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Abstract—This paper analyzes general spatially-coupled (SC) [12] for the detalils.
systems with multi-dimensional coupling. A continuum appoxi- The main contributions of this paper are summarized as
mation is used to derive potential functions that characteize the  ¢5(ows: (i) The potential function defined in [10] is system

performance of the SC systems. For any dimension of coupling _.. . . . . . .
it is shown that, if the boundary of the SC systems is fixed atically derived via the continuum approximation. (ii) Nul

to the unique stable solution that minimizes the potential ver dimensional coupling is shown to prOV_ide th? same improve-
all stationary solutions, the systems can approach the optial ment of the BP performance as one-dimensional coupling.

erformance as the number of coupled systems tends to infinjit
P P y W Il. SYSTEM MODEL

A. Notation
For integersi and j (> i), [¢ : j] denotes the sefi,i +
Kudekar et al.[[l] proved that spatial coupling can imprové, ..., j} of lattice points. The symbol&,;,, 62, 5%° represent
the belief-propagation (BP) performance of low-densitsitga the Kronecker delta. As defined below, the state of a GSC
check (LDPC) codes up to the maximum-a-posteriori (MAPystem withX -dimensional coupling is represented by the
performance. This phenomenon, callgdeshold saturation dimensional vector fielda(x,t) = {u®(x,t):a=1,...,N}
has been observed in many other spatially-coupled (S@)dv(x,t) = {ve(z,t) : a = 1,...,N} on RE x [0, 00).
systems, such as the MacKay-Neal and Hsu-AnastasopouRmsnan alphabet is used for the indices of the elements of the
codes [[2], code-division multiple-access (CDMA) [3]-[5]vector fields, whereas Greek alphabet is for the spatiabvect
compressed sensingl [6[.] [7], and physical models [8]. Thus,= {z“ : a = 1,..., K}. The differential operator8/ou”
threshold saturation via spatial coupling is believed toabeand 9/9v, are abbreviated t@, and 9°, respectively. The
universal phenomenon. gradients{d, : a = 1,...,N} and{9® :a = 1,..., N} are
In order to prove the universality of threshold saturatiomienoted byV andV, respectively. One the other hari@),0x
theoretical analyses have been performed for general 8fresentsthe gradief®/0z*: « =1,..., K} for the spatial
systems with one-dimensional coupling [9]=[11]. The mettho variables. Furthermore, the Einstein summation convariio
ologies are classified into those based on potential funised: When an index appears twice in a single term, the
tions [9], [10] and on extrinsic information transfer (EXIT summation is taken over all values of the index. For example,
functions [11]. Potential functions were also used for the®v, = 25:1 u*Vq.
analysis of threshold saturation inl [7].]1[8]. The potentigIB' Uncoupled System
based methodology has the advantage that the analysis of , N N
the BP performance is simplified. Yedla et al. ][10] defined For t‘]’VVO scalar f|eld_sF andG on R, h'.:‘t D c R™ and
a potential function to specify the BP performance for gehe < R_ denote the Images of the gradients” and VG,
SC systems. However, they presented no derivation of t@pectlvely. Thg dimensiolY gorresponds to.the number of
potential function. One purpose of this paper is to preseﬂ@rameters rgquwed for descnbmg asymptou_c perforraaric
a systematic derivation of the potential function. the BP algorithm for a system with no coupling. We assume

The derivation is based on the continuum approximati(ﬂ%at asymptotic performance is characterized by the cauple

used in[[4], [9]. The continuum approximation can be natyral e?S'W'EVOIUt'On (DE) equations with respect ) =
extended to the case of multi-dimensional coupling: The'() ra=1,...,N} ando(t) = {va(t) :a = 1,..., N},
previous analysis for SC scalar systems with one-dimeasion u(t +1) = VF(v(t)) € D, 1)
coupling is generalized to the case of SC vector systems ~

with multi-dimensional coupling. Hereafter, general SCtoe v(t) = VG(u(t)) €D, 2)
systems with multi-dimensional coupling is simply refefte where the time index corresponds to the number of iterations
as generalized SC (GSC) systems. Multi-dimensional cogplifor the BP algorithm. The asymptotic performance in itera-

can provide robustness of convergence against burst eBees tion ¢ is assumed to be characterized by a deterministic scalar
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function P(-) of the stateu(t) that starts from an appropriate
initial state.

Assumption 1. The two scalar fields¥” and G are thrice
continuously differentiable o and D, respectively. LeS

D and S ¢ D denote the sets of first and second elemen
of all fixed-points (FPs)u, v) for the DE equationd (1) and
@), respectively. The Hesse matrj%’(v) = 9%0°F(v) is
non-singular for allv € Dy = D\S, and the quadratic form
Yaysf?(v) is bounded below for alfy,} € D andwv € D.
On the other hand, the Hesse matpiy (u) = 0,0,G(u) are
positive (resp. non-negative) definite torc Dy = D\S (resp.

Potentiafgu)

u € D).

Examples that satisfy Assumptidd 1 are MN and HA Ug Stateu Ug
codesl[2] as well as LDPC codes [1] and CDMA [3]-[5]. Note
that Assumptiof ]l is different from that in [10]: The positiv Fig. 1. Shape of the potential postulated in this paper.

definiteness ofy,,(w) is assumed in this paper, whereas the
positivity of its elements is postulated in_[10]. .

In order to investigate the convergence property of thestayhere u* = VF(VG(u*)) has been used. This implies
u(t), we define two potential functions, one of which wad’ (v*) =V (u"). u
originally defined in[[10]. They are equivalent to the soledl L€t us investigate the convergence property of the state. We
trial entropy for LDPC codeg [10] and to the free energy fd#se the approximatiom(t + 1) — u(t) ~ du/dt for (D) to

CDMA [4], characterizing the MAP performance. obtain
Definition 1 (Potential) Let D(u,v) denote the divergence ;t ~ —{u® - 9*"F(VG(u))} = —g**(u)dV (u), (8)
D(u,v) = G(u) + F(v) — u"v,. () for w € Dy, where we have used](6). Il (8g**(u)}

denotes the inverse matrix of the Hesse mafrix,(u)}. It is

The potential functioV (u) is defined as ) ‘ X )
straightforward to confirm that the potentigl (4) is a Lyapun

V(u) = —=D(u, VG(u)). (4)  function for the continuous-time systef (8).

On the other hand, the dual potential functibifv) is defined  dV _ du® ab

by ) ] o (W) =0V —, 9oV (u(t))0pV (u(t))g (U(t))é
V(v) = ~D(VF(v),0). (5) @)

which is negative for allu(t) € Dy, and zero only when
Assumption 2. The potential functions[14) and](5) arew(t) is at a stationary solution of the potential (4). Since the
bounded below. potential [4) is bounded below, this observation impliest th
ht e stateu(t) for the continuous-time systerfl (8) converges to

Assumptio is a sufficient condition for guaranteeing t . . .
ptiorLP 9 9% stationary solution of the potentiél (4) as+ oo.

convergence of the staig(t) toward a FPu* ast — oo. The
following proposition implies that the two potential furmts C. General Spatially-Coupled System

have the same information about FPs. Let us consider the case of double-well potential shown in

Proposition 1. The 2-tuple (u*,v*) is a FP of the DE Fig.[d. The potential/ (ug) at the left stable solutiom is
equations[{) and[{2) if and only i&* (resp.v*) is a sta- lower than that at the right stable soluties. Furthermore,

tionary solution of the potential14) (resp (5)). Furthesra, the performanceé’(uc) is assumed to be better thdt(up).
V(u*) = V(v*) at any FP (u*,v"). Note that there is no relationship betwe&fu) and V (u).

We hereafter refer toug and ug as the good and bad
Proof: Calculating the gradient of the potential (4) withsolutions, respectively. The state(t) for the BP algorithm
@) yields should converge to the bad stable soluti@g, since the BP
BuV (u) = gab(u){ub . abF(VG(u))}. (6) algorithm s_tarts from a bz_;td initial state. On the other hamel,
MAP algorithm may achieve the better performameuc),
Since the Hesse matriXg.,(u)} of G is non-singular ex- which implies the suboptimality of the BP algorithm. Sphtia
cept for the FPsu* € S, 0,V (u*) = 0 is equivalent to coupling is a method for helping the state climb the poténtia
u* = VF(v*) with v* = VG(u”). Similarly, we find that parrier and arrive at the good stable solutieg.
9V (v*) = 0 is equivalent to the condition thdw*,v*) isa  Suppose that a GSC system wikfrdimensional coupling
FP. Furthermore, we have of size L and widthV is characterized by the DE equations,

7(VG(u)) = —D(VF(VG(u*), VG(u")) = V(u*),m " (%7“ 1) _ <@F (v (l +Lm,t))>m, (10)




v (L,t> — <VG (u (l__m’ t)>> ’ (11) is known that the coefficients of the affine connections Janis
L L m everywhere for affine coordinate systems.

for all spatial positiond € [-L +1: L — 1]¥, with Theorem 1. Consider the affine coordinate@:, v) that is
defined by the twice continuously differentiable mappiogfr
1 ~ o ~
(f(m))m = P G[XVV:-W]K f(m). (12)  (u,v) € Dy x Dy onto (u’j;) € Dy x Do,
' (u,?) = (VF(v), VG(u)). (16)

We impose the boundary condition(l,t) = wug for all
l € ZK\[-L + 1 : L — 1]¥. This condition corresponds to
informing the detector about the true solutions for the esyst
at the boundary in advance.

The idea of spatial coupling is explained as follows: Th@

Fix (x,t) and suppose thatu,v) € Dy x Dy in a neighbor-
hood of(x, t). Then, the equationE{l14) arf{d{15) reduce to the
two decoupled equations with respect to the affine coordmat
={0s:a=1,...,.N}tandu={a*:a=1,...,N},

correct information at the boundary may spread over the P (v(x,t + 1)) — U (0(,t))
whole system via coupling, regardless of size Since the 0 " 9
influence of the boundary is negligible ds— oo, the loss z—(%aV(@( v)) + M€ () + o(L7), (17)
due to informing the detector about the true solutions is als
negligible. Uy(u(x,t+ 1)) — Uo(u(x,t))
0 N ~
[1l. CONTINUUM APPROXIMATION :—a—~V(‘I’(U)) + M€, (a) + o(L?), (18)
In order to investigate the convergence property of the Dhith
equations[(70) and(11), we use the continuum approximation K 525 Lafb 95 O
with respect to the spatial variable = I/L asL — oo.  €%(%) =Y. (fab(@)_vl; + _L(@)ﬂi) . (19)
For notational convenience, the arguméntt) of functions a1 Oz 2 Ove ~ " da® Oz
is omitted. K 2 19 935 e
~ - Uu Gab , - u U
Lemma 1. Let Calu) = Z (9‘“’(“) 9222 T30, (“)@ axa) - (20)
a=1 ¢
M- 1 f: m2 (13) In the first terms on the right-hand sides (RHSs) [ofl (17)
L2(2W +1) i ’ and [I8), the potential functions are given thy (4) ahdl (5),

respectively. Furthermorel)( ={®*(®):a=1,...,N}
As L — oo, the DE equations[{1) andl(2) are respectivelynd w(a) = {W,(@) : a = 1,..., N} denote the inverse

approximated by the spatially continuous equations mapping ofo = VG(u) and@ = VF(v), respectively.
K " .
“ . M abs  O%p The first terms on the RHSs df (17) arid1(18) are potential
u(@,t+1)=0"F(v) + o Zl (f (v ) Oza2 terms determined by the properties of the corresponding un-

Sor D coupled system, whereas the second terms represent the effe
+8“8”80F(v)—f; Z) +o(L?), (14) of spatial coupling.

dze Oz Proof: The change of coordinateg {16) transforms the
second term on the RHS df {15) into

M X ( 5)2ub S O
Vg = Py gab Rl o bcﬂ Ve 2
2 8(17 + Z < (Ea2 a e axa> +O(L )7
5)ub ou 9 - (21)
+3a8b8CG(u)8?axa) + O(L ) (15) with
Proof: The proof is based on a straightforward Taylor '%¢ = ¢ (w)¢°(1)8,040.G (1) + gaa(u) (? g% (u). (22)
expansion with respect to/L, and therefore omitted. = . _ . o 0. _ .
Note that cross terms with respect to the spatial variablgsing a formula obtained by differentiating the identity
vanish because ofm),, = 0. In terms of differential Jad(w)g®(u) = &7, (23)

geometry, the variable may be regarded as the coordinates

associated with a local coordinate system in a differentia- With respect too., we find

ifold with an affine connection. The coefficiet{d,0.G (u) in . ce 09ad

(I5) corresponds to the coefficient of the affine conr(1ecki1nnf Taf = g™ (u)g** (u)0a0a0e G (u) - agvc (w)g™ (u) =0,
the local coordinate system. The same interpretation Holds (24)
v and 9*9%9°F (v). A direct calculation implies that the two for all u € Dy, which implies thatv is affine coordinates. In
manifolds foru andwv are flat, i.e. the torsion and curvaturéhe derivation of[(24), we have used the chain rule
tensors are everywhere zero. Consequently, we can use affine 9g,q 0Gaq Ou® e

coordinate systems suitable for representing flat marsfdid 954 (u) = oue 0b. 0a0a0.G(u)g* (w). (25)




Thus, [[21) reduces to the simple expression since the state for large changes quite slowly asincreases.
The boundary conditiod(z,t) = vg = VG(ug) is imposed

K ~
Vg = Ty + M 0% +o(L?), (26) on the boundary)Cx of the K-dimensional hypercubx =
2 4= Oze? [-1,1]% < RE, since the boundary conditioa(l,t) = ug
- i - - has been imposed for alle ZX\[-L + 1 : L — 1)%. Note
th . Similarly, s transformed into :
with (I8). Similarly, (I3) i I that the statevg corresponds to the good stable solution of
K ~ . . -
a " M 9% ) the potential[(4), i.eV (®(vg)) = V(ug).
u(z, t+1) = 9*F(v) + 9 D02 +o(L7), (27 In order to investigate the convergence property of the
. o=l PDE [1T), we define the energy functional of a vector field
Wlthﬂz{ﬁ“:azl,...,N}. f;(m)oncK
We next reducd (26) anf (27) to the single equafioh (17) for K
©. The derivation of [(I8) is performed in the same manner, ;..\ _ V(®(5 M g Oy g, - d
and therefore omitted. Expanding the first term on the RHS (v) Cx (®(2)) + 2 = ox™ 8a:af (v) ¢ da.
of (24) with (28) yields (34)
K o- It is straightforward to find that(33) is represented by
0F(v) = °F(®) + 2 pt(3) 3 O L o(12). (28) o7 55
2 — a2 8: = _gab@(@))g_%(f,), (35)

We use the chain rule to calculate the second derivative \gf ore §H /55, denotes the functional derivative df{34) for
(28) with respect ta* up to the ordeO(1), .. This expression indicates that the state:, t) moves in a
0% ., direction where the energy function&l {34) decreases. ¢t fa
8;5(!28 F(v) a direct calculation implies that the energy functiohal) (34
2 a Lyapunov functional for the dynamical system](33):
aQQB“F(i;)—i—O(L_?) yap y y (33)

ox dH , . oH _ 0H . -
_ ot ) v, OfP ) dvy, 0D, — () == /C E(v)a—%(v)gab@(v))dw <0, (36)
- a2 ey « K
o O Ove ) ~8x O ) . where the equality holds only whef//év, = 0 is zero
Substituting [(2B) and (29) wita® = 9°F(v) into (21) yields for all a. Here, we have used the non-negative definiteness
w(a, t+1) — ul(a, t) = — A% + MC*(d) + o(L?), (30) qf the Hesse matri>{gab(u)}. Furthermore, the energy funp-
_ tional (34) is obviously bounded below. These observations
with (19) andA® = u® — 0*F(v). . imply that [33) is a Lyapunov functional. Thus, it is guaed
In order to prove[(T7), we shall show tha" is a con- that the statei(x,t) converges to a stationary solutiariz)
servative field with the potentiall(4). L&t C D, denote ast — oo. Note that the convergence &{x, ¢) implies the
a smooth curve connecting two poings and v. When the convergencéim, ., u(x,t) = @(z).

inverse mapping of = VG(u) maps the curvé' to a curve  Instead of the stationary solutici(z) for (33), we shall

+0(L7%). (29)

I' C Dy, the line integral ofA® along the curvd yields investigate properties of the stationary solutiafx:) for (I8),
b which is a solution to the boundary-value problem
ﬁ Atdi, = / {(u® — *F(VG(w))} gap(w)du®  (31) )
r r =y 0 5 _
=V (®()) + Const, (32) MC,(u) = 52 V(¥ (), (37)
where the potential/(u) is given by [@). Expressiorf (B2) with the bound.ary conditior&g(m) =ug forall € € ICk. In
implies thatA® is a conservative force. m (7), we have ignored the(L?) term.

The derivation of[(32) was also presentedinl [10]. However, In‘ order to obtain an insight based on class_ical me_chan-
Yedla et al. did not explicitly explain how they found theCS €], we assumg., = dq; and K = 1. The differential
integral [31). Theoreil 1 implies that the potential emergets  €duation [(37) with [(20) can be regarded as the Newton
urally when we use the appropriate parameterization ingerf@duation of motion: The state(z) is regarded as the position

of differential geometry, i.e. the affine coordinate system [N D of a free particle with vanishing mas¥/ at time at,
moving subject to the inverted potential/ (¥ (x)). Note that

IV. POTENTIAL THEORY z! is a temporal variable in this interpretation, whereas #& ha
We replace the difference on the left-hand side (LHS) d¢feen introduced as the spatial variable for the SC system. Th
(I7) by the differentiation, with[{16), to obtain the paltiauniform solution@(z') = uc corresponds to the situation
differential equation (PDE) under which the particle continues to stay at thestable
% P solution ug of the inverted potential —V (®(w)). On the
—2 = g (®()) {——NV(<I>('D)) + Met“(f;)} ,  (33) other hand, non-uniform solutions to the situation undeictvh
ot Ot the particle at the unstable solutian; at time z! = —1
with (19), where we have ignored the(L?) term. This moves somewhere, and comes backutg at time 2! = 1.
replacement might be justified except for initial iteragpn Vanishing mass\/ implies that the velocity of the particle is



infinitely quick. The conservation of energy implies thae tha(z!) must be equal tac at the middle points. Repeating this
latter situation never occursif is the unique stable solutionargument, we find thafi(z!) = uc must hold at countably
that minimizes the potential over all stationary solutidtts infinite points. The continuity of the stationary solutionglies
anyg., and K, we follow this intuition to prove the following: thatw(z!) = ug for all 2! € [-1,1] is the unique solution.

Next, assumei(x) = ug for the (K — 1)-dimensional
Theorem 2. If the boundary is fixed to the unique Stabk?:ase, and considédf -dimensional coupling. We focus on the

solution that minimizes the dual potentigl (5) over all &iat (K — 1)-dimensional hyperplan®, — {z € Cx : z! —

anll ?Olu'ftIOf:ﬁ, tEe Uf(;lform SIOIummlgII)E:Kg?G s the 1in|que 0} for the z'-axis. Since the boundary-value probldml(37) is
Solution 1o the boundary-value probie ) wit) = uc invariant under the reversal = —z', we find the symmetry

for all @ € 0Cxc as M — 0. (—a,...) = a(a,...), which impliesdit/dz! — 0 on the

A result equivalent to Theorefd 2 was proved for a simplyperplaneP;. Thus, the off-diagonal elements 8 (u) is
case [[12]. However, the methodology in this paper is morero fora = 1 or 8 = 1 on the hyperplané,, so thatAg
generic: Although the hypercub@y is considered in this must also have the same structure Bn This implies that
paper, the proof strategy for Theoré&in 2 is applicable for atliye problem reduces to thg — 1)-dimensional case. By the
connected region with smooth boundaries. Thedrem 2 impli@ssumption, we obtaift(x) = ug on the hyperplan;.
that, if ug satisfies the assumption in TheorEm 2, asymptotic Similarly, we find w(x) = ug on the other hyperplanes
performance of the BP algorithm for the GSC system cof?. = {x € Cx : z* = 0} for a = 2,...,K. Thus,
verges to better performané&uc) for all positions, whereas the boundary-value problem on the hypercube has been
it for the uncoupled system does to worse performance. decomposed intdK small problems. Repeating the argument

Proof: Let us define a tensdfg' (@) as above implies thati(z) = ug must hold on the hypercube
Ck, sinceu(x) is continuous. [ |
o~ ary OU" oub - 6u
Tg(u) =Mo 927 D ﬂgab( ) — 5[5 e , (38) ACKNOWLEDGMENT
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