Effects of Spatial and Nonspatial Memory Tasks on Choice Stepping Reaction Time in Older People

Daina L. Sturnieks, Rebecca St. George, Richard C. Fitzpatrick, and Stephen R. Lord

Prince of Wales Medical Research Institute, University of New South Wales, Sydney, Australia.

Background. Studies comparing the effects of spatial and nonspatial secondary tasks on balance have produced conflicting results. However, in most of these studies the difficulty levels of the secondary tasks have not been matched. In this study, we compared the effects of carefully matched visuospatial (VS) and nonspatial (NS) secondary tasks on choice stepping reaction time (CSRT).

Methods. Forty-one older people (mean age 78.8 years) completed a CSRT test under five conditions: (i) no secondary task; (ii) an easy NS counting backward task; (iii) a difficult NS counting back task; (iv) an easy VS memory task; and (v) a difficult VS memory task. Response times and secondary task errors were measured for each condition. Participants also gave difficulty ratings for each secondary task.

Results. The difficult tasks were rated significantly more difficult than the easy tasks in both VS and NS conditions, and cognitive task errors were moderately correlated with perceived difficulty. A repeated-measure analysis of variance with planned contrasts revealed a significant effect of task type, with the VS condition slowing CSRT more than the NS condition. There was also a significant task difficulty effect with the more difficult tasks increasing CSRT.

Conclusions. The findings suggest that VS cognitive tasks affect CSRT more so than do NS tasks. The visuospatial sketchpad appears to be specifically utilized for carrying out motor tasks necessary for preserving balance. Practical implications are that tasks that require visuospatial attention and memory may adversely influence balance control in older people.

Key Words: Stepping—Reaction time—Attention—Balance control—Aged.

There is considerable evidence that balance control requires attentional resources, and an individual’s balance may be influenced by his or her information-processing ability when performing two or more tasks simultaneously (1). Several studies have evaluated the effect of “dual tasking” on postural control and have found that attentional abilities are particularly affected in older age and more so in persons with impaired balance (2–5).

An underlying assumption of these studies is that attentional resources are finite, so performing two tasks simultaneously results in a competition for limited resources, with a subsequent reduction in performance in the primary task, secondary task, or both. As postural control requires considerable visuospatial (VS) information, it has been suggested that secondary tasks involving VS processing would affect performance on the postural task to a greater extent than tasks accessing other processing regions of working memory. Two studies have demonstrated differential effects of spatial secondary tasks on balance control in young people. Kerr and colleagues (6) showed that the number of errors was significantly greater in a spatial compared to a nonspatial (NS) secondary task, performed concurrently with a simple balance task, and Barra and colleagues (7) reported that spatial tasks increased the frequency of falls from a beam, whereas verbal tasks did not. In a third study comparing young and old people, Maylor and Wing (8) found that age-related differences in postural stability were significantly increased when performing the spatial memory test in the study by Brooks (9) compared with counting backward by 3.

In contrast, findings from other studies have shown interference of postural task performance with both spatial and NS cognitive tasks, and have suggested that cognitive task difficulty is more important than the nature of the task (10–13). However, most previous studies have not adequately demonstrated that cognitive tasks were matched for difficulty, which precludes any definitive conclusions to be drawn regarding the relative importance of difficulty versus cognitive task type. Studies have also mostly used postural sway as the measure of balance. The choice of this measure is problematic as standing on a level surface is not a particularly challenging balance task for most people. Furthermore, as noted by others, sway is inherently “noisy” (12) and a poor index of multitask load with measurements easily biased by small perturbations that are inconsequential to balance control (7).

We have reported that a test of choice stepping reaction time (CSRT) is a useful measure to assess dual-tasking in a dynamic, posture-challenging situation (14,15). In this test, participants are required to step from either leg onto targets
that are illuminated randomly, and thus body weight and balance transfers are similar to the step responses required to avoid many falls, particularly those as a result of late visual detection of hazards and unanticipated changes in the gait path. CSRT also has the advantage in that it lacks the variance of sway measures and is therefore useful for examining participant differences during different tasks (14). In this study, we examined whether VS and NS tasks, independently assessed for difficulty, differentially affect CSRT in older people.

METHODS

Participants

Forty-one community-dwelling older participants (20 men, 21 women; mean age 78.8 years, standard deviation [SD] = 5.0) were recruited from a research database of participants held at the Prince of Wales Medical Research Institute. All participants were without cognitive impairment [i.e., a Mini-Mental State Examination (MMSE) (16) score of < 24]; a history of significant neurological, musculoskeletal, or cardiopulmonary disease; or uncorrected visual impairment. Participants were also, on average, at low to moderate risk of falls as indicated by Physiological Profile Assessment scores (17), and few reported a fear of falling. Demographic and health characteristics of the sample are presented in Table 1. The study was approved by the University of New South Wales Human Studies Ethics Committee, and all participants provided written informed consent prior to participation.

CSRT

The CSRT device consisted of a low platform (80 cm × 80 cm × 3 cm high) that contained six plates (32 × 13 cm): two base plates on which the participant stood and four stepping plates that could be illuminated in a random order (Figure 1). Participants were instructed to step as quickly as possible onto a plate when it became illuminated, to use the left foot only for the two left plates (front and side), and to use the right foot only for the two right plates. Participants stood with their feet 10 cm apart and in line with the two side plates. They stepped with their entire foot onto the illuminated plate to turn off the light, then moved their foot back to the standing plate at their own pace. There was no requirement to hold the landing posture for a minimum time interval.

![Figure 1. View of a participant performing the choice stepping reaction time test.](http://biomedgerontology.oxfordjournals.org/Downloaded from http://biomedgerontology.oxfordjournals.org/a)
near the participant to steady him or her in the event of a possible stumble. However, no participants stumbled or required additional steps to maintain stability after completing the stepping response.

Test–retest reliability for the CSRT test was determined in a separate sample of 27 older people who made up the control group in an exercise randomized controlled trial (19) that underwent the test on two occasions, 2 weeks apart. The intra-class correlation coefficient was 0.84 (95% confidence interval, 0.69–0.93).

Secondary Tasks

VS tasks.—The ‘visuospatial star movement’ tasks were based on the Brook’s spatial memory task (9). These tests allowed participants to look directly at the stepping plates of the platform while performing the primary stepping task. The VS-easy task involved participants visualizing three boxes side by side labeled A, B, and C (as seen in Figure 2a). Participants were shown the empty boxes on a visual display during the explanation of the protocol and were asked to visualize a star located in one of the boxes making three movements. They then were allowed sufficient practice with and then without the visual display until they demonstrated that they understood the test requirements and scored five consecutive correct responses. The participants were told the starting position of the star and then the direction of the three movements, i.e., left or right. In the VS-diff task, participants were asked to visualize the star moving among four boxes arranged in a square (Figure 2b). The experimenter verbally delivered the starting position and four movements of the star, which comprised up, down, left, right, and diagonal moves. As with the VS-easy task, sufficient practice was provided, initially with and then without a visual display, until participants demonstrated that they understood the test requirements and scored five consecutive correct responses. Performance was recorded in terms of the number of trials in which the finishing position of the star was incorrectly reported.

NS tasks.—The NS memory tasks involved counting backwards. The NS-easy task involved counting backward by 3 starting from a random number between 20 and 50. The NS-diff task involved counting backward by 7 starting from a random number between 50 and 100. Sufficient practice was given in both tasks until participants demonstrated that they understood the test requirements and scored five consecutive correct responses. Performance was recorded in terms of the number of trials in which a counting error was made.

Perceived Difficulty Ratings

On completion of each VS and NS condition, participants were asked to provide an indication of how challenging they found the test to be, using a 10-point Likert scale (1 indicated very easy, and 10 indicated very difficult).

Test Protocol

The VS and NS tasks were performed concurrently with the CSRT task with participants looking down at the stepping plates. In the VS-easy task, a stepping plate was illuminated randomly after the experimenter delivered one, two, or three star movements. After the participant stepped, any remaining star movements were delivered and the participant was asked to report the finishing position of the star (i.e., box A, B, or C). In the NS-easy task, a stepping plate was randomly illuminated after the participant had counted backward one, two, or three numbers. After completing the step, he or she was asked to continue counting (if required) to complete three backward counts. In the VS-diff task, a stepping plate was illuminated randomly after one, two, three, or four star movements. Following the step, any remaining movements were delivered and the participant was asked to report the finishing position of the star (i.e., box A, B, C, or D). In the NS-diff task, a stepping plate was illuminated randomly after the participant had counted backward one, two, three, or four numbers. After the participant completed the step, he or she was asked to continue counting (if required) to complete four backward
RESULTS

ized with transformations. The data were analyzed using as well as secondary task and stepping errors across con-
participants’ ratings of the difficulty of the secondary task type and task difficulty effects. Kruskal–Wallis tests to examine effects of the task conditions on CSRT, and measures analysis of variance (ANOVA) was performed foot lift-off) were calculated for each trial and log trans-
 dificulty rating (represented by condition has no associated difficulty rating. Standard errors of the mean are
with no cognitive task) results are presented for comparison purposes, and this
difficult nonspatial (NS-diff). The standard (choice stepping reaction time (time from panel illumination to correct
Difficulty rating was made on a scale of 1–10. Analyses of covariance revealed both significant task type (VS vs NS, p < .001) and difficulty (easy vs difficult, p = .029) effects.

Statistical Analysis

Average CSRTs (time from panel illumination to correct foot lift-off) were calculated for each trial and log transformed due to right-skewed distributions. A repeated-measures analysis of variance (ANOV A) was performed to examine effects of the task conditions on CSRT, and planned contrast analyses were then performed to assess task type and task difficulty effects. Kruskal–Wallis tests (and post hoc Wilcoxon tests) were performed to compare participants’ ratings of the difficulty of the secondary tasks, as well as secondary task and stepping errors across conditions. Nonparametric tests were used as these data had markedly non-normal distributions that could not be normalized with transformations. The data were analyzed using SPSS for Windows (20).

RESULTS

Task Type and Difficulty Effects

CSRTs (mean ± SD) for the five conditions were: Standard = 601 ± 97; VS-easy = 941 ± 274; VS-diff = 1162 ± 521; NS-easy = 807 ± 148; NS-diff = 930 ± 270. There was an overall condition effect (F1,40 = 126.5, p < .001) with all dual-task conditions (VS-easy, VS-diff, NS-easy, NS-diff) producing significantly longer CSRTs than the standard condition (p < .05). The planned contrasts revealed a significant task difficulty effect (F1,40 = 29.69, p < .001), with the more difficult tasks increasing response time. There was also a significant task type effect (F1,40 = 17.33, p < .001), with the VS condition slowing response times more than the NS condition. There was no significant interaction effect between task type and task difficulty (F1,40 = 1.08, p = .304).

Errors

The number of trials in which cognitive task errors were made (mean ± SD) were: VS-easy = 2.9 ± 2.8; VS-diff = 3.2 ± 2.7; NS-easy = 1.3 ± 1.7; NS-diff = 5.0 ± 4.6 (Kendall’s W = 0.30, p < .001). Post hoc tests revealed significant differences between the NS-easy and NS-diff conditions (p < .001), the NS-easy and the VS-easy conditions (p < .001), and the NS-diff and VS-diff conditions (p = .02). Cognitive task errors were moderately correlated with perceived difficulty: VS-easy (r = 0.43, p = .005), VS-diff (r = 0.24, p = .13), NS-easy (r = 0.47, p = .002), and NS-diff (r = 0.39, p = .12). Stepping errors (incorrect foot lift-off events) did not differ significantly across conditions (Kendall’s W = 0.18, p = .53).

Perceived Difficulty Ratings

Perceived secondary task difficulty ratings (mean ± SD) were: VS-easy = 3.1 ± 2.0; VS-diff = 5.0 ± 2.3; NS-easy = 3.4 ± 2.5; NS-diff = 6.4 ± 2.3 (Kendall’s W = 0.58, p < .001). As expected, the difficult tasks were rated significantly higher on the Likert difficulty scales than were the easy tasks in both VS and NS conditions (p < .001 in both cases). When comparisons were made across task types, there was no significant difference between the VS-easy and NS-easy conditions (p = .34), but a significant difference between the VS-diff and NS-diff conditions was observed (p = .001).

Figure 3 shows the mean (and standard error of the mean [SEM]) perceived secondary task difficulty ratings plotted against the mean (and SEM) response time on the CSRT task, in the five test conditions (Figure 3). The figure reveals that, although the NS tasks were perceived as being more difficult, the VS tasks had greater effects on CSRT.

DISCUSSION

The study findings support the hypothesis that VS secondary tasks interfere with postural tasks more than do nonspatial tasks and that it is not simply the degree of task difficulty that is responsible for compromised postural control. The differential effect of the VS task on CSRT found here is consistent with the working memory construct of Baddeley and Liebermann (21), which comprises a central executive system that coordinates and supervises two subsystems (the phonological loop and the VS sketchpad). Tasks requiring processing by the VS sketchpad, which is responsible for setting up and manipulating VS images, would interfere significantly with postural tasks, which also require VS processing. In contrast, tasks requiring processing by the phonological loop, which provides a store for speech-based information, would do so to a lesser extent.

Most previous studies have not matched difficulty levels well between differing secondary task types making conclusions with regard to differential effects of task type on postural control problematic. The results of one previous study that did achieve close matching of difficulty levels of
spatial and NS (verbal) tasks are in accord with our findings. That study, by Barra and colleagues (7), found that young participants had a higher frequency of falls from a narrow beam when undertaking spatial as opposed to verbal versions of the Stroop task. Support for the effect of VS interference tasks on CSRT also comes from cohort studies. In a large cross-sectional study of older people, we investigated neuropsychological, sensorimotor, speed, and balance contributions to CSRTs (14). We found that performances in four neuropsychological tests assessing cognitive processes relevant to spatial working memory and attention were significantly associated with CSRTs. These included motor persistence, sustained attention, response speed, and visuomotor coordination (Digit Symbol) (22); visual conceptual and visuomotor tracking (Trail Making Test parts A and B) (22); and ability to cope with response conflict and selective attention (STROOP Color Word) (23). Holtzer and colleagues (24) also found that a Speed/Executive Attention factor derived from the neuropsychological tests that are timed and visually mediated (Block Design, Digit Symbol, and Trail Making Test parts A and B) was uniquely related to gait velocity.

It is acknowledged that matching differing cognitive tasks with respect to test administration and difficulty levels is by nature problematic. In the current study, only the NS task involved verbalizing, which may differentially influence balance control (25). It can also not be ruled out that some participants used visualization to perform the serial subtraction task although it is highly probable that visualization was used to a lesser extent compared to the starmovement task. To avoid comparing tests of differing difficulties, we asked participants to rate each task, rather than assuming equivalence. We also recorded the number of errors in each task to provide an additional difficulty measure. As expected, the difficult tasks were rated significantly higher on the Likert difficulty scales than were the easy tasks in both VS and NS conditions. The VS-easy and NS-easy conditions were rated similarly, but the NS-diff condition was rated more difficult than the VS-diff condition. This pattern was mirrored with respect to cognitive task errors. The greater difficulty ratings and increased errors in the NS-diff condition, however, only strengthens the conclusions regarding the differential effects of spatial tasks on balance (i.e., if the converse were the case, it might simply mean that the more difficult secondary task had a proportionately greater effect on CSRTs).

A possible alternative interpretation is that the participants used different strategies in the NS and VS conditions, that is, prioritizing the primary response time task in the NS conditions and the secondary task in the VS conditions. Given the similar delivery of the secondary tasks presented in the NS and VS conditions and the secondary task in the VS conditions.

It is also acknowledged that although the population studied was healthy older adults and the MMSE scores suggest that none of the participants had dementia, it is not possible to rule out preclinical dementia, which may have influenced the results. Further research is required to elucidate demographic, neuropsychological, health, and lifestyle factors that may differentially affect CSRT performance in the dual-task conditions.

Conclusion

Our results suggest that VS cognitive tasks affect CSRT performance more so than do nonspatial tasks. The VS sketchpad appears to be specifically used for planning and/or carrying out motor tasks that are necessary for preserving balance. Although these findings relate primarily to elucidating cognitive processes relating to balance control, they may also have practical implications in that they suggest that tasks requiring visual attention may disproportionately influence balance control in older people. This may be particularly relevant to older people with sensory deficits and/or neuropsychological impairments and to persons at increased risk of falls, as it has been shown that these groups require higher attention levels for balance control (1,3–5,10,14,26).

Acknowledgments

This work was supported by funding received from the The National Health and Medical Research Council (NHMRC) Prevention of Injuries in Older People Partnership in Injury grant.

We thank Marcella Kwan and Kathleen Plumb for participant recruitment and aspects of the data collection.

Correspondence

Address correspondence to Stephen Lord, PhD, Prince of Wales Medical Research Institute, Barker St Randwick, 2031, NSW, Australia. E-mail: s.lord@unsw.edu.au

REFERENCES

11. Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M. The effects of two types of cognitive tasks on postural stability in older adults with

Received March 28, 2007
Accepted September 9, 2007
Decision Editor: Luigi Ferrucci, MD, PhD

Better Jobs Better Care:
New Research on the Long-Term Care Workforce

The Special issue of The Gerontologist is available through GSA’s online store at www.geron.org. All subscribers to The Gerontologist will automatically receive a complimentary copy in the mail.

The Origins of Better Jobs Better Care • Robyn I. Stone and Steven L. Dawson
Better Jobs Better Care: A Foundation Initiative Focusing on Direct Care Workers • Wendy Yaffeowitz and Brian F. Haffland
What Do Direct Care Workers Say Would Improve Their Jobs? Differences Across Settings • Peter Kemper, Brigitte Heier, Teta Barry, Diane Brannon, Joe Angelelli, Joe Vasey, and Mindy Anderson-Knott
Implementation of the Better Jobs Better Care Demonstration: Lessons for Long-Term Care Workforce Initiatives • Peter Kemper, Diane Brannon, Teta Barry, Amy Stott, and Brigitte Heier
Nursing Assistants’ Job Commitment: Effect of Nursing Home Organizational Factors and Impact on Resident Well-Being • Christine E. Bishop, Daneth Weinberg, Walter Leutz, Almas Dossa, Susan G. Pfefferle, and Rebekah M. Zincavage
Love, Money, or Flexibility: What Motivates People to Work in Consumer-Directed Home Care? • Candace Howes
The Impact of Stress and Support on Direct Care Workers’ Job Satisfaction • Farida K. Ejaz, Linda S. Noelke, Heather L. Menne, and Joshua G. Bagaksa

A Mixed-Method Evaluation of a Workforce Development Intervention for Nursing Assistants in Nursing Homes: The Case of WIN A STEP UP • Jennifer Craft Morgan and Thomas R. Konrad
A Facility Specialist Model for Improving Retention of Nursing Home Staff: Results From a Randomized, Controlled Study • Karl Pilemer, Rhoda Meadors, Charles Henderson, Jr, Julie Robison, Carol Hegeman, Edwin Graham, and Leslie Schultz
Older Workers: An Opportunity to Expand the Long-Term Care/Direct Care Labor Force • Melanie Hwalek, Victoria Straub, and Karen Kosniowski
Retention of Paid Related Caregivers: Who Stays and Who Leaves Home Care Careers? • A. E. Benjamin, Ruth E. Matthews, Kathryn Kitzman, and Walter Furman
Developments and Initial Testing of a Measure of Person-Directed Care • Diana L. White, Linda Newton-Curtis, and Karen S. Lyons

Downloaded from http://biomedgerontology.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014