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Abstract

This paper presents a novel approach to solve the VLSI channel and switchbox
routing problems. The approach is based on a parallel genetic algorithm that runs on a
distributed network of workstations. The algorithm optimizes both physical constraints
(length of nets, number of vias) and crosstalk (delay due to coupled capacitance). The
parallel approach is shown to consistently perform better than a sequential genetic
algorithm when applied to these routing problems. An extensive investigation of the
parameters of the algorithm yields routing results that are qualitatively better or as
good as the best published results. In addition, the algorithm is able to significantly
reduce the occurence of crosstalk.
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1 Introduction

Interconnection routing is one of the major tasks in the physical design of VLSI circuits.
Pins that belong to the same net are connected together subject to a set of routing con-
straints. With new performance requirements for the design, routing constraints such
as crosstalk between interconnections are becoming increasingly dominant in sub-micron
regimes [4]. Hence, new algorithms are needed to meet the severe topological and electrical
constraints posed by current VLSI circuit design. Performance-driven routing addresses
these performance-related routing constraints. In light of this trend, performance-driven
routing has been the main focus of routing related algorithm development in the last couple
of years (e.g., [5],[10],[11],[14],[15]).

Channel and switchbox routing are the two most common routing problems in VLSI cir-
cuits. Examples of channel routing and switchbox routing problems are shown in Figure 1.
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Figure 1: The VLSI channel (left) and switchbox (right) routing prob-
lem and possible routing solutions.

One of the main challenges of the routing process of sub-micron regimes is crosstalk.
Crosstalk results mainly from coupled capacitance between adjacent (parallel routed) in-
terconnections. With further minimization in design, and thus further reduction of the
distance between interconnections, crosstalk is becoming an important electrical constraint
and it is going to be more so in the future [4],[28].

Another electrical constraint which is increasingly important is electrical delay. This is



defined as the time it takes for signals to propagate through the circuit. As integrated circuit
features decrease, electrical delay is increasingly governed by the routing delay (rather than
delay within the logic cells) and as a consequence needs to be considered in the routing
process.

Our motivations to present an evolution-based algorithm for the detailed routing prob-
lem are threefold. First, many previously-published detailed routing strategies only consider
physical constraints, such as the netlength and the number of vias (see Section 2). How-
ever, with further minimization in VLSI design, new electrical constraints are becoming
dominant and need to be addressed. Second, today’s typical computer-aided design en-
vironment consists of a number of workstations connected together by a high-speed local
network. Although many VLSI routing systems make use of the network to share files or
design databases, none of the known routing programs (evolution-based or deterministic
algorithms) use this distributed computer resource to parallelize and speed up their work.
Third, all published genetic algorithms that address the routing problem are sequential
approaches, i.e., one population evolves by means of genetic operators. However, recent
publications indicate that parallel genetic algorithms with isolated evolving subpopulations
(that exchange individuals from time to time) may offer advantages over sequential ap-
proaches [2],[7],[9],[20],[23].

We present a parallel genetic algorithm for detailed routing, called GAP (Genetic
Algorithm with Punctuated equilibria), that runs on a distributed network of worksta-
tions. To our knowledge, this is the first approach which includes crosstalk considerations
directly in a gridded VLSI routing process. Furthermore, our algorithm addresses the in-
creased importance of the relationship between electrical delay and netlength by minimizing
a nonlinear function of the lengths of the nets.

We show that our parallel approach performs better than a sequential genetic algo-
rithm when applied to the channel and switchbox routing problem. Furthermore, on many
benchmark examples, the router produces better results than the best of those previously
published. We examine the performance of GAP while varying important parameters of a
parallel genetic algorithm.

The contributions of this paper are:

e A formulation of a parallel genetic algorithm that is capable of handling the VLSI
routing problem with both topological and electrical constraints. In particular, a
consideration of crosstalk minimization directly during the routing process.

e Comparisons of the performance of our algorithm with previous routing strategies.

e Comparisons of the solution quality of our parallel approach based on the punctu-
ated equilibria model with a sequential genetic algorithm running under the same
constraints.



e An investigation of the influence of various parallelization parameters of our approach

on the routing results.

Throughout this work, we will use the term “parallel genetic algorithm” to describe a
genetic algorithm with multiple populations (population structures). Accordingly, “sequen-
tial genetic algorithm” indicates a genetic algorithm with a single population (panmictic).
This usage is consistent with many previous papers. However, it is important to note that
“parallel” and “sequential” refer to population structures, not the hardware on which the
algorithms are implemented. In particular, the parallel genetic algorithm could be simu-
lated on a single processor platform (as any discrete parallel process can) and the sequential
genetic algorithm could be executed on a multi-processor platform.

2 Problem Formulation

The VLSI routing problem is defined as follows. Consider a rectangular routing region
with pins located on two parallel boundaries (channel) or four boundaries (switchbozx) (see
Figure 1). The pins that belong to the same net need to be connected subject to certain
constraints and quality factors. The interconnections need to be made inside the boundaries
of the routing region on a symbolic routing area consisting of horizontal rows and vertical

columns. Two layers are available for routing in our model.

We define a segment to be an uninterrupted horizontal or vertical part of a net. Thus,
any connection between two pins will consist of one or more net segments and is referred
to as an interconnection. A connection between two net segments from different layers is
called a via. The overall length of all segments of one net used to connect its pins it defined
as its netlength.

With the advances in VLSI technology, the relationship between electrical delay and
netlength becomes more important [4]. Thus, new measures of netlength are needed that
reflect the electrical delay better than the commonly-used minimization of the sum of the
lengths of all nets. One such measure is accomplished by minimizing a nonlinear function
of the lengths of the nets. Under many technologies, a first-order approximation to the
electrical delay is the product of the resistance and capacitance of the interconnection [10].
With a fixed width for the interconnection, this product is a quadratic function of the
length of the interconnection. Thus, in most cases the electrical delay of an interconnection
is proportional to a quadratic function of its length. Hence, rather than minimizing the
sum of the lengths of the nets, we minimize a quadratic function of their individual lengths.

Crosstalk between two interconnections is proportional to their coupling capacitance.
The coupling capacitance is proportional to the coupling length of the two interconnections
(the total length of their overlapping segments) and inversely proportional to their separa-
tion. (Crosstalk between two interconnections also depends on the frequency of the signals



in these wires. In order to simplify our presentation, we assume that the circuit operates

at a fixed frequency.)

Crosstalk between two parallel routed net segments decreases as their separating distance
increases. Since it can be assumed that crosstalk between two non-adjacent net segments
will be shielded by other nets between them, we simplify the computation by considering
crosstalk only between adjacent net segments. We note that the algorithm can be easily
extended to consider crosstalk between non-adjacent net segments as well.

Resulting from these considerations, three objectives are used in this work to assess the
quality of the routing:

e Netlength: We minimize a function that considers the length of each net with a
quadratic growth. Thus, an increased “pressure” is placed on the longest nets to be

minimized, because these nets are mainly responsible for the delay in the routing.
e Number of vias: The number of vias should be as small as possible.

e Parallel routed net segments: Crosstalk is expressed as the sum of the crosstalks in
all nets, which in turn, is proportional to the length of parallel segments adjacent to
each net. Thus, we minimize the overall sum of parallel, adjacent net segments for

each net.

Hence, as common in VLSI layout design, the routing problem belongs to the domain of
multi-objective optimization. (See [13] for a good introduction in this topic including dif-
ferent solution strategies with evolutionary algorithms.) We use an objective function that
is composed of terms which represent our three objectives combined with weight factors.
Our goal is to minimize the sum of these terms by measuring the cost of the solution with
respect to user-defined weights for each of the objectives.

3 Previous Work

3.1 Minimum Crosstalk Routing

Algorithms for minimized crosstalk routing have been presented in [5],[11],[14],[15] and [28].
The solutions in [5],[11] and [28] are based on variable grid spacings to satisfy the crosstalk
constraints. However, these solutions are difficult to implement on gridded VLSI routing

problems.

In [14] and [15], a conventional routing algorithm is first used to generate an initial
routing solution with conventional objectives (e.g., channel height). The wire segments in
the initial routing solution are then re-assigned to satisfy the crosstalk constraints and to

minimize the total crosstalk in the nets.



The above-mentioned strategies lead to routing solutions with significantly less crosstalk
in the nets. However, it is important to note that the crosstalk minimization takes place
after the routing procedure, and thus is limited to a modification of the conventional routing
solution.

3.2 Genetic Algorithms for the Routing Problem

Several papers have been published in which genetic-algorithm-derived strategies are applied
to the routing problem of VLSI circuits [16],[17],[24]-[26],[29]-[32].

In [26], a rip-up-and-rerouter is presented which is based on a probabilistic rerouting
of nets of one routing structure. However, the routing is accomplished by a deterministic
routing algorithm and main components of genetic algorithms, such as the crossover of
different individuals, are not applied. Results are presented for channel and switchbox
routing benchmarks. No runtimes for these examples are given.

The router in [16] combines the steepest-descent method with features of genetic algo-
rithms. The crossover operator is restricted to the exchange of entire nets and the mutation
procedure performs only the creation of new individuals. The presented results are limited
to simple VLSI problems, and no runtime figures are shown.

The proposed algorithms in [29]-[32] are limited to the restrictive channel routing prob-
lem. Here, all vertical net segments are located on one layer and all horizontal segments
are placed on a second layer. This and other restrictions make these approaches unusable
for real VLSI channel routing problems.

The genetic algorithm for channel routing published in [24] is based on a problem-specific
representation scheme, i.e. individuals are coded in three-dimensional chromosomes with
integer representation. The genetic operators are also specifically developed for the channel
routing problem. The results are either qualitatively similar to or better than the best
published results for channel routing benchmarks. The runtime of the algorithm is not as

competitive.

A genetic algorithm for switchbox routing is presented in [25]. Similar to [24], the geno-
type is essentially a lattice corresponding to the coordinate points of the layout. Crossover
and mutation are performed in terms of interconnection segments. The algorithm assumes
that the switchbox is expandable in both directions. Subsequently, these extensions are
reduced with the goal to reach the fixed size of the switchbox. On numerous benchmark
examples, the router produces results equal to or better than the previously best published
results, while not being runtime competitive.

In [17], a genetic algorithm for the channel routing problem is presented that includes a
rip-up-and-reroute strategy. The initial population is created with a shortest-path algorithm
combined with random decision making. The published results are equal to the ones in [24]



while obtaining shorter runtimes.

Please note that the mentioned genetic algorithms for VLSI routing have two characteris-
tics. First, they are sequential approaches despite the fact that parallel genetic algorithms
have been shown to lead generally to better results (e.g., in [9],[20],[23]). Second, they
consider only netlength and the number of vias as optimization goals but not electrical
constraints such as crosstalk.

4 Description of GAP

4.1 Outline

Different ways exist to parallelize a genetic algorithm [2]. However, most of these methods
result only in a speed-up of the algorithm without qualitative improvements to the problem
solutions. To gain better problem solutions, we designed a parallel genetic algorithm in-
spired by concepts from the theory of punctuated equilibria [7],[12]. A genetic algorithm with
punctuated equilibria is a parallel genetic algorithm in which independent subpopulations
of individuals with their own fitness functions evolve in isolation, except for an exchange
of individuals (migration) when a state of equilibrium throughout all the subpopulations
has been reached (see Figure 2).! Previous research has shown genetic algorithms with
such punctuated equilibria to often have better performance when compared to sequential
genetic approaches applied to the same domain [7],[9],[23].

The parallel structure of our algorithm for the case of nine processors is shown in Figure 3.
We assign a set of n individuals (problem solutions) to each of the N processors, for a total
population size of n x N. The set assigned to each processor, ¢, is its subpopulation, P,.
The processors are connected by an interconnection network with a torus topology. Thus,
each processor (subpopulation) has exactly four neighbors.

The genetic algorithm used by each processor and the main process that steers the parallel
execution are presented in Figure 4. First, the main process creates an initial subpopula-
tion at each processor. This initial subpopulation consists of randomly constructed (i.e.,
not optimized) routing solutions. They are designed by a random routing strategy which
connects net points in an arbitrary order with randomly placed interconnections. (See [24]
for a detailed description of our random routing strategy.) The main process consists of
max_epoch iterations, called epochs. During an epoch, each processor, disjointly and in par-
allel, executes the sequential genetic algorithm on its subpopulation for a certain number of
generations (epoch_length). Afterwards, each subpopulation exchanges a specific number of
individuals (migrants) with its four neighbors. Please note that we exchange the individuals
themselves, i.e., the migrants are removed from one subpopulation and added to another.

'This form of parallel genetic algorithm has also come to be called “the island model.”
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Figure 2: Punctuated equilibria model with four subpopulations. Subpopulations evolve in
isolation (“Isolated Evolution”), periodically interrupted by a limited exchange of individuals
(“Migration”).

Figure 3: Neighborhood structure of nine subpopulations. The subpopulations are

arranged in a torus.
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Figure 4: Overview of our algorithm. See text for details.




Hence, the size of the subpopulations remains the same after migration and the assimilation

of migrants is simply a fitness recalculation (fitness_calculation (P, U migrants)).

The process continues with the separate evolution of each subpopulation during the next
epoch. At the end of the process, the best individual that exists (or has existed) constitutes
our final routing solution.

The following section briefly describes some specific characteristics of the sequential ge-
netic algorithm used by each processor to evolve its subpopulation.

4.2 Characteristics of GAP

Genetic Representation The genetic encoding of the routing problem is based on the
problem-specific representation scheme presented in [24]. Here the layout is coded in a
three-dimensional lattice-like chromosome with the cells representing different coordinate
points of the routing solution. The value of a cell indicates which net is routed at this
coordinate point parentin the routing solution. A negative cell value indicates a fixed
assignment (e.g. a pin) and zero indicates that the area is unused. (See [24] for a more

detailed description of our representation scheme.)

We chose this three-dimensional encoding scheme with integer representation after nu-
merous experiments with other genetic encoding schemes. For example, parts of the rout-
ing structure with near-optimal routing paths (termed as good “routing islands”) are often
scattered over the chromosome instead of being represented in one compact building block
when binary or integer siring representations are used. Our three-dimensional encoding
scheme ensures that good “routing islands” in the routing structure are preserved as com-
pact high-fitness building blocks in the chromosome. Consequently, these building blocks
have a high probability of being transferred intact and recombined with other high-quality
building blocks in offspring solutions. Furthermore, this encoding scheme enables a simple

monitoring of the routing constraints directly in the chromosome.

Fitness Calculation The fitness F(p;) of each individual p; € P, is calculated to assess
the quality of its routing relative to the rest of the subpopulation P.. The selection of the
parents for crossover and the selection of individuals which are transferred into the next
generation are based on these fitness values.

A raw fitness function F'(p;) is calculated for each individual p; € P according to Equa-

tion 1.

1

F'(p;) =
(p:) w1y * Iy + wa x vy + w3z * pp

(1)

where [, = netlength as the sum of a quadratic function of the length of each net of p;,
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vp = number of vias of p;, and

pp = length of adjacent net segments, summarized over all nets, of p; (“crosstalk”).

It is important to note that the variable weight factors wy, ..., w3 enable us to easily adjust
routing quality objectives, including the tolerance of crosstalk, to the requirements of a
given VLSI technology.

The final fitness values F(p;) for all individuals of the subpopulation P, are determined
by linearly scaling F’(p;), as described in [19], in order to control the relative range of fitness
in the subpopulation. Fitness scaling is performed local to the specific subpopulation with
the scaled fitness F,,, = 2x F,., . (F,,, = average raw fitness) [19].

avg avg

Selection Our selection strategy, which is responsible for choosing the parents for the
crossover procedure, is stochastic sampling with replacement (“roulette-wheel selection”)
[19]. That means any individual p; € P, is selected with a probability given by the following
equation:

F(p;)

Prob{p; is selected} = ——————
>pePe F(p)

(2)

Crossover During a crossover, two individuals are combined to create a descendant. Our
crossover operator is a 1-point operator [19] that gives high-quality routing parts of the
parents an increased probability of being transferred intact to their descendant. At the
same time it guarantees enough randomness to explore new regions of the search space.

Crossover is performed in terms of wire segments. A randomly positioned line
(“crossline”) perpendicular to the edges of the routing area divides this area into two
sections, playing the role of the crosspoint. This line can be either horizontally or verti-
cally placed. For example, interconnection segments exclusively on the upper side of the
crossline are inherited from the first parent, and segments ezclusively on the lower side of
the crossline are inherited from the second parent. Segments intersecting the crossline are
newly created within the descendant by means of our random routing strategy [24].

A simple example of a crossover procedure is shown in Figure 5.

Reduction We use a deterministic reduction strategy which guarantees that high-quality
individuals survive in as many generations as they are superior. Our reduction strategy
simply chooses the |P.| fittest individuals of (P, U Ppew) to survive as P, into the next
generation. This strategy, which is the same as the (u + \) strategy often applied in

11
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Figure 5: Crossover of parents p, and pg to create a descendant p,.

evolution strategies and evolutionary programming [3], is derived from the characteristic of
our crossover operator that a high-quality parent does not necessarily produce a high-quality
descendant, and in such a case, the parent should survive rather than the descendant.

Mutation Mutation operators perform random modifications on an individual. The pur-
pose is to overcome local optima and to exploit new regions of the search space.

Our mutation operator works as follows. A surrounding rectangle with random sizes
(Zy,yr) around a random center position (z,y, z) is defined. All interconnections inside
this rectangle are deleted. The remaining net points on the edges of this rectangle are now
connected again in a random order with our random routing strategy [24].

5 Experimental Results

The algorithm has been implemented on a network of (up to) eight SPARC workstations
(SunOS and Solaris systems). The parallel computation environment is provided by the
Mentat system, an object-oriented parallel processing system [21],[27]. The program, writ-
ten in C++ and Fortran, comprises approximately 10,000 lines of source code. The exper-
imental results have been achieved with the machines running their normal daily loads in

addition to our algorithm.
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Figure 6: Our routing solution of Burstein’s Difficult Switchbox. Black lines represent
interconnections on one layer (“metal 17), and grey lines denote interconnections on the

other layer (“metal 27).

5.1 Comparison of GAP to Other Routing Algorithms

Any application of a genetic algorithm should focus on a comparison to solution techniques
that have been acknowledged as effective by that application’s community. Here we com-
pare the results of GAP with the best known results of other algorithms for channel and
switchbox routing benchmarks (see Table 1). The other routing algorithms do not consider
crosstalk, and thus can only be compared with our routing results regarding netlength and
number of vias. Hence, we kept the weight factor for crosstalk, ws, at a low level (0.01).
The other weight factors in Equation 1 are set to: w;=1.0 and wy=2.0.

GAP was executed 120 times per benchmark with varying parameters (presented later).
Table 1 presents the best-ever-seen results for all algorithms. The results from GAP are
qualitatively similar to or better than the best known results from popular channel and
switchbox routers published for these benchmarks. The layout of Burstein’s Difficult Switch-

box achieved with our algorithm is depicted in Figure 6.

All executions of GAP were based on arbitrary initializations of the random number
generator. Due to the stochastic nature of a genetic algorithm, the best-ever-seen results
of GAP were not achieved in all executions. However, we should note that solutions equal
to the best-ever-seen results were obtained in at least 50 percent of the individual GAP
executions. The specific “success rates” for some benchmarks are: Burstein’s Difficult
Channel: 82%, Joo6_13 Channel 76%, Joo6_16 Channel 57%, Joo6_17 Switchbox 68%,
Pedagogical Switchbox 54%.

Please note that these “success rates” were achieved with different (including unfavorable)

13



Bench- . Col- Net- . Time
mark Algorithm umns length Vias (sec)
Yoshimura- || Yosh.-Kuh[33] 12 5 75 21 |7
Kuh WEAVER|[22] 12 4 69 12 | 126
Channel Monreale[16] 12 4 74 11 |7
GAP 12 4 70 11 |8
Burstein’s || PACKER[18] | 12 4 82 10 |87
Difficult Monreale[16] 12 4 82 10 |7
Channel GAP 12 4 82 8 |16
Joo6_12 WEAVER|22] 12 4 79 14 | 134
PACKER[18] | 12 4 82 18 |6
Monreale[16] 12 4 84 13 |7
GAP 12 4 79 14 | 23
J00613 WEAVER[22] | 18 7 167 29 |312
Silk[26] 18 6 168 28 |7
PACKER][18] 18 6 167 25 | 710
SARJ[1] 18 6 166 25 |70
GAP 18 6 164 22 | 172
J006_16 WEAVER[22] | 11 8 131 23 | 220
WEAVER®[22] | 11 7 121 21 | 216
Monreale[16] 17 120 19 |?
GAP 11 6 115 15 | 207
Joo6_17 WEAVER|22] 11 9 166 19 | 325
Silk[26] 11 9 166 18 |7
GAP 11 9 165 16 | 217
Pedagogical | BEAVER?[§] 15 16 396 38 |1
Switchbox || PACKER][18] 15 16 406 45 |91
SAR[1] 15 16 393 31 |146
GAP 15 16 394 29 | 682
Burstein’s WEAVER|22] 23 15 531 41 | 1508
Difficult BEAVER’[§] 23 15 547 44 |1
Switchbox || PACKER][18] 23 15 546 45 | 56
PARALLEX][6] | 23 15 539 59 |25
GAP 23 15 538 36 | 1831
Dense WEAVER®[22] | 16 17 517 31 | 1087
Switchbox || Silk[26] 16 17 516 29 |?
SAR([1] 16 17 519 31 |150
GAP 16 17 516 29 | 2380
Augmented || BEAVER?[§] 16 18 529 31 |1
Dense PACKER[18] | 16 18 529 32 |31
Switchbox || SAR[1] 16 18 529 31 | 205
GAP 16 18 529 29 | 2281

¢ Interactive.

® BEAVER’s number of vias has been adjusted.

Table 1: Comparison of GAP with some well-known algorithms for benchmark channels
(upper half) and switchboxes (lower half). The runtime of GAP is averaged over the runs
that led to the presented results. Best results (according to number of vias and netlength)
are in boldface.
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Bench- w3=0.01 w3=1.0 w3=4.0

mark NL./Vias® sumcross V | Nl./Vias® sumcross V |NL/Vias® sumcross V
Burstein® 82/10 92 3 84/11 46 2 94/15 42 0
Joo6_13 167/25 141 3| 172/26 138 3| 181/30 133 0
Joo6_16 120/19 132 4 122/20 130 3 128/21 125 0
Joo6_17 165/16 190 4| 167/19 187 4| 181/24 177 1

¢ Netlength /number of vias.
b Burstein’s Difficult Channel.

Table 2: Reduction of crosstalk achieved by increasing the weight factor for crosstalk, ws, for
three channels and one switchbox (wy = 1.0, we = 2.0). sumcross represents the overall length
of all adjacent, parallel routed net segments per benchmark. V denotes the number of nets for
which their upper bound of parallel routed segments is exceeded, i.e., that report a violation of

their individual crosstalk constraint. The results per benchmark are averaged over five runs.

parameter settings (see Section 5.3) and thus, can be considered as lower bound in the
individual variability of the results.

5.2 Crosstalk Reduction

By adjusting the value of the weight ws, our algorithm can optimize the interconnections
regarding crosstalk. Hence, our router can construct solutions that contain a minimal

number of parallel, adjacent interconnections.

The length of all adjacent net segments of net i (i.e., the length of the segments that are
routed adjacent to i) is denoted by the parameter netcross(i). The parameter maxcross(i)
symbolizes the maximal tolerable crosstalk for net i by expressing the maximal tolerable
length of adjacent segments of 7. Thus, netcross(i) > maxcross(i) represents a violation
of the crosstalk constraint of net i and can be easily detected already during the routing
process. The parameter sumcross denotes the sum of neteross(i) over all nets.

Table 2 presents the routing results that have been achieved by varying ws. Since no
maximum tolerable crosstalks in the nets were specified for the four benchmarks we used,
maxcross(i) was set to a value which was considered appropriate. The results show that an
increase of ws leads to significantly fewer parallel routed net segments (“sumcross”) and
fewer violations (denoted with “V”) of the net-specific crosstalk requirement (netcross(i) <
maxcross(i)). However, as can be seen in Table 2, the minimization of crosstalk leads in

general to an increase in both the netlength and the number of vias.

Practical applications of this multi-objective optimization problem require the designer to

specify the weights according to his/her optimization priorities. Practical approaches might
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Sub- Descendants

Bench- population | per Generation Number of Best
mark Size per Subpopulation | Generations Known

P, P Score
Burstein® 50 20 100 74
Joo6_13 50 20 500 177
Joo6_16 50 20 500 123
Joo6_17 50 20 500 168
Ped. SB® 50 20 500 395

“ Burstein’s Difficult Channel.

b Pedagogical Switchbox.
Table 3: The five benchmarks chosen for subsequent experiments and their specific pa-
rameters. “Best Known Score” represents the best-ever-seen result of each benchmark (see
Table 1).

include the generation of alternative solutions with emphasis on different optimization goals.
From the output solution set, the designer then chooses a specific solution representing the
preferred tradeoff.

5.3 Influence of GAP Parameters on Routing Results

As mentioned earlier, a parallel genetic algorithm with punctuated equilibria alternates the
maintenance of subpopulations isolated in different environments (to allow the development
of individuals) with the introduction of individuals to new environments (to motivate further
development of the individuals). We create different environments by defining the fitness
of an individual relative to the quality of the other individuals in its current subpopulation
(fitness scaling [19]). Exchanging individuals between subpopulations, i.e., migration, will
alter the fitness values of the individuals within the subpopulation and introduce new
competitors. Migration, of course, is based on various parameters, such as how often,
how much, who, size and number of subpopulations, among others beyond the scope of
this paper. We have performed several experiments to understand the specific effects of
these parameters in order to guide further applications of parallel genetic algorithms with
punctuated equilibria.

Measurement Conditions

In Table 3, we show the five problem instances (three channel benchmarks and two switch-
box benchmarks) chosen for our experiments. These benchmarks were selected because of
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their diversity and the availability of numerous published routing results. We compare the
results of GAP in the following experiments with the best known scores for these bench-
marks (the rightmost column of Table 3). These scores reflect the netlength and the number
of vias as presented in Table 1. All results presented in Tables 4-8 are normalized as the
percentage exceeding this best known score, with the percentage averaged over five runs.

For comparison purposes, we also applied a sequential genetic algorithm (“SGA”) on
the total population size (combined set of all subpopulations). This sequential genetic
algorithm has been shown to produce the best results of any genetic algorithm for the
considered benchmarks to date [24],[25].

To ensure a fair comparison, the following characteristics were considered: (1) Experi-
mental results showed that the combined set of all subpopulations is not an “unfavorable
setting” for the sequential genetic algorithm; on the contrary, the results are consistently
better than the ones achieved with any smaller populations size. (2) The sequential algo-
rithm is operationally equivalent to the genetic algorithm that evolves each subpopulation in
GAP. (3) In the experiments, the sequential genetic algorithm was set to perform the same
number of recombinations per generation as GAP does over all subpopulations, namely,
number of subpopulations x descendants per subpopulation. (4) The sequential genetic algo-
rithm and GAP were run the same total number of generations (see Table 2). The number
of generations is in accordance with the “optimal” values of the sequential genetic algorithm
achieved in previous experiments [24],[25].

To demonstrate the importance of migration, we also report the results achieved with
GAP when the subpopulations evolve in isolation (“0 migrants”).

Number of Migrants and Epoch Lengths

We investigated the influence of different epoch lengths (number of generations between
migration) for different numbers of migrants (number of individuals sent to each of the
four neighbors). The migrants were chosen randomly, with each migrant allowed to be
sent only once. (As described earlier, the migrants are removed from one subpopulation
and added to another.) Table 4 shows that the sequential approach is outperformed by
all parallel variations, including the version without any migration, when averaged over all
considered benchmarks. Thus, the splitting of the total population size into parallel evolving
subpopulations already increases the probability that at least one of these subpopulations
will evolve toward a better result.?

Table 4 also shows that a limited migration between the subpopulation further enhances

?Later, we will see that this conclusion requires that the number of individuals per subpopulation,
depending on the problem size, is sufficiently large. Obviously, 50 individuals per subpopulation as in our

case fulfills this requirement.
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Epoch Length
Bench- A 25 Gen. 50 Gen. 75 Gen.
mark SG Mig. Migrants Migrants Migrants

0 2 4 6 2 4 6 2 4 6

Burstein || 4.32 || 1.08 | 2.16 2.16 3.24|1.08 1.08 1.08| n/a n/a n/a
Joo6.13 || 1.32 | 2.26 | 1.13 2.45 2.45|0.19 2.45 1.69|2.26 1.88 2.26
Joo6.16 || 5.96 | 3.52 | 4.34 5.69 4.12|4.06 4.88 4.88|4.06 4.18 3.71
Joo617 || 2.78 | 3.17 [ 2.23 1.93 3.02]2.08 2.23 298]1.64 1.79 2 .23
Ped. SB | 8.19 | 6.60 | 5.51 7.08 8.05|7.58 8.46 8.52|7.01 6.68 6.68
| Average || 451 | 3.33 [3.07 3.86 4.18[3.00 3.82 3.83[3.74 3.63 3.72 |

(%SGA | 100 | 74 [ 68 86 9366 85 85|83 81 82 |

Number of subpopulations : 9

Migrant selection strategy : random

Table 4: Obtained channel and switchbox results with different numbers of migrants and
epoch lengths. For comparison reason, the results of a sequential genetic algorithm (“SGA”)
are also given. All results are averaged over five runs and normalized as percent exceeding
the best known score in Table 3. Thus, the smaller the value, the better the average result

of the particular configuration.
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Figure 7: Comparison of the convergence of the best individuals in the individual, paral-
lel evolving subpopulations. Plotted are five runs with nine subpopulations each, i.e., 45
curves, in isolation (left) and with two migrants (right). The “lower” curves and the smaller
envelope of the right-hand plot indicate better results and less variation throughout the

subpopulations.

the advantage of the parallel genetic algorithm. Two migrants to each neighbor with an
epoch length of 50 generations resulted in the best parameters when averaged over all
problem instances. On the one hand, more migrants or too short epoch lengths are coun-
terproductive to the idea of disjointly and parallel evolving subpopulations. They diminish
the genetic diversity between the subpopulations by “pulling” them all into the same part
of the search space, thereby approaching the behavior of a single-population genetic algo-
rithm. On the other hand, insufficient migration (epoch length 75 generations) simulates
the isolated parallel approach (zero migrants)  the genetic richness of the neighboring sub-
populations does not have enough chance to spread out. Increasing the number of migrants
can help in this case, although doing so does not achieve the good results of a “moderate”
epoch length combined with a low number of migrants.

Figure 7 shows this behavior in the context of all subpopulations, that is, it presents the
convergence behavior of the best individuals in each of the parallel evolving subpopulations.
It indicates the importance of migration to avoid premature stagnation by implementing
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new genetic material into a stagnating subpopulation. Furthermore, the plot points out
the “stabilizing” effect of migration as expressed in the limited variation among the best
subpopulations gained in five independent runs (see right-hand plot of Figure 7).

Variable Epoch Lengths

The ideas surrounding punctuated equilibria might be used to suggest: (1) a population
in a constant environment will stabilize over time with little motivation for further devel-
opment (“stasis” [12]), and (2) bursts of rapid evolution are often caused by small sets of
individuals migrating to a new environment (“allopatric speciation” [12]). We, however, are
interested in evolutionary systems for optimization, so we have used these ideas to design a
model in which the evolutionary system has several subpopulations. These subpopulations
are considered to be usefully evolving until they reach a stasis condition, at which point
the model calls for migration in order to instigate further useful evolution. Most published
computation models that are based on punctuated equilibria use a fixed number of gener-
ations between migration. Thus, they do not exactly duplicate the model that migration
occurs only after a stage of equilibrium has been reached within a subpopulation.

We modified the algorithm to investigate the importance of this characteristic. Rather
than having a fixed number of generations between migrations, we introduced a stop crite-
rion that takes effect when stagnation in the convergence behavior within a subpopulation
has been reached. We defined a suitable stop criterion to be 25 generations with no im-
provement in the best individual within a subpopulation.

Again, to ensure a fair comparison, we kept the overall number of generations the same
as in all other experiments. This led to varying numbers of epochs between the parallel
evolving subpopulations (due to different epoch lengths) and resulted in longer overall
completion time.

Our results suggest that a slight improvement compared with a fixed epoch length can be
achieved by this method. However, it is important to note that this comparison is made with
a fixed epoch length that has been shown to be (near-)optimal after numerous experiments
(see Table 4). Thus, a variable epoch length based on the convergence behavior within the
subpopulations can be useful when (1) a time effective usage of computational resources
does not have highest priority, and/or (2) no prior experiences with an appropriate epoch
length exist.

Different Migrant Selection Strategies

We investigated the influence of the quality of the migrants on the routing results. Three
migrant selection strategies were compared: “Random” (migrants were chosen randomly

among the entire subpopulation), “Top 50%” (migrants were chosen randomly among the
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Epoch Length

Bench- 50 Gen. Variable
SGA - - -
mark Migr. | Migrants | Migrants

0 2 4 2 4

Burstein | 4.32 || 1.08 | 1.08 1.08|1.08 1.08
Joo6.13 || 1.32 || 2.26 | 0.19 2.45|2.07 1.88
Joo6.16 || 5.96 || 3.52 | 4.06 4.88|2.71 2.44
Joo6_17 || 2.78 || 3.17 | 2.08 2.23|2.18 2.58
Ped. SB || 8.19 || 6.60 | 7.58 8.46|6.68 6.77

| Average || 451 || 333 [3.00 3.82]2.94 2.95]
[%saa 10 74 Je6 85 ] 65 65|

Number of subpopulations : 9

Migrant selection strategy : random

Table 5: Comparison of channel and switchbox results between a fixed (50 generations)
and a variable epoch length. The variable epoch length was terminated individually in each
subpopulation after 25 generations with no improvement of the best individual. All results
are averaged over five runs and normalized as percent exceeding the best known score in

Table 3.
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Migrant Selection Strategy
Bench- A Random | Top 50% Best
mark SG Migr. | Migrants | Migrants | Migrants

0 2 4 2 4 2 4

Burstein | 4.32 || 1.08 | 1.08 1.08 | 1.08 1.08|1.08 1.08
Joo6_13 || 1.32 || 2.26 | 0.19 2.45|1.88 3.58|1.32 2.82
Joo6.16 || 5.96 || 3.52 |4.06 4.88|2.44 3.79|4.88 3.79
Joo6.17 || 2.78 || 3.17 |2.08 2.23|1.98 2.18|3.17 1.59
Ped. SB || 8.19 || 6.60 |7.58 846 |7.94 7.10|5.51 7.77

| Average || 451 || 3.33 [3.00 3.82]3.06 3.55[3.19 3.41]
(%SGA [ 100 ] 74 |66 8568 79|71 76 |

Number of subpopulations : 9

Epoch length : 50 generations

Table 6: Comparison of channel and switchbox results with different migrant selection
strategies (no restriction on migrants, migrants with fitness above median fitness, best in-
dividuals as migrants). All results are averaged over five runs and normalized as percent

exceeding the best known score in Table 3.

individuals with a fitness above the median fitness of the subpopulation), and “Best” (only
the best individuals of the subpopulation migrated). The migrants were sent in a random
order to the four neighbors.

As Table 6 indicates, we cannot find any improvement in the obtained results by using
migrants with better quality. On the contrary, selecting better (or the best) individuals to
migrate led to a faster convergence — the final results were not as good as those achieved
with a less elitist selection strategy. According to our observations, this is due to the
dominance of the migrants having their (locally good) genetic material reach all the sub-
populations, thus leading the subpopulation searches into the same part of the search space

concurrently.

Different Number of Subpopulations

To compare the influence of the number of subpopulations, we first kept the size of the
subpopulations constant and increased the number of subpopulations to 16 and 25. Ac-
cordingly, we increased the population size and the number of recombinations of the sequen-
tial genetic algorithm to maintain a fair comparison. As expected, the sequential genetic
algorithm improves its performance due to the larger number of solutions evaluated (see
Table 7). The same is true for the parallel approach. The larger total population size and
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Number of Subpopulations

Bench- 9 16 25
mark Migrants Migrants Migrants
SGA 0 2 SGA 0 9 SGA 0 9

Burstein | 4.32 | 1.08 1.08 || 2.16 | 1.08 0.00 || 0.00 | 0.00 0.00
Joo6.13 || 1.32 | 2.26 0.19 || 2.07 | 2.18 0.18 || 0.94 | 0.00 0.00
Joo6.16 || 5.96 | 3.52 4.06 || 3.79 | 1.87 1.72 || 2.44 | 1.87 1.01
Joo6.17 || 2.78 | 3.17 2.08 || 3.57 | 3.10 1.08 || 1.98 | 1.51 0.10
Ped. SB || 8.19 | 6.60 7.58| 8.27 |6.00 5.21| 7.69 | 5.98 5.18

| Average | 4.51 [3.33 3.00| 3.97 |2.85 1.64] 2.61 [ 1.87 1.26]
|%SGA | 100 [ 74 66 [ 100 | 71 41 [ 100 | 85 48 |

Migrant selection strategy : random

Epoch length : 50 generations

Table 7: Comparison of channel and switchbox results with different numbers of subpop-
ulations. The size of the subpopulations is kept constant at 50 individuals. The results of
the sequential genetic algorithm for the resulting different owverall population sizes are also
given. All results are averaged over five runs and normalized as percent exceeding the best

known score in Table 3.
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Number of Subpopulations
Bench- 9 16 25
SGA : - -
mark Migrants | Migrants | Migrants

0 2 0 2 0 2

Burstein | 4.32 || 1.08 1.08 | 1.08 0.00| 0.00 0.00
Joo6.13 || 1.32 || 2.26 0.19]2.12 0.00|1.80 0.00
Joo6.16 || 5.96 || 3.52 4.06 | 3.52 3.81|7.10 6.00
Joo6_17 | 2.78 || 3.17 2.08 | 4.18 3.12|14.0 9.81
Ped. SB || 8.19 || 6.60 7.58|13.1 11.8|42.0 37.2

| Average | 4.51 [ 3.33 3.00[4.80 3.75[13.0 106
|%sGA [ 100 | 74 66 [106 83 288 235 |

Migrant selection strategy : random

Epoch length : 50 generations

Table 8: Comparison of channel and switchbox results with different numbers of subpop-
ulations. The size of the total population is kept constant at 450 individuals. All results
are averaged over five runs and normalized as percent exceeding the best known score in
Table 3.

thus higher overall number of recombinations led to better results.

An interesting variation on this experiment is the division into different numbers of
subpopulations while keeping the total population size constant. Thus, with 16 subpopula-
tions, the subpopulation size is reduced to 28 individuals; with 25 subpopulations, the size
decreases to only 18 individuals.

The results presented in Table 8 show the relationship between the problem size and the
minimal number of individuals per subpopulation necessary to prevent premature conver-
gence. Relatively small problem sizes (Burstein, Joo6_13) benefit from a further splitting
into more (but smaller) subpopulations. The advantage of more varied evolving subpopula-
tions outperforms the drawback of a smaller subpopulation size up to a certain level. This
level seems to be reached shortly below 50 individuals per subpopulation for the switchbox
J006_17 and the Pedagogical Switchbox  their results suffer significantly from the loss of

genetic diversity due to smaller subpopulations.

6 Conclusions

We presented a parallel genetic algorithm for two detailed routing problems in VLSI cir-
cuits. The approach includes a new measure of the netlength to better reflect the electrical
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delay in sub-micron regimes. Importantly, the approach also optimizes the interconnections
involving crosstalk by introducing crosstalk as a constraint in the fitness calculation. Hence,
our router can construct solutions which contain a minimal number of parallel, adjacent
interconnections — an increasingly significant consideration in sub-micron VLSI design.

The results also showed that, when applied to our routing problem, the parallel genetic
algorithm — based on concepts of punctuated equilibria — consistently performs better than
a sequential genetic algorithm.

In investigating the parameters of the algorithm, the following conclusions have been
reached:

e A small number of migrants (1 to 3 per neighbor) combined with a “moderate”
epoch length (approximately 5 to 10 percent of the total number of generations) leads
heuristically to the best results.

e Variable epoch lengths determined via equilibrium measures within subpopula-
tions achieve overall results that are slightly better than those obtained with
(near-)optimized fixed epoch lengths. Practical applications of this “strict punctuated
equilibria method” require the user to weigh the advantage of this “self-adjustment”
against its main drawback, decreased time efficiency.

e Quality constraints on the migrants (e.g., to be above median fitness) do not improve
the overall behavior of the algorithm, on the contrary, quality requirements on the
selection of migrants led to premature stagnation.

e Given a sufficient number of individuals per subpopulation, a larger number of parallel
evolving subpopulations will produce better routing results (for a fixed number of
total evaluations). The size of the problem and the minimal subpopulation size have
a direct correlation that must be taken into account when dividing a population into
subpopulations.

Our system can be easily implemented on any distributed network of conventional work-
stations. We believe this approach promises to be a useful tool in VLSI design.
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