and Υ being taken from
expression (2.7). Furthermore, the m×(m−n−1) matrix that is called ZMAT in
the Fortran listing is the matrix Z of the factorization Ω = ZZT of the leading
m×m submatrix of H. Of course Z has to be updated too, so that ZZT becomes a
factorization of the leading m×m submatrix of Hnew. There is a choice of updating
procedures, due partly to the nonuniqueness of Z mentioned in the penultimate
paragraph of Section 3. BOBYQA employs the following one, which is also taken
from Powell (2006).

The procedure begins by postmultiplying Z by an (m−n−1)× (m−n−1)
orthogonal matrix such that, after the multiplication, only the first component
of the t-th row of Z is nonzero, which preserves the factorization Ω = ZZT .
The advantage of this form is that the required new Z matrix, Znew say, can be
constructed by changing only the first column of Z. Specifically the new first
column has the elements

(Znew)i1 = σ−1/2 [τZi1 + (et− es− H {w−v})i Zt1], i=1, 2 . . . ,m, (4.14)

the parameters σ and τ and the vector et−es−H(w−v) being available from the
updating of BMAT. Just one more feature of the updating calculations requires
attention, namely the action that is taken to preserve σ > 0 in the presence of
computer rounding errors. It is the subject of Section 5.

We complete this section by attending to the questions that are left open in
the paragraph that includes expressions (3.8)–(3.10). Identifying a usable form of

17

the Lagrange function Λt(x), x∈Rn, that satisfies the conditions (3.8) is closely
related to the construction of Qk+1−Qk at the beginning of this section, because in
both cases, after satisfying interpolation conditions, the freedom in the required
quadratic is taken up by minimizing the Frobenius norm of its symmetric second
derivative matrix. Thus the parameters of the quadratics are defined by linear
systems of the form (2.6), and in both cases r is a multiple of the coordinate vector
et∈Rm. A difference, however, is that the interpolation points of Qk+1−Qk and
of Λt are {ŷ

j
: j = 1, 2, . . . ,m} and {y

j
: j = 1, 2, . . . ,m}, respectively. Therefore

the parameters of Qk+1−Qk are elements of the t-th column of Hnew multiplied by
F (ŷ

t
)−Qk(ŷt

), as mentioned after equation (4.5), but the corresponding parameters
of Λt are elements of the t-th column of the H matrix at the beginning of the k-th
iteration.

Specifically, using the form (2.7) of this H matrix, we now let λℓ, ℓ=1, 2, . . . ,m,
be the components of Ω et, we let c be the first component of Ξ et∈Rn+1, and we
let the components of g∈Rn be the other components of Ξ et. It follows that Λt

is the function

Λt(x) = c + (x−x0)
T g + 1

2
(x−x0)

T∇2Λt (x−x0), x∈Rn, (4.15)

with the second derivative matrix

∇2Λt =
∑m

ℓ=1 λℓ (yℓ
−x0) (y

ℓ
−x0)

T , (4.16)

whose elements are not found explicitly because that would be too expensive. We
recall that xk is an interpolation point different from y

t
, which provides Λt(xk)=0.

Therefore, partly because c is not available, we work with the form

Λt(x) = (x−xk)
T∇Λt(xk) + 1

2
(x−xk)

T∇2Λt (x−xk), x∈Rn, (4.17)

after calculating ∇Λt(xk) = g+∇2Λt (xk−x0) explicitly in O(mn) operations, as
mentioned in Section 3.

Next we address the claim that expression (3.9) is the denominator of the
updating formula (4.9) in the case x+ =xk+dk. Because the parameters λ∈Rm,
c∈R and g∈Rn of Λt are the elements of Het, we can employ the notation

τ = eT
t Hw =

∑m
ℓ=1 λℓ wℓ + cwm+1 +

∑n
i=1 wi+m+1 gi

= 1
2
(x+−x0)

T∇2Λt (x
+−x0) + c + (x+−x0)

T g, (4.18)

the last line being a conseqence of equations (4.10) and (4.16). Therefore expres-
sion (4.15) shows that τ is the function value τ =Λt(x

+)=Λt(xk+dk). Moreover,
α=eT

t Het =Htt holds because et is the t-th coordinate vector in Rm+n+1, and we
regard the equation

β(x+) = 1
2
‖x+− x0‖4 − wT Hw, x+∈Rn, (4.19)

where w has the components (4.10), as the definition of β = β(x+) = β(xk +dk).
Thus the values (3.9) and (4.11) of the denominator σ are the same.

18

It remains to justify the bounds (3.10) on β. It is helpful to consider the
dependence of the parameters (4.11) on the occasional shift of origin x0. Second
derivatives of quadratic functions, for example the matrix (4.16), do not depend
on the position of the origin, which is the reason for the last n+1 equations of the
system (2.6). In theory, therefore, the Z matrices of BOBYQA have this property
too, including the updating formula (4.14). It follows that all the parameters
(4.11) are also independent of x0. In particular, when investigating β(x+), we
may assume x0 = x+ in the definition (4.19), and then the components (4.10)
supply the coordinate vector w = em+1 ∈Rm+n+1. Further, the definition (4.19)
provides β(x+)=−Hm+1 m+1 =−Υ11. The symmetric matrix Υ of expression (2.7)
has no positive eigenvalues, because W is nonsingular and because the elements
(2.8) imply that the symmetric submatrix A is positive definite or semi-definite.
Thus the lower bound β(x+)≥ 0 is established in Powell (2004) for every choice
of x+∈Rn.

In the upper bound (3.10) on β(x+), however, x+ is on the straight line through
the interpolation points xk and y

j
. We continue to let s be the integer in [1, n]

such that xk =y
s
, we assume j 6=s in the equation

x+ = xk + α {y
j
− xk} = y

s
+ α {y

j
− y

s
}, α∈R, (4.20)

and we simplify the following analysis by assuming without loss of generality
that, instead of x0 =x+, the origin has been shifted to x0 =xk. It follows from the
definitions (2.8) and (2.9) that the vector (4.10) has the components

wi = α2 Aij, i=1, 2, . . . ,m

wm+1 = 1 and wi+m+1 = αYi+1 j, i=1, 2, . . . , n

}
, (4.21)

which are required for the wT Hw term of expression (4.19). Now the choice
x0 = xk = y

s
provides the W matrix (2.7) with the property Wes = em+1, so

H = W−1 satisfies Hem+1 = es. Therefore, in the contribution from wm+1 to
wT Hw, wm+1 is multiplied by ws. The choice x0 = xs, however, also provides
ws = α2Asj = 0. Therefore wT Hw = uT Hu holds, where we let u have the same
components as w except for um+1 =α.

It is helpful that the first m and last n+1 components of u∈Rm+n+1 are those
of the vectors α2Aej ∈Rm and αY ej ∈Rn+1. Indeed, the partition (2.10) gives
the equation

wT Hw = uT Hu

= α4 eT
j AΩAej + 2α3 eT

j AΞT Y ej + α2 eT
j Y T ΥY ej. (4.22)

By employing the product WH =I of the partitioned matrices (2.7), we find the
relations Y T Υ =−AΞT and ΞT Y = I−ΩA. Thus we eliminate Υ and then ΞT

from expression (4.22), the result being the formula

wT Hw = (α4 − 2α3 + α2) eT
j AΩAej + (2α3 − α2) eT

j Aej. (4.23)

19

Moreover, the definitions (2.8) and (4.20) with x0 =xk yield the diagonal elements
eT

j Aej = 1
2
‖y

j
−xk‖4, j =1, 2, . . . ,m, and the relation ‖x+−x0‖4 =α4 ‖y

j
−xk‖4. It

follows from equations (4.19) and (4.23) that β does satisfy the required bound

β(x+) = 1
2
α4 ‖y

j
− xk‖4 − {α2(1−α2) eT

j AΩAej + (α3− 1
2
α2) ‖y

j
− xk‖4}

= α2 (1 − α)2 {1
2
‖y

j
− xk‖4 − eT

j AΩAej}

≤ 1
2
α2 (1 − α)2 ‖y

j
− xk‖4, α∈R, (4.24)

the last line being due to the positive semi-definiteness of Ω=ZZT .

5. The method of RESCUE

Computer rounding errors cause severe damage occasionally to the parameters
(4.11) of formula (4.9), large reductions in |σ| due to errors being very unwelcome.
Further, a negative value of σ would exclude the use of equation (4.14) for updating
the first column of Z. Therefore, on the “trust region” iterations of BOBYQA,
the freedom in the choice of t helps to keep |τ |= |eT

t Hw| away from zero, details
being given in Section 6. Moreover, we recall from Section 3 that the choice of
the step dk on an “alternative” iteration is designed to promote a relatively large
value of |τ |= |eT

t Hw|= |Λt(xk+dk)|. Nevertheless, the question is asked on every
iteration of BOBYQA whether or not the calculated denominator σ = αβ + τ 2

seems to be adequate.
The value of α is guaranteed to be nonnegative in practice by employing the

equation
α = Htt = eT

t Ω et = eT
t ZZTet = ‖ZTet‖2, (5.1)

where et is now the t-th coordinate vector in Rm, and we recall that β≥0 holds in
theory. Negative calculated values of β are tolerable, however, provided that |αβ|
is substantially less than τ 2 in the formula σ = αβ+τ 2. They occur often when
the number m of interpolation points is at its maximum value m= 1

2
(n+1)(n+2),

because then in theory the function β(x+), x+∈Rn, given in expression (4.19), is
identically zero. Further, for general m, the bounds (3.10) provide the theoretical
property β(y

j
)=0, j =1, 2, . . . ,m.

A strong disadvantage of the calculation of β is that it includes the term
1
2
‖x+−x0‖4, as shown in equations (4.11) and (4.19), although in theory β(x+)

is independent of x0. Therefore the contribution from rounding errors to β(x+)
can be made arbitrarily large, by allowing the origin x0 to be sufficiently far from
x+. To some extent, the disadvantage has to be tolerated, because shifting the
origin is expensive, and rounding errors do not cause serious difficulties in most
applications of BOBYQA. The level of tolerance on each iteration is that the
updating procedures of Section 4 proceed as usual unless the calculated β satisfies
the condition

σ = αβ + τ 2 ≤ 1
2
τ 2. (5.2)

20

In the case (5.2), a subroutine that has the name RESCUE is called instead. It
tries to provide a better denominator σ in the following way.

When RESCUE is called, the current H and Z matrices of expressions (2.7)
and (1.9) are rejected. The points y

j
and the function values F (y

j
), j =1, 2, . . . ,m,

are retained, however, and xk is still the interpolation point that has the property
(1.3). The current quadratic model Qk(x), x ∈ Rn, is also retained. Usually a
few of the interpolation points are replaced, which requires some new values of
F , and then Qk is updated to interpolate the new function values, but sometimes
the only change at the return from RESCUE is that ZMAT and BMAT have been
recalculated, these matrices being introduced in the complete paragraph between
equations (4.13) and (4.14). The first task of RESCUE is to shift the origin to the
position x0 =xk, which is easy because we ignore the matrix H that depends on
x0. The representation (4.6) of ∇2Qk is updated, however, in the way that does
not alter the parameters µℓ, ℓ=1, 2, . . . ,m. Indeed, the rank two matrix

∑m
ℓ=1 µℓ (yℓ

− x0) (y
ℓ
− x0)

T − ∑m
ℓ=1 µℓ (yℓ

− xk) (y
ℓ
− xk)

T

= (z − ∑m
ℓ=1 µℓ yℓ

) (x0− xk)
T + (x0− xk) (z − ∑m

ℓ=1 µℓ yℓ
)T (5.3)

is added to M in expression (4.6), where z is the vector 1
2
(
∑m

ℓ=1 µℓ) (x0+xk).
Next we compare x0 =xk with the initial x0 in the formulae (2.2) and (2.3) that

provide the interpolation points for the first iteration. A possible way of removing
the errors in ZMAT and BMAT that caused the condition (5.2) is to replace the
current points y

j
, j =1, 2, . . . ,m, by γ

j
, j =1, 2, . . . ,m, say, the new points being

x0 =xk and m−1 other vectors that are analogous to the choices (2.2) and (2.3).
These new points are crucial in the description of RESCUE. Specifically, after
setting γ

1
= x0 = xk, we let αi and βi be nonzero multipliers that satisfy αi 6= βi,

i=1, 2, . . . , n, and we pick the points

γ
i+1

= x0 + αi ei and γ
n+i+1

= x0 + βi ei, i=1, 2, . . . , n, (5.4)

as in the form (2.10). In the case m≤2n+1, the new points are γ
j
, j =1, 2, . . . ,m,

but, if m>2n+1 holds, the vectors

γ
j

= γ
p(j)+1

+ γ
q(j)+1

− x0, 2n+2≤j≤m, (5.5)

supplement the choices (5.4), the integers p(j) and q(j) being the same as those
of equation (2.3). The Z and H matrices that have been thrown away are always
replaced by the Z and H matrices of these new points, their elements being given
easily and accurately by the techniques of Section 2. We find after the next two
paragraphs that the new Z and H matrices are going to be updated.

The choices of αi and βi, i = 1, 2, . . . , n, for formula (5.4) require more care
than the corresponding choices for expression (2.10), because now x0 = xk may
be arbitrarily close to the boundary of the feasible region {x : a ≤ x ≤ b}. We
pick αi =∆k and βi =−∆k for all integers i in [1, n] such that both xk+∆kei and

21

xk−∆kei are feasible. Otherwise, αi is set to ∆k or −∆k in the case (xk)i+∆k≤bi

or (xk)i−∆k≥ai, respectively, one of these inequalities being true due to ∆k≤∆1

and the bounds (2.1). Further, for these troublesome integers i, we set βi to
ai−(xk)i or bi−(xk)i in the case αi >0 or αi <0, respectively, except that, if this
choice has the property |βi|< 1

2
∆k, then βi is replaced by 1

2
αi. It follows that all

the points γ
i
, i = 1, 2, . . . ,m, are feasible, and that the parameters of expression

(5.4) satisfy |αi|=∆k,
1
2
∆k≤|βi|≤∆k and |αi−βi|≥ 1

2
∆k, i=1, 2, . . . , n. Thus the

new set of interpolation points is suitable in practice for the method of RESCUE.
The points γ

j
, j =1, 2, . . . ,m, have the disadvantage that the function values

F (γ
j
), γ

j
6= xk, have not been calculated. On the other hand, inequality (5.2)

suggests that the points y
j
, j =1, 2, . . . ,m, may be such that there is degeneracy

or near-degeneracy in the interpolation conditions (1.2). Furthermore, it would
be wasteful to calculate F at all the new points if some of them are sufficiently
close to old points, or if the use of an old point instead of a new one seems to be
harmless. Therefore RESCUE employs an iterative procedure that begins with
the set {ŷ

j
=γ

j
: j =1, 2, . . . ,m}, composed of the old point γ

1
=xk and the m−1

new points of the form (5.4) or (5.5). A typical iteration of RESCUE picks an old
point, y

ℓ
say, that is not in the set {ŷ

j
: j =1, 2, . . . ,m}, and then asks the following

question for t = 1, 2, . . . ,m. If ŷ
t

is not one of the points {y
j

: j = 1, 2, . . . ,m},
how safe is it to replace ŷ

t
by y

ℓ
in the set {ŷ

j
: j =1, 2, . . . ,m}. A criterion for

safety is given later, and we make the safest choice of t. Further, the question
is asked whether this choice is safe enough. Usually the answer is affirmative,
and then the replacement of ŷ

t
by y

ℓ
in the set {ŷ

j
: j = 1, 2, . . . ,m} is made.

Otherwise, the same questions are asked for other values of ℓ, which may lead to
a different replacement. Thus every successful iteration of RESCUE increases the
number of old interpolation points in the set {ŷ

j
: j = 1, 2, . . . ,m} by one. This

procedure ends if m−1 iterations are successful, because then {ŷ
j
: j =1, 2, . . . ,m}

has become the set of old interpolation points {y
j

: j = 1, 2, . . . ,m}. This is the

situation that has been mentioned already, where the only change at the return
from RESCUE is that ZMAT and BMAT have been recalculated. Alternatively,
the iterative procedure of RESCUE ends when a sufficiently safe replacement of
ŷ

t
by y

ℓ
cannot be found. The final set {ŷ

j
: j = 1, 2, . . . ,m} is the new set of

interpolation points chosen by RESCUE, the function value F (ŷ
j
) being calculated

by RESCUE if and only if ŷ
j

is not in the old set {y
j
: j =1, 2, . . . ,m}.

We recall that the Z and H matrices just before the first iteration of RESCUE
are generated for the interpolation points ŷ

j
= γ

j
, j = 1, 2, . . . ,m, by techniques

from Section 2. These matrices are updated on every iteration of RESCUE so
that they remain the Z and H matrices of the points {ŷ

j
: j = 1, 2, . . . ,m}. For

each set {ŷ
j

: j =1, 2, . . . ,m}, we let H be the matrix (2.7) when there are hats

on the interpolation points of the definitions (2.8) and (2.9), and we let Z be an
m×(m−n−1) matrix with the property Ω=ZZT . The procedures for updating
Z and H are taken from Section 4. Specifically, when ŷ

t
is replaced by y

ℓ
in the

22

set {ŷ
j

: j = 1, 2, . . . ,m}, the vectors y
i
, i = 1, 2, . . . ,m, in the definitions (4.10)

and (4.12) are the vectors ŷ
i
, i=1, 2, . . . ,m, before the replacement is made, and

x+ in the definitions (4.10) and (4.11) is the vector y
ℓ

of the current iteration of
RESCUE. The integer t chosen by RESCUE is retained in formulae (4.9), (4.11)
and (4.14), while s in equations (4.13) and (4.14) is the integer in [1,m] such that
xk is the point ŷ

s
. All other features of the updating are as in Section 4, including

the device that avoids the storage of the (m+1)-th row and column of H. Thus,
at the return from RESCUE, the Z and H matrices are those of the final set
{ŷ

j
: j =1, 2, . . . ,m}.
The criterion for safety when t is selected is derived from the denominator σ

that is going to occur when the updating procedure of the previous paragraph is
applied. Specifically, in order to avoid divisions by unnecessarily small denomina-
tors, the freedom in t is taken up by maximizing the quantity

σ = αβ + τ 2 = Htt (1
2
‖y

ℓ
− xk‖4 − wT Hw) + (eT

t Hw)2, (5.6)

the right hand side being taken from expression (4.11) with x0 =xk. A valuable
feature of the definition (4.10) of w ∈ Rm+n+1 is that it is independent of t,
and the definition (4.12) gives v = em+1 ∈ Rm+n+1. Therefore not only β =
1
2
‖y

ℓ
−xk‖4−wT Hw but also the terms Hw and wT Hw of expression (4.13) are

calculated before the cycle through the possible values of t. Thus it becomes
inexpensive to select the integer t in [1,m] that maximizes the quantity (5.6)
subject to ŷ

t
/∈{y

i
: i=1, 2, . . . ,m}.

Let σ̂ be the denominator (5.6) of the t that has been selected. The question
whether or not the choice of t is safe enough is posed as a comparison of σ̂ with
denominators that are typical for the introduction of y

ℓ
. Caution is particularly

important when only a small fraction of the integers t in [1,m] satisfy ŷ
t
/∈ {y

i
:

i = 1, 2, . . . ,m}, but there would be no need for this constraint on t if a point
were being deleted from the set {ŷ

j
: j = 1, 2, . . . ,m} only to make room for y

ℓ
.

Therefore the criterion for sufficient safety pays attention to the right hand sides
(5.6) for all integers t in the set {1, 2, . . . ,m}\{s}, where ŷ

s
= xk. Further, we

exclude the contribution from αβ to the right hand sides, because rounding errors
can cause huge relative errors in β. Specifically, BOBYQA replaces ŷ

t
by y

ℓ
in

the set {ŷ
j
: j =1, 2, . . . ,m} if and only if the condition

σ̂ > 0.01 max{(eT
j Hw)2 : j ∈ {1, 2, . . . ,m}\{s}} (5.7)

is achieved, the multiplier 0.01 being included because it seems to be suitable in
numerical experiments.

The right hand side of expression (5.7) is positive in practice, and the following
argument shows that this happens also in theory. We recall from equations (4.15)
and (4.18) that, for j = 1, 2, . . . ,m, the term eT

j Hw is the value Λj(x
+) = Λj(yℓ

)
of a Lagrange function that satisfies Λj(ŷi

) = δij, 1 ≤ i, j ≤ m. Further, these
Lagrange functions have the property

∑m
j=1 p(ŷ

j
) Λj(x) = p(x), x∈Rn, (5.8)

23

where p is any linear polynomial. This equation with the choice x = y
ℓ

provides
the relation ∑m

j=1 p(ŷ
j
) eT

j Hw = p(y
ℓ
), (5.9)

and p can satisfy both p(ŷ
s
)=0 and p(y

ℓ
) 6=0. It follows as required that at least

one of the terms eT
j Hw, j∈{1, 2, . . . ,m}\{s} is nonzero.

The choices of ℓ on each iteration of RESCUE take two factors into consider-
ation. Firstly, if the final set {ŷ

j
: j =1, 2, . . . ,m} is without some of the original

points y
i
, i=1, 2, . . . ,m, we prefer the rejected points to be relatively far from xk.

Secondly, if the failure of condition (5.7) excludes y
ℓ

on the current iteration of
RESCUE, then the same y

ℓ
is given lower priority on future iterations, because it

is unlikely that intermediate iterations will help the acceptance of y
ℓ
. Therefore

each point y
i
, i = 1, 2, . . . ,m, is given the score ψi = ‖y

i
−xk‖ before the first

iteration of RESCUE, and we let ψ∗ be the greatest of these scores. Whenever
the test (5.7) fails for a choice of ℓ, then the score of y

ℓ
is increased by adding ψ∗

to ψℓ, but, if the test (5.7) is satisfied, then ψℓ is set to zero and y
ℓ

replaces ŷ
t
in

the set {ŷ
j

: j =1, 2, . . . ,m}, by applying the procedure that has been described

already. It follows that, at the beginning of each iteration of RESCUE, the point
y

i
, i = 1, 2, . . . ,m, is in the set {ŷ

j
: j = 1, 2, . . . ,m} if and only if ψi is zero.

Every choice of ℓ by RESCUE is such that ψℓ is the least positive score in the set
{ψi : i=1, 2, . . . ,m}. These choices continue on the current iteration until condi-
tion (5.7) is achieved, or until a new ℓ is the same as a choice that has been tried
already on the current iteration of RESCUE. There are no more iterations in the
latter case, the final set {ŷ

j
: j = 1, 2, . . . ,m} being the next set of interpolation

points.
Let T be the subset of integers t in the interval [1,m] such that ŷ

t
is not in

the original set {y
i

: i = 1, 2, . . . ,m} after all the iterations of RESCUE. If T
is empty, the work of RESCUE is complete, because the ordering of the points
{ŷ

j
: j =1, 2, . . . ,m} by RESCUE provides the property ŷ

t
=y

t
, t /∈T . Otherwise,

the new interpolation conditions

Qk(ŷt
) = F (ŷ

t
), t∈T , (5.10)

are satisfied by updating Qk in the following way. We retain the form (4.6) of
∇2Q, but the points y

t
, t∈T , are unwanted. Therefore

∑
ℓ∈T µℓ (yℓ

−x0) (y
ℓ
−x0)

T

is added to the matrix M , in order that the parameters µℓ, ℓ∈T , can be set to
zero, with no change to µℓ, ℓ /∈T . Thus, before it is updated, Qk has the second
derivative matrix

∇2Qk = M +
∑m

ℓ=1 µℓ (ŷ
ℓ
− x0) (ŷ

ℓ
− x0)

T . (5.11)

The current H matrix provides the Lagrange functions Λi(x), x ∈ Rn, that
satisfy Λi(ŷj

) = δij, 1 ≤ i, j ≤ m, the freedom in Λi being taken up as usual by

minimizing ‖∇2Λi‖F . Therefore the procedure for updating Qk is as follows. For
each integer t in T , we replace Qk by the quadratic function

Qk(x) + {F (ŷ
t
) − Qk(ŷt

)}Λt(x), x∈Rn, (5.12)

24

this task being completed before beginning the updating of Qk for the next value
of t. We keep Qk in the form (4.7), where g

k
=∇Qk(xk), with the second derivative

matrix (5.11). It follows from equation (4.3) that, for each t∈T , the parameters
µℓ of expression (5.11) are overwritten by µℓ+λℓ, ℓ = 1, 2, . . . ,m, where λ∈Rm,
is the t-th column of Ω = ZZT multiplied by {F (ŷ

t
)−Qk(ŷt

)}, but there is no
change to the matrix M . The updating of g

k
for each t∈T is taken from the right

hand side of formula (4.8), but the sum over ℓ is zero due to x0 =xk. Therefore
it is sufficient to add g ={F (ŷ

t
)−Qk(ŷt

)}∇Λt(xk) to g
k
. We recall from Section

4 that the components of ∇Λt(xk) are the last n elements of the t-th column of
H, which are the elements of the t-th column of BMAT. The matrix H remains
fixed throughout the updating of Qk. Thus RESCUE constructs a new quadratic
model that would interpolate all the function values F (ŷ

j
), j = 1, 2, . . . ,m, in

exact arithmetic.
We take the view that, if subroutine RESCUE is called on the k-th iteration

of RESCUE, then all its work is a task within the k-th iteration to try to correct
serious errors that have occurred in the matrix H. Therefore BOBYQA returns
to the usual operations of the k-th iteration after the calculations of RESCUE
are complete, although |T | new values of the objective function are required for
the conditions (5.10). Therefore the chosen points ŷ

j
and their function values

F (ŷ
j
), j = 1, 2, . . . ,m, replace the old values of y

j
and F (y

j
), j = 1, 2, . . . ,m, in

agreement with the new matrix H. Further, xk is shifted if necessary in order to
preserve equation (1.3), with the corresponding change to g

k
= ∇Qk(xk). Calls

of RESCUE are unusual unless unattainable accuracy is requested by the user
of BOBYQA. They are expensive, because the construction of the inverse of a
general (m+n+1)×(m+n+1) matrix requires O(m3) operations. Some work and
storage are saved by taking advantage of the property that the vectors γ

j
−x0,

j = 2, 3, . . . ,m, have only one or two nonzero components, as shown in formulae
(5.4) and (5.5).

6. Other features of BOBYQA

The first topic of this section continues the description of a “trust region” iteration
of BOBYQA when the step dk from xk, given by the procedure in the first half of
Section 3, satisfies ‖dk‖≥ 1

2
∆k. Usually the function value F (xk+dk) is calculated,

and the change (1.6) is made to the interpolation points, the value of t being
specified below. It is possible, however, that condition (5.2) is going to invoke
a call of RESCUE, because of severe errors in the matrix H, which is likely to
modify Qk(x), x∈Rn, and then a new trust region step dk would be constructed.
In this case F (xk+dk) would not be required for the first choice of dk. Therefore a
feature of BOBYQA is that the decision whether or not to call RESCUE is taken
before the calculation of F (xk+dk).

The decision depends on a choice of t, made in a way that is similar to the one
in the paragraph that includes equation (5.6). In RESCUE, however, the point

25

ŷ
t
that is dropped from the set {ŷ

j
: j =1, 2, . . . ,m} to make room for y

ℓ
always

has the property 1
2
∆k ≤ ‖ŷ

t
−xk‖ ≤

√
2∆k, due to formulae (5.4) and (5.5) and

the values of αi and βi, but now some of the distances ‖y
j
−xk‖, j =1, 2, . . . ,m,

may be much larger than ∆k. Priority is given to the deletion of an interpolation
point that is relatively far from xk. Specifically, t is set to the integer in the set
{1, 2, . . . ,m}\{s} that maximizes the weighted denominator

max[1, ‖y
t
− xk‖2/∆2

k]σ = max[1, ‖y
t
− xk‖2/∆2

k] (αβ + τ 2)

= max[1, ‖y
t
− xk‖2/∆2

k]
{
Htt (

1
2
‖x+− x0‖4 − wT Hw) + (eT

t Hw)2
}

, (6.1)

where s is defined as usual by xk =y
s
, where x+ =xk+dk, and where w∈Rm+n+1

has the components (4.10), so again w and Hw are independent of t. Thus the
selection of t is straightforward, using the identities (4.13) because the (m+1)-th
row and column of H are not available.

Let α, β, τ and σ be the calculated values of the parameters (4.11) for the
chosen integer t. Subroutine RESCUE is invoked if condition (5.2) holds, in
order to try to correct the unacceptable errors in H. We recall that the current
interpolation points y

i
, i=1, 2, . . . ,m, are changed by RESCUE if and only if the

set T of the constraints (5.10) is nonempty. At the return from RESCUE, there
is a branch back to the beginning of the current iteration for the construction of
another “trust region” step dk, which is followed automatically by the procedure
of the previous paragraph that selects t. Hence there are going to be new values
of α, β, τ and σ, and then condition (5.2) is tested again. If it still holds, we ask
whether T was nonempty on the previous call of RESCUE. There is another call of
RESCUE if the answer is affirmative, but BOBYQA has to make an error return
if T was empty, because then the results from another application of RESCUE
would be the same as the results from the most recent call. This error return is
very rare.

The cycle in the previous paragraph has to end, because, on every call of
RESCUE except possibly the last one, there is an increase in the total number of
calculations of F , and an upper bound on this number is supplied by the user of
BOBYQA. We assume therefore that dk and t have been chosen with an acceptable
denominator σ. At this stage F (xk +dk) is calculated, and xk+1 is defined by
equation (1.4). A complication arises in the case F (xk+dk)<F (xk), because then
the distance from y

t
to xk+1 becomes more important than the distance from y

t
to xk, t ∈ {1, 2, . . . ,m}\{s}. Therefore the procedure for selecting t is repeated
after replacing xk by xk+1 in the weighted denominator (6.1). If the calculated
parameters of the new t satisfy σ=αβ+τ 2 > 1

2
τ 2, then t is given its new value in

the definition (1.6) of the interpolation points for the next iteration. Otherwise,
and also in the case F (xk +dk)≥ F (xk), we pick the t that is known to provide
an acceptable σ. The subsequent updatings of Q(x), x ∈ Rn, and H are taken
from Section 4. The choice of ∆k+1 on a “trust region” iteration receives attention
later.

26

Next the description of an “alternative” iteration is continued; it also includes
some calls of RESCUE if σ is too small. The integer t of formula (1.6) is provided
by equation (3.7), and then subroutine ALTMOV constructs the steps dk and
ck that give relatively large values of the modulus of the function Λt(xk + d),
‖d‖≤∆k, as described in Section 3. At the return from ALTMOV, it is assumed
provisionally that equations (4.9)–(4.11), with x+ =xk+dk, are going to be used
to update H. Therefore the relevant parameters (4.11) are calculated by software
that is shared with this part of a “trust region” iteration. The resultant values
of α, β and τ = eT

t Hw are the terms Htt, β(xk+dk) and Λt(xk+dk) on the right
hand side of expression (3.12), and the term {Λt(xk+ck)}2 on the left hand side
is provided by ALTMOV. We recall that, if condition (3.12) holds, then dk is
replaced by ck; also the parameters α, β and τ are recalculated.

Usually the work of an “alternative” iteration is completed by generating the
new function value F (xk +dk), by making the change (1.6) to the interpolation
points, by applying the updating procedures of Section 4 to Q and H, and by
making the choice (1.4) of xk+1. The iteration includes too the test (5.2) on
the denominator σ, which is tried before F (xk +dk) is calculated. If the test is
satisfied, it is possible that RESCUE has been called already on the current “alter-
native” iteration, and then another call would not provide any new information,
so BOBYQA makes the very rare error return mentioned earlier in this section.
Otherwise condition (5.2) triggers a call of RESCUE, because the errors in H are
unacceptable.

On the return from RESCUE on an “alternative” iteration, one of the following
two branches is taken. If the interpolation points y

i
, i=1, 2, . . . ,m, have not been

altered, the set T of the constraints (5.10) being empty, there is a branch back
to the call of ALTMOV, which supplies dk and ck for the new matrix H, with no
change to the integer t, because equation (3.7) remains valid. The other branch
is to the beginning of a new “trust region” iteration, because the change to the
interpolation points by RESCUE is assumed to have helped not only the accuracy
of Q and H, but also the linear independence of the conditions (1.2). Further, the
values F (y

j
) at all the new interpolation points have been found by RESCUE,

the relevant updating of Q and H has been done, and xk has been shifted if
required by condition (1.3). Our remarks on the use of RESCUE by BOBYQA
are complete.

A technique that helps to keep the interpolation points y
j
, j = 1, 2, . . . ,m,

apart is taken from NEWUOA. It employs a lower bound, ρk say, on ∆k for every
k. The sequence ρk, k = 1, 2, 3, . . ., decreases monotonically, with ρk+1 = ρk on
most iterations. The decrease ρk+1 <ρk occurs only when it seems to be necessary
for further progress, the usual decrease being ρk+1 = 0.1ρk. For example, trust
region radii that satisfy ∆k ≥0.1 may be suitable on the early iterations, but, in
order to achieve the required accuracy, steps of length only 10−6 or less may have
to be taken eventually. The purpose of the bound

∆k ≥ ρk, k=1, 2, 3, . . . , (6.2)

27

is to postpone the use of short steps until late in the calculation, as mentioned
in the opening paragraph of Section 3. The user of BOBYQA has to supply the
initial and final values of ρk, namely ρbeg and ρend, the initial trust region radius
being ∆1 = ρbeg. In many numerical experiments, the distance from the final xk

to a local minimum of F (x), x ∈Rn, is less than 10ρend, unless ρend is so small
that such accuracy is unattainable.

The reader of this report has not been troubled by ρk so far, but it is relevant
to the opening paragraph of Section 3. Indeed, although it is stated there that
a “trust region” step dk may be rejected if it satisfies ‖dk‖< 1

2
∆k, the rejection

occurs only in the case ‖dk‖< 1
2
ρk. Similarly, 1

2
∆k should be replaced by 1

2
ρk in

the first sentence of this section.
The choice of ∆k+1 on a “trust region” iteration that calculates F (xk +dk)

depends on the ratio

rk =
F (xk) − F (xk+ dk)

Qk(xk) − Qk(xk+ dk)
=

Qk(xk) − F (xk+ dk)

Qk(xk) − Qk(xk+ dk)
. (6.3)

An error return occurs in the highly unusual case when the denominator of rk is
not positive in practice. Otherwise, the trust region radius tends to be increased
or decreased if the estimate Qk(xk+dk)≈F (xk+dk) is favourable or unfavourable,
respectively. Specifically, the formula

∆k+1 =





min [1
2
∆k, ‖dk‖], rk≤ 0.1,

max [1
2
∆k, ‖dk‖], 0.1 < rk≤ 0.7,

max [1
2
∆k, 2 ‖dk‖], rk > 0.7,

(6.4)

is applied, except that ∆k+1 is set to ρk if the value (6.4) is at most 1.5ρk. Usually
dk is a step to the trust region boundary of the k-th iteration, and then ‖dk‖ is
the same as ∆k in equation (6.4).

Only the last line of formula (6.4) can provide the increase ∆k+1 >∆k in the
trust region radius. The reduction ∆k+1 <∆k can be made by this formula and in
just two other situations, the choice ∆k+1 =∆k being made automatically on all
other iterations. One situation is when a “trust region” step dk is rejected because
it satisfies ‖dk‖< 1

2
ρk. In this case the quantity

δk = max {‖y
j
− xk‖ : j =1, 2, . . . ,m} (6.5)

is available, and ∆k is overwritten by the term min [1
10

∆k,
1
2
δk], except that ∆k

is set to ρk if this term is at most 1.5ρk. The other situation is when ρk+1 < ρk

occurs in the bounds (6.2), the criteria for this reduction being given after the
next paragraph. Then the formula ∆k+1 = max [1

2
ρk, ρk+1] is applied. Another

refinement is that ∆k may be reduced temporarily before a call of ALTMOV.
Indeed, if the maximum distance (6.5) from xk to an interpolation point is less
than 10∆k, then ∆k is reduced to max [0.1δk, ρk] before the call of ALTMOV, the

28

old value of ∆k being restored at the return. The specification of the sequence
∆k, k=1, 2, 3, . . ., is complete.

If the k-th iteration is of “alternative” type, then the (k+1)-th iteration always
calculates a “trust region” step with ∆k+1 =∆k and ρk+1 =ρk. Therefore the work
with the current ρk is found to be finished only if the current iteration is of “trust
region” type. When a reduction in the right hand side of expression (6.2) is
required, BOBYQA applies the formula

ρk+1 =





ρend, ρk ≤ 16 ρend,

(ρk ρend)
1/2, 16 ρend < ρk ≤ 250 ρend,

0.1 ρend, ρk > 250 ρend,

(6.6)

which is taken from NEWUOA (Powell, 2006). We see that, in the usual case
ρend ≤ 1

4
ρbeg, every application of equation (6.6) decreases the lower bound on

the trust region radii by a factor from the interval [4, 16]. The description of the
sequence ρk, k=1, 2, 3, . . ., until termination is also complete.

Next we address the case when F (xk +dk) is calculated on a “trust region”
iteration. If the strict reduction F (xk+dk)<F (xk) is achieved, the work with the
current ρk is not yet finished. Further, the view is taken that “trust region” itera-
tions are a good thing if the ratio (6.3) has the property rk≥0.1, and then the next
iteration is always of “trust region” type. Thus many consecutive “trust region”
iterations may occur, which tends to stretch out the set of current interpolation
points instead of forming a cluster. If rk <0.1 holds, however, then BOBYQA has
to decide whether the next iteration is going to be of “alternative” type in order to
improve the quadratic model. At this stage, xk+1 and the new interpolation points
ŷ

j
, j = 1, 2, . . . ,m, have become available by applying formulae (1.4) and (1.6),

and δk+1 is set to the greatest of the distances ‖ŷ
j
−xk+1‖, j =1, 2, . . . ,m, which

agrees with the definition (6.5). The next iteration is of “alternative” type if and
only if δk+1 >max [2∆k+1, 10ρk] is satisfied, because then one (or more) of the new
interpolation points is relatively far from xk+1. Otherwise, the next iteration is of
“trust region” type with ρk+1 = ρk, not only in the situation F (xk +dk) < F (xk)
that has been mentioned already, but also in the case max [‖dk‖,∆k+1]>ρk. The
only remaining possibility, on a “trust region” iteration that calculates F (xk+dk),
is characterised by the conditions

∆k+1 = ρk, ‖dk‖ ≤ ρk, δk+1 ≤ 10 ρk and rk≤0. (6.7)

If they all hold, the time has come for the decrease ρk+1 < ρk or for termination
of the iterations of BOBYQA, the latter option being taken if and only if ρk has
reached its lower bound ρend.

We now turn to the case when a “trust region” step satisfies ‖dk‖< 1
2
ρk. Then

either dk is replaced by the step of an “alternative” iteration, as indicated at the
beginning of Section 3, or the work with the current value of ρk is complete. The
latter option is always taken if all the points y

j
, j = 1, 2, . . . ,m, are sufficiently

close to xk. Specifically, corresponding to the third part of expression (6.7), if the

29

maximum distance (6.5) satisfies δk ≤ 10ρk, then, as at the end of the previous
paragraph, the time has come for the decrease ρk+1 <ρk or for termination of the
iterations of BOBYQA.

It is important to efficiency, however, to include a procedure for ending the
work with the current ρk when both ‖dk‖ < 1

2
ρk and δk > 10ρk hold, because

the following situation is not unusual. A quadratic model may have been so
successful on a previous iteration that ‖xk−x∗‖ is now much less than ρk, where
x∗ is still the optimal vector of variables. Further, the models may continue to be
so successful that, whenever dk is a “trust region” step, the distance ‖xk+dk−x∗‖
is also much less than the current ρk. It follows from the triangle inequality
‖dk‖≤‖xk−x∗‖+‖xk+dk−x∗‖ that every “trust region” step may be excluded by
the requirement ‖dk‖≥ 1

2
ρk until ρk is reduced. Therefore BOBYQA includes the

following technique for giving up the current value of ρk when the models seem
to be sufficiently accurate. It is an extension for the bounds (1.1) of a similar
procedure in NEWUOA (Powell, 2006).

The technique employs a crude estimate of the accuracy of the approximation
Qk(xk+d)≈F (xk+d), ‖d‖≤ρk. Each estimate has the form

εmax = max {|F (xℓ+ dℓ) − Qℓ(xℓ+ dℓ)| : ℓ∈{k−3, k−2, k−1} }, (6.8)

where F (xℓ+dℓ), k−3≤ℓ≤k−1, are the three most recently calculated values of
the objective function. The notation xℓ+dℓ indicates that this vector of variables
is confined to the trust region of the ℓ-th iteration, which has centre xℓ and radius
∆ℓ, say, giving the bound ‖dℓ‖≤∆ℓ. The meaning of dℓ may have been changed
during the ℓ-th iteration, because it could begin as a “trust region” step that
satisfies ‖dℓ‖< 1

2
ρℓ, but then, because F (xℓ+dℓ) is actually calculated, the step

dℓ must have been switched to one of “alternative” type. The value (6.8) is not
available until the fourth iteration. Further, it is ignored if RESCUE is called on
or after the (k−3)-rd iteration. Otherwise, we say that εmax is “usable” if and
only if the steps dℓ in expression (6.8) have the property ‖dℓ‖≤ρk, k−3≤ℓ≤k−1.

Whenever ‖dk‖ < 1
2
ρk occurs, dk being a “trust region” step, the question

is asked whether a “usable” εmax exists. The question is irrelevant if δk ≤ 10ρk

prevails, because then, as mentioned already, the calculations with the current ρk

are complete. Moreover, if δk > 10ρk holds and if the answer to the question is
negative, then the current iteration is switched to one of “alternative” type. In
the remaining situation, characterised by ‖dk‖ < 1

2
ρk, δk > 10ρk and εmax being

“usable”, we give up the current value of ρk if and only if the following tests
suggest that the main optimization calculation has a local minimum at a point x∗

in the trust region {x : ‖x−xk‖≤ρk}.
The following criterion is taken from NEWUOA. When dk is calculated by the

conjugate gradient procedure of Section 3, we let S be the set of search directions
such that the steps taken along these directions are not restricted by the bounds
a ≤ x ≤ b. The second derivative terms sT∇2Qks, s ∈ S, are available and, if
there is no interference later from restarts due to bounds becoming active, the
conjugacy properties provide sT∇Qk(xk+dk)=0, s∈S. In this case a move from

30

xk+dk to xk+dk+θs, where θ satisfies ‖dk+θs‖=ρk, yields the increase

Qk(xk+ dk+ θs) = Qk(xk+ dk) + 1
2
θ2sT∇2Qk s

> Qk(xk+ dk) + 1
8
ρ2

k‖s‖−2 sT∇2Qk s, s∈S, (6.9)

the last line being due to the remark that ‖dk +θs‖ = ρk and ‖dk‖ < 1
2
ρk imply

‖θs‖> 1
2
ρk. Changes to Qk provide guidance on changes to F and we recall the

definition (6.8). Indeed, if the inequalities

εmax ≤ 1
8
ρ2

k‖s‖−2 sT∇2Qk s, s∈S, (6.10)

are satisfied, then the relations (6.9) provide some support for the suggestion
that a move from xk+dk to the trust region boundary is not going to reduce the
objective function F .

Another criterion is also employed because of the constraints a ≤ x ≤ b. We
form a set V of multiples of coordinate directions, the vector ρei or −ρei being
included in V if and only if the i-th component of xk+dk is at its lower bound ai

or upper bound bi, respectively. All the points x = xk +dk +v, v ∈V , satisfy the
bound constraints, and usually the directional derivatives vT∇Qk(xk+dk), v∈V ,
are positive. We take the view that the iterations with the current ρk should
continue if one (or more) of the differences Qk(xk+dk+v)−Qk(xk+dk), v∈V , is
less than εmax, except that we prefer to ignore second derivatives if the first order
part of a difference is sufficiently large. Thus the new test on εmax is the condition

εmax ≤ max [vT∇Qk(xk+ dk), vT∇Qk(xk+ dk) + 1
2
vT∇2Qk v], v∈V . (6.11)

When the length of a “trust region” step of BOBYQA is less than 1
2
ρk and when

a “usable” εmax exists, it is decided that the current quadratic model is adequate
not only in the case δk ≤ 10ρk but also if all the conditions (6.10) and (6.11) are
achieved. Then ρk is decreased or termination occurs, instead of a switch to an
“alternative” iteration.

The first iteration at the beginning of the calculation and after every decrease
in ρk is always of “trust region” type. It happens often at termination that the
final dk is a “trust region” step that satisfies ‖dk‖ < 1

2
ρend. Then xk +dk may

be much closer than xk to a minimum of the objective function; therefore the
new function value F (xk +dk) is calculated, in order that BOBYQA can return
xk or xk +dk as the final vector of variables, in the case F (xk +dk) ≥ F (xk) or
F (xk +dk) < F (xk), respectively. The description of the choices that are made
between “trust region” and “alternative” steps is complete.

The purpose of yet another technique of BOBYQA and NEWUOA is to avoid
severe inefficiencies if the elements of ∇2Qk are much too large. For example, large
second derivatives may be inherited from the initial model Q1 if F (x), x ∈ Rn,
increases at a fast exponential rate in some regions of Rn, and if the initial vector
of variables x0 is in such a region and far from a local minimum. Extra help may
be needed to reduce ‖∇2Qk‖, because in general the change ‖∇2Qk+1−∇2Qk‖F is

31

as small as possible subject to the new interpolation conditions (1.5). Therefore,
after the calculation of F (xk +dk) on a “trust region” iteration, and after the
updating of Section 4 is complete, the new quadratic model Qk+1 is compared with
Q alt

k+1(x), x∈Rn, say, which is the quadratic that minimizes ‖∇2Q alt
k+1‖F subject to

Q alt
k+1(ŷj

)=F (ŷ
j
), j =1, 2, . . . ,m. By employing the current inverse matrix H of

expression (2.7), the parameters of Q alt
k+1 are generated in only O(m2) operations,

including the gradient ∇Q alt
k+1(xk+1). For any g ∈ Rn, let Pg be the vector in

Rn that, for i=1, 2, . . . , n, has the i-th component min [0, gi], gi or max [0, gi] in
the cases (xk+1)i = ai, ai < (xk+1)i < bi or (xk+1)i = bi, respectively. We expect
‖P∇Qk+1(xk+1)‖ to be much smaller than ‖P∇Q alt

k+1(xk+1)‖ when the iterations
are making good progress, but the ordering tends to be reversed if ‖∇2Qk+1‖ is
huge. Therefore Qk+1 is replaced by Q alt

k+1 if the condition

‖P∇Q alt
k+1(xk+1)‖2 ≤ 0.1 ‖P∇Qk+1(xk+1)‖2 (6.12)

holds on three consecutive iterations that take “trust region” steps, regardless of
any intermediate “alternative” iterations. The factor 0.1 provides some reluctance
to make the change, because it it is hardly ever worthwhile to interrupt the usual
method of BOBYQA.

The importance of origin shifts to accuracy in practice can be deduced from
the definition (4.11) of β in the following setting. We assume that ‖xk−x0‖ is
much greater than the distances ‖x+−xk‖=‖dk‖ and ‖y

i
−xk‖, i=1, 2, . . . ,m. It

follows that the first m components of expression (4.10) are about wi≈ 1
2
‖xk−x0‖4,

i=1, 2, . . . ,m. Moreover, we recall from the paragraph between equations (4.19)
and (4.20) that in theory β is independent of x0. Therefore the contribution from
x0 to the first part of the formula β= 1

2
‖x+−x0‖4−wT Hw has to be annihilated by

the other part of the formula, which includes the terms wiHijwj ≈ 1
4
‖xk−x0‖8Hij,

1≤ i, j≤m. The eighth power shows that huge damage from computer rounding
errors would be likely in this hypothetical setting. BOBYQA restricts the amount
of cancellation from x0 by considering the inequality

‖x+− xk‖2 = ‖dk‖2 ≤ 10−3 ‖xk− x0‖2 (6.13)

for every ‖dk‖ that is at least 1
2
ρk. If condition (6.13) holds, then the position x0

of the origin is shifted immediately to xk.
The details of a shift are taken from NEWUOA (Powell, 2006). The n×m

matrix Γ that has the columns

Γej = {sT (y
j
− xav)} (y

j
− xav) + 1

4
‖s‖2 s, j =1, 2, . . . ,m, (6.14)

is employed, where s and xav are the shift xk−x0 and the mid-point 1
2
(x0+xk),

respectively. Corresponding to the second half of expression (2.7), we write the
old H without its (m+1)-th row and column in the partitioned form

Hred =

(
Ω ΞT

red

Ξred Υred

)
, (6.15)

32

Ξred being Ξ without its first row and Υred being Υ without its first row and
column. The shift of origin requires Hred to be overwritten by the product

(
I 0

Γ I

)
Hred

(
I ΓT

0 I

)
. (6.16)

In other words, Ω is unchanged as mentioned already, but the product ΓΩ and the
sum of products ΓΞT

red+ΞredΓ
T +ΓΩΓT are added to Ξred and to Υred, respectively.

Furthermore, the shift of origin implies a change to the representation (4.6) of
∇2Qk. As in the paragraph that includes equation (5.3), the old parameters µℓ,
ℓ=1, 2, . . . ,m, are retained, which requires the symmetric rank two matrix

{
(
∑m

ℓ=1 µℓ yℓ
) − (

∑m
ℓ=1 µℓ) xav

}
sT + s

{
(
∑m

ℓ=1 µℓ yℓ
) − (

∑m
ℓ=1 µℓ) xav

}T
(6.17)

to be added to the explicit part of ∇2Qk, namely M . The amount of work of these
tasks is much greater than the routine work of a typical iteration, the number
of computer operations being O(m2n) for every shift of origin. Therefore the
frequency of shifts is one of the subjects of the numerical testing in the next
section.

7. Numerical results

Some results when BOBYQA is applied to two test problems are presented and
discussed in this section. The first problem is the minimization of the sum of
squares

F (x) =
2n∑

i=1

{
fi −

n∑

j=1

[Sij sin(xj/σj) + Cij cos(xj/σj)]
}2

, x∈Rn, (7.1)

when the variables are unconstrained, the bounds of the constraints (1.1) being
irrelevant because they are given the values ai =−1060 and bi =1060, i=1, 2, . . . , n.
The elements Sij and Cij are random integers from [−100, 100], each σj is chosen
randomly from [1, 10], and each fi is defined by F (x∗) = 0, for a vector x∗ ∈Rn

that is also chosen randomly. Thus F is periodic, with local maxima and saddle
points and with a global minimum at x=x∗. The starting vector x0 is picked by
letting the weighted differences (x0−x∗)j/σj, j =1, 2, . . . , n, be random numbers
from [−π/10, π/10], and the values ρbeg = 0.1 and ρend = 10−6 are set. For each
choice of n, five test problems are generated randomly. This description is taken
from Powell (2008), and also we employ the same random numbers, but the switch
from the NEWUOA to the BOBYQA software gives different numerical results,
partly because of the major change to the construction of dk on the “alternative”
iterations.

The values of #F (total number of function evaluations), of ‖xf−x∗‖∞ where
xf is the final vector of variables, of #shifts (number of shifts of origin), and of

33

n m Range of #F ‖xf−x∗‖∞ #shifts #secs #wkspace

10 21 302–427 1.2×10−6 7.8 3.6×10−2 1,031
20 41 691–927 2.1×10−6 12.8 3.3×10−1 3,556
40 81 1681–2045 4.3×10−6 19.0 2.9×100 13,106
80 161 3318–3609 5.5×10−6 29.0 2.3×101 50,206
160 321 5570–6338 1.1×10−5 51.4 1.9×102 196,406
320 641 11366–12047 1.9×10−5 96.2 1.6×103 776,806

Table 1: BOBYQA applied to the test problem (7.1) with m=2n+1

#secs (time measured by calling the Fortran procedure DTIME) are recorded for
every test problem for every selection of n and m. A summary of these results is
presented in Tables 1–3, the three tables being for the three choices m = 2n+1,
m=n+6 and m=(n+1)(n+2)/2, respectively. Each row of a table gives n, m,
the least and greatest values of #F , the greatest value of ‖xf−x∗‖∞, the average
of #shifts and the average of #secs throughout the set of five test problems that
is generated by different random numbers for the current n; the last figure in the
row is the number of storage locations required by BOBYQA for working space.
The third column of Table 1 is in very close agreement with the entries in Table 1
of Powell (2008). Indeed, when NEWUOA minimizes the objective function (7.1)
with m=2n+1 and with the same values of all the parameters, the ranges of #F
over the five cases are 319–446, 780–999, 1629–2114, 3172–3497, 5589–6492 and
11391–12042 for n=10, 20, 40, 80, 160 and 320, respectively.

The other information in Tables 1–3 is also typical of the NEWUOA software,
the huge gain in efficiency for large n when m is reduced from (n+1)(n+2)/2 to
2n+1 being known for many years. The greatest value of n in Table 3 is only
n=80, because the amount of working space is O(n4), and, if enough space were
available, a calculation with n=160 would take about 3 days. The improvement
in the ‖xf−x∗‖∞ column of Table 3 over Tables 1 and 2 can be gained for
the smaller values of m by reducing the parameter ρend, which is going to be
demonstrated in the other test problem of this section. All the entries in the
#shifts column are tolerable, but the increase in the number of shifts when m
is reduced was unexpected. Several other experiments by the author have shown
that the present advantages in Table 1 over Table 2, in particular the numbers
of function evaluations, are usual but not general. Efficient choices of m may
be exposed by the question “how much second derivative information is needed
in order to achieve a good rate of convergence”. Successes with m = n+6 are
remarkable, because then the conditions Qk(yj

) = F (y
j
), j = 1, 2, . . . ,m, include

only five independent data that are relevant to the second derivatives of the model.
The second test problem, which also receives attention in Powell (2008), seeks

positions of a given number of points in the unit square [0, 1]× [0, 1] ⊂R2 that
avoid as far as possible small distances between pairs of points. The number of

34

n m Range of #F ‖xf−x∗‖∞ #shifts #secs #wkspace

10 16 373–637 7.6×10−6 15.2 3.6×10−2 771
20 26 1499–1706 1.9×10−5 32.6 3.8×10−1 2,176
40 46 3490–4317 2.9×10−5 63.2 3.3×100 7,086
80 86 8993–10079 3.9×10−5 116.4 3.0×101 25,306
160 166 19074–21935 6.7×10−5 213.0 2.9×102 95,346
320 326 43967–50144 1.4×10−4 419.8 2.8×103 369,826

Table 2: BOBYQA applied to the test problem (7.1) with m=n+6

n m Range of #F ‖xf−x∗‖∞ #shifts #secs #wkspace

10 66 218–254 1.1×10−7 3.8 9.6×10−2 5,621
20 231 737–853 1.5×10−7 5.0 3.8×100 59,986
40 861 2017–2222 8.5×10−7 6.4 1.2×102 782,966
80 3321 7384–7578 1.9×10−6 7.0 6.0×103 11,321,926

Table 3: BOBYQA applied to the test problem (7.1) with m=(n+1)(n+2)/2

variables n is twice the number of points, the points being the vectors

p
j

=

(
x2j−1

x2j

)
, j =1, 2, . . . , n/2. (7.2)

The points are kept apart by trying to minimize the objective function

F (x) =
∑n/2

i=2

∑i−1
j=1 min [‖p

i
− p

j
‖−1, 103], x∈Rn, (7.3)

each distance ‖p
i
−p

j
‖ being Euclidean, and the points are confined to the unit

square by the constraints

0 ≤ xi ≤ 1, i=1, 2, . . . , n. (7.4)

We call this problem “points in square”.
It has many different local minima due to the following property. Let p

ℓ
, say,

be on an edge of the square. We consider a change to the current variables that
moves p

ℓ
along the line perpendicular to the edge, the direction of the move being

the one allowed by the bounds (7.4), but all the other points remain fixed. Let
p

i
be any one of these fixed points. At the beginning of the move, the first order

change to ‖p
i
−p

ℓ
‖−1 is always a strict increase if p

i
is not on the edge under

consideration, and in the alternative situation the initial first order change to
‖p

i
−p

ℓ
‖−1 is zero. Therefore, unless the current points are all on the relevant edge

of the square or are within distance 10−3 of p
ℓ
, the initial directional derivative of

35

Numbers of calculations of F (#F)
n m #shifts #secs

Case 1 Case 2 Case 3 Case 1̃ Case 1̂

20 41 938 881 1115 953 871 15.2 2.8×10−1

40 81 1672 6452 4519 1780 1744 39.8 4.1×100

80 161 7888 24220 45838 9012 6785 222.2 1.1×102

160 321 73776 71195 34018 46790 37210 543.0 1.5×103

Table 4: BOBYQA applied to “points in square” with ρend =10−6 and m=2n+1

Numbers of calculations of F (#F)
n m #shifts #secs

Case 1 Case 2 Case 3 Case 1̃ Case 1̂

20 26 1667 1818 680 1683 745 31.4 2.2×10−1

40 46 6870 2992 3706 2179 2011 69.2 1.9×100

80 86 14368 12859 13087 12346 8931 192.8 2.4×101

160 166 38581 44597 60387 34907 38545 514.4 3.4×102

Table 5: BOBYQA applied to “points in square” with ρend =10−6 and m=n+6

F (x), x∈Rn, for the change of variables is uphill. On the other hand, a positive
steplength along this search direction may reduce the objective function, by taking
p

ℓ
to a position that is relatively far from the other points. This construction with

some other conditions gives a large source of local minima that are not global.
The number of variables n is given the values 20, 40, 80 and 160 in the “points

in square” testing. Five different problems are generated for each n by different
choices of the initial vector of variables x0. A random number generator is applied
in three of these cases, namely Case 1, Case 2 and Case 3, each component of x0

being sampled independently from the uniform distribution on [0, 1], except that
this construction is restarted if necessary so that the initial points (7.2) satisfy
the condition

min { ‖p
i
− p

j
‖ : 1≤j <i≤n/2 } ≥ 0.2

√
2/n, (7.5)

which provides a helpful restriction on F (x0). The other cases are called Case

1̃ and Case 1̂, because their initial vectors are chosen to be (1−10−6)x
(1)
0 and

(1− 10−6)x
(1)
0 +10−6e, respectively, x

(1)
0 being the initial vector of Case 1 and

e being the vector in Rn whose components are all 1. Thus we investigate the
sensitivity of the calculations to small perturbations of the data. We compare only
m=n+6 with m=2n+1, because, as in Table 3, the choice m=(n+1)(n+2)/2 is
unsuitable for large n. We pick ρbeg =0.1 and ρend =10−4, 10−6 or 10−8.

The values of #F for all of these “points in square” test problems are presented
in Tables 4 and 5 for ρend = 10−6. We see that, for every {n,m} pair, there are

36

large variations in #F across the five cases, even if one compares only Cases 1,
1̃ and 1̂. Moreover, the final values F (xf) of the objective function in the ten
experiments with n = 160, for instance, are the different numbers (in ascending
order) 6850.0, 6853.5, 6855.2, 6857.9, 6861.3, 6863.9, 6864.0, 6870.0, 6870.1 and
6876.1. Thus the question arises whether ten different local minima have been
found or whether some of the differences are due to the limited precision of the
computer arithmetic. This question is answered later by the experiments with
ρend = 10−8. A comparison of the last two columns of Tables 4 and 5 with the
corresponding columns of Tables 1–3 shows that the numbers of shifts of origin
remain tolerable, but now the decrease from m = 2n+1 to m = n+6 provides a
substantial reduction in the running times of the experiments.

The accuracy of the “points in square” calculations is estimated by considering
the first order conditions for a local minimum. At every final vector of variables
xf , all the terms ‖p

i
−p

j
‖−1 of expression (7.3) are less than 103, and then F (x),

x∈Rn, has the first derivatives

dF/dx2i−1 =
∑n/2

j=1, j 6=i (x2j−1− x2i−1) ‖pi
− p

j
‖−3

dF/dx2i =
∑n/2

j=1, j 6=i (x2j− x2i) ‖pi
− p

j
‖−3





, i=1, 2, . . . , n/2. (7.6)

We prefer to study relative errors in first order conditions, so we let ĝ(x) ∈ Rn

have the components

ĝ2i−1 =
∑n/2

j=1, j 6=i Uij

/ ∑n/2
j=1, j 6=i |Uij|

ĝ2i =
∑n/2

j=1, j 6=i Vij

/ ∑n/2
j=1, j 6=i |Vij|





, i=1, 2, . . . , n/2, (7.7)

where Uij and Vij are the terms (x2j−1−x2i−1)‖pi
−p

j
‖−3 and (x2j−x2i)‖pi

−p
j
‖−3 of

expression (7.6), respectively. Furthermore, we take account of the bounds (7.4),
which must be satisfied, by setting the components of ǧ(x)∈Rn to the values

ǧℓ =





min [0, ĝℓ] if xℓ =0

ĝℓ if 0<xℓ <1

max [0, ĝℓ] if xℓ =1





, ℓ=1, 2, . . . , n. (7.8)

It is elementary that the first order conditions for a local minimum of “points in
square” are achieved at x if and only ǧ(x) is zero.

The ρend =10−6 columns of Tables 6 and 7 present the averages of the five values
of #F in the rows of Tables 4 and 5 and also the greatest values of ‖ǧ(xf)‖∞ from
the five cases of each row. The other columns provide the corresponding results for
the choices ρend = 10−4 and ρend = 10−8, keeping ρbeg = 0.1 as mentioned already.
Of course the smaller values of ρend cause increases in #F , while the ‖ǧ(xf)‖∞
figures show clearly that reductions in ρend yield better accuracy. The “Average
#F” entries in Tables 6 and 7 are a triumph for m=n+6, which may be due to
the possibility that second derivative information is less helpful when there are
many local minima.

37

Average #F / Greatest ‖ǧ(xf)‖∞n m
ρend =10−4 ρend =10−6 ρend =10−8

20 41 835.0 / 4.3×10−4 951.6 / 2.0×10−6 1052.2 / 6.1×10−8

40 81 2242.8 / 1.2×10−3 3233.4 / 1.3×10−5 3718.6 / 4.9×10−7

80 161 7096.2 / 3.8×10−3 18748.6 / 3.0×10−5 20864.6 / 1.5×10−6

160 321 23431.2 / 5.6×10−3 52597.8 / 3.3×10−5 67024.4 / 2.7×10−6

Table 6: A comparison of 3 values of ρend for “points in square” with m=2n+1

Average #F / Greatest ‖ǧ(xf)‖∞n m
ρend =10−4 ρend =10−6 ρend =10−8

20 26 1154.8 / 2.9×10−3 1318.6 / 1.9×10−5 1471.8 / 2.1×10−7

40 46 2317.0 / 2.2×10−3 3551.6 / 4.2×10−5 4294.6 / 8.5×10−7

80 86 6311.8 / 4.8×10−3 12318.2 / 6.4×10−5 15353.6 / 1.8×10−6

160 166 15138.6 / 3.1×10−3 43403.4 / 5.6×10−5 52791.0 / 3.9×10−6

Table 7: A comparison of 3 values of ρend for “points in square” with m=n+6

It has been noted that the final values of the objective function in the ten
cases with n = 160 and ρend = 10−6 include 6863.9, 6864.0, 6870.0 and 6870.1,
and now we address the question whether the differences of about 0.1 are due to
the finite precision of the computer arithmetic or to the plethora of local minima.
The ‖ǧ(xf)‖∞ entries in Tables 6 and 7 suggest that every calculated xf is close
to a local minimum, at x∗∈Rn say. Further, because of the substantial decreases
in ‖ǧ(xf)‖∞ when ρend is reduced from 10−6 to 10−8, we expect the ρend = 10−6

values of F (xf)−F (x∗) to agree closely with the differences between the ρend =10−6

and ρend =10−8 values of F (xf). The greatest of these differences throughout the
n = 160 calculations of Tables 6 and 7 is only 0.000004. Thus we conclude that
the values of F (xf), given above to one decimal place, belong to four different
local minima. These remarks illustrate not only the difficulty of the “points in
square” test problem but also the success of BOBYQA in finding local minima to
high accuracy.

There were no calls of the RESCUE procedure of Section 5 throughout the
numerical experiments that produced Tables 1–7. Therefore losses of precision
that cause error returns from BOBYQA are unusual. On the other hand, computer
rounding errors may be contributing strongly to the wideness of the range of #F
in the rows of Tables 4 and 5, this suggestion being made because of a similar
situation in the early development of the NEWUOA software for unconstrained
optimization. Indeed, when the Ω submatrix of expression (2.7) was stored and
updated explicitly, instead of employing the factorization Ω=ZZT where Z has

38

only m−n−1 columns, the ranges of #F for the test problem (7.1) were as chaotic
as the ranges in Tables 4 and 5. The factorization provided the stability that is
shown in the “Range of #F” columns of Tables 1 and 2.

It was not easy to decide to release the Fortran software for general use, instead
of seeking further improvements. It was hoped that BOBYQA would become
more efficient than NEWUOA for unconstrained calculations, but there is no
clear winner. Two techniques that may reduce #F in the future are automatic
adjustments of m (the number of interpolation points), and taking up the freedom
in Qk+1 by minimizing a combination of ‖∇2Qk+1−∇2Qk‖F with a term that
includes some changes to first derivatives of the current quadratic model. Research
on these questions is not needed urgently, because the present version of BOBYQA
can provide local minima of a wide range of functions of hundreds of variables
subject to simple bound constraints. The Fortran listing of BOBYQA is available
free of charge from the author at the e-mail address mjdp@cam.ac.uk.

Acknowledgement

Parts of the development of BOBYQA were made during two visits by the author
to the Liu Bie Ju Centre for Mathematical Sciences at the City University of Hong
Kong. The excellent encouragement and support that I received there were very
welcome and helpful.

References

A.R. Conn, K. Scheinberg and L.N. Vicente (2009), Introduction to Derivative-

Free Optimization, SIAM Publications (Philadelphia).

N.I.M. Gould and Ph.L. Toint (2004), “How mature is nonlinear optimization?”,
in Applied Mathematics Entering the 21st Century: Invited Talks from the

ICIAM 2003 Congress, editors J.M. Hill and R. Moore, SIAM Publications
(Philadelphia), pp. 141–161.

M.J.D. Powell (2004), “Least Frobenius norm updating of quadratic models that
satisfy interpolation conditions”, Math. Programming B, Vol. 100, pp. 183–
215.

M.J.D. Powell (2006), “The NEWUOA software for unconstrained optimization
without derivatives”, in Large-Scale Optimization, editors G. Di Pillo and
M. Roma, Springer (New York), pp. 255–297.

M.J.D. Powell (2008), “Developments of NEWUOA for minimization without
derivatives”, IMA J. Numer. Anal., Vol. 28, pp. 649–664.

39

