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1 IntroductionInterconnection routing is one of the major tasks in the physical design of VLSI circuits.Pins that belong to the same net are connected together subject to a set of routing con-straints. With new performance requirements for the design, routing constraints suchas crosstalk between interconnections are becoming increasingly dominant in sub-micronregimes [4]. Hence, new algorithms are needed to meet the severe topological and electricalconstraints posed by current VLSI circuit design. Performance-driven routing addressesthese performance-related routing constraints. In light of this trend, performance-drivenrouting has been the main focus of routing related algorithm development in the last coupleof years (e.g., [5],[10],[11],[14],[15]).Channel and switchbox routing are the two most common routing problems in VLSI cir-cuits. Examples of channel routing and switchbox routing problems are shown in Figure 1.
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Figure 1: The VLSI channel (left) and switchbox (right) routing prob-lem and possible routing solutions.One of the main challenges of the routing process of sub-micron regimes is crosstalk.Crosstalk results mainly from coupled capacitance between adjacent (parallel routed) in-terconnections. With further minimization in design, and thus further reduction of thedistance between interconnections, crosstalk is becoming an important electrical constraintand it is going to be more so in the future [4],[28].Another electrical constraint which is increasingly important is electrical delay. This is2



de�ned as the time it takes for signals to propagate through the circuit. As integrated circuitfeatures decrease, electrical delay is increasingly governed by the routing delay (rather thandelay within the logic cells) and as a consequence needs to be considered in the routingprocess.Our motivations to present an evolution-based algorithm for the detailed routing prob-lem are threefold. First, many previously-published detailed routing strategies only considerphysical constraints, such as the netlength and the number of vias (see Section 2). How-ever, with further minimization in VLSI design, new electrical constraints are becomingdominant and need to be addressed. Second, today's typical computer-aided design en-vironment consists of a number of workstations connected together by a high-speed localnetwork. Although many VLSI routing systems make use of the network to share �les ordesign databases, none of the known routing programs (evolution-based or deterministicalgorithms) use this distributed computer resource to parallelize and speed up their work.Third, all published genetic algorithms that address the routing problem are sequentialapproaches, i.e., one population evolves by means of genetic operators. However, recentpublications indicate that parallel genetic algorithms with isolated evolving subpopulations(that exchange individuals from time to time) may o�er advantages over sequential ap-proaches [2],[7],[9],[20],[23].We present a parallel genetic algorithm for detailed routing, called GAP (GeneticAlgorithm with Punctuated equilibria), that runs on a distributed network of worksta-tions. To our knowledge, this is the �rst approach which includes crosstalk considerationsdirectly in a gridded VLSI routing process. Furthermore, our algorithm addresses the in-creased importance of the relationship between electrical delay and netlength by minimizinga nonlinear function of the lengths of the nets.We show that our parallel approach performs better than a sequential genetic algo-rithm when applied to the channel and switchbox routing problem. Furthermore, on manybenchmark examples, the router produces better results than the best of those previouslypublished. We examine the performance of GAP while varying important parameters of aparallel genetic algorithm.The contributions of this paper are:� A formulation of a parallel genetic algorithm that is capable of handling the VLSIrouting problem with both topological and electrical constraints. In particular, aconsideration of crosstalk minimization directly during the routing process.� Comparisons of the performance of our algorithm with previous routing strategies.� Comparisons of the solution quality of our parallel approach based on the punctu-ated equilibria model with a sequential genetic algorithm running under the sameconstraints. 3



� An investigation of the in
uence of various parallelization parameters of our approachon the routing results.Throughout this work, we will use the term \parallel genetic algorithm" to describe agenetic algorithm with multiple populations (population structures). Accordingly, \sequen-tial genetic algorithm" indicates a genetic algorithm with a single population (panmictic).This usage is consistent with many previous papers. However, it is important to note that\parallel" and \sequential" refer to population structures, not the hardware on which thealgorithms are implemented. In particular, the parallel genetic algorithm could be simu-lated on a single processor platform (as any discrete parallel process can) and the sequentialgenetic algorithm could be executed on a multi-processor platform.2 Problem FormulationThe VLSI routing problem is de�ned as follows. Consider a rectangular routing regionwith pins located on two parallel boundaries (channel) or four boundaries (switchbox) (seeFigure 1). The pins that belong to the same net need to be connected subject to certainconstraints and quality factors. The interconnections need to be made inside the boundariesof the routing region on a symbolic routing area consisting of horizontal rows and verticalcolumns. Two layers are available for routing in our model.We de�ne a segment to be an uninterrupted horizontal or vertical part of a net. Thus,any connection between two pins will consist of one or more net segments and is referredto as an interconnection. A connection between two net segments from di�erent layers iscalled a via. The overall length of all segments of one net used to connect its pins it de�nedas its netlength.With the advances in VLSI technology, the relationship between electrical delay andnetlength becomes more important [4]. Thus, new measures of netlength are needed thatre
ect the electrical delay better than the commonly-used minimization of the sum of thelengths of all nets. One such measure is accomplished by minimizing a nonlinear functionof the lengths of the nets. Under many technologies, a �rst-order approximation to theelectrical delay is the product of the resistance and capacitance of the interconnection [10].With a �xed width for the interconnection, this product is a quadratic function of thelength of the interconnection. Thus, in most cases the electrical delay of an interconnectionis proportional to a quadratic function of its length. Hence, rather than minimizing thesum of the lengths of the nets, we minimize a quadratic function of their individual lengths.Crosstalk between two interconnections is proportional to their coupling capacitance.The coupling capacitance is proportional to the coupling length of the two interconnections(the total length of their overlapping segments) and inversely proportional to their separa-tion. (Crosstalk between two interconnections also depends on the frequency of the signals4



in these wires. In order to simplify our presentation, we assume that the circuit operatesat a �xed frequency.)Crosstalk between two parallel routed net segments decreases as their separating distanceincreases. Since it can be assumed that crosstalk between two non-adjacent net segmentswill be shielded by other nets between them, we simplify the computation by consideringcrosstalk only between adjacent net segments. We note that the algorithm can be easilyextended to consider crosstalk between non-adjacent net segments as well.Resulting from these considerations, three objectives are used in this work to assess thequality of the routing:� Netlength: We minimize a function that considers the length of each net with aquadratic growth. Thus, an increased \pressure" is placed on the longest nets to beminimized, because these nets are mainly responsible for the delay in the routing.� Number of vias: The number of vias should be as small as possible.� Parallel routed net segments: Crosstalk is expressed as the sum of the crosstalks inall nets, which in turn, is proportional to the length of parallel segments adjacent toeach net. Thus, we minimize the overall sum of parallel, adjacent net segments foreach net.Hence, as common in VLSI layout design, the routing problem belongs to the domain ofmulti-objective optimization. (See [13] for a good introduction in this topic including dif-ferent solution strategies with evolutionary algorithms.) We use an objective function thatis composed of terms which represent our three objectives combined with weight factors.Our goal is to minimize the sum of these terms by measuring the cost of the solution withrespect to user-de�ned weights for each of the objectives.3 Previous Work3.1 Minimum Crosstalk RoutingAlgorithms for minimized crosstalk routing have been presented in [5],[11],[14],[15] and [28].The solutions in [5],[11] and [28] are based on variable grid spacings to satisfy the crosstalkconstraints. However, these solutions are di�cult to implement on gridded VLSI routingproblems.In [14] and [15], a conventional routing algorithm is �rst used to generate an initialrouting solution with conventional objectives (e.g., channel height). The wire segments inthe initial routing solution are then re-assigned to satisfy the crosstalk constraints and tominimize the total crosstalk in the nets. 5



The above-mentioned strategies lead to routing solutions with signi�cantly less crosstalkin the nets. However, it is important to note that the crosstalk minimization takes placeafter the routing procedure, and thus is limited to a modi�cation of the conventional routingsolution.3.2 Genetic Algorithms for the Routing ProblemSeveral papers have been published in which genetic-algorithm-derived strategies are appliedto the routing problem of VLSI circuits [16],[17],[24]-[26],[29]-[32].In [26], a rip-up-and-rerouter is presented which is based on a probabilistic reroutingof nets of one routing structure. However, the routing is accomplished by a deterministicrouting algorithm and main components of genetic algorithms, such as the crossover ofdi�erent individuals, are not applied. Results are presented for channel and switchboxrouting benchmarks. No runtimes for these examples are given.The router in [16] combines the steepest-descent method with features of genetic algo-rithms. The crossover operator is restricted to the exchange of entire nets and the mutationprocedure performs only the creation of new individuals. The presented results are limitedto simple VLSI problems, and no runtime �gures are shown.The proposed algorithms in [29]-[32] are limited to the restrictive channel routing prob-lem. Here, all vertical net segments are located on one layer and all horizontal segmentsare placed on a second layer. This and other restrictions make these approaches unusablefor real VLSI channel routing problems.The genetic algorithm for channel routing published in [24] is based on a problem-speci�crepresentation scheme, i.e. individuals are coded in three-dimensional chromosomes withinteger representation. The genetic operators are also speci�cally developed for the channelrouting problem. The results are either qualitatively similar to or better than the bestpublished results for channel routing benchmarks. The runtime of the algorithm is not ascompetitive.A genetic algorithm for switchbox routing is presented in [25]. Similar to [24], the geno-type is essentially a lattice corresponding to the coordinate points of the layout. Crossoverand mutation are performed in terms of interconnection segments. The algorithm assumesthat the switchbox is expandable in both directions. Subsequently, these extensions arereduced with the goal to reach the �xed size of the switchbox. On numerous benchmarkexamples, the router produces results equal to or better than the previously best publishedresults, while not being runtime competitive.In [17], a genetic algorithm for the channel routing problem is presented that includes arip-up-and-reroute strategy. The initial population is created with a shortest-path algorithmcombined with random decision making. The published results are equal to the ones in [24]6



while obtaining shorter runtimes.Please note that the mentioned genetic algorithms for VLSI routing have two characteris-tics. First, they are sequential approaches despite the fact that parallel genetic algorithmshave been shown to lead generally to better results (e.g., in [9],[20],[23]). Second, theyconsider only netlength and the number of vias as optimization goals but not electricalconstraints such as crosstalk.4 Description of GAP4.1 OutlineDi�erent ways exist to parallelize a genetic algorithm [2]. However, most of these methodsresult only in a speed-up of the algorithm without qualitative improvements to the problemsolutions. To gain better problem solutions, we designed a parallel genetic algorithm in-spired by concepts from the theory of punctuated equilibria [7],[12]. A genetic algorithm withpunctuated equilibria is a parallel genetic algorithm in which independent subpopulationsof individuals with their own �tness functions evolve in isolation, except for an exchangeof individuals (migration) when a state of equilibrium throughout all the subpopulationshas been reached (see Figure 2).1 Previous research has shown genetic algorithms withsuch punctuated equilibria to often have better performance when compared to sequentialgenetic approaches applied to the same domain [7],[9],[23].The parallel structure of our algorithm for the case of nine processors is shown in Figure 3.We assign a set of n individuals (problem solutions) to each of the N processors, for a totalpopulation size of n � N . The set assigned to each processor, c, is its subpopulation, Pc.The processors are connected by an interconnection network with a torus topology. Thus,each processor (subpopulation) has exactly four neighbors.The genetic algorithm used by each processor and the main process that steers the parallelexecution are presented in Figure 4. First, the main process creates an initial subpopula-tion at each processor. This initial subpopulation consists of randomly constructed (i.e.,not optimized) routing solutions. They are designed by a random routing strategy whichconnects net points in an arbitrary order with randomly placed interconnections. (See [24]for a detailed description of our random routing strategy.) The main process consists ofmax epoch iterations, called epochs. During an epoch, each processor, disjointly and in par-allel, executes the sequential genetic algorithm on its subpopulation for a certain number ofgenerations (epoch length). Afterwards, each subpopulation exchanges a speci�c number ofindividuals (migrants) with its four neighbors. Please note that we exchange the individualsthemselves, i.e., the migrants are removed from one subpopulation and added to another.1This form of parallel genetic algorithm has also come to be called \the island model."7
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create initial subpopulationsfor each epochdo genetic algorithm (subpopulations)do migration (neighboring subpopulations)endforreturn best seen individual
�tness calculation (Pc [migrants)for each generationPnew = ;for each descendantp�; p� = selection (Pc)Pnew = Pnew [ crossover (p�; p�)endfor�tness calculation (Pnew [ Pc)Pc = reduction (Pc [ Pnew)mutation (Pc)endfor
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Figure 4: Overview of our algorithm. See text for details.
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Hence, the size of the subpopulations remains the same after migration and the assimilationof migrants is simply a �tness recalculation (fitness calculation (Pc [migrants)).The process continues with the separate evolution of each subpopulation during the nextepoch. At the end of the process, the best individual that exists (or has existed) constitutesour �nal routing solution.The following section brie
y describes some speci�c characteristics of the sequential ge-netic algorithm used by each processor to evolve its subpopulation.4.2 Characteristics of GAPGenetic Representation The genetic encoding of the routing problem is based on theproblem-speci�c representation scheme presented in [24]. Here the layout is coded in athree-dimensional lattice-like chromosome with the cells representing di�erent coordinatepoints of the routing solution. The value of a cell indicates which net is routed at thiscoordinate point parentin the routing solution. A negative cell value indicates a �xedassignment (e.g. a pin) and zero indicates that the area is unused. (See [24] for a moredetailed description of our representation scheme.)We chose this three-dimensional encoding scheme with integer representation after nu-merous experiments with other genetic encoding schemes. For example, parts of the rout-ing structure with near-optimal routing paths (termed as good \routing islands") are oftenscattered over the chromosome instead of being represented in one compact building blockwhen binary or integer string representations are used. Our three-dimensional encodingscheme ensures that good \routing islands" in the routing structure are preserved as com-pact high-�tness building blocks in the chromosome. Consequently, these building blockshave a high probability of being transferred intact and recombined with other high-qualitybuilding blocks in o�spring solutions. Furthermore, this encoding scheme enables a simplemonitoring of the routing constraints directly in the chromosome.Fitness Calculation The �tness F (pi) of each individual pi 2 Pc is calculated to assessthe quality of its routing relative to the rest of the subpopulation Pc. The selection of theparents for crossover and the selection of individuals which are transferred into the nextgeneration are based on these �tness values.A raw �tness function F 0(pi) is calculated for each individual pi 2 P according to Equa-tion 1. F 0(pi) = 1w1 � lp + w2 � vp + w3 � pp (1)where lp = netlength as the sum of a quadratic function of the length of each net of pi,10



vp = number of vias of pi, andpp = length of adjacent net segments, summarized over all nets, of pi (\crosstalk").It is important to note that the variable weight factors w1; :::; w3 enable us to easily adjustrouting quality objectives, including the tolerance of crosstalk, to the requirements of agiven VLSI technology.The �nal �tness values F (pi) for all individuals of the subpopulation Pc are determinedby linearly scaling F 0(pi), as described in [19], in order to control the relative range of �tnessin the subpopulation. Fitness scaling is performed local to the speci�c subpopulation withthe scaled �tness Fmax = 2 � F 0avg (F 0avg = average raw �tness) [19].Selection Our selection strategy, which is responsible for choosing the parents for thecrossover procedure, is stochastic sampling with replacement (\roulette-wheel selection")[19]. That means any individual pi 2 Pc is selected with a probability given by the followingequation: Probfpi is selectedg = F (pi)Pp2Pc F (p) (2)Crossover During a crossover, two individuals are combined to create a descendant. Ourcrossover operator is a 1-point operator [19] that gives high-quality routing parts of theparents an increased probability of being transferred intact to their descendant. At thesame time it guarantees enough randomness to explore new regions of the search space.Crossover is performed in terms of wire segments. A randomly positioned line(\crossline") perpendicular to the edges of the routing area divides this area into twosections, playing the role of the crosspoint. This line can be either horizontally or verti-cally placed. For example, interconnection segments exclusively on the upper side of thecrossline are inherited from the �rst parent, and segments exclusively on the lower side ofthe crossline are inherited from the second parent. Segments intersecting the crossline arenewly created within the descendant by means of our random routing strategy [24].A simple example of a crossover procedure is shown in Figure 5.Reduction We use a deterministic reduction strategy which guarantees that high-qualityindividuals survive in as many generations as they are superior. Our reduction strategysimply chooses the jPcj �ttest individuals of (Pc [ Pnew) to survive as Pc into the nextgeneration. This strategy, which is the same as the (� + �) strategy often applied in11
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Figure 5: Crossover of parents p� and p� to create a descendant p
 .evolution strategies and evolutionary programming [3], is derived from the characteristic ofour crossover operator that a high-quality parent does not necessarily produce a high-qualitydescendant, and in such a case, the parent should survive rather than the descendant.Mutation Mutation operators perform random modi�cations on an individual. The pur-pose is to overcome local optima and to exploit new regions of the search space.Our mutation operator works as follows. A surrounding rectangle with random sizes(xr; yr) around a random center position (x; y; z) is de�ned. All interconnections insidethis rectangle are deleted. The remaining net points on the edges of this rectangle are nowconnected again in a random order with our random routing strategy [24].5 Experimental ResultsThe algorithm has been implemented on a network of (up to) eight SPARC workstations(SunOS and Solaris systems). The parallel computation environment is provided by theMentat system, an object-oriented parallel processing system [21],[27]. The program, writ-ten in C++ and Fortran, comprises approximately 10,000 lines of source code. The exper-imental results have been achieved with the machines running their normal daily loads inaddition to our algorithm. 12
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Figure 6: Our routing solution of Burstein's Di�cult Switchbox. Black lines representinterconnections on one layer (\metal 1"), and grey lines denote interconnections on theother layer (\metal 2").5.1 Comparison of GAP to Other Routing AlgorithmsAny application of a genetic algorithm should focus on a comparison to solution techniquesthat have been acknowledged as e�ective by that application's community. Here we com-pare the results of GAP with the best known results of other algorithms for channel andswitchbox routing benchmarks (see Table 1). The other routing algorithms do not considercrosstalk, and thus can only be compared with our routing results regarding netlength andnumber of vias. Hence, we kept the weight factor for crosstalk, w3, at a low level (0.01).The other weight factors in Equation 1 are set to: w1=1.0 and w2=2.0.GAP was executed 120 times per benchmark with varying parameters (presented later).Table 1 presents the best-ever-seen results for all algorithms. The results from GAP arequalitatively similar to or better than the best known results from popular channel andswitchbox routers published for these benchmarks. The layout of Burstein's Di�cult Switch-box achieved with our algorithm is depicted in Figure 6.All executions of GAP were based on arbitrary initializations of the random numbergenerator. Due to the stochastic nature of a genetic algorithm, the best-ever-seen resultsof GAP were not achieved in all executions. However, we should note that solutions equalto the best-ever-seen results were obtained in at least 50 percent of the individual GAPexecutions. The speci�c \success rates" for some benchmarks are: Burstein's Di�cultChannel: 82%, Joo6 13 Channel 76%, Joo6 16 Channel 57%, Joo6 17 Switchbox 68%,Pedagogical Switchbox 54%.Please note that these \success rates" were achieved with di�erent (including unfavorable)13



Bench- Col- Net- Timemark Algorithm umns Rows length Vias (sec)Yoshimura- Yosh.-Kuh[33] 12 5 75 21 ?Kuh WEAVER[22] 12 4 69 12 126Channel Monreale[16] 12 4 74 11 ?GAP 12 4 70 11 8Burstein's PACKER[18] 12 4 82 10 87Di�cult Monreale[16] 12 4 82 10 ?Channel GAP 12 4 82 8 16Joo6 12 WEAVER[22] 12 4 79 14 134PACKER[18] 12 4 82 18 6Monreale[16] 12 4 84 13 ?GAP 12 4 79 14 23Joo6 13 WEAVER[22] 18 7 167 29 312Silk[26] 18 6 168 28 ?PACKER[18] 18 6 167 25 710SAR[1] 18 6 166 25 70GAP 18 6 164 22 172Joo6 16 WEAVER[22] 11 8 131 23 220WEAVERa[22] 11 7 121 21 216Monreale[16] 11 7 120 19 ?GAP 11 6 115 15 207Joo6 17 WEAVER[22] 11 9 166 19 325Silk[26] 11 9 166 18 ?GAP 11 9 165 16 217Pedagogical BEAVERb[8] 15 16 396 38 1Switchbox PACKER[18] 15 16 406 45 91SAR[1] 15 16 393 31 146GAP 15 16 394 29 682Burstein's WEAVER[22] 23 15 531 41 1508Di�cult BEAVERb[8] 23 15 547 44 1Switchbox PACKER[18] 23 15 546 45 56PARALLEX[6] 23 15 539 59 25GAP 23 15 538 36 1831Dense WEAVERa[22] 16 17 517 31 1087Switchbox Silk[26] 16 17 516 29 ?SAR[1] 16 17 519 31 150GAP 16 17 516 29 2380Augmented BEAVERb[8] 16 18 529 31 1Dense PACKER[18] 16 18 529 32 31Switchbox SAR[1] 16 18 529 31 205GAP 16 18 529 29 2281a Interactive.b BEAVER's number of vias has been adjusted.Table 1: Comparison of GAP with some well-known algorithms for benchmark channels(upper half) and switchboxes (lower half). The runtime of GAP is averaged over the runsthat led to the presented results. Best results (according to number of vias and netlength)are in boldface. 14



Bench- w3=0.01 w3=1.0 w3=4.0mark Nl./Viasa sumcross V Nl./Viasa sumcross V Nl./Viasa sumcross VBursteinb 82/10 52 3 84/11 46 2 94/15 42 0Joo6 13 167/25 141 3 172/26 138 3 181/30 133 0Joo6 16 120/19 132 4 122/20 130 3 128/21 125 0Joo6 17 165/16 190 4 167/19 187 4 181/24 177 1a Netlength/number of vias.b Burstein's Di�cult Channel.Table 2: Reduction of crosstalk achieved by increasing the weight factor for crosstalk, w3, forthree channels and one switchbox (w1 = 1:0; w2 = 2:0). sumcross represents the overall lengthof all adjacent, parallel routed net segments per benchmark. V denotes the number of nets forwhich their upper bound of parallel routed segments is exceeded, i.e., that report a violation oftheir individual crosstalk constraint. The results per benchmark are averaged over �ve runs.parameter settings (see Section 5.3) and thus, can be considered as lower bound in theindividual variability of the results.5.2 Crosstalk ReductionBy adjusting the value of the weight w3, our algorithm can optimize the interconnectionsregarding crosstalk. Hence, our router can construct solutions that contain a minimalnumber of parallel, adjacent interconnections.The length of all adjacent net segments of net i (i.e., the length of the segments that arerouted adjacent to i) is denoted by the parameter netcross(i). The parameter maxcross(i)symbolizes the maximal tolerable crosstalk for net i by expressing the maximal tolerablelength of adjacent segments of i. Thus, netcross(i) > maxcross(i) represents a violationof the crosstalk constraint of net i and can be easily detected already during the routingprocess. The parameter sumcross denotes the sum of netcross(i) over all nets.Table 2 presents the routing results that have been achieved by varying w3. Since nomaximum tolerable crosstalks in the nets were speci�ed for the four benchmarks we used,maxcross(i) was set to a value which was considered appropriate. The results show that anincrease of w3 leads to signi�cantly fewer parallel routed net segments (\sumcross") andfewer violations (denoted with \V ") of the net-speci�c crosstalk requirement (netcross(i) �maxcross(i)). However, as can be seen in Table 2, the minimization of crosstalk leads ingeneral to an increase in both the netlength and the number of vias.Practical applications of this multi-objective optimization problem require the designer tospecify the weights according to his/her optimization priorities. Practical approaches might15



Sub- DescendantsBench- population per Generation Number of Bestmark Size per Subpopulation Generations KnownPc Pnew ScoreBursteina 50 20 100 74Joo6 13 50 20 500 177Joo6 16 50 20 500 123Joo6 17 50 20 500 168Ped. SBb 50 20 500 395a Burstein's Di�cult Channel.b Pedagogical Switchbox.Table 3: The �ve benchmarks chosen for subsequent experiments and their speci�c pa-rameters. \Best Known Score" represents the best-ever-seen result of each benchmark (seeTable 1).include the generation of alternative solutions with emphasis on di�erent optimization goals.From the output solution set, the designer then chooses a speci�c solution representing thepreferred tradeo�.5.3 In
uence of GAP Parameters on Routing ResultsAs mentioned earlier, a parallel genetic algorithm with punctuated equilibria alternates themaintenance of subpopulations isolated in di�erent environments (to allow the developmentof individuals) with the introduction of individuals to new environments (to motivate furtherdevelopment of the individuals). We create di�erent environments by de�ning the �tnessof an individual relative to the quality of the other individuals in its current subpopulation(�tness scaling [19]). Exchanging individuals between subpopulations, i.e., migration, willalter the �tness values of the individuals within the subpopulation and introduce newcompetitors. Migration, of course, is based on various parameters, such as how often,how much, who, size and number of subpopulations, among others beyond the scope ofthis paper. We have performed several experiments to understand the speci�c e�ects ofthese parameters in order to guide further applications of parallel genetic algorithms withpunctuated equilibria.Measurement ConditionsIn Table 3, we show the �ve problem instances (three channel benchmarks and two switch-box benchmarks) chosen for our experiments. These benchmarks were selected because of16



their diversity and the availability of numerous published routing results. We compare theresults of GAP in the following experiments with the best known scores for these bench-marks (the rightmost column of Table 3). These scores re
ect the netlength and the numberof vias as presented in Table 1. All results presented in Tables 4-8 are normalized as thepercentage exceeding this best known score, with the percentage averaged over �ve runs.For comparison purposes, we also applied a sequential genetic algorithm (\SGA") onthe total population size (combined set of all subpopulations). This sequential geneticalgorithm has been shown to produce the best results of any genetic algorithm for theconsidered benchmarks to date [24],[25].To ensure a fair comparison, the following characteristics were considered: (1) Experi-mental results showed that the combined set of all subpopulations is not an \unfavorablesetting" for the sequential genetic algorithm; on the contrary, the results are consistentlybetter than the ones achieved with any smaller populations size. (2) The sequential algo-rithm is operationally equivalent to the genetic algorithm that evolves each subpopulation inGAP. (3) In the experiments, the sequential genetic algorithm was set to perform the samenumber of recombinations per generation as GAP does over all subpopulations, namely,number of subpopulations � descendants per subpopulation. (4) The sequential genetic algo-rithm and GAP were run the same total number of generations (see Table 2). The numberof generations is in accordance with the \optimal" values of the sequential genetic algorithmachieved in previous experiments [24],[25].To demonstrate the importance of migration, we also report the results achieved withGAP when the subpopulations evolve in isolation (\0 migrants").Number of Migrants and Epoch LengthsWe investigated the in
uence of di�erent epoch lengths (number of generations betweenmigration) for di�erent numbers of migrants (number of individuals sent to each of thefour neighbors). The migrants were chosen randomly, with each migrant allowed to besent only once. (As described earlier, the migrants are removed from one subpopulationand added to another.) Table 4 shows that the sequential approach is outperformed byall parallel variations, including the version without any migration, when averaged over allconsidered benchmarks. Thus, the splitting of the total population size into parallel evolvingsubpopulations already increases the probability that at least one of these subpopulationswill evolve toward a better result.2Table 4 also shows that a limited migration between the subpopulation further enhances2Later, we will see that this conclusion requires that the number of individuals per subpopulation,depending on the problem size, is su�ciently large. Obviously, 50 individuals per subpopulation as in ourcase ful�lls this requirement. 17



Epoch LengthBench- 25 Gen. 50 Gen. 75 Gen.mark SGA Mig. Migrants Migrants Migrants0 2 4 6 2 4 6 2 4 6Burstein 4.32 1.08 2.16 2.16 3.24 1.08 1.08 1.08 n/a n/a n/aJoo6 13 1.32 2.26 1.13 2.45 2.45 0.19 2.45 1.69 2.26 1.88 2.26Joo6 16 5.96 3.52 4.34 5.69 4.12 4.06 4.88 4.88 4.06 4.18 3.71Joo6 17 2.78 3.17 2.23 1.93 3.02 2.08 2.23 2.98 1.64 1.79 2 .23Ped. SB 8.19 6.60 5.51 7.08 8.05 7.58 8.46 8.52 7.01 6.68 6.68Average 4.51 3.33 3.07 3.86 4.18 3.00 3.82 3.83 3.74 3.63 3.72%SGA 100 74 68 86 93 66 85 85 83 81 82Number of subpopulations : 9Migrant selection strategy : randomTable 4: Obtained channel and switchbox results with di�erent numbers of migrants andepoch lengths. For comparison reason, the results of a sequential genetic algorithm (\SGA")are also given. All results are averaged over �ve runs and normalized as percent exceedingthe best known score in Table 3. Thus, the smaller the value, the better the average resultof the particular con�guration.
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Figure 7: Comparison of the convergence of the best individuals in the individual, paral-lel evolving subpopulations. Plotted are �ve runs with nine subpopulations each, i.e., 45curves, in isolation (left) and with two migrants (right). The \lower" curves and the smallerenvelope of the right-hand plot indicate better results and less variation throughout thesubpopulations.the advantage of the parallel genetic algorithm. Two migrants to each neighbor with anepoch length of 50 generations resulted in the best parameters when averaged over allproblem instances. On the one hand, more migrants or too short epoch lengths are coun-terproductive to the idea of disjointly and parallel evolving subpopulations. They diminishthe genetic diversity between the subpopulations by \pulling" them all into the same partof the search space, thereby approaching the behavior of a single-population genetic algo-rithm. On the other hand, insu�cient migration (epoch length 75 generations) simulatesthe isolated parallel approach (zero migrants) | the genetic richness of the neighboring sub-populations does not have enough chance to spread out. Increasing the number of migrantscan help in this case, although doing so does not achieve the good results of a \moderate"epoch length combined with a low number of migrants.Figure 7 shows this behavior in the context of all subpopulations, that is, it presents theconvergence behavior of the best individuals in each of the parallel evolving subpopulations.It indicates the importance of migration to avoid premature stagnation by implementing19



new genetic material into a stagnating subpopulation. Furthermore, the plot points outthe \stabilizing" e�ect of migration as expressed in the limited variation among the bestsubpopulations gained in �ve independent runs (see right-hand plot of Figure 7).Variable Epoch LengthsThe ideas surrounding punctuated equilibria might be used to suggest: (1) a populationin a constant environment will stabilize over time with little motivation for further devel-opment (\stasis" [12]), and (2) bursts of rapid evolution are often caused by small sets ofindividuals migrating to a new environment (\allopatric speciation" [12]). We, however, areinterested in evolutionary systems for optimization, so we have used these ideas to design amodel in which the evolutionary system has several subpopulations. These subpopulationsare considered to be usefully evolving until they reach a stasis condition, at which pointthe model calls for migration in order to instigate further useful evolution. Most publishedcomputation models that are based on punctuated equilibria use a �xed number of gener-ations between migration. Thus, they do not exactly duplicate the model that migrationoccurs only after a stage of equilibrium has been reached within a subpopulation.We modi�ed the algorithm to investigate the importance of this characteristic. Ratherthan having a �xed number of generations between migrations, we introduced a stop crite-rion that takes e�ect when stagnation in the convergence behavior within a subpopulationhas been reached. We de�ned a suitable stop criterion to be 25 generations with no im-provement in the best individual within a subpopulation.Again, to ensure a fair comparison, we kept the overall number of generations the sameas in all other experiments. This led to varying numbers of epochs between the parallelevolving subpopulations (due to di�erent epoch lengths) and resulted in longer overallcompletion time.Our results suggest that a slight improvement compared with a �xed epoch length can beachieved by this method. However, it is important to note that this comparison is made witha �xed epoch length that has been shown to be (near-)optimal after numerous experiments(see Table 4). Thus, a variable epoch length based on the convergence behavior within thesubpopulations can be useful when (1) a time e�ective usage of computational resourcesdoes not have highest priority, and/or (2) no prior experiences with an appropriate epochlength exist.Di�erent Migrant Selection StrategiesWe investigated the in
uence of the quality of the migrants on the routing results. Threemigrant selection strategies were compared: \Random" (migrants were chosen randomlyamong the entire subpopulation), \Top 50%" (migrants were chosen randomly among the20



Epoch LengthBench- 50 Gen. Variablemark SGA Migr. Migrants Migrants0 2 4 2 4Burstein 4.32 1.08 1.08 1.08 1.08 1.08Joo6 13 1.32 2.26 0.19 2.45 2.07 1.88Joo6 16 5.96 3.52 4.06 4.88 2.71 2.44Joo6 17 2.78 3.17 2.08 2.23 2.18 2.58Ped. SB 8.19 6.60 7.58 8.46 6.68 6.77Average 4.51 3.33 3.00 3.82 2.94 2.95%SGA 100 74 66 85 65 65Number of subpopulations : 9Migrant selection strategy : randomTable 5: Comparison of channel and switchbox results between a �xed (50 generations)and a variable epoch length. The variable epoch length was terminated individually in eachsubpopulation after 25 generations with no improvement of the best individual. All resultsare averaged over �ve runs and normalized as percent exceeding the best known score inTable 3.
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Migrant Selection StrategyBench- Random Top 50% Bestmark SGA Migr. Migrants Migrants Migrants0 2 4 2 4 2 4Burstein 4.32 1.08 1.08 1.08 1.08 1.08 1.08 1.08Joo6 13 1.32 2.26 0.19 2.45 1.88 3.58 1.32 2.82Joo6 16 5.96 3.52 4.06 4.88 2.44 3.79 4.88 3.79Joo6 17 2.78 3.17 2.08 2.23 1.98 2.18 3.17 1.59Ped. SB 8.19 6.60 7.58 8.46 7.94 7.10 5.51 7.77Average 4.51 3.33 3.00 3.82 3.06 3.55 3.19 3.41%SGA 100 74 66 85 68 79 71 76Number of subpopulations : 9Epoch length : 50 generationsTable 6: Comparison of channel and switchbox results with di�erent migrant selectionstrategies (no restriction on migrants, migrants with �tness above median �tness, best in-dividuals as migrants). All results are averaged over �ve runs and normalized as percentexceeding the best known score in Table 3.individuals with a �tness above the median �tness of the subpopulation), and \Best" (onlythe best individuals of the subpopulation migrated). The migrants were sent in a randomorder to the four neighbors.As Table 6 indicates, we cannot �nd any improvement in the obtained results by usingmigrants with better quality. On the contrary, selecting better (or the best) individuals tomigrate led to a faster convergence | the �nal results were not as good as those achievedwith a less elitist selection strategy. According to our observations, this is due to thedominance of the migrants having their (locally good) genetic material reach all the sub-populations, thus leading the subpopulation searches into the same part of the search spaceconcurrently.Di�erent Number of SubpopulationsTo compare the in
uence of the number of subpopulations, we �rst kept the size of thesubpopulations constant and increased the number of subpopulations to 16 and 25. Ac-cordingly, we increased the population size and the number of recombinations of the sequen-tial genetic algorithm to maintain a fair comparison. As expected, the sequential geneticalgorithm improves its performance due to the larger number of solutions evaluated (seeTable 7). The same is true for the parallel approach. The larger total population size and22



Number of SubpopulationsBench- 9 16 25mark Migrants Migrants MigrantsSGA 0 2 SGA 0 2 SGA 0 2Burstein 4.32 1.08 1.08 2.16 1.08 0.00 0.00 0.00 0.00Joo6 13 1.32 2.26 0.19 2.07 2.18 0.18 0.94 0.00 0.00Joo6 16 5.96 3.52 4.06 3.79 1.87 1.72 2.44 1.87 1.01Joo6 17 2.78 3.17 2.08 3.57 3.10 1.08 1.98 1.51 0.10Ped. SB 8.19 6.60 7.58 8.27 6.00 5.21 7.69 5.98 5.18Average 4.51 3.33 3.00 3.97 2.85 1.64 2.61 1.87 1.26%SGA 100 74 66 100 71 41 100 85 48Migrant selection strategy : randomEpoch length : 50 generationsTable 7: Comparison of channel and switchbox results with di�erent numbers of subpop-ulations. The size of the subpopulations is kept constant at 50 individuals. The results ofthe sequential genetic algorithm for the resulting di�erent overall population sizes are alsogiven. All results are averaged over �ve runs and normalized as percent exceeding the bestknown score in Table 3.
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Number of SubpopulationsBench- 9 16 25mark SGA Migrants Migrants Migrants0 2 0 2 0 2Burstein 4.32 1.08 1.08 1.08 0.00 0.00 0.00Joo6 13 1.32 2.26 0.19 2.12 0.00 1.80 0.00Joo6 16 5.96 3.52 4.06 3.52 3.81 7.10 6.00Joo6 17 2.78 3.17 2.08 4.18 3.12 14.0 9.81Ped. SB 8.19 6.60 7.58 13.1 11.8 42.0 37.2Average 4.51 3.33 3.00 4.80 3.75 13.0 10.6%SGA 100 74 66 106 83 288 235Migrant selection strategy : randomEpoch length : 50 generationsTable 8: Comparison of channel and switchbox results with di�erent numbers of subpop-ulations. The size of the total population is kept constant at 450 individuals. All resultsare averaged over �ve runs and normalized as percent exceeding the best known score inTable 3.thus higher overall number of recombinations led to better results.An interesting variation on this experiment is the division into di�erent numbers ofsubpopulations while keeping the total population size constant. Thus, with 16 subpopula-tions, the subpopulation size is reduced to 28 individuals; with 25 subpopulations, the sizedecreases to only 18 individuals.The results presented in Table 8 show the relationship between the problem size and theminimal number of individuals per subpopulation necessary to prevent premature conver-gence. Relatively small problem sizes (Burstein, Joo6 13) bene�t from a further splittinginto more (but smaller) subpopulations. The advantage of more varied evolving subpopula-tions outperforms the drawback of a smaller subpopulation size up to a certain level. Thislevel seems to be reached shortly below 50 individuals per subpopulation for the switchboxJoo6 17 and the Pedagogical Switchbox | their results su�er signi�cantly from the loss ofgenetic diversity due to smaller subpopulations.6 ConclusionsWe presented a parallel genetic algorithm for two detailed routing problems in VLSI cir-cuits. The approach includes a new measure of the netlength to better re
ect the electrical24



delay in sub-micron regimes. Importantly, the approach also optimizes the interconnectionsinvolving crosstalk by introducing crosstalk as a constraint in the �tness calculation. Hence,our router can construct solutions which contain a minimal number of parallel, adjacentinterconnections { an increasingly signi�cant consideration in sub-micron VLSI design.The results also showed that, when applied to our routing problem, the parallel geneticalgorithm { based on concepts of punctuated equilibria { consistently performs better thana sequential genetic algorithm.In investigating the parameters of the algorithm, the following conclusions have beenreached:� A small number of migrants (1 to 3 per neighbor) combined with a \moderate"epoch length (approximately 5 to 10 percent of the total number of generations) leadsheuristically to the best results.� Variable epoch lengths determined via equilibrium measures within subpopula-tions achieve overall results that are slightly better than those obtained with(near-)optimized �xed epoch lengths. Practical applications of this \strict punctuatedequilibria method" require the user to weigh the advantage of this \self-adjustment"against its main drawback, decreased time e�ciency.� Quality constraints on the migrants (e.g., to be above median �tness) do not improvethe overall behavior of the algorithm, on the contrary, quality requirements on theselection of migrants led to premature stagnation.� Given a su�cient number of individuals per subpopulation, a larger number of parallelevolving subpopulations will produce better routing results (for a �xed number oftotal evaluations). The size of the problem and the minimal subpopulation size havea direct correlation that must be taken into account when dividing a population intosubpopulations.Our system can be easily implemented on any distributed network of conventional work-stations. We believe this approach promises to be a useful tool in VLSI design.AcknowledgmentsSpecial thanks to Worthy N. Martin and James P. Cohoon (University of Virginia) forfruitful discussions and their support. The comments and suggestions of the reviewers weregreatly appreciated. Finally, the author wishes to thank the Computer Science Departmentof the University of Virginia for providing the facilities crucial to this work.25
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