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ABSTRACT.- Two different types of ancient bricks (XII-XIVth centuries) collected from 

historical buildings of Toledo (Spain) were characterized by Optical Microscopy, SEM/EDS, 

Electron microprobe, XRD, DTA and 57Fe-Mössbauer spectroscopy. Physical properties such as 

water absorption and suction, porosity, density and compression strength were also determined. 

Several minerals found in the brick matrix, such as garnet, let us infer raw material sources; 

calcite, dolomite, illite and neo-formed gehlenite and diopside phases, on temperature reached 

in firing; secondary calcite, on first cooling scenarios; and manganese micro-nodules, on late 

pollution environments. XRD and DTA of original and re-fired samples supply information 

about firing temperatures. Additional data on firing conditions and type of the original clay are 

provided by the Mössbauer study. Physical properties of both types of bricks were compared 

and correlated with raw materials and fabric and firing technology employed. The physico-

chemical characterization of these bricks provides valuable data for restoration purposes to 

formulate new specific bricks using neighbouring raw materials. 

Keywords: Brick characterization; Heritage; Historical buildings; XRD; DTA; SEM; Mössbauer 

Spectroscopy; Optical polarising microscope, paleo-indicator, raw material provenance. 
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1. Introduction 

During the last two decades, architectural heritage preservation has reached a rising interest for 

scientists, architects, engineers and archaeologists, this subject being an interdisciplinary 

research area. When damaged historical masonry needs to be restored with substitution bricks, a 

good characterization of both, new and old material lets us forecast the chemical behaviour of 

the system. In addition to the necessary aesthetic aspect, the familiarity with physico-chemical 

properties is crucial to maintain chemical equilibrium with adjoining materials. The historical 

understanding is not just to analyse and preserve objects but also to investigate the knowledge 

and skills used to produce and use them [1]. Romans, Jews, Arabs and Christians built the 

ancient city of Toledo (Spain) with bricks as the main construction material; nowadays, many 

historical monuments are being refurbished improving the regional wealth source by tourism. 

The main goals of the building material characterization are preservation and restoration, aiding 

archaeological studies which include: (i) origin of historical raw materials, (ii) processes and 

changes in archaeological artefacts undergone during burial, (iii) determination of original firing 

temperature and (iv) reconstruction of firing techniques and manufacturing technologies [2]. 

Bricks and ceramics can be considered as artificial rocks fired in kilns (“industrial 

metamorphism”), which bring their research routines close to those followed for metamorphic 

rocks [3]. In this way, modern methods of mineralogy, petrology and geochemistry are very 

useful for the study of archaeological ceramic materials [4]. Bricks in ancient buildings retain 

complex physico-chemical histories from the claystone geological formation to the finished 

product ready to be used in construction. From this point of view, a late history of changes, due 

to new pollution, different organic deposits and climatic variations, modifies the brick in 

dynamic equilibrium with its shifting environment. Thermogravimetric (TG) and Differential 

thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and 

porosimetric measurements of Byzantine and Medieval ceramics reveal interesting information 

on historical making processes and raw materials [5]. It is interesting to note that the central 
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dome of Hagia Sophia (Istanbul), built as early as 532 to 537 AD, was made entirely with brick 

and, after undergoing several restorations due to frequent earthquakes is still in use [6]. 

The nature, shape and size of different types of embedded grains and the brick matrix can be 

studied in a simple polarizing microscope allowing one to distinguish different raw materials, as 

follows: (i) sands of quartz, feldspars, mica, carbonate and accessory minerals (amphibole, 

pyroxene, garnet, sphene, etc.), (ii) fragments of plutonic, volcanic and metamorphic rocks, (iii) 

grog (ground brick-pottery added to clay) and (iv) matrix (colour, grain-size, texture). SEM 

provides high-quality imaging facilities together with semi-quantitative elemental analysis using 

energy-dispersive X-ray spectrometers (EDS), which have a wide range of applications in 

archaeological problems [7]. Data on the vitrification grade of ancient ceramics and their 

corresponding firing temperatures obtained by SEM examination are valuable for distinguishing 

between different traditions in ceramic technology in antiquity [8]. Electron probe microanalysis 

(EM), which combines electron microscopy with spot chemical analysis using mineral standards 

and wavelength comparison, leads in some cases to the precise identification of tiny mineral 

grains contained in the brick matrix and can be applied to determine their provenance [9]. As 

mentioned above, XRD and DTA are widely applied to the study of mineral phases and 

chemical compounds in ceramic materials [5,10]. Mössbauer spectroscopy is a very suitable 

technique for the study of iron phases in a wide range of samples and complex systems. It is 

particularly useful in the study of ceramic materials because the qualitative and quantitative 

analysis of iron compounds provides information related with colour, firing technique and 

fabrication technology of the ceramic [11-13]. In the study of ceramic materials, arrangements 

of complementary physicochemical methods provide more reliable results of archaeological 

significance than a single technique [4]. 

The aim of this study is to determine chemical and mineralogical composition, texture, structure 

and physical properties of bricks belonging to ancient buildings of Toledo City. The study was 

focused to select appropriate brick characterization routines to be applied in the restoration of 

historical buildings. This can constitute a good background to propose the use of: (i) rejected 
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ancient bricks, (ii) new special bricks made with claystone from the historical quarries, (iii) new 

material recipes based in the available commercial clays and additives. Data on alterations of 

brick surfaces could also be used as an indicator of paleo-climatic and pollution histories along 

the centuries. Thus, we present here a characterization study of ancient bricks of Toledo City by 

means of several techniques (Optical microscopy, SEM/EDS, EM, DTA, XRD and Mössbauer 

spectroscopy), as well as the determination of brick physical properties.  

2. Materials and Methods 

Brick samples were collected during refurbishment works from historical buildings in Toledo 

city centre (Spain). They were taken from a medieval brick wall in the Alcazar of Toledo (XII-

XIIIth centuries) and from houses (XIII-XIVth centuries) of the Corralillo de San Miguel and 

named AL2 and COR, respectively. Both are representative samples of two ancient brick types: 

(i) AL2, apparently poorly baked with a pale reddish matrix and many fine detrital grains, and 

(ii) COR, displaying a creamy-coloured fine textured matrix with grog and melting vitreous-

flows, suggesting a highly baked sample. In addition, several aliquots were prepared by re-firing 

brick samples at 700º, 800º, 900º and 1000º C for four hours. Analyses by XRD and DTA of 

neo-formed and remaining mineral phases after re-firings can be used to estimate the original 

firing temperature. Finally, to determine the geological origin of the brick raw materials, tiny 

mineral grains were extracted from the brick matrix after crushing with a hammer mill and 

screening with a sieve of 0.5 mm mesh size. Some minerals grains were also taken from the 

migmatite rock of the Toledo basement. The extracted grains were later classified under the 

optical microscope and next analysed and identified under the electron microprobe. 

Thin-section examination under an optical polarising microscope was performed with a 

transmission light petrographic microscope (Nikon Eclipse C 600 POL) equipped with an 

automatic photographic system and a digital camera (Nikon Coolpix 950). The chemical 

compositions of mineral grains were determined by EM (Jeol Superprobe JXA-8900M), bulk 

and channel-selected (TAP, PETJ, LIF, PETH) X-ray spectra search and identification routines. 
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The standards used were natural and synthetic crystals from the collection of the "Centro de 

Microscopía y Citometría", Complutense University, Madrid. Textures, morphology and 

alteration products in clay bricks were also studied by SEM. For this technique, brick surfaces 

were coated with gold (20 nm) in a Bio-Rad SC515 sputter coating unit. General SEM 

observations were carried out in a Philips XL20 SEM at accelerating voltages of 20-30 kV. EDS 

were obtained using a Philips EDAX PV9900 with a light element detector, type ECON.  

The brick mineralogy was determined by XRD using a Phillips PW-1710 powder diffractometer 

with CuKα radiation. Patterns were obtained by step scanning from 3º to 75º 2θ with a count for 

0.5 s per step, exploration speed of 7º minute-1 and 40 kV and 40 mA in the X-ray tube. 

Differential thermal analyses (DTA) were recorded in atmospheric air, with a thermal analyser 

(Setaram, Labsys CS 32-CS 332 Controller). The heating was programmed with a first heating 

ramp from ambient to 80ºC, with a heating rate of 20k minute-1; a second heating ramp at 10k 

minute-1 up to 1000ºC, and an isothermal hold during 5 minutes at this last temperature. 

Samples were packed each time in alumina crucibles. The reference material was an empty 

alumina crucible.  

57Fe-Mössbauer spectra were recorded at room temperature in transmission mode with a 

conventional constant-acceleration spectrometer equipped with a 57Co (Rh) source. Absorbers were 

prepared from powdered sample with a thickness of 100±10 mg cm-2 using a PMM compression 

holder. The spectra were computer-fitted to a sum of Lorentzian lines by applying the constraints of 

equal line-width and area for the two peaks of each doublet, and equal line-width and areas in the 

ratio 3:2:1:1:2:3 for the six peaks of sextets. Isomer shifts (δ) were referred to the centroid of the 

spectrum of α-Fe at room temperature. The relative concentration of the different Fe species was 

calculated from the spectral area ratio assuming that the f factor (probability of Mössbauer effect) is 

the same in all the implicated species.  

The study of physical properties was done according to quality standards tests UNE-EN. The 

determination of density was realised according to the standard UNE-EN 772-3:1999. Standards 

UNE 67027:1984 and 67031:1985-1986 were used in water absorption and suction tests, 
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respectively. Strength compression measurement was realized according to the standard UNE 

67026 / 1M:1995 EX, using an Ibertest 1500 press. The velocity of charge was 8.5 kNs-1. Finally, 

the porosity was determined by mercury intrusion porosimetry, using a Micromeritics Autopore III. 

S.9400.  

3. Results and Discussion 

Transparent slices of both types of bricks, under the polarizing microscope display coloured 

microcrystalline matrices and detrital grains of (i) biaxial quartz with anomalous extinction 

explicated from the surrounding migmatite rocks that have suffered huge geological stress, (ii) 

alkali feldspars with different sequences of exsolution perthites corroded with illite patinas, (iii) 

zoned plagioclase feldspars with polysynthetic twinning, (iv) strongly pleochroic brown biotite 

with zircon halos and chloritized borders of polarizing green colour. The distribution, composition, 

colour, size and shape of the grains are useful to compare pieces and speculate on origins of the raw 

material and firing temperature. Examining the claystone matrix, darker colours are linked with a 

more vitreous matrix and high firing temperature, while a light brownish colour indicates low firing 

temperatures. The sample AL2 shows isometric dark garnets with fissures filled by iron oxides. 

The clayed matrix of pale brown colour display grains of primary calcite, dolomite and biotite and 

secondary calcite in fissures (Fig. 1a). Under the crossed polarizing lens and larger magnification of 

the microscope (400x), it is also possible to observe tiny crystals of muscovite with bright colours.  

The sample COR has a darker matrix and some glassy areas of magnesium and calcium alumino-

silicates (diopside, gehlenite and melilite) in the boundaries of quartz, feldspars and phyllo-silicates. 

In principle, these findings can be associated to the use of higher firing temperatures in COR than 

in Al2 bricks. We will come to these results later.  

Electron microprobe analyses of tiny grains (from 500 to 900 μm) taken from bricks, display the 

following empirical formulae: (i) almandine-garnet (Fe2.1Mg0.62Mn0.15Ca0.08)Al2(SiO4)3, (ii) 

pseudorrutile Fe1.89Ti2.98O9, (iii) calcite-dolomite Ca1.02Mg0.05(CO3)2, for AL2 sample, and (iv) alkali 

feldspar (K0.82,Na0.18)AlSi2.99O8, (v) quartz SiO2 (vi) albite-anortite Na0.34AlSi3O8 - Ca0.39Al2Si2O8 
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which corresponds with a labradorite plagioclase, for both samples. Theoretically, garnet phases 

could be helpful here in establishing linkages among bricks and raw materials, because they are 

metamorphic minerals formed at high temperature-pressure conditions resisting brick baking 

without undergoing mineral transformation, and Toledo surrounding regional rocks are migmatite 

with garnets. The garnets of AL2 sample can belong to detrital sands coming from the Toledo 

migmatite rocks, i.e., an intimate mixture of igneous material of granitic composition and high-

grade metamorphic rocks of veined appearance. This type of rocks composes the basement of 

Toledo City centre (Fig. 2). The weathering detritus from migmatite rocks could be removed slope 

down by the erosion of the Tagus River, flowing downstream to the west, and deposited in the 

riverside banks in which the ancient claystone raw material were quarried. Conversely, the lack of 

garnet in COR sample suggests a different raw material location, probably upstream, in the east of 

the Toledo migmatite basement, out of the influence of the river erosion (Fig. 2). A garnet from the 

migmatite rock was analyzed (Table 1) showing the following empirical formula: 

(Fe2.7Mg0.24Ca0.06)Al2(SiO4)3. It displays a composition of almandine-garnet close to those of AL2 

bricks. The difference in it is the non-existence of manganese and a higher value of iron content. 

The EM image in Fig. 1b shows one of the garnet inclusions found in AL2 bricks. Chemical 

compositions obtained by EM for several of these garnet inclusions of AL2 samples and for the 

garnet of migmatite rock are shown in Table 1. The composition of these garnets agrees with those 

from the pluton-migmatitic Complex of Toledo fitting in the region of catazone metapelites into the 

Almandine-Pyrope-Spessartine garnets plot of Villaseca C. and Barbero L. [14]. This study 

classifies garnets from metapelitic rocks of the Spanish Central Region. Some analyses by EM of 

calcite-dolomite granules in AL2 samples display 60 wt % CaO and 2 wt % MgO. It is known that 

calcite and dolomite phases play an important role during firing due to the development of neo-

formed phases such as gehlenite and diopside. 

We have used the SEM technique mainly to study chemical, physical, and biological alterations in 

bricks. Samples poorly baked, as Al2, display large amounts of secondary calcite re-crystallized in 

the porous system. These alteration processes are not simple, e.g. Fig. (1c) displays a euhedral habit 

of scalenohedron calcite crystal with corrosion pits and a surrounding empty space which could be 
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attributed to dissolution mechanisms. Figure (1c) also displays carbonated deposits onto the 

mineral surfaces. Figure 1d shows pores with druse crystallizations of slabs and needles of calcite, 

with chaotic spatial orientation, which can be interpreted by different flowing directions during the 

crystallization. Sample AL2 also encloses mineral deposits of biological origin; e.g., Fig. (1e) 

shows manganese micro-nodules linked to a biological film. Different types of biological items, 

i.e., lichen and algae associations, diatomeas, fungi hyphae and fungi bed, spores, etc. have been 

observed in the brick samples. These biological deposits are important in the late neo-formation 

phases from pollution mechanisms. Manganese micro-nodules (Fig. 1e) could be formed in AL2 

bricks either by the action of reducing agents on aqueous solutions rich in anthropogenic KMnO4, 

or by oxidation mechanisms linked to algae-lichen biofilm because Toledo waters have high 

concentrations of alga biomass and manganese [15]. Conversely, samples highly heated as COR 

type bricks have characteristic details such as bubbles in the glassy-matrix clusters, and a diluted 

boundary grain-matrix. In addition, COR samples also display chlorides and calcium sulphates 

(Fig. 1f). In the polluted urban atmosphere of Toledo, deterioration of Ca-containing bricks has 

been accelerated to a great extent over the last decades. The main atmospheric pollutant is sulphur 

dioxide, which is very reactive and corrosive. Sulphur dioxide reacts directly forming sulphuric 

acid in the presence of water and oxidising agents. This reaction is the key step in the formation of 

gypsum onto the brick surface [16]. Sulphuric acid attacks both, carbonates and Ca-rich high-

temperature silicates such as gehlenite and Ca-feldspars, giving rise to gypsum crystals [17]. The 

small amounts of sodium chloride present in the COR sample are explained by leakage of domestic 

chlorinated waters dissolving sodium from feldspars.  

In both types of Toledo brick samples, XRD patterns (Fig. 3) show the most abundant and firing 

resistant phases, as follows: α-quartz (ASTM card 5-490) and feldspars such as albite (ASTM 9-

466), anorthite (ASTM 12-301) and microcline (ASTM 19-932). The diffractogram of the original 

sample of AL2 also shows peaks corresponding to the following mineral phases (i) calcite (ASTM 

5-586), (ii) dolomite (ASTM 11-78) and (iii) illite 2M1 (ASTM 9-334) (Fig. 3a). As shown above, 

optical polarising microscopy (see Fig. 1a) and SEM examination (Fig. 1c,d) indicate both 

primary and secondary origin for the calcite contained in AL2. Thus, the association of primary 
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calcite, dolomite and illite phases points to a low firing temperature (calcite and dolomite 

decompose circa 750ºC and 800ºC, respectively, and the illite phase does above 900ºC). In Fig. 3 

can be observed how new mineral phases (gehlenite and diopside) are formed at the expense of 

calcite and dolomite above 800ºC. Diffractograms of the original and re-baked COR samples (Fig. 

3b) show gehlenite (ASTM 20-199) and diopside (ASTM 11-654) peaks corresponding to neo-

formed phases during the original firing by a reaction between the silica melt and calcium-

magnesium phases (probably calcite and dolomite) existing in the clay paste. Summarizing, the 

presence of gehlenite and diopside in the COR sample indicates a brick fired at a temperature above 

900ºC, whereas in AL2 the presence of illite and primary calcite and dolomite points to a poorly 

baked brick with a firing temperature below 800ºC.  

DTA of AL2 and COR samples and their corresponding re-baked samples are linked in Fig. 4. 

DTA curves of both AL2 and COR samples show endothermic peaks below 100ºC as the result of 

absorption water losses. AL2 curves recorded from the original and the 700oC re-baked sample are 

practically identical and show the following features: (i) an endothermic peak at 450ºC explained 

by the possible dehydroxylation of illite, (ii) endothermic peaks at 650oC, 851ºC and 930ºC due to 

decomposition of calcite-dolomite; (iii) exothermic peaks at 911ºC and 981ºC attributed to the 

formation of a new crystalline phase; (iv) a little endothermic peak circa 575ºC attributed to the α-β 

quartz structural transition. Original, 700ºC and 800ºC curves of AL2 show also some small 

endothermic and exothermic peaks above 850ºC linked to the destruction of illite and 

recrystallization of new phases in a complex fluid-gas process. Curves corresponding to AL2 

samples re-baked at 800ºC and 900ºC exhibit a large endothermic peak circa 450ºC, indicating 

losses of hydroxyl groups from the Ca(OH)2 formed by re-hydration of the CaO exposed to 

environmental humidity. This fast hydration of CaO shows how rapid chemical changes are when 

calcareous claystone is used for brick fabrication. Taken together these DTA data, an original firing 

temperature below 800ºC can be proposed for AL2. In the COR sample, there are no appreciable 

differences between the original and the 700º, 800º and 900ºC curves, whereas the 1000ºC curve is 

clearly different (Fig. 4b). Original, 700ºC, 800ºC and 900ºC curves show three endothermic peaks 
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at 300º, 575º, 785º-830ºC and an exothermic peak at 860ºC. Endothermic peaks at 300º and 575ºC 

can be attributed to α and β cristobalite and quartz phase transitions, respectively. Endothermic 

peaks at 785º-800º are associated with the presence of calcium silicates and the exothermic peak at 

860ºC indicates the presence of diopside. This allows an estimate that the COR bricks were baked 

at a firing temperature between 900º and 1000ºC. 

Mössbauer spectra of both AL2 and COR samples show the typical pattern of an ancient ceramic: a 

main paramagnetic doublet in the central part of the spectrum and a magnetic component with 

rather broad lines (Fig. 5). In the COR spectrum this magnetic component appears to be composed 

of at least two sextets. Spectra were best fitted to a doublet (A) and a sextet (B) in AL2, and to a 

doublet (A) and two sextets (B and C) in the case of the COR spectrum. Table 2 gives the 

parameters and relative concentrations of the different species calculated from the fitted spectra. As 

can be seen, only Fe3+ species are present in the spectra indicating that samples were fired in an 

oxidizing atmosphere. The parameters of the doublet correspond to Fe3+ in an octahedral 

coordination and allow the doublet assignment either to substitutional Fe3+ in the clay mineral 

structure or to superparamagnetic ferric oxides [11,18]. Quadrupole splitting values of the doublet 

allow one also to infer a rough estimation of the firing temperatures as below and above 800ºC for 

samples AL2 and COR, respectively [11,19]. From its hyperfine parameters (Table 2), sextet B can 

be identified as hematite (α-Fe2O3) [20]. The low H value and line broadening of sextet B in the 

AL2 spectrum is attributable to the presence in this sample of substituted forms of hematite 

(Al-substituted hematite, α-(Fe1-xAlx)2O3, for example) [20]. The important magnetic relaxation 

exhibited by sextet C at room temperature (RT) indicates that the ferric oxides contributing to this 

sextet are finely divided in particles of small size (< 100Å ). Finally, in both samples the magnetic 

ratio (Mr) has RT values of ca. 0.20 (see Table 2). This Mr value is compatible with the use of 

calcareous claystone as the raw material in which chalk particles inhibit the hematite formation 

during the baking [11, 21]. 

The physical properties of ancient bricks of Toledo range from poorly-fired samples (AL2) up to 

highly-fired samples (COR), as follows: Water absorption (19.0% – 22.0%), Water suction (0.08% 
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– 0.18%), Density (1.60 g/cm3 – 1.51 g/cm3), Compression Strength  (334.73 daN/cm2 - 337.14 

daN/cm2), Total Porosity (32.46% - 43.12%) and Mean Average Pore (0.13 μm - 0.61 μm). The 

AL2 sample has less total porosity than sample COR. The high value of the total porosity and mean 

average pore size of the COR sample is explained by degasification of hydroxyl groups of phyllo-

silicates and by the effect of CO2 formed during firing from carbonates. The presence of gehlenite 

and diopside in the COR sample indicates that a calcareous paste was used. Above 800ºC, the 

fluxing action of the alkaline oxides, coupled with the CO2, seems to be responsible for the glass 

froth, and consequently, to the relationships between the final brick porosity and the amount of 

glass. The lower water absorption and suction values obtained for the poorly-fired AL2 brick in 

respect to the highly-fired COR brick could be attributed to both, low porosity and pore 

cementation by calcite in the Al2 sample. Surprisingly, both AL2 and COR samples have similar 

compression strength measurements. The mentioned cementation of pores in AL2 bricks could 

explain the high value obtained for its compression strength, anomalous in bricks fired at low 

temperatures. These suitable values of physical properties demonstrate that these ancient bricks 

were handcrafted with adequate raw materials and under the right conditions of temperature, kiln 

atmosphere, baking time, etc. It is critical to note that the carbonate content in the raw material of 

bricks is twofold: (i) minor amounts lead to further consolidation of the brick matrix by pore and 

fissure cementation, and (ii) carbonate overload produces coherence losses between phases and 

subsequent brick deterioration.  

4. Conclusions 

Accessory minerals such as almandine-garnet identified by EM in AL2 bricks let us infer that 

they were made with raw materials from quarries settled in the western part of the migmatite 

basement of Toledo City. However, the lack of garnets in COR bricks suggests that raw 

materials were collected from quarries located in the eastern surroundings of Toledo.  

XRD and DTA studies of mineral phases present in bricks, before and after re-firing 

experiments, complemented by optical polarising microscopy and SEM to determine primary or 
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secondary minerals, indicate ancient firing temperatures of: (i) above 900ºC for the COR sample 

(because it contains gehlenite and diopside), and (ii) below 800ºC for the AL2 sample, as prove 

the illite and primary calcite / dolomite content and the mineralogical changes after re-firings. 

Mössbauer results allow one to deduce that oxidizing firing conditions, pastes made from raw 

calcareous claystone, and firing temperatures above and below 800ºC for COR and AL2 samples, 

respectively, were used in the fabrication of these bricks. 

Paleo-climatic and pollution products and micro-organisms (lichen, algae, diatoms, fungi, spores), 

detected by SEM in brick surfaces, are indicators of the historical environmental conditions. 

Sulphates detected in COR bricks prove their urban atmosphere exposition, whereas manganese 

micro-nodules and abundant organic deposits in AL2 suggest underground environments.  

The data obtained on mineral composition, original firing temperature and physical properties of 

ancient bricks are an essential background to elaborate new specific bricks for restoration purposes. 
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Figure Captions 

Figure 1. (a) Thin-section under an optical polarising microscope of the AL2 brick sample, 

showing rounded primary calcite grains [Calp] and a fissure filled with secondary calcite [Cals]; 

(b) Electron Microprobe image of a pyrope-garnet [Grt] taken from AL2 brick, the surrounding 

material is alkali feldspar [Fs]; (c) Rhomboedron of secondary calcite covered by late secondary 

calcite (SEM image); (d) Secondary calcite crystals in a pore of AL2 (SEM image); (e) 

Manganese micro-nodules growing under a bio-film onto the brick surface of AL2 (SEM 

image); (f) Gypsum crystals [Gp] onto the COR brick surface (SEM image). Abbreviations of 

minerals according to Kretz R. (1983) [22]. 

 

Figure 2. Geological setting of Toledo City surroundings. 

 

Figure 3. X-ray diffraction patterns of original and re-fired samples corresponding to ancient bricks 

of Toledo: (a) AL2 and (b) COR.  

 

Figure 4. Differential thermal analyses of original and re-fired samples: (a) AL2 and (b) COR. 

bricks. Note as the poorly-fired AL2 sample shows an endothermic peak circa 850ºC due to CaCO3 

decomposition, whereas the highly-baked COR brick displays a double endothermic peak at 785º - 

800ºC linked with the presence of calcium aluminosilicates. 

 

Figure 5. Mössbauer spectra recorded at room temperature from AL2 (a) and COR (b) samples. 

The computer fits are shown as solid lines and the subspectra obtained are labelled as A, B, and C 

(see Table 2).  
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TABLES 

 

Table 1. Electron microprobe analyses (wt %) of garnet inclusions taken from AL2 bricks (Grt-48, 

Grt-73, Grt-80) and from the migmatite rock of Toledo basement (Grt-MigTo) 

 

Table 2. RT Mössbauer parameters (δ = Isomer shift, relative to α-Fe; Δ = Quadrupole splitting; 

2ε = Quadrupole shift; Γ = full linewide at half maximum; H = Magnetic hyperfine field; Irel = 

Relative spectral area; Mr = Magnetic to Total spectral area ratio, IB+IC/Itot. Numbers in parentheses 

give the uncertainty in the last digit). 
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Table 1 

 
 Si Al Fe Mn Mg Ca 

Grt-48 38.0 21.3 32.8 0.9 5.0 0.5 
Grt-73 38.1 21.5 32.4 0.9 5.1 0.5 
Grt-80 38.1 21.3 32.5 0.9 5.1 0.5 

Grt-MigTo 33.1 17.8 42.3 - 3.9 0.9 
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                                        Table 2 
 

 

 

 

      AL2 

 

        COR 

Doublet  A 
δ (mm s-1) 
Δ (mm s-1) 
Γ (mm s-1) 
Irel (%) 

 
 0.36 (1) 
 1.14 (1) 
 0.69 (6) 
 78.1 (5) 

 
 0.36 (1) 
 0.96 (1) 
 0.64 (1) 
 79.3  (9) 

Sextet B 
δ (mm s-1) 
2ε  (mm s-1) 
Γ (mm s-1) 
H (T) 
Irel (%) 

 
 0.37 (1) 
-0.22 (3) 
 0.69 (5) 
 49.9  (1) 
 21.9  (9) 

 
 0.41 (1) 
-0.30 (3) 
 0.41 (5) 
50.8  (1) 
   5.3 (7) 

Sextet C 
δ (mm s-1) 
2ε  (mm s-1) 
Γ (mm s-1) 
H (T) 
Irel (%) 

 
- 
- 
 - 
 - 
 - 

 
0.28 (5) 
0.12 (8) 
 1.8  (2) 
42.5 (4) 
 15   (2) 

Mr 0.22 0.21 
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