Vitamin D deficiency: a worldwide problem with health consequences

Michael F Holick and Tai C Chen

ABSTRACT
Vitamin D deficiency is now recognized as a pandemic. The major cause of vitamin D deficiency is the lack of appreciation that sun exposure in moderation is the major source of vitamin D for most humans. Very few foods naturally contain vitamin D, and foods that are fortified with vitamin D are often inadequate to satisfy either a child’s or an adult’s vitamin D requirement. Vitamin D deficiency causes rickets in children and will precipitate and exacerbate osteopenia, osteoporosis, and fractures in adults. Vitamin D deficiency has been associated with increased risk of common cancers, autoimmune diseases, hypertension, and infectious diseases. A circulating level of 25-hydroxyvitamin D of >75 nmol/L, or 30 ng/mL, is required to maximize vitamin D’s beneficial effects for health. In the absence of adequate sun exposure, at least 800–1000 IU vitamin D₃/d may be needed to achieve this in children and adults. Vitamin D₂ may be equally effective for maintaining circulating concentrations of 25-hydroxyvitamin D when given in physiologic concentrations.

HISTORICAL PERSPECTIVE
Some of the earliest phytoplankton life forms on earth that have existed unchanged in the Atlantic ocean for >750 y can make vitamin D when exposed to sunlight (1, 2). Most vertebrates, including amphibians, reptiles, birds, and lower primates, depend on sun exposure for their vitamin D requirement (2). The lack of sunlight and its association with the devastating bone-deforming disease rickets in children was first recognized by Sniadecki in 1822 (3). One hundred years would pass before it was observed that exposure to ultraviolet B radiation (UVB; 290–315 nm) from a mercury arc lamp or sunlight prevented and treated rickets (4). In the early 1930s, the US government set up an agency to provide recommendations to parents about the benefits of sensible exposure to sunlight for the prevention of rickets (4–6). As shown in Figure 1, seasonal variation is found in the major circulating form of vitamin D, 25-hydroxyvitamin D [25(OH)D] (8). Few foods naturally contain vitamin D, including oily fish such as salmon, mackerel, and herring and oils from fish, including cod liver oil. We recently conducted a study and observed that wild-caught salmon had on average 500–1000 IU vitamin D in 100 g (3.5 ounces), whereas farmed salmon contained ≈100–250 IU vitamin D per 100-g serving (9). The most likely reason is that vitamin D is plentiful in the food chain but is not plentiful in the pelleted diet fed to farmed salmon. In the United States, milk, some juice products, some breads, yogurts, and cheeses are fortified with vitamin D. Multivitamins that contain 400 IU vitamin D and supplements containing vitamin D only are now available in various amounts including 400, 1000, 2000, 4000, 5000 and 50 000 IU vitamin D₃. The pharmaceutical form of vitamin D in the United States is vitamin D₂ and is available as 50 000 IU vitamin D₂ in a capsule or 8000 IU vitamin D₃/mL (4, 10). In Canada, Europe, Japan, and India, vitamin D₃ is available as a pharmaceutical.

CONSEQUENCES OF VITAMIN D DEFICIENCY ON THE MUSCULOSKELETAL SYSTEM
Much debate has taken place over the definition of vitamin D deficiency. Most agree that a 25(OH)D concentration <50 nmol/L, or 20 ng/mL, is an indication of vitamin D deficiency, whereas a 25(OH)D concentration of 51–74 nmol/L, or 21–29 ng/mL, is considered to indicate insufficiency; concentrations...
30 ng/mL are considered to be sufficient (10–15; Figure 2). This is based on the observation that intestinal calcium absorption is maximized above 80 nmol/L, or 32 ng/mL, in postmenopausal women (16) and that parathyroid hormone (PTH) concentrations in adults continue to decline and reach their nadir at 75–100 nmol/L, or 30–40 ng/mL (11, 14, 15). It has been assumed that children have the same requirement as adults; however, no comparable studies have been carried out on intestinal calcium transport or PTH levels in children. Vitamin D intoxication typically does not occur until 25(OH)D concentrations are >375 nmol/L, or 150 ng/mL (10, 16, 17).

>30 ng/mL are considered to be sufficient (10–15; Figure 2). This is based on the observation that intestinal calcium absorption is maximized above 80 nmol/L, or 32 ng/mL, in postmenopausal women (16) and that parathyroid hormone (PTH) concentrations in adults continue to decline and reach their nadir at 75–100 nmol/L, or 30–40 ng/mL (11, 14, 15). It has been assumed that children have the same requirement as adults; however, no comparable studies have been carried out on intestinal calcium transport or PTH levels in children. Vitamin D intoxication typically does not occur until 25(OH)D concentrations are >375 nmol/L, or 150 ng/mL (10, 16, 17).

Vitamin D deficiency in children will cause growth retardation (5, 18) and classic signs and symptoms of rickets (4–6, 18). In adults, vitamin D deficiency will precipitate and exacerbate both osteopenia and osteoporosis and increase the risk of fracture (10, 11, 19, 20).

Muscle weakness has long been associated with vitamin D deficiency. A vitamin D receptor is present in skeletal muscle (21), and vitamin D deficiency has been associated with proximal muscle weakness, increase in body sway, and an increased risk of falling (22–24).

Vitamin D deficiency in adults can also cause a skeletal mineralization defect. The unmineralized osteoid provides little structural support for the periosteal covering. As a result, patients with osteomalacia often complain of isolated or global bone discomfort along with aches and pains in their joints and muscles (25–27). These patients may be misdiagnosed with fibromyalgia, dysthyria, degenerative joint disease, arthritis, chronic fatigue syndrome, and other diseases (10, 25, 28).

Causes of Vitamin D Deficiency

The major source of vitamin D for humans is exposure to sunlight (4, 8, 10). Anything that diminishes the transmission of solar UVB radiation to the earth’s surface or anything that interferes with the penetration of UVB radiation into the skin will affect the cutaneous synthesis of vitamin D₃ (2, 9; Figure 3). Melanin is extremely efficient in absorbing UVB radiation, and,

FIGURE 1. A: Relation between hours of sunshine and serum 25-hydroxyvitamin D [25(OH)D] concentrations. ■ hours of sunshine; ○, 25(OH)D. B: Seasonal fluctuation in serum 25(OH)D according to frequency of sun exposure. ● regular sun exposure; ◆ occasional sun exposure; ●, avoiding direct sun exposure. Adapted from reference 8.

FIGURE 2. Schematic representation of the synthesis and metabolism of vitamin D for regulating calcium, phosphorus, and bone metabolism. During exposure to sunlight, 7-dehydrocholesterol (7-DHC) in the skin is converted to previtamin D₃ (preD₃) and then by a heat-dependent process to vitamin D₃. Vitamin D (D represents D₂ or D₃) made in the skin or ingested in the diet is converted by the vitamin D-25-hydroxylase (25-OHase) to 25-hydroxyvitamin D [25(OH)D]. 25(OH)D is converted in the kidneys by the 25-hydroxyvitamin D-1-hydroxylase (1-OHase) to its biologically active form 1,25-dihydroxyvitamin D [1,25(OH)₂D]. 1,25(OH)₂D increases the expression of the 25-hydroxyvitamin D-24-hydroxylase (24-OHase) to catabolize 1,25(OH)₂D and 25(OH)D to the water-soluble biologically inactive calcitroic acid. 1,25(OH)₂D enhances intestinal calcium absorption in the small intestine. 1,25(OH)₂D is recognized by its receptor in osteoblasts, causing an increase in the expression of receptor activator of NFκB ligand (RANKL). CaBP, calcium binding protein; ECaC, epithelial channel calcium; FGF23, fibroblast growth factor 23; OJ, orange juice; Pi, inorganic phosphate; PTH, parathyroid hormone; UVB, ultraviolet B radiation.
thus, increased skin pigmentation markedly reduces vitamin D3 synthesis (29). Similarly, a sunscreen with a sun protection of 15 absorbs 99% of the incident UVB radiation, and, thus, when topically applied properly will decrease the synthesis of vitamin D3 in the skin by as much as 99% (9, 29). This along with practice of purdah, whereby all skin is covered and prevented from being exposed to sunlight places those who practice it at high risk of vitamin D deficiency (33–42). Vitamin D is metabolized in the liver to 25(OH)D and then in the kidneys to 1,25(OH)2D (70, 71; Figure 2). It is also recognized that many other tissues in the body, including the pancreas and esophagus and non-Hodgkin lymphoma (52). Lappe et al (56) reported that postmenopausal women who received 1100 IU vitamin D3 and 1000 mg Ca daily for 4 y reduced their risk of developing several cancers, including those of the pancreas and esophagus and breast cancer of as much as 50% (53). Men who ingested >400 IU vitamin D/d had a markedly reduced risk of developing several cancers, including those of the pancreas and esophagus and non-Hodgkin lymphoma (52).

Vitamin D is metabolized in the liver to 25(OH)D and then in the kidneys to 1,25(OH)2D (70, 71; Figure 2). It is also recognized that many other tissues in the body, including the pancreas and esophagus and non-Hodgkin lymphoma (52). Liu et al (69) reported that the likely mechanism is that when a macrophage is infected with tuberculosis, it stimulates the cell to increase the production of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and increase the expression of the vitamin D receptor. In combination, they enhanced the gene expression of the bactericidal protein cathelicidin, which is known to kill tuberculosis and other infective agents (Figure 4).

MECHANISMS OF ACTION OF VITAMIN D

Vitamin D is metabolized in the liver to 25(OH)D and then in the kidneys to 1,25(OH)2D (70, 71; Figure 2). It is also recognized that many other tissues in the body, including...
macrophages, brain, colon, prostate, breast, and others, have the enzymatic machinery to locally produce 1,25(OH)₂D (72–76; Figure 4). 1,25(OH)₂D produced by the kidneys enters the circulation and travels to its major target tissues the intestine and bone, where it interacts with its vitamin D receptor to enhance intestinal calcium absorption and mobilize osteoclastic activity (70; Figure 3).

The local production of 1,25(OH)₂D in non-calcium-regulating tissues such as the colon, prostate, and breast is thought to be for the purpose of regulating up to 200 genes, which helps to control cell growth and cellular differentiation and may be responsible for decreasing the risk of the cells being transformed into a malignant state (77). 1,25(OH)₂D₂ has been shown to inhibit cancer cell growth, induce cancer cell maturation, induce apoptosis, and decrease angiogenesis (77, 78; Figure 4). 1,25(OH)₂D inhibits renin production in the kidney (79) and has an immunomodulatory activity on monocytes and activated T and B lymphocytes (80-82; Figure 4).

PREVENTION AND TREATMENT OF VITAMIN D DEFICIENCY

The Institute of Medicine recommended that all children (also endorsed by the American Academy of Pediatrics) and adults up to the age of 50 y require 200 IU vitamin D/d and adults aged 51–70 and ≥71 y need 400 and 600 IU vitamin D/d (83). The National Osteoporosis Foundation recently recommended that all postmenopausal women take 800–1000 IU vitamin D/d (84). Cheng et al (85) reported an association of low 25(OH)D concentrations with elevated serum PTH concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. This confirmed the earlier observations of Outila et al (86), who noted elevated PTH concentrations and lower forearm bone density and vitamin D deficiency in the winter in adolescent females, and Guilleman et al (87), who observed seasonal variation in PTH concentrations in growing male adolescents. When 171 prepubertal girls were given 400 IU vitamin D₂/d from October to February and 500 mg Ca supplementation, their serum 25(OH)D concentrations did not change. When these girls received 800 IU vitamin D₂/d, their blood concentrations rose during the winter but did not reach concentrations observed during the summer (88). Thus, on the basis of these and other observations, many experts now agree that in the absence of adequate sun exposure, 800–1000 IU vitamin D/d is needed for children of all ages and adults of all ages (84, 88–91), although this is not the current recommendation of pediatric or governmental organizations. Higher doses may be required if fat malabsorption, obesity, or other causes exist that would enhance vitamin D catabolism and its destruction (10, 45; Figure 2).

As many as 4 different enzymes have been suggested to be capable of converting vitamin D to 25(OH)D (92). These enzymes most likely have different Kₘ values for vitamin D and have different levels of negative feedback regulation by the serum 25(OH)D concentration. Thus, circulating 25(OH)D concentrations in response to vitamin D may be influenced by the baseline 25(OH)D concentration. As can be seen in Figure 5, the baseline concentration of 25(OH)D is an important factor for how a person responds to a vitamin D dose. When serum 25(OH)D concentrations were <50 nmol/L (20 ng/mL) in nursing home patients, doses of 200, 400, and 600 IU vitamin D₂/d for 5 mo (23) raised serum 25(OH)D concentrations by ≈100% to ≈62 nmol/L (24 ng/mL). Only when the dose was increased to 800 IU/d for 5 mo did concentrations rise above 75 nmol/L, or 30 ng/mL (Figure 5). However, subjects who had starting mean 25(OH)D concentrations above 64 nmol/L (25 ng/mL) showed no significant change in their serum 25(OH)D concentrations when they took 200, 400, 600, or 800 IU/d. When the baseline 25(OH)D concentration was above 50 nmol/L (20 ng/mL), only 800 IU vitamin D₂/d for 5 mo was effective in raising the serum 25(OH)D level (Figure 5). This study evaluated vitamin D₂, which has been reported to be only 30% to 50% as effective as vitamin D₃ in maintaining serum 25(OH)D concentrations (93, 94). Our data suggest that vitamin D₂ was effective in raising blood concentrations of 25(OH)D by ≥1 ng/100 IU, as has been reported for vitamin D₃ (91, 95). These data are consistent with our recent observation that 1000 IU vitamin D₂/d was as effective as 1000 IU vitamin D₃/d in raising and maintaining serum 25(OH)D concentrations (91). Thus, physiologic doses of vitamin D₂ may be equally effective as vitamin D₃ in maintaining serum 25(OH)D concentrations.

To treat vitamin D deficiency in the United States, 50 000 IU vitamin D₂ (or vitamin D₃, which is available in Canada, Europe, Japan, and India) once a week for 8 wk often attains a 25(OH)D concentration of ≈75 nmol/L (13). To maintain vitamin D sufficiency, Holick (10) recommends that 50 000 IU vitamin D₂...
raise the blood concentrations of 25(OH)D above 75 nmol/L, or 30 ng/mL. Our data (Figure 5), as well as our recent observation that vitamin D2 was as effective as vitamin D3 in raising the blood concentrations of 25(OH)D (91), however, calls into question whether this is really necessary.

A reevaluation needs to take place of what the adequate intakes of vitamin D should be for children and adults. The literature over the past decade suggests that the Institute of Medicine recommendations in 1997 (83) are inadequate, and some experts including us suggest that both children and adults should take \(\geq 800–1000 \) IU vitamin D/d from dietary and supplemental sources (4, 9, 77) when sunlight is unable to provide it. This recommendation, however, has not yet been embraced either by official government or pediatric organizations in the United States, Canada, or Europe for either children or adults.

Neither of the authors had a conflict of interest.

REFERENCES

CONCLUSION

Throughout evolution, humans have depended on the sun for their vitamin D requirement (1, 2). Indeed, a likely reason that melanin pigmentation devolved was to permit humans who migrated north and south of the equator to make enough vitamin D in their skin to satisfy their requirement (96). The recommendation for the avoidance of all sun exposure has put the world’s population at risk of vitamin D deficiency (97). This has become apparent in Australia, where a dramatic increase in skin cancer rates resulted in the promotion of never exposing the skin to direct sunlight without sun protection, ie, clothing or sunscreen. The so-called sun-safe message has resulted in a marked increase in the risk of vitamin deficiency in Australia (40).

The best method for determining a person’s vitamin D status is to measure a 25(OH)D concentration. Most commercial assays are reliable enough to determine a person’s vitamin D status (10). These include various radioimmunoassays (98) and what is now considered to be the gold standard: liquid chromatography–tandem mass spectroscopy (14). There has been much discussion about vitamin D2 being only \(\approx 30–50\% \) as effective as vitamin D3 in maintaining serum concentrations of 25(OH)D (93, 94). This, however, did not mean that vitamin D2 was less active than vitamin D3 once it was metabolized to 1,25(OH)2D. It only meant that vitamin D2 may need to be given in higher doses to raise the blood concentrations of 25(OH)D above 75 nmol/L, or 30 ng/mL.
20. Larsen EM, Mosekilde L, Foldspang A. Vitamin D and calcium supplemen-
tation prevents osteoporotic fractures in elderly community dwelling
21. Simpson RU, Thomas GA, Arnold AJ. Identification of 1,25-
dihydroxyvitamin D concentrations are associated with better lower-
extremity function in both active and inactive persons aged ≥60 y. Am J Clin Nutr 2004;80:752–8.
35. Tangpricha V, Pearce EN, Chen TC, Holick MF. Vitamin D insuffici-
59. Embry AF, Snowden LR, Vieth R. Vitamin D and seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in mul-
60. Rostand SG. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension 1979;30:150–6.
62. Munger KL, Zhang SM, O’Reilly E, et al. Vitamin D intake and inci-
64. Krause R, Buhring M, Hofpennmuller W, Holick MF, Sharma AM. Ultra-
65. McGrath J, Selten JP, Chant D. Long-term trends in sunshine duration and its association with schizophrenia birth rates and age at first regis-
66. Gloth FM III, Alam W, Hollis B. Vitamin D vs. broad spectrum photo-
81. Armas LAG, Hollis B, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab 2007 Dec 18 [Epub ahead of print].